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“Capital Maths” is a simple and striking theme for this 26th Biennial Conference of 

the Australian Association of Mathematics Teachers, and reflects that the conference 

is being held in Canberra, the nation’s capital. More than that, however, is that we are 

in a position to emphasise yet again the importance of mathematics to the building of 

our nation. Just as Canberra is the capital of Australia, indeed the ‘heart of the nation’ 

according to the registration plates of ACT’s vehicles, we must continue to assert that 

mathematics is at the heart of our county’s social, scientific and economic growth—

truly a source of capital investment in our future. More than ever, education—

particularly STEM education—is at the forefront of the minds of our politicians and 

the wider community. As passionate educators, we too have the responsibility of 

asserting that influence, of supporting it, and making the very best mathematics 

education available to all of our students in all sectors. 

 Two years ago, the proceedings lead editor identified major and public themes 

connected to education: national security, financial literacy, environmental change, 

STEM, the relatively poor performance of Australian students in major international 

rankings, the professionalism and quality of our teaching force, and the continuing 

marginalisation of Indigenous Australians. In particular, the editors noted that while 

schools have a fundamental role to play in dealing with social problems, many of 

these seemingly endless calls to schools to solve our social ills through the curriculum 

and the provision of extra programs are made without a genuine understanding of 

the complexities of education. 

 Today these words serve just as well; that is, these issues and more—school 

funding reform, the accountability of the teaching profession as examples—are a 

continuing source of concern and a challenge to us all as educators, not just in terms 

of our students but also in the context of our responsibilities to the broader 

community, none of whom is untouched by the work of our educators, from a local 

pre-school to primary school and secondary schools, or a university preparing our 

future teachers. I write today as a practising classroom teacher, a position that I 

continue to recognise as a great personal privilege. The opportunity to come together 

at this conference with such a large and diverse group of educators, to share 

knowledge and innovation, and to assess and confirm best practice from so many 

colleagues across all sectors, allows me and all of this diverse group to continue to 

sustain our understandings of mathematics education as being at the heart of 

education, and an investment in our society and its future. Our conference speakers 

and presenters, representing the broader community of educators, bring a breadth of 

interests, affiliations, expertise and experience, new ideas and alternative thinking to 



challenge us, to support change and growth, and to affirm the profoundly important 

work of all in education. 

 Part of that challenge to me, and I hope to all at the conference, is how we are able 

to take these ideas and challenges back to our own communities—to lead learning, 

innovation, influence, change and growth. My hope is that our conference 

experiences guide us in the leadership that we take to our own communities, allowing 

us to reflect on and reinvigorate, validate and reappraise, challenge and change our 

personal and collegial practices. We are a truly supportive community of each other 

as educators, whether it be as delegates at this conference or in our own workplaces 

and professional communities. It is appropriate for me to acknowledge with much 

gratitude the support and guidance I have been given in this editorial role, from many 

whom I have not met personally, as a particular example. It heartens and encourages 

me, as I am sure it will for all delegates, that in my everyday practice I am able to 

influence, lead and be guided by passionate, caring and committed educators; it is we 

small investors who can play a profound role in mathematics education as a critical 

component of securing a capital investment in our nation’s future. 

 As this proceedings’ lead editor, I would particularly like to thank Kate Manuel 

and Toby Spencer (AAMT) for their support and guidance throughout the editorial 

process. 

Valerie Barker, Proceedings Lead Editor 

Presentations at AAMT 2017 were selected in a variety of ways. Keynote and major 

presenters were invited to be part of the conference and to have papers published in 

these proceedings. A call was made for other presentations in the form of either a 

seminar or workshop. Seminars and workshops were selected as suitable for the 

conference based on each presenter’s submission of a formal abstract and further 

explanation of the proposed presentation. 

 Authors of seminar and workshop proposals were also invited to submit written 

papers to be included in these proceedings. These written papers were reviewed 

without any author identification (blind) by at least two reviewers. Reviewers were 

chosen by the editors to reflect a range of professional settings. Papers that passed 

the review process have been collected in the ‘Professional Papers’ section of these 

proceedings. 

 The panel of people to whom papers were sent for review was extensive and the 

editors wish to thank them all: 

Judy Anderson 

Lorraine Day 

Suzanne Garvey 

Holly Gyton 

Theresa Hanel 

Greg Hine 

Derek Hurrell 

Chris Hurst 

Ann Kilpatrick 

Barry Kissane 

Kate Manuel 

Karen McDaid 
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Karen Perkins 
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This paper explores the challenge of determining the mathematics curriculum for 
students with mathematics learning difficulties and disabilities in an age where the 
tools of mathematics are readily available. Aspects once considered essential for 
‘functional mathematics’ such as written calculation, using cash and telling time 
can be undertaken easily with readily available devices such as calculators and 
smart phone applications. Deeper concepts such as generalising through algebra, 
making decisions about money, and engaging in mathematical problem solving and 
applications are now a possibility. This paper explores the challenge through the 
theoretical perspectives of Educational Quality of Life and Numeracy Development, 
presenting five principles for mathematics curriculum planning. The possibility 
exists of using year level appropriate mathematics curriculum to build lifelong 
numeracy—’functional’ mathematics for a new age. 

At some stage in curriculum planning for learners who struggle with mathematics, the 

conversation is likely to turn to a discussion of ‘functional mathematics’ with the view 

to what the student will need in the future. This ‘functional’ mathematics has tended to 

focus on basic arithmetic (often using written methods or rote learning of number 

facts), money (particularly tending currency and calculating change), and measurement 

(mostly reading time pieces). Perhaps these aspects were important for numerate adult 

citizenship in the past but what is ‘functional mathematics’ in our present age? How do 

we determine what and how mathematics should be taught in this electronic age where 

the tools of mathematics are so readily available? 

 Functional mathematics is changing in light of much recent research in the field of 

numeracy. Combined with improved understanding of approaches to inclusive 

mathematics education for students with mathematics learning difficulties, this means 

the time is right for a reconceptualisation of the mathematics that should be taught for 

all. The traditional functional mathematics topics need to be viewed in this new light. 

For example, calculating change is no longer functional in a world where electronic 

transactions are commonplace. Other aspects of financial literacy, such as making 

sound financial decisions, have increased importance. 

 When students have significant mathematics learning difficulties, the mathematics 

curriculum choice is particularly challenging. This paper explores the challenge and 



considers possible resolutions based on some theoretical perspectives: Educational 

Quality of Life, current understandings of numeracy development, and approaches to 

learning in general and mathematics in particular.  

 Implications for classroom practice are proposed with guiding principles for 

curriculum design to provide an indication of what might be possible to teach students 

with significant learning difficulties in mathematics, offering them a rich mathematics 

program and leading to lifelong numeracy development.  

Mathematics curriculum offerings for students with mathematics learning difficulties 

or disabilities have usually been focussed on ‘functional’ mathematics—the 

mathematics a person is going to need to ‘function’ in daily life. Butler and colleagues in 

undertaking a review of literature from the late 20th century note: 

Traditionally, basic skills instruction, including functional mathematics and life skills, has 
been the focus of mathematics curricula developed for persons with mental retardation. 
Although children without disabilities acquire basic skills with few problems, children 
with mental retardation often complete their schooling without mastering such skills … 
Accuracy in counting, recognizing numerals, telling time, and understanding quantity are 
important if individuals with mental retardation are to achieve employment, independent 
living, competence in basic skills, and successful integration into school and community 
settings. (Butler, Miller, Lee & Pierce, 2001, p. 21) 

 Ten of the 16 articles included in Butler et al.’s review focused on improving 

students’ computation skills, even though the articles were published after 1989—long 

after the routine availability of electronic calculators. Are those skills—counting, 

recognising numerals, telling time and understanding quantity—still necessary for a 

functional adulthood or indeed, are they sufficient? Butler and colleagues suggest not, 

“limiting mathematics instruction to rote computation practice will deprive students 

with disabilities from competence in important mathematics concepts and, thus, 

prevent them from succeeding in inclusionary settings and using mathematics 

effectively in real-world activities” (Butler et al., 2001, p. 20). In more recent times, 

these issues have been studied through research and practice in the area of numeracy 

development. 

At the heart of many conversations about curriculum design is a concern for what a 

student will need in the future. The use of mathematics in life contexts is numeracy and 

in Australia, a rich, well-conceptualised understanding of numeracy development has 

emerged over at least the last two decades. This has been encouraged by government 

policy and mathematics teachers and education researchers determined to understand 

the distinction between mathematics and numeracy, as well as to move beyond the 

misconception of numeracy as ‘basic skills’.  

 Considered a General Capability in the Australian Curriculum, numeracy has been 

defined as follows: 

Numeracy encompasses the knowledge, skills, behaviours and dispositions that students 
need to use mathematics in a wide range of situations. It involves students recognising 
and understanding the role of mathematics in the world and having the dispositions and 
capacities to use mathematical knowledge and skills purposefully. (ACARA, n.d.-b) 



 In foundation work on the theorising of numeracy, the Australian Association of 

Mathematics Teachers (AAMT) stated that numeracy is: 

…the disposition to use, in context, a combination of: underpinning mathematical 
concepts and skills from across the discipline (numerical, spatial, graphical, statistical 
and algebraic); mathematical thinking and strategies; general thinking skills; [and] 
grounded appreciation of context (AAMT, 1997, p. 15). 

The AAMT definition makes clear that numeracy involves mathematics from across the 

discipline and not just narrow areas of arithmetic. In addition, thinking skills and 

understanding the influence of the context in which the mathematics is being used are 

central aspects. Numeracy requirements vary according to context, culture and over 

time.  

 The importance of understanding the context is key to numeracy, as are cognitive 

dispositions such as willingness to do the mathematics required. Goos and colleagues 

have continued the theorising of numeracy and include five elements in their model 

(Goos, Geiger & Bennison, 2015) as shown in Table 1. 

 

Table 1. Elements of numeracy (Goos et al., 2015, p. 12). 

Mathematical knowledge  Mathematical concepts and skills; problem solving strategies; 
estimation capacities.  

Contexts  Capacity to use mathematical knowledge in a range of contexts, 
both within schools and beyond school settings.  

Dispositions  Confidence and willingness to use mathematical approaches to 
engage with life-related tasks; preparedness to make flexible and 
adaptive use of mathematical knowledge.  

Tools  Use of material (models, measuring instruments), representational 
(symbol systems, graphs, maps, diagrams, drawings, tables) and 
digital (computers, software, calculators, internet) tools to mediate 
and shape thinking.  

Critical orientation  Use of mathematical information to: make decisions and 
judgements; add support to arguments; challenge an argument or 
position.  

 
 

 Faragher and Brown (2005) demonstrated that numeracy development affects a 

person’s quality of life. Quality of life is a major framework in intellectual disability 

research (Schalock et al., 2002) from which has emerged a new branch, Educational 

Quality of Life (EQoL) theorised by Faragher and van Ommen (2017). In that model, 

there are five domains with related indicators. These are shown in Table 2, with a third 

column providing suggested connections to numeracy. 
 



Table 2. Domains of educational quality of life with connections to numeracy. 

Domain Indicators Numeracy implication examples 
Learning Aspects of well-being; student 

voice; student identity … 
Opportunities to learn mathematics, 
approaches to learning 

Curriculum and 
teaching 
approaches 

Teacher quality; response to 
individual learners; life-span 
perspective … 

Planned and delivered curriculum, 
Included mathematics 

School 
organisation 

Physical resources; staffing; 
timetabling … 

Policies for allocation to classes 
(heterogeneous vs ability grouping) 

School 
community 

Outside school experiences; school-
community connections… 

Opportunities for learning in context 

Vision and 
culture 

Shared moral purpose; attitudes to 
inclusion; approaches to inclusive 
practice… 

Beliefs about mathematics and how it 
is learnt. 

 

 

 In mathematics, what is taught, how it is taught and what is learnt has a direct 

impact on EQoL and quality of life in general. The domains of Learning and Curriculum 

and teaching approaches, are particularly important to the impact of numeracy on 

EQoL. Vision and Culture is arguably as important, though, as beliefs teachers hold 

about learners are known to be particularly significant in mathematics education 

(Beswick, 2008). 

 In order to prepare students for a numerate adulthood, teachers need to ensure 

students are taught mathematics from across the discipline as well as the application of 

mathematics in other subject areas. In the next section, one key component frequently 

proposed in ‘functional mathematics’ courses is explored—that of financial literacy. 

This is intended to serve as an example of the changing requirements of areas that have 

traditionally been a foundation component of alternative courses offered instead of the 

standard mathematics program to students who are struggling or underachieving in 

mathematics. 

Financial literacy provides an illustration of how functional mathematics is changing. 

The documented fall in cash being withdrawn from automatic teller machines in 

Australia (The Australian, 2016) correlates with a dramatic increase in cashless 

transactions, such as ‘payWave’. The need to tender currency and calculate change has 

been replaced by the need to understand financial literacy concepts such as budgeting 

and transferring money between accounts.  

 Developments in digital technology are only one impetus for change in financial 

literacy requirements. The Organisation for Economic Cooperation and Development 

(OECD) reminds us of the impact of changing demographics and social trends, “The 

number of financial decisions that individuals have to make, and the significance of 

these decisions, is increasing as a consequence of changes in the market and the 

economy” (OECD, 2016, p. 80). Decision making is a critical factor. The Australian 

Securities and Investment Commission (ASIC) provided a review of literature (2011) 

indicating that adults were reasonably able to make decisions about simple aspects of 

finances such as credit, debt, interest rates etc. but were less competent with more 

complex aspects such as superannuation and saving for retirement. Many relied on the 



advice of others, such as financial planners, to assist their decision-making. Some 

members of our community, such as those with intellectual impairments, are likely to 

rely on the advice of others for most of their financial decisions. Assisting citizens to 

make good financial decisions based on advice of those they can trust could be regarded 

as an important aspect of building financial literacy and numeracy development. 

Building financial literacy for all students requires a radical review of what is needed. 

Devoting a great deal of curriculum time to fading skills and competencies such as 

tendering cash and calculating change cannot be justified when much more relevant 

and vital concepts need development. What, then, should be included? The National 

Consumer and Financial Literacy Framework (ASIC, 2011) identifies three interrelated 

dimensions: Knowledge and Understanding; Competence; and Responsibility and 

Enterprise. Similarly, the OECD includes Content, Processes and Contexts. These two 

frameworks remind us that financial literacy requires more than content knowledge.  

Programs to teach the knowledge and understandings required for financial literacy are 

available and many are collected on websites such as ASIC’s MoneySmart website 

(www.moneysmart.gov.au). Research has also been undertaken into techniques for 

teaching skills to students with intellectual impairment, such as the use of debit cards 

(Rowe & Test, 2012). Carly Sawatzki (2017) reports research on using rich tasks to 

explore financial dilemmas. This work indicates a move beyond teaching content and 

importantly, included students from diverse backgrounds and with low social and 

economic status. Much work is still needed into effective methods for teaching financial 

literacy in schools to all students (Blue, Grootenboer & Brimble, 2014). 

This section on financial literacy has been used as an example of the complexity of 

considering functional mathematics requirements in the 21st century. Traditional 

approaches have focussed on skills and concepts that are now insufficient. It is often 

thought that these skills are enablers or foundational and higher, more relevant 

concepts cannot be taught until these have been accomplished. Fortunately, evidence is 

mounting that mathematics is not hierarchical as once thought. In the next section, this 

will be explored moving beyond the context of financial literacy into mathematics in 

general. 

A long-held view of mathematics development is that it is a hierarchical discipline. 

Developmental continua are common and well researched (see for example, the Early 

Numeracy Interview, First Steps Numeracy, Count Me In Too programs) (Bobis et al., 

2005). Typical development in mathematics does seem to follow the path indicated by 

these continua. However, this may not be the only possible order of development. If we 



were to teach concepts in a different order, it may be possible that different learning 

outcomes might be achieved. 

 Bruner claimed, “that any subject can be taught effectively in some intellectually 

honest form to any child at any stage of development” (Bruner, 1960, p. 33). His ideas 

led to concepts such as the spiral curriculum where increasingly sophisticated concepts 

were developed over time. His theoretical position provides a basis for understanding 

how students can learn topics in mathematics from across the discipline, at a range of 

levels. 

 More recent work by Forgasz and Cheeseman (2015) further challenges the 

assumption of a mathematics hierarchy, as they explore approaches to inclusive 

practice in primary and secondary mathematics. They note, “Unlike many other 

subjects, mathematics is widely considered to be a cumulative study for which 

subsequent levels of learning are dependent upon pre-determined sequencing which is 

rarely questioned” (p.74). Learning theory in general and mathematics education 

theorising in particular have moved to a perspective of the possibility of learning 

mathematics from across the discipline without set order.  

 Teaching year level mathematics curriculum, though seemingly counter-intuitive, 

has its basis firmly in established educational theory. 

Education policy in Australia is underpinned by international conventions and 

commonwealth law. The Disability Standards for Education (Commonwealth 

Department of Employment Education and Training, 2005) provide explanation for 

educators to assist them to meet their legal obligations. The Australian Curriculum: 

Mathematics has been developed under this legal framework. Within the Disability 

Discrimination Act and explained in the Disability Standards, an important concept is 

education ‘on the same basis’. Explanation of how this concept has been accounted for 

in the Australian Curriculum is provided in the section on Students with Disability. 

• ‘On the same basis’ means that a student with disability should have access to the 
same opportunities and choices in their education that are available to a student 
without disability. 

• ‘On the same basis’ means that students with disability are entitled to rigorous, 
relevant and engaging learning opportunities drawn from the Australian Curriculum 
and set in age-equivalent learning contexts. 

• ‘On the same basis’ does not mean that every student has the same experience but that 
they are entitled to equitable opportunities and choices to access age-equivalent 
content from all learning areas of the Australian Curriculum. 

• ‘On the same basis’ means that while all students will access age-equivalent content, 
the way in which they access it and the focus of their learning may vary according to 
their individual learning needs, strengths, goals and interests. (ACARA, n.d.-a) 

 Therefore, the Australian Curriculum is designed as an age-equivalent or year-level 

curriculum. If students are in Year 7, they should be taught the Year 7 curriculum. As 

made clear, this does not mean that students are all taught in the same way. It is 

essential that adjustments are made to assist any student to learn. For many teachers, 

adjusting the mathematics curriculum is a challenging idea at first. Evidence of what 

can be achieved and how the teaching might be undertaken has emerged over many 

years (see, for example, Browder, Jimenez & Trela, 2012; Browder & Spooner, 2006). A 

large collection of examples now exists, including a fascinating example of using the 



distance formula to understand length measurement (Monari Martinez & Benedetti, 

2011). A recent example of adjustment of mathematics is described in Box 1. 

Box 1. Adjusting a year 9 mathematics program. 

A year 9 student with an intellectual disability attends a regular secondary school in 

Brisbane. He is unable to reliably add single digit numbers and his mathematics 

teacher was providing worksheets with simple addition exercises such as 5+ 1, 

written vertically. The others in his class were commencing a unit on linear algebra. 

The teacher decided to try adjusting the unit and prepared a worksheet where the 

student practised substituting a range of values for x to find the y value for linear 

functions such as y = x + 7. The mother of the student reported with pride that he 

was able to complete these tasks with the support of a calculator and learnt to do so 

remarkably quickly. 

 

There are a number of features of this lesson adjustment that are important to note.  

• The student is learning concepts from his year level.  

• His teacher is adjusting the work she is already planning for her class. She does 

not have to prepare completely separate content.  

• The materials were able to be used by other students in the class. 

• The underlying skill of adding single digit numbers is now being practised in an 

age-appropriate context. 

• The tools of mathematics (use of a calculator) and concepts (substituting into 

formulae) were being explicitly taught. 

 What we see from examples such as that in Box 1 is that it is indeed possible for 

students whose attainment is behind their age peers to learn adjusted content from the 

mathematics curriculum of their year level.  

Requirements for a numerate adulthood are changing. In this section, the focus will be 

on mathematics in the compulsory schooling years and on students who have lagged 

behind their age peers in mathematics, for whatever reason, building on the Goos et al. 

model of numeracy (2015). Two aspects of that model, Mathematical Knowledge and 

Tools, are the focus. Mathematical knowledge forms the basis of the aspects of the 

model that focus on applying mathematics in context: Contexts and Critical 

Orientation. The more mathematics a person knows, the broader the possibilities for 

engaging with a variety of life’s contexts (Faragher & Brown, 2005). As we have seen, it 

is indeed possible for even students with significant mathematics learning difficulties to 

accomplish mathematics from their year level and so form the basis of lifelong 

numeracy development as this knowledge is applied in life contexts. The following 

guiding principles, in Table 3, can be used to underpin curriculum design for 

mathematics.  
 



Table 3. Five guiding principles for curriculum design. 

Element Principle 

Mathematical 
knowledge: 

1. currency 
2. focus on concepts—the ‘big ideas’ 
3. taught through explicit teaching, and rich tasks to allow problem 

solving. 

Tools: 4. use of the most efficient tools should be explicitly taught and 
practiced 

5. tools such as calculators can act as prosthetic devices—tools for 
overcoming learning difficulties—and should be routinely 
available as needed. 

 

1. Currency 

 The principle of currency refers to ensuring the mathematics included is what is 

important now, and not included because it has always been taught. An example 

would be aspects of arithmetic. The use of basic arithmetic in life contexts is 

rapidly changing and shrinking. In a world where the use of cash is disappearing 

and being replaced by PayWave, where calculators are within hands reach of most 

and where transport card systems and funds transfer are in regular use, a focus 

on arithmetic is no longer necessary or sufficient.  

2. Focus on concepts 

 It is critical that students are taught as much mathematics in the school years as 

possible in order that they can be taught application in life contexts where the 

mathematics is needed. 

 A focus on concepts, the ‘big ideas’ of the field of study, guards against a 

concentration on outdated techniques. Instead, a focus on concepts is responsive 

to new methods. For example, if aspects of financial literacy, such as paying bills 

and budgeting, are taught, the techniques used may change but the underlying 

idea does not. Cheque books may give way to online bank transfer which may give 

way to a smart phone application but the concept and the underlying 

mathematics is the same. Our curriculum can be responsive to current methods if 

the concepts are the focus. 

3. Taught through explicit teaching, and rich tasks to allow problem 

solving 

 Numeracy attainment depends not only on mathematical skills and concepts but 

also on the ability to apply mathematics, solve problems, make decisions and 

exhibit dispositions such as the preparedness to adapt mathematical knowledge 

to contexts. As Hwang and Ricconimi (2016) point out, students with 

mathematics learning difficulties should “receive opportunities to engage in 

unstructured realistic problems with appropriate instructional supports or the 

gap between their mathematical knowledge and their real-life use will continue to 

widen” (p.179). Unfortunately, some writers in special education mistake 

constructivism for discovery learning and advocate for direct instruction alone. A 

focus on direct instruction without the opportunities to engage in mathematical 

thinking removes the opportunity to develop required elements of numeracy. A 

balance is needed in provision of explicit teaching of techniques as well as 

opportunities to learn through rich tasks. Sullivan and colleagues demonstrate 

that this is possible and effective (Sullivan, Mousley & Zevenbergen, 2006). 



4. Use of the most efficient tools should be explicitly taught and 

practiced 

 The tools for learning mathematics are varied. Providing learners with 

opportunities to engage with a range of tools is critical for application and for 

learning of the mathematics in the first place. Graphing software, spreadsheets, 

manipulatives and other mathematics tools are a feature of effective mathematics 

pedagogy for all learners.  

5. Tools as prosthetic devices 

 Many learners with mathematics learning difficulties struggle with arithmetic. 

This should not prevent them learning other areas of the discipline. 

Understanding what operations (such as subtraction) do is a functional necessity, 

whereas the ability to perform the operation is not, when the tools of 

mathematics such as electronic calculators are readily available. In situations 

where a student is unable to perform a calculation, a calculator becomes a 

prosthetic device. A prosthesis is a device that can perform a function when the 

body is unable. The ready availability of calculators makes them ideally suited to 

supporting numeracy throughout life, however, students need to be explicitly 

taught how to use them effectively. 

The five principles described above, provide an indication of how curriculum decisions 

for students with significant mathematics learning difficulties can be guided by 

established models of numeracy development. 

A numerate adulthood is attainable by all learners, with a realistic understanding of 

functional mathematics in an electronic age. An essential foundation is a rich 

mathematics curriculum including topics from across the discipline. Even more so are 

those mathematical dispositions of grappling with problems, persisting, exploring, 

being challenged, even seeing the beauty of mathematics. Those of us who have chosen 

to work in mathematics know the sheer joy of our discipline. Of course, we also know 

all too well that for many students, they do not experience mathematics the way we do. 

However, it is possible for all learners to come to appreciate mathematics in this way 

with good teaching and the right support. This is best achieved by teaching all learners 

the year level curriculum in inclusive classrooms, adjusted as required, with a focus on 

teaching the mathematics through explicit teaching and through providing rich tasks 

and contexts for students to learn to apply their mathematics. 
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This paper is a summary of the closing keynote at the AAMT conference 2017. It 
describes my reflections on an almost 40-year journey teaching statistics—feeling 
guilt about how poorly I must have taught my students those early years, 
attempting to stay current with pedagogy and assessment, and predicting the 
future. As teachers, we want our students to experience the beauty of statistics and 
also the importance of being a healthy sceptic of statistics. This paper highlights 
taking a journey to explore the evolution of teaching statistics over the past 50 
years internationally and lessons we have learned that will positively impact the 
statistical literacy of our students in the future.  

Thank you for this tremendous honour of being with you today. I am thrilled to be back 

in Australia after spending two fabulous weeks in 2015 at the University of Tasmania 

working with Jane Watson, Helen Chick, and other amazing Australian mathematics 

and statistics educators. At that time, I was experiencing one of the highlights of my 

career, being selected as a US Fulbright Scholar to learn more about school level 

statistics ‘down under’. I spent 6 months in New Zealand with the Fulbright program 

also supporting travel for me to experience two weeks in Australia. I learned so much 

from the mathematics educators and school level teachers in Australia and New 

Zealand. I have been able to take these experiences back to the US and hopefully better 

impact the integration of statistics into the US school level curriculum. After 

completing the Fulbright, I made the decision to retire from higher education and the 

classroom (and yes, I miss the students) so that I could begin a new journey, helping to 

structure and grow a new position the American Statistical Association felt was a high 

priority, advocating as a K–12 Statistical Ambassador. Since being in this position, I 

often fall back on the knowledge I gained during my time in Australia and New 

Zealand.  

 Retiring from a long career of teaching and research brings reflection. I have 

cherished each day of my career as a statistics educator. Let’s journey together 

exploring the evolution of how we teach statistics—the past, present, and the future. 



Statistics educators are now faced with acknowledging and adapting to the reality that 

our traditional concept of data has changed. Data are no longer simply “numbers in 

context” (Cobb and Moore, 1977), stored in static spreadsheets and collected to answer 

specific research—driven questions. Today, data are also dynamic, complex, highly 

structured collections of pictures and sounds—data sets are vast and readily available. 

The hot new curriculum is data science combining the skills of statistics, mathematics, 

and computer science. Statistics integrated into the school level curriculum is key for 

students developing the statistical reasoning skills to make sense of the massive data 

that surround them on a daily basis, much of which students generate themselves. 

According to the American Statistical Association’s (ASA) Pre-K–12 GAISE Framework 

Report, “Every high-school and college graduate should be able to use sound statistical 

reasoning to intelligently cope with the requirements of citizenship, employment, and 

family and to be prepared for a healthy and productive life” (Franklin, et al., 2007, p.1). 

We have come a long way to meeting this goal over the past 50 years but there is still 

much work necessary for the future. 

When I first taught statistics 40 years ago, the introductory course was just making its 

way to the undergraduate level at university, most certainly not at the school level. The 

study of statistics was for the graduate level. The first ‘statistics’ book I taught out of 

focused more on mathematical probability than on statistical reasoning. Because 

statistics was being taught in mathematics departments, the mathematical 

underpinning of statistics was overpowering the practical applications and context of 

statistical reasoning. I found this puzzling given that the roots of statistics as a field are 

not mathematics but in such fields as agriculture and the social sciences. The field of 

statistics developed to solve real problems (Franklin, 2013). Although I was both a 

political science and maths major, I discovered the study of statistics through political 

science not maths. It bothered me that introductory statistics courses emphasised 

computations but not concepts and interpretation of findings. No doubt, the lack of 

technology at that time contributed to the emphasis on calculations. However, in 1986, 

I landed in a magical place, the University of Florida, with Richard Scheaffer as my 

department chair. Scheaffer is a pioneer in statistics education and advocate for 

statistics at the school level. He is the individual who set me on the journey to devote 

my career to bettering the teaching of statistics at the school and undergraduate level 

and he continues to mentor me.  

My first year at University of Florida, I was asked to teach out of a visionary 

introductory text authored by Freedman, Pisani, and Purvis (1978) now in its fourth 

edition. This book was about conceptual understanding and being able to reason 

statistically. The first chapter was about study design, unheard of at that time in an 

introductory course. This is the one reference book I always have on my shelf.  

 It was also during this time that statistical software was beginning to appear such as 

Minitab. Technology was becoming an option to use pedagogically. My second year at 



UFL, I was asked to class test a forthcoming textbook, Introduction to the Practice of 

Statistics by Moore and McCabe (1989). This book was visionary in that it balanced 

procedural with conceptual understanding. The book is now in its 8th edition. 

 Before moving to the University of Georgia in 1989, Dick Scheaffer convinced me 

that I should focus part of my career on integrating statistics at the school level. 

Scheaffer was leading efforts through the American Statistical Association (ASA) and 

College Board to develop resources and statistics standards for the school level. 

While president of ASA in 1968, Frederick Mosteller (Professor at Harvard) reached 

out to the National Council of Teachers of Mathematics (NCTM) to establish a joint 

committee with ASA. NCTM is the USA equivalent organization to AAMT. Mosteller 

was a leader in statistical research who had an appreciation for statistics education. 

One of Mosteller’s Princeton colleagues, John Tukey, was at this time steering much of 

the emphasis in the statistics profession away from mathematical theory and toward 

data analysis often referred to as exploratory data analysis. Tukey gave us the boxplot, 

the stem and leaf plot, and the 1.5*IQR criterion for outliers (Tukey, 1977).  

 The Joint Committee of ASA and NCTM developed in the 1980’s the ground 

breaking Quantitative Literacy Project (QLP) that consisted originally of four booklets, 

Exploring Data, Exploring Probability, The Art and Technique of Simulation, and 

Exploring Surveys and Information from Samples (Landwehr & Watkins, 1986). 

Workshops were held throughout the US providing teachers with professional 

development. Building on the work of the ASA-NCTM Joint Committee, NCTM 

published the Curriculum and Evaluation Standards for School Mathematics (NCTM, 

1989), the first major curriculum document internationally with Statistics as a 

significant component at all school levels. These recommendations were enhanced with 

the publication of Principles and Standards for School Mathematics (NCTM, 2000). 

These documents were followed by similar curriculum documents including statistics 

and probability in other countries (e.g., Australia, Japan, Korea, and New Zealand).  

 It was in 1996 that a visionary book was published that heavily influenced the 

pedagogy in my classroom, Activity-Based Statistics (Scheaffer et al., 1996). This book 

inspired me to prioritise hands on activities to promote investigative and conceptual 

learning. It was also at this time that statistical calculators were becoming available to 

more readily bring technology to the classroom. Activity based learning was ideal for 

carrying out simulation especially at the school level. 

One of the most successful efforts in the US of introducing statistics at the school level 

has been Advanced Placement (AP) Statistics (http://apcentral.collegeboard.com/apc/ 

public/courses/teachers_corner/2151.html) with the first exam administered in 1997. 

Students take an AP course in high school that is considered equivalent to a university 

course. If the student makes a certain score or higher on the nationally administered 

exam, the student receives course credit at the university level. In 1997, approximately 

7500 exams were scored. In 2017, 21 years later, approximately 217 000 exams were 

scored. AP Statistics has maintained a nice linear growth over the years. Oversight for 

AP exams is provided by College Board, a non-profit organisation that develops 



curricula and standardised exams used by the school level to encourage college 

readiness (https://www.collegeboard.org). Richard Scheaffer provided the leadership 

to bring about AP Statistics in the early 90’s. He asked me to become involved in its 

beginning stages and implementation and I have benefitted greatly from my long 

involvement with AP Statistics. My work with AP gave me an understanding of (1) the 

urgency of teacher preparation in statistics at the school level (2) the importance of 

sound assessments in statistics and (3) the importance that all school level students 

develop statistical reasoning skills, not just post-secondary bound students. AP 

Statistics motivated my professional efforts at the school level for the past 20 years 

(Rossman and Franklin, 2013). 

The vision of ASA emerged again in 2007 with the publication of the Guidelines for 
Assessment and Instruction for Statistics Education (GAISE) Report (Franklin et al.). 

Building upon earlier documents, GAISE provides a statistical problem-solving 

framework with the concept of variability as its foundation: 

• Formulate Questions – Anticipating Variability; 

• Collect Data – Acknowledging Variability; 

• Analyze Data – Accounting of Variability; 

• Interpret Results – Allowing for Variability. 

 GAISE also stresses the importance of understanding the difference between 

mathematical and statistical thinking. As stated in GAISE, p.6, “Statistical thinking, in 

large part, must deal with the omnipresence of variability; statistical problem solving 

and decision making depend on understanding, explaining, and quantifying the 

variability in the data. It is this focus on variability in data that sets apart statistics 

from mathematics.” Not only is variability essential in statistical reasoning but so is 

context.  

 GAISE advocates that students in the lower grades are ready to explore the design of 

studies and to begin using the statistical problem-solving process. How could this be, 

given that traditional introductory statistics course would omit these topics?  
 GAISE reflects the guidelines of other frameworks such as those proposed by 

Holmes (1980) and Wild and Pfannkuch (1999). GAISE is complemented by Makar and 

Rubin (2009), who introduced the phrase “informal inference” to describe the situation 

for school students to make generalizations from a sample to a wider population 

without using the formal theoretical tools available to practicing statisticians.  

 Since the publication of these different frameworks, research is occurring on 

statistical learning at the school level with much of the effort being ‘down under’ in 

Australia and New Zealand. Recently the focus is on data modelling and complete 

statistical investigations reflecting GAISE and engaging students in the practice of 

statistics with meaningful contexts (e.g., Ben-Zvi, Ardor, Makar & Bakker, 2012; 

Watson & English, 2015, 2016, 2017; Pfannkuch, 2011). 

We have come a long way with technology from my first years of teaching with no 

technology. We have evolved from statistical calculators in the 90s to powerful 

statistical software packages, applets, and amazing data visualization tools such as 



Gapminder. Simulation is as easy as accessing a public applet (0n your smart phone no 

doubt) and clicking a mouse or pushing buttons. We are able to use randomization tests 

and bootstrapping to build sampling distributions for making inferential statements, 

this all happening from school level to post-secondary. We don’t need computer labs—

just internet access. Investigative learning is easy now—just push the correct buttons. 

Who needs hands on simulation? Here is where I believe we need to go back into the 

past and keep the hands on before moving to technology. Anecdotally, in teaching, 

especially with teachers, I observe those light bulb moments when they understand a 

fundamental statistical concept by going through a hands-on activity whereas before 

they were going straight to technology. For example, what is the reason we randomly 

assign treatments in an experiment? By first setting up the simulation of the 

experimental situation with a deck of cards, then randomizing the cards and assigning 

the cards to treatments, the teachers realise what we intend when we ask the question, 

“Is the difference we observe in the treatments due to random chance or is there a real 

difference?” Technology is amazing but we still need to first lay the groundwork for our 

students with visualizing the concepts hands on.  

Statistics at the school level provides us with a huge opportunity: Statistical literacy for 

all! If not at the school level, how can we expect individuals to become data literate? We 

need our teachers to teach students to navigate this world of data (Bargagliotti and 

Franklin, 2015). In the US and internationally, school level teachers and teacher 

educators express their lack of confidence in being prepared to teach statistics. In 2015, 

ASA published the Statistical Education of Teachers (SET) report (Franklin et al., 

2015). SET is a must-read document and provides recommendations for pre-service 

teacher education and provides examples of activities that satisfy its recommendations. 

Two chapters of particular interest are Chapter 3 discussing the mathematical practices 

through a statistical lens and Chapter 7 discussing the appropriate way to assess 

statistical reasoning.  

 The eight mathematical practices (MP) describe ways students of maths and stats 

should engage with the subject content—the MP’s are processes and practices that 

complement content knowledge. The practices emphasise problem solving, reasoning, 

communications, connections, and representations (Franklin et al., 2015). I think of the 

practices as habits of mind.  

 Chapter 7 shares examples of good statistics assessment items for the school level 

from the Levels of Conceptual Understanding in Statistics (LOCUS) project 

(https://locus.statisticseducation.org). The work of LOCUS was based upon the 

outstanding model of assessment provided by AP Statistics. It was AP Statistics and 

LOCUS that made me realise the importance of assessment as a priority for teaching. 

Assessment needs to happen alongside the planning of delivery content with clearly 

defined learning outcomes. Assessment must not be an afterthought as is traditionally 

the case. 

I have a wish that the nurturing community of maths and stats educators can gently 

push us as teachers out of our comfort zone—to take the leap and embrace new 



pedagogy and professional development to teach statistics and how to make sense of 

data. It is important that this community not only encourage taking risks but also 

provide the safety net. I know in America, ASA is an example of that community and I 

experienced observing that nurturing community during my time in Australia. 

Collaborations are happening internationally to support teachers of statistics. I often 

share that without my mentors and colleagues providing a safety net, I would not have 

easily moved out of my comfort. But I am grateful I did. 

 I have a wish that teachers of statistics will enthusiastically say, “Teaching statistics 

is fun and important!” Finally, I have a wish that teachers can embrace the positive 

lessons we have learned from the past, the research, the technology, the assessment 

models, and the pedagogical tools of the present, and in the future, encourage students 

to use resources available for generating and collecting meaningful data to analyse—to 

practice being data scientists and making sense of the world around them. Statistical 

reasoning is magical but real, beautiful, and brings mathematics into the practical 

world of useful applications.  

 Thank you for spending time with me to share my passion for teaching statistics.  

 
My deepest appreciation to friend and colleague, Jane Watson for her valuable 

contributions to this paper. 
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My presidential address to The Mathematical Association (UK) in April 2016 was 

entitled ‘Inspiring Teachers’. The concept was a talk that might trace my mathematical 

experiences from grammar school sixth form, through my development in retirement 

as a contributor to masterclasses for the UK Mathematics Trust and the Royal 

Institution, learning from the students and from the inspiring teachers at whose 

masterclasses I assist, to the small understanding of Key Stage 2 Mathematics that I am 

gradually acquiring through an hour a week with some Year 6 students and their 

remarkable teachers in a local primary school. 

 Three months later I was greatly honoured to be invited to deliver the Hanna 

Neumann Memorial Lecture to the AAMT biennial conference 2017. Late in October 

2016 a request came for a title. I was stumped. But just then there arrived out of the 

blue—by airmail—a delightful letter from Deanne Whittleston of Sydney. It was dated 2 

November 2016 and I have permission to quote from it: 

She [Hanna Neumann] was remarkable for many reasons but to me she was remarkable 
as she managed to get me through Pure Mathematics I and in all my years of study (13 at 
school, 5 at ANU, 2 at Canberra University and 5 studying law in Sydney) she was the best 
teacher I ever had. How she did it I do not know. 
In my Pure Maths I class at ANU in 1967, there were about 200 students (only 4 of whom 
were women, of whom I was one). Hanna taught that class as though she knew us all 
intimately—she was incredible. 

 The lovely coincidence of the arrival of this letter just when I was at a loss for a 

lecture title tempted me to re-use that of my earlier address—though I was clear in my 

mind that the actual address would have to be very different. The title is deliberately 

ambiguous. So is the second half that I have added later. 

 Another point about the title is that no abstract is needed; yet another, that the 

words can be permuted in several ways, such as ‘Challenging Children Inspiring 

Teachers’ and ‘Teachers Inspiring Challenging Children’. And of course, as so often, 

when a title is requested long in advance, what was needed was something that would 

restrict the content on the day as little as possible. 

 As I have written in The Mathematical Gazette (November 2016), my lectures are 



designed to be ephemeral oral presentations. They are not designed to be written down 

and published as articles. Please bear that in mind gentle reader, and judge accordingly. 

If you find something of value here I shall be delighted; if not, I shall not be surprised. 

Eleven-year old Nathan on 9 June this year: 

 

1 2 3 4 

Choose four numbers, one 

from each row, one from each 

column. Whatever the choice 

you make, they add to 34. 

5 6 7 8 

9 10 11 12 

13 14 15 16 

 

 I have no idea where this came from. Possibly from one of his family. Quite probably 

a discovery of his own. The context was that two weeks earlier, on the last Friday before 

the week-long half-term holiday, eleven high-ability Year 6 children, a teacher and I, 

had started from D �urer’s famous 4 × 4 magic square and had investigated other, mostly 

smaller, magic squares. These squares captured the children’s imagination. And so it 

was that Nathan, refreshed by his holiday, came up with his discovery. 

 It was new to me. The response had to be “Lovely! Can you explain to me WHY it 

works? What about squares of other sizes?” By the end of the session (45 minutes) the 

children had investigated squares of sizes down to 1 × 1 (one of the girls did this) and up 

to 10 × 10, and three or four of them had understood why it works. Those were 

challenged to write their explanations down. But writing mathematical explanations is, 

in my somewhat limited experience, not something that eleven-year olds, even bright 

ones, put high on their agenda. 

Year 10 children are fourteen or fifteen years old. The masterclasses offered by the UK 

Mathematics Trust and by the Royal Institution of Great Britain are aimed at a group 

consisting of two of the ablest children in each of twenty to thirty schools. Since average 

cohorts will be between three and four classes per year (smaller in independent 

schools) the clientele of these masterclasses might be expected to come from the top 2% 

or 3% of the ability range. Of course, ability does not work quite that way; even so, the 

children will be among those who (in England and Wales, possibly also in Scotland and 

Northern Ireland) are deemed to be ‘Gifted & Talented’ (in a semi-formal political 

sense). These masterclasses are intended to show able children that there is 

mathematics outside of their syllabuses, that mathematics is not done and dusted, that 

there are areas where mathematicians in industry and in universities are still struggling 

to gain understanding. Here is an example of a Year 10 masterclass on combinatorics of 

words, that hides some deep group theory in which there are still many open research 

problems.  



 We start with an alphabet {a, b, c…}, as few or as many letters as we wish, and we 

focus on words. In this context words are any strings of letters such as;  

 

a,  aa,  aaabaccba,  bbababaaaab, 
 

They are meaningless—all that is of interest is the combinatorics associated with linear 

arrangements of symbols. The length of a word w is defined simply to be the number of 

letters in w. The examples above have lengths 1, 2, 9 and 11 respectively. An important 

convention is that we allow length 0, no letters! But this word needs to be seen on the 

page, so we write 1 for the ‘empty’ word. 

 Before we move on to transformation rules, the main topic, let’s digress briefly (but 

usefully). 

Challenge  

Think of a good way to list the words in the two-letter alphabet {a, b}. 

 

It does not take children long to realise that a list starting 

 

a, aa, aaa, aaaa, aaaaa,… 
 

as a dictionary might, will never reach words that involve the letter b. And then some 

children have the idea of length-lex (also known as shortlex) listing: 

 

1, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, 
aaaa, aaab, aaba, aabb, abaa, abab, abba, abbb, baaa, baab… 

Exercises  

1. What comes next after abababb? 

2. What is the 64th word? The 100th word? The 2017th word? 

3. Can you find a general rule? 

 

Once we are all happy that we know what is meant by ‘words’, that a word (in this area 

of mathematics) is just a meaningless string of letters, of any length, including length 0, 

then we move on. 

 In this branch of mathematics, we have transformation rules to change words into 

other words. We want to find out what effect these changes have. 

Focus on words w in the one-letter alphabet {a}. Choose a number—let’s say 4. Then 

we have two rules: 

• Expansion rule: Choose any word u and expand w by inserting uuuu between 

two adjacent letters of w, or at the front or at the back of w. 

• Contraction rule: If we see uuuu somewhere in w (a part of w consisting of 4 

consecutive non-overlapping instances of some word u) we may contract w by 

deleting it and closing up. 



 So for example, with u = aa expansion may change aaa to 

  
aaaaaaaaaaa , and with 

u = aaa contraction can change 

  
aaaaaaaaaaaaaaaaa  to aa aaa. 

Equality of words 

We say that words v and w have the same value, and we write v = w if word v can be 

changed to word w by expansions and contractions any number of times (using the 

same or different words u), in any order. Since every expansion may be undone by a 

contraction, and vice-versa, if word v can be changed to word w by expansions and 

contractions any number of times then also w can be changed to v. 

Exercise 

Organise the following words into groups so that those in a group have the same value: 

 

1, a, aaa, aaaaa, aaaa, aaaaaaaaaaa (11), 

aaaaaaaaaaaaa (13), aaaaaaaaaaaaaaaa (16) 

Problem 

For this transformation rule, how many different values are there? 

Answer 

For this transformation rule there are 4 different values: any word has the same value 

as one of 1, a, aa, aaa, and these are different. 

 

  

Stay with the one-letter alphabet {a}, but what if we replace 4 by 5? Now we have words 

in the one-letter alphabet {a} and our transformation rules are insertion or deletion of 

uuuuu. Equality of values is defined as before: we write v = w if word v can be changed 

to word w by expansions and contractions of this kind. 

Problem 

How many different values are there now? 

 

It is not hard to see that the answer is answer 5. 

 

Problem 

What is the answer if we replace 4 by 3 instead of by 5? Or by 12? Or by n? 

 

Focus on words in the one-letter alphabet {a}; permitted transformations are insertion 

or deletion of un (that is, n consecutive non-overlapping instances of a word u); write v 
= w if word v can be changed to word w by expansions and contractions; and the basic 

problem is, how many different values are there? The answer is that words v and w 

have the same value if their lengths leave the same remainder when divided by n. That 

is, any word has the same value as just one of these words: 



 

1, a, aa, aaa … an–1 

 

So, there are n different values. 

Focus on words w in the two-letter alphabet {a, b}. For our next transformation rule we 

again choose a number—let’s say 2 . Then our rules are: 

Expansion rule 

Choose any word u and expand w by inserting uu between two adjacent letters of w, or 

at the front or at the back of w. 

Contraction rule 

If we see uu somewhere in w (a part of w consisting of 4 consecutive non-overlapping 

instances of some word u) we may contract w by deleting it and closing up. 

 

As before, we write v = w if word v can be changed to word w (or, equivalently, w 
changed to v) by expansions and contractions (any number of times, in any order, using 

the same or different words u). 

With this transformation rule for words in the two-letter alphabet {a, b}, how many 

different values are there? 

When this topic is used for a Year 10 masterclass, it is usually spread over two sessions, 

each of 70 or 80 minutes, on successive days. The break is planned to come here. The 

three-part exercise about the length-lex listing of words in the two-letter alphabet, 

together with this problem, are offered as “homework”, and are discussed at the start of 

the second day. 

 Have you found, given a little time, that any word w has the same value as one of 

these: 

1, a, b, ab, ba, aba, bab? 

 

But are these all different? 

 

 Perhaps about 400 or 500 children have been exposed to this question (a question 

posed in different language to first-year undergraduates at my university) and the 

number who have worked out that the answer is ‘no’ is positive but small (around 10):  

 
ba = aaba = aababb = aababb = ab 

 

Thus ba = ab , and it then follows quickly that aba = b and bab = a. Therefore, for this 

example of a transformation rule for words in a two-letter alphabet there are values. 

Listed in length-lex order they are 1, a, b, ab. 



 If time permits we investigate what happens when we keep the same rule but work 

with words in larger alphabets. It does not take the majority of the children long to 

realise that they can use what they have just discovered (or been shown) to treat words 

in {a, b, c}. by focussing first on those that do not involve c, then those that do not 

involve b, then words that do not involve a, and the upshot is that, with the rule ‘insert 

or delete uu’, any word has the same value as one of: 

 

1, a, b, c, ab ac, bc, abc 

 

and these are all different, so there are 8 values. And if the alphabet has 26 letters then 

there will be 226
 different values; if the alphabet has m letters then there will be 2m 

different values. 

 Next, we return to words w in the two-letter alphabet {a, b} and we investigate the 

rule where 2 is replaced by 3. That is:  

Expansion rule 

Choose any word u and expand w by inserting uuu between two adjacent letters of w, 

or at the front or at the back of w. 

Contraction rule 

If we see uuu somewhere in w (a part of w consisting of 4 consecutive non-overlapping 

instances of some word u) we may contract w by deleting it and closing up. 

 

As before, we write v = w if word v can be changed to word w (or, equivalently, w 

changed to v) by expansions and contractions (any number of times, in any order, using 

the same or different words u). And as before, the fundamental problem is: how many 

different values are there now? The answer now (two-letter alphabet, insertion or 

deletion of three consecutive instances of words u) is that there are 27 different values 

of words. But this would be a hard problem for third-year or fourth-year university 

students! 

Start with two positive whole numbers m, n. We work with words w in an alphabet that 

has m letters; n is known as the exponent. 

Expansion rule 

Choose any word u and expand w by inserting un
 between two adjacent letters of w, or 

at the front or at the back of w. 

Contraction rule 

If we see un
 somewhere in w (a part of w consisting of n consecutive non-overlapping 

instances of some word u) we may contract w by deleting it and closing up. 

 

As before, we write v = w if word v can be changed to word w (or, equivalently, w 

changed to v) by expansions and contractions (any number of times, in any order, using 

the same or different words u). Call the resulting list (organised in length-lex order) of 

different values B(m, n). 



Is the list B(m, n) finite? If so, how long is it? 

 

William Burnside and his problem.  
‘On an unsettled question in the theory of discontinuous groups’  

Quarterly Journal of Mathematics, 1902:  
is B(m, n) finite? Now, in 2017, much is known, much remains unknown. 

At this point in a Year 10 masterclass I would spend fifteen or twenty minutes showing 

the children something of what we know, something of what is still unknown despite 

great efforts by many mathematicians. The fact that (in spite of the clue in the title of 

Burnside’s paper) this is all a part of modern group theory remains hidden. 

 But what is the hidden group theory? In fact, B(m, n) forms a group. It is the “freest” 

group generated by the m letters subject only to the condition that un = 1 for every word 

u in the m generators (that is, every element of the group). Technically, un = 1 is an 

identical relation in B(m, n) in the sense of B. H. Neumann, Identical relations in 
groups, PhD thesis, Cambridge (1935), and article published in Mathematische 
Annalen (1937). 

  

BHN in Cardiff, circa 1937. BHN in Canberra, circa 1970. 

 There is more hidden group theory, though. The groups that satisfy a given set of 

identical relations form what is called a variety of groups. 

The abelian variety consisting of the groups in which ab = ba (or equivalently a–1b–1ab 
= 1) for all elements a, b. 

The Burnside variety consisting of all groups in which un = 1 for all elements u. 

 



 
 

The 1967 monograph. Hanna in Canberra, 1959. 

 

The inaugural Vice-President and President of AAMT. 

Take words in a two-letter alphabet {a, b}. Words v, w are deemed to have equal value 

if one can be obtained from the other by insertion or deletion of words of the form 

uuuuu (written u5
 ). The resulting list of different words is known as B(2, 5): 

 
Is B(2, 5) finite? 

 

It is unknown. That way fame and fortune lie! 



 
Pascal’s Triangle, which is named for 17th century French mathematician Blaise 
Pascal, is a simple triangular arrangement of numbers which finds important 
application in the fields of algebra, probability, financial arithmetic and calculus, to 
name just a few, and contains within it many well-known patterns such as the 
hidden encodings of the Fibonacci numbers and the hockey-stick theorem. It also 
has a fractal-like structure: colouring the odds and evens black and white results in 
the famous Sierpinski Triangle, if you zoom out far enough. In this paper we will 
investigate the surprisingly rich structure that it exists within an even simpler 
arrangement of numbers: the Times Tables. 

I have the great pleasure of spending several weekends a year sitting around a table 

discussing (arguing about) draft problems for various competitions run by the 

Australian Mathematics Trust. There is always a sense of excitement about the 

problems that will pique my interest at those meetings (and a healthy dose of 

embarrassment about the ones I am unable to solve). One seemingly innocuous 

problem involved adding up a pattern of numbers in a grid—a simple enough task, if 

not a little tedious. However, the genius of the question was that anyone who spots ‘the 

trick’ should be able to perform the calculation in less than a minute, instead of 10, 

leaving them extra time to spend on other questions in the paper. Analysing that trick a 

little more closely revealed it to be nothing more than a repeated application of the so-

called distributive property: 

 

  a × (b+ c) = a ×b+a × c  

 

Yes, it is the same rule for ‘expanding brackets’ or ‘removing grouping symbols’ that we 

torture our students with when they start learning some serious algebra in about Year 

8. Already knowing something about the connection between triangles, squares and 

cubes, it dawned on me that there was a lot more going on in that ‘pattern of numbers 

in a grid’ and that the draft competition question could easily be made a lot more 

interesting (which is code for ‘harder’). Having fulfilled my duties, I left the meeting 



with more ideas than I had managed to bring to it and proceeded to spend the next four 

or five months obsessing over those numbers in a grid. 

When you are old enough (say, in Year 11) you might learn that a sequence is just an 

infinite list of numbers. That’s it, just a list. Of course, it is human nature to be more 

fascinated by the ones which have some kind of interesting pattern—and you can easily 

spend hours of your life looking for them on The Online Encyclopaedia of Integer 

Sequences (http://oeis.org). The following sequences are deemed to be ‘interesting’ 

enough for further discussion. 

These are also known as the natural numbers or positive integers. The sequence begins 

 

1, 2, 3, 4… 

 

and the formula for the nth counting number is, not surprisingly, n. Perhaps this is 

stretching the definition of ‘interesting’ just a little, but we can think of the counting 

numbers as the result of adding one extra dot to an existing pattern of dots, as 

illustrated in Figure 1. This idea will be extended in the other interesting sequences to 

follow. 

 

 

Figure 1. Counting numbers formed by adding ones. 

The sequence begins 

1, 4, 9, 16… 

 

and the formula for the nth square number is, also not surprisingly, n2. Square numbers 

can be arranged into a square array of dots, grouped into n rows of n dots each. Figure 

2 illustrates that square numbers can also be formed by adding the next odd number. 

 

Figure 2. Square numbers formed by adding odd numbers. 

+ 1 + 1 + 1 + 1 + 1 

+ 1 + 3 + 5 + 7 + 9 



Algebraically, this pattern is explained by the fact that the (n – 1)st square number plus 

the nth odd number equals the nth square number, or in symbols 

 

  (n−1)2 + (2n−1) = n2 . 

The sequence begins 

1, 8, 27, 64… 

 

and the formula for the nth cube number is n3. These are the three-dimensional versions 

of the square numbers. That is, by stacking n squares each with n2 dots we can create a 

cube of n3 dots in three-dimensional space. The diagrams are omitted. 

Returning to two-dimensional shapes, another pattern of dots can be achieved by 

starting with a single dot and adding the next counting number in each successive row. 

This forms a triangular array of dots as shown in Figure 3. 

 

Figure 3. Triangular numbers formed by adding counting numbers. 

The sequence begins 

1, 3, 6, 10, 15… 

 

and the well-known formula for the nth triangular number is   Tn = 1
2 n(n+1) . Using 

combinations notation, this can also be written   Tn = n+1C2 . The defining property of the 

triangular arrays is described by 

  Tn−1 +n =Tn . 

In the same way that squares can be stacked to create cubes, we can stack the triangular 

numbers to create the tetrahedral numbers, as shown in Figure 4. 

+ 1 + 3 + 5 + 2 + 4 



 

 

Figure 4. Tetrahedral numbers formed by adding triangular numbers. 

The sequence begins  

1, 4, 10, 20, 35… 

 

and the formula for the nth tetrahedral number is 
  
Hn = n(n+1)(n+2)

6
 or 

  
n+2C3 . The 

defining property is 

  Hn−1 +Tn = Hn . 

While we will not investigate this in any depth in this paper, it is possible to extend the 

ideas of two- and three-dimensional shapes to higher dimensions. For example, 

‘stacking n cubes of size n3 in four-dimensional space’ (whatever that might mean) 

results in fourth powers, with formula n4, while ‘stacking n tetrahedra of increasing size 

1, 4, 10, 20…’ results in what we might call the four-dimensional hyper-tetrahedral 

numbers, with formula 
  
n+3C4 . 

This famous sequence begins 

1, 1, 2, 3, 5, 8, 13… 

 

where, after starting with 1 and 1, each successive term is the sum of the two before it. 

(Remarkably, there is a closed formula for the nth Fibonacci number, namely 

 

  
Fn = (1+ 5)n −(1− 5)n

2n 5
, 

 

but we will not need to refer to this result.) 

The sequence begins 

1, 2, 4, 8, 16… 

 

+ 1 + 6 + 15 + 3 + 10 



and the formula is 2n. Each term is twice the one before. 

 To motivate the search for patterns in the times tables, we first summarise some 

well-known properties of Pascal’s Triangle. 

Pascal’s Triangle is an infinite triangular array of numbers with the property that, 

starting with ones on the outer edge, every other number is the sum of the two above it, 

as illustrated by the highlighted entries in Figure 5. It is also intimately connected with 

combinations. 

 

 

Figure 5. Additive property and combinations in Pascal’s Triangle. 

The properties of Pascal’s Triangle which are illustrated in Figures 6–9 are well-known 

and no explanations are offered here (although some of them can be explained via the 

detail given in the previous section on interesting sequences). The patterns are noted 

here simply to motivate the search for similar patterns in the Times Tables. For more 

details the interested reader is directed to the Wolfram Mathworld page on Pascal’s 

Triangle (http://mathworld.wolfram.com/PascalsTriangle.html or any number of other 

sites on the topic that can be found via a search engine). 

 

                          

Figure 6. Number patterns in the main diagonals of Pascal’s Triangle. 
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Figure 7. Powers of 2 in the totals of rows of Pascal’s Triangle. 

 

Figure 8. Fibonacci numbers in the totals of minor diagonals of Pascal’s Triangle. 

   

   

   

Figure 9. The Sierpinski Triangle fractal in the odd entries of Pascal’s Triangle,  
showing the first 4, 8, 16, 32, 64 and 128 rows at different levels of magnification. 

1 
1 1 

1 3 3 1 
1 2 1 

1 

1 1 

1 3 3 1 

1 5 10 10 5 1 

1 7 21 35 35 21 7 1 

1 6 15 20 15 6 1 

1 4 6 4 1 

1 2 1 

       1      

       1 1      

      1 2 1     

      1 3 3 1     

     1 4 6 4 1    

     1 5 10 10 5 1    

    1 6 15 20 15 6 1   

   
    1     

   
    1 1     

   
   1 2 1    

   
   1 3 3 1    

   
  1 4 6 4 1   

   
  1 5 10 10 5 1   

   
 1 6 15 20 15 6 1  

1 
   1 
      2 
         3 
            5 
               8 
                13 



The recursive nature of Pascal’s Triangle makes it very easy to construct in Excel. The 

screenshots in Figure 9 show the simple formulae that can be entered in cells B1 and 

B2. To produce the full triangle, drag the bottom right corner of B2 as far as desired 

across to the right, then drag the bottom right corner of the selected cells of row 2 as far 

down as desired. This will produce lots of zeros on the ‘outside’ of the triangle, which 

can be hidden with conditional formatting, as shown in Figure 9. Since the size of the 

numbers involved grows rapidly, resizing the column widths, row heights and/or font 

sizes will be required to achieve a uniform looking triangle. 

 

Figure 9. Excel instructions for creating a right-angled Pascal’s Triangle,  
including conditional formatting to hide the extra zeros 

The Pascal’s Triangle outlined above is right-angled, rather than the more traditional 

equilateral variety. The accompanying spreadsheet Wetherell_C_2017_Pascal.xls also 

contains an equilateral version, which can be achieved by first merging cells in an 

alternating brick-like pattern. This said, the advantage of the right-angled version in 

Excel is that you do not need to decide the size of the triangle in advance since, should 

you require more entries for whatever reason, you can effectively continue to ‘drag 

right’ and ‘drag down’ without ever running out of room. 

drag right 

drag down 



 To create the Sierpinski Triangle, it is convenient to reduce every number in Pascal’s 

Triangle to its remainder upon division by 2 using the MOD function. Thus, every even 

number is represented by 0 and every odd number is represented by 1. The advantage 

is that the numbers produced in the triangle do not grow rapidly in size, unlike the 

original triangle. The formulae and conditional formatting instructions are shown in 

Figure 10. Interesting variations can be achieved by reducing to remainders upon 

division by other numbers instead of 2; see Wetherell_C_2017_Pascal.xls. 

 

         

Figure 10. Excel instructions for creating a right-angled Sierpinski Triangle of 0s and 1s,  
including conditional formatting to colour them (select all cells with Ctrl-A or -A first). 

Finally, to the topic of investigation! This familiar grid of numbers has rows and 

columns both indexed by the counting numbers and the value in the ith row and jth 

column is the product i × j, as shown in Figure 11. Note that we will ignore the shaded 

row and column headings in later diagrams. 

 

× 1 2 3 4 5 6 7 

1 1 2 3 4 5 6 7 

2 2 4 6 8 10 12 14 

3 3 6 9 12 15 18 21 

4 4 8 12 16 20 24 28 

5 5 10 16 20 25 30 35 

6 6 12 18 24 30 36 42 

7 7 14 21 28 35 42 49 

Figure 11. The times tables. 

We begin with a search for some of the interesting number sequences discussed earlier. 

Easy! As highlighted in Figure 12, the main diagonal contains the square numbers since 

when the row number and column number are both equal to n, say, then the entry is  

n × n = n2. Square numbers will be revisited shortly. 

drag 
right 
then 



 

1 2 3 4 5 6 7 

2 4 6 8 10 12 14 

3 6 9 12 15 18 21 

4 8 12 16 20 24 28 

5 10 16 20 25 30 35 

6 12 18 24 30 36 42 

7 14 21 28 35 42 49 

Figure 12. Square numbers in the times tables. 

Suppose you are in the (i,j)th cell, that is in the ith row and jth column with value i × j. 
Moving one entry to the right adds i to the value since, being in the ith row, we are 

moving to the next number in the i-times tables. Similarly, moving one down adds j. It 

is possible to exploit these facts to find a sequence of cells which follow the triangular 

numbers starting at the 1 in the (1,1)th cell, as illustrated in Figure 13. Being in the first 

row means that moving right by two cells adds 2 × 1 = 2, resulting in the 3 in the (1,3)th 

cell. Now we are in the third column, so moving down by one row adds 3 to get the 6 in 

the (2,3)th cell. Now we are in the second row, so that repeating the move by two cells to 

the right adds 2 × 2 = 4 and leaves us in the fifth column. Repeating the move by one 

cell down adds 5 to the value. Hence, starting at 1, the overall effect of tracing this path 

is to add 2, then 3, then 4, then 5, … which results in the sequence of triangular 

numbers 1, 3, 6, 10… as shown. Of course, by the symmetry of the times tables the same 

pattern can be observed by first moving down two, then one to the right. 

 

1 2 3 4 5 6 7 

2 4 6 8 10 12 14 

3 6 9 12 15 18 21 

4 8 12 16 20 24 28 

5 10 16 20 25 30 35 

6 12 18 24 30 36 42 

7 14 21 28 35 42 49 

Figure 13. Triangular numbers in the times tables. 

To formalise this argument we observe that the nth combined move of two-to-the-right-

followed-by-one-down takes us from the (n,2n–1)th cell to the (n,2n+1)th cell with an 

increase of 2n (twice to the right in the nth row), and then to the (n+1,2n+1)th cell with 



an increases of 2n+1 (one row down in the (2n+1)th column). This results in the pattern 

of increases by 2-then-3, 4-then-5, … as claimed. 

 Alternatively, we can justify this pattern using the formula   Tn = 1
2 n(n+1)  for the nth 

triangular number. Following the description above, the value of the (n,2n–1)th cell is 

 

  

n(2n−1) = 1
2 (2n)(2n−1)

= 1
2 (2n−1)((2n−1)+1))

=T2n−1

 

 

which generates the 1st, 3rd, 5th… triangular numbers, and the value of the (n,2n+1)th cell 

is 

  

n(2n+1) = 1
2 (2n)(2n+1)

=T2n

 

 

which generates the 2nd, 4th, 6th… triangular numbers. 

 Consider next the zigzag-like sequence of cells traced by repeatedly moving down 

then right, as shown in Figure 14. For convenience, we have added an extra row of zeros 

for the ‘zero-times-tables’.  

 

Figure 13. Triangular numbers in the sums of adjacent cells in a zigzag path. 

Now calculate the sums of adjacent cells in this zigzag path, which produces the 

sequence of triangular numbers alternating between vertically and horizontally 

adjacent cells. This can be justified using similar techniques to the pattern above. This 

is left as an exercise. 

  1 6 15 28 45 56 91 

  0 0 0 0 0 0 0 

3   1 2 3 4 5 6 7 

10   2 4 6 8 10 12 14 

21   3 6 9 12 15 18 21 

36   4 8 12 16 20 24 28 

55   5 10 16 20 25 30 35 

78   6 12 18 24 30 36 42 

  7 14 21 28 35 42 49 



Consider the n × n block of cells in the top-left corner of the table. Figure 14 shows the 

first few cases, together with the sum of all entries in that block. Thus, it appears that 

the sum equals the square of the nth triangular number! 

 

 1  1 2  1 2 3  1 2 3 4  1 2 3 4 5  

   2 4  2 4 6  2 4 6 8  2 4 6 8 10  

      3 6 9  3 6 9 12  3 6 9 12 15  

          4 8 12 16  4 8 12 16 20  

               5 10 16 20 25  
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Figure 14. Square of a triangular number in the sum of a square block. 

To illustrate why this pattern occurs, consider the 4 × 4 block and the square of the 

fourth triangular number, namely 
  
T4

2 = (1+2+3+ 4)2 . Rather than simply evaluate this 

as 102 and compare it with the total, we instead expand the perfect square term by 

term, ensuring that every term in the first bracket eventually gets paired up with every 

term in the second: 

 

44342414
43332313
42322212
41312111

)4321(4
)4321(3
)4321(2
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Hence it is apparent that the value obtained from squaring the fourth triangular 

number is precisely the sum of the entries in the 4 × 4 top-left block of the Times 

Tables. This can be generalised using sigma notation as follows, noting that the final 

sum is of all entries of the form i × j where i and j take all possible pairs of values 

between 1 and n: 
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It is a reasonably well-known fact that the sum of consecutive cubes is the square of the 

corresponding triangular number, that is 

 

.)321(321 23333 nn ++++=++++  

 

The most convenient way to establish this is by induction. Being certainly true for n = 1, 

where both sides yield the value 1, we assume it is true for some arbitrary number of 

terms k, that is 
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Then it needs to be verified that the addition of the next cube, namely (k + 1)3, results in 

the square of the next triangular number, namely 2
1+kT : 
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This establishes the desired result. 

 Given the connection between 2
nT  and the n × n blocks described above, it should 

now be possible to find the cube numbers hidden in the times tables. Indeed, the 

induction argument above indicates exactly how: look for the difference between 

successive blocks in the top-left corner, or in other words an L-shaped path. This is 

illustrated in Figure 15. 



 

Figure 15. Cubes in the sum of L-shaped paths. 

Motivated by patterns in the main diagonals of Pascal’s Triangle (see Figure 6), 

consider next the sum of entries illustrated in Figure 16.  

 

Figure 16. Tetrahedral numbers in the sum of major diagonals. 

 Recall that the tetrahedral numbers nH  are the sum of consecutive triangular 

numbers and therefore satisfy nnn HTH =+−1 , or equivalently 

1−−= nnn HHT . 

 Though we will not formalise the inductive aspect of the argument here, to establish 

that the nth  diagonal does sum to the nth tetrahedral number, it is enough to show 

instead that the difference of the nth and (n–1)th diagonal sums is the nth triangular 

number. 

 For example, consider the 6th and 5th diagonals, with totals 56 and 35, respectively. 

From the entries of the times tables, the difference can be calculated as follows; note 

that a redundant term of 0 × 6 has been included for the 5th diagonal to illustrate the 

more general pattern: 

 13 = 1 1 2 3 4 5 6 7 

 

23 = 8 2 4 6 8 10 12 14 

33 = 27 3 6 9 12 15 18 21 

43 = 64 4 8 12 16 20 24 28 

 53 = 125 5 10 16 20 25 30 35 

63 = 216 6 12 18 24 30 36 42 

 73 = 343 7 14 21 28 35 42 49 

 1 2 3 4 5 6 7 

 

1 2 4 6 8 10 12 14 

4 3 6 9 12 15 18 21 

10 4 8 12 16 20 24 28 

20 5 10 16 20 25 30 35 

35 6 12 18 24 30 36 42 

56 7 14 21 28 35 42 49 

84         



 
Using sigma notation again, the general argument can be written as follows; note that 

the change of limit from n – 1 to n from the second to third lines is allowed because of a 

redundant 0 × n term which can be added to the (n–1)th diagonal: 
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We mention in passing that, inspired particularly by the ‘minor’ diagonals used in the 

construction of the Fibonacci numbers in Pascal’s Triangle (see Figure 8), adding 

entries of other diagonals results in other pyramidal numbers. For example, the sums 

formed when moving diagonally ‘two-right-one-up’, as in Figure 17, are the square-

pyramidal numbers 1, 5, 14, 30… which are the sums of consecutive squares, 12 + 22 + 32 

+ … 

 

Figure 17. Square-pyramidal numbers in the sum of minor diagonals. 

In this final section, we are motivated by the Sierpinski Triangle which emerges when 

colouring Pascal’s Triangle. Are similarly intricate patterns hidden in the times tables? 

The ROW() and COLUMN() commands return the row number and column number 

of the current cell. Hence, starting from cell A1 to achieve the entry 1 × 1, the formula 

=ROW()*COLUMN() can be used throughout the spreadsheet to create the times tables 

 1 2 3 4 5 6 7  

1   2 4 6 8 10 12 14  

5   3 6 9 12 15 18 21  

14   4 8 12 16 20 24 28  

30           



of any desired size, as illustrated in Figure 18. Again, resizing of column widths, row 

heights and/or font sizes may be required to achieve a uniform grid. 

 

Figure 18. Excel instructions for creating the times tables. 

 The remainder of this paper will deal with variations on this basic spreadsheet, 

including using conditional formatting to colour cells and using the MOD function to 

achieve fractal-like patterns; see also Wetherell_C_2017_TimesTables.xls . 

 Important tip: when dealing with large spreadsheets, Excel copes best if you remove 

conditional formatting before you edit formulae, then reapply the desired formatting. 

As both i and j increase, so too does the product i × j. As a first coarse investigation into 

this property, consider colour-coding the cells of the times tables according to the 

number of digits in the entry i × j, as in Figure 19. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 

Figure 19. Values in the times tables colour-coded by length. 

 The cell values have been preserved in Figure 19, but at the expense of changing 

these values the underlying pattern of colours can easily be achieved in Excel with 

conditional formatting, as follows: 

• replace the standard =ROW()*COLUMN() formula in each cell by 

• =LEN(ROW()*COLUMN()) 

• which calculates the length of the string of digits representing the number 

drag 
right 
then 



• select all cells with Ctrl-A or -A and then use a colour scale via the conditional 

formatting menu (refer to Figure 10). 

 To achieve the same colouring effect while preserving the actual values in each cell, 

more complicated conditional formatting rules can be used via the ‘Use a formula to 

determine which cells to format’ option. However, simply applying a colour-scale based 

on the value itself, rather than its length, turns out to be more illuminating. 

Returning to the basic formula =ROW()*COLUMN(), apply a colour-scale to achieve 

the images in Figure 20. The first version shows the slightly pixelated effect in the 

1010×  grid, while the second shows the very smooth transition of colours in the 

200200×  grid (with values omitted). 

 

Figure 19. Times tables colour-coded by values. 

What is the nature of the curve that is emerging in Figures 18 and 19? 

In order to better understand what the colour-coding is telling us, we do three things: 

• reverse the order of rows so that they are indexed in the order consistent with the 

convention for the y-axis (increasing up, decreasing down) 

• extend both the rows and columns into the negative direction, in order to analyse 

the behaviour of the colour scheme in other quadrants of the Cartesian plane 

• change the colour-scale settings to reduce the complexity of the image 

Let us decide upon a domain and range of both [–100, 100], which will require a total 

of 201 rows and columns. To achieve the first two dot-points above, we replace the 

standard =ROW()*COLUMN() formula with 

 

=(COLUMN()-101)*(101-ROW()) 

 

For example, the top-left cell A1, with regular cell reference (1,1), is now referenced by 

the coordinates (–100,100), since x = 1 – 101 = –100 and y = 101 – 1 = 100. Adjusting 

the original colour-scale slightly results in the diagram in Figure 20. Note that we see 

1 2 3 4 5 6 7 8 9 10 

2 4 6 8 10 12 14 16 18 20 

3 6 9 12 15 18 21 24 27 30 

4 8 12 16 20 24 28 32 36 40 

5 10 15 20 25 30 35 40 45 50 

6 12 18 24 30 36 42 48 54 60 

7 14 21 28 35 42 49 56 63 70 

8 16 24 32 40 48 56 64 72 80 

9 18 27 36 45 54 63 72 81 90 

10 20 30 40 50 60 70 80 90 100 



evidence of the naturally occurring coordinate axes in bright yellow, when either x = 0 

or y = 0, and not-unexpected rotational symmetry which is explained by the behaviour 

of positive and negative values in the various quadrants. 

 

 

Figure 20. Times tables with flipped rows and negative values. 

 At this point it is worthwhile analysing the meaning of the colour-scale a little more 

deeply. The grid in Figure 20 consists of values ranging from –10 000 in the top-left 

and bottom-right corners, through to 10 000 in the other corners. The value in each cell 

therefore represents a certain percentile of the entire dataset and the cell’s colour is 

then assigned from a chosen spectrum according to that same percentile. In these 

examples the spectrum is orange-yellow-green, so the lowest values are orange, values 

near the median (namely zero) are yellow, and the highest values are green. In Excel, 

the default colour-scale setting is to assign those percentiles uniformly; for example, a 

cell-value which is at the 20th percentile is assigned a colour which is 20% of the way 

along the chosen colour spectrum. However, these settings can be manipulated to, in 

effect, tune the sensitivity of the cell-values’ colour-coding. 

 Figure 21 shows the instructions for editing the colour-scale settings in Excel. The 

desired effect is to produce a graph, complete with coordinate axes, which emphasises a 

much more restricted range of cell values. Specifically, 

• the orange-yellow-green spectrum is replaced by white-blue-white 

• the default colour transition cut-offs (namely the 0th, 50th and 100th percentiles) 

are adjusted to the 64th, 65th and 66th percentiles, respectively 

• a new rule is applied to colour all cells containing zero black 

First click in any non-empty cell and select the entire grid with Ctrl-A or -A. Then 

follow the instructions in Figure 21. 



 

 

 

 
    

  

 

 

Figure 21. Excel instructions for editing the graph. 

 The resulting image is shown in Figure 22. It looks remarkably like a hyperbola! 

Adjusting the new 64-65-66 cut-offs to different values has the effect of dilating and/or 

reflecting the hyperbola; higher values dilate it away from the axes, values closer to 50 

contract it towards the axes, and values less than 50 reflect it into the other quadrants. 

 

Figure 22. A hyperbola? 

 The explanation for this curve is surprisingly straightforward. For a given choice of 

percentile cut-offs, there is a small range of values in the dataset which will be coloured 

blue. For example, for a cut-off around the 65th percentile these values are around 884. 

In general, if this target value is called a then a cell with coordinates (x, y) is coloured 

blue precisely when xy ≈ a, or equivalently when 



 
y ≈ a

x
. 

This is, approximately at least, the standard equation of a rectangular hyperbola with 

dilation factor a. 

Our final goal is to explore the patterns which arise with variations on the ‘odds and 

evens’ theme. Though the mathematical discussion is kept to a minimum, the reader’s 

attention is drawn to the hyperbolic nature of many of the patterns, and particularly to 

those where hyperbolas appear simultaneously at several different scales; this is the 

essence of ‘fractal-like’ behaviour, even if these are not true fractals. Excel formulae are 

given in the captions for Figures 23–29. The colour-scale is white-red-purple (for the 

default 0th-50th-100th percentiles). See also Wetherell_C_2017_TimesTables.xls .  

 

   
mod 2 mod 3 mod 4 

   
mod 6 mod 10 mod 15 

   
mod 20 mod 30 mod 60 

Figure 23. The 60×60 grid with entries reduced to remainders modulo  
various numbers, e.g., =MOD(ROW()*COLUMN(),6) for mod 6. 



 

Figure 24. The 500×500 grid with entries reduced to  
remainders modulo 500, =MOD(ROW()*COLUMN(),500). 

     

Figure 25. The 50×50 and 500×500 grids with entries colour-coded 
by their first digit, =VALUE(LEFT(ROW()*COLUMN(),1)). 

     

Figure 26. The 50×50 and 500×500 grids with entries colour-coded by  
their second digit, =VALUE(MID(ROW()*COLUMN()&"0",2,1)) 

(the extra zero is to avoid an error for 1-digit numbers). 



     

Figure 27. The 50×50 and 500×500 grids with entries colour-coded by  
their third digit, =VALUE(MID(ROW()*COLUMN()&"00",3,1)) 

(the extra zeros are to avoid an error for 1- and 2-digit numbers). 

     

Figure 28. The 50×50 and 500×500 grids with entries colour-coded  
by the number formed from the middle digit or middle two digits, 

=VALUE(MID(ROW()*COLUMN(),INT(1+LEN(ROW()* 
COLUMN())/2),2-MOD(LEN(ROW()*COLUMN()),2))). 

     

Figure 29. The 50×50 and 500×500 grids with entries reduced to remainders 
modulo their column number plus 1, =MOD(-ROW(),COLUMN()+1). 

There is not much method to the madness here; any variation on =ROW()*COLUMN() 

which is vaguely complicated enough seems to give interesting results. If you are 

inspired to have a play with your own spreadsheets and find something new, interesting 

or even just confusing that you want to share, please email me at 

cjtwetherell@gmail.com. 



 



 
This paper examines the effect of using natural language on students’ performance 
on word problems at Grade 8 level (13 years old) in Mauritius—an island with a 
multi-ethnic population. A quasi-experimental mode of inquiry was used involving 
233 students. A control group was established in which English (L2) was used as 
the language of instruction, and another one, in which Mauritian Creole (L1) was 
used. Though the L1 group performed better, the difference was not statistically 
significant. Analysis by ability grouping (high, average and low) showed that only 
low ability students benefitted from the use of L1. 
 

Language plays an important role in the teaching and learning of mathematics 

(Ríordáin & Donoghue, 2006). During the last thirty years, the body of research which 

has looked at the interface between language and mathematics proficiency has 

significantly increased (Durkin & Shire 1991; Pimm 1991). The problems associated 

with language and mathematics vary, based on local contexts, and studies in this area 

have looked at different aspects and have taken different orientations over time. For 

example, the issue of learning and teaching mathematics in a second language has been 

studied extensively in other countries such as the USA, Canada, South Africa, Australia, 

New Zealand, Spain and the UK.  

 However, there are conflicting views about the learning of mathematics in a second 

language at all levels of education. Some studies have found positive correlations with 

learning mathematics in a second language and academic achievement (Barwell, 2003), 

while other studies put forward concerns that such pupils underachieve in mathematics 

(Barton, Chan, King, Neville-Barton & Sneddon, 2005).  

 The cognitive load theory (CLT) suggests that the human cognitive system can be 

characterised as comprising of a relatively poor working memory (Miller, 1956), 

coupled with an effectively limitless long-term memory (Sweller & Chandler, 1994) 

intended to store a huge number of schemata. Tuovinen and Sweller (1999) observed 

that if the student has gained suitable automated schemas, cognitive load will be low, 

and sufficient working-memory resources are expected to be free. They pointed out that 

if the ideas must each be considered as a separate element in working memory, because 

no schema exists, cognitive load will be high. On the other hand, Ong, Liao and Alimun 



(2009) highlighted that CLT can occur not only in performance tasks but in language as 

well. For instance, Bernardo (1999) found that students solved arithmetic word 

problems better when the problems were written in their first language (Filipino).  

 According to Heinze (2005), several processes are undertaken in comprehending a 

second language (e.g., finding meanings of ambiguous concepts) and in solving a 

problem (e.g., assembling thoughts, concepts and procedures). The distribution of 

cognitive resources involved in solving problems when written in a second language has 

two levels of processes occurring simultaneously. They are ‘comprehending the second 

language’ and ‘solving the problem’ which maximise one’s cognitive resources (Ong et 

al., 2009). Thus, the cognitive resources become limited since both ‘declarative 

knowledge in processing the language’ and ‘procedural knowledge in solving the 

problems’ are used. The native language serves as an automatic process that enables 

the learner to perform a task without too much conscious awareness and demands little 

or no (cognitive) effort (Ong et al., 2009). These briefly explain how the use of first 

language may enhance students’ ability to solve word problems. Consequently, students 

with low scores in problem-solving tests written in their second language do not 

necessarily have low problem-solving abilities; rather, their linguistic capabilities in 

that (second) language might be low (Ong et al., 2009).  

 Other studies have looked at mathematics ability of bilinguals and multilinguals 

(Barwell, 2003; Bose & Choudhury, 2010). Grosjean (1992) referred to bilingualism as 

the regular use of two or more languages. Two main perspectives of bilingualism are 

the monolingual view and the bilingual view. The former suggests that “the bilingual 

has two separate and isolated language competencies” (Grosjean, 1992, cited in Ong et 

al., 2009). This perspective holds that bilinguals are two monolinguals in one person 

(Grosjean, 1998). The monolingual view believes that bilinguals should be equally 

fluent in both the languages and use them at the same level, otherwise they are not 

bilingual. The monolingual view does not consider that the competency of one’s first 

language may be affected if it comes in contact with one’s second language. 

 On the other hand, the bilingual view proposes that bilinguals are not two 

monolinguals in one person but “an integrated whole which cannot be easily be 

decomposed into two separate parts” (Grosjean, 1992, cited in Ong et al., 2009). The 

two languages may be used separately or at the same time, depending on the call of 

different situations and are rarely equally fluent. Grosjean (1998) stated that in most 

cases, the bilingual uses the base language as his main language, which is considered to 

be the most active. The second language may be deactivated and activated, depending 

on whom the bilingual is communicating with. 

 Works by Ellerton and Clarkson (1996) and Setati (2003) support the view that the 

use of the natural language (L1) benefits learners of mathematics. It is not clear though 

whether these benefits will be for all learners or just a category of them. Bernardo and 

Calleja (2005) found that the use of natural language (Filipino) is advantageous to 

Filipino-English bilinguals in problem solving but such advantage was not observed 

with older students who develop problem-solving schema with time (Bernardo, 2001). 

Despite the considerable literature on the linguistic features of mathematical discourse 

in English (Clarkson, 1991; MacGregor & Moore, 1991), there has been limited research 

on the difficulties these cause for mathematics learners, particularly at the lower 



secondary level. For instance, Abedi (2001) is one of a limited body that has a focus on 

elementary mathematics.  

 In Mauritius, Creole is the natural language for the majority of learners, but English 

is the language of instruction. Many debates have taken place around the language 

policy in the Mauritian education system. There are voices for and against the use of 

natural language as the instructional language. In particular, the divide in beliefs on 

this issue between practitioners and policy makers is apparent. For example, it is not 

surprising to come across classes where Creole is the medium of instruction (teacher-

led) whereas curriculum materials and assessment instruments (state prepared) are 

still devised in English. Due to limited research in this area, much of the debate around 

the issue of language policy has lacked scientific foundation and it might sound as if a 

mere switch to L1 will be a universal remedy of mathematics underachievement at 

school. The aim in this study is to establish whether, at Grade 8 level (13 years old), the  

• use of Mauritian Creole improves achievement in solving word problems; 

• use of Mauritian Creole is beneficial for all ability groups of students. 

This study is part of a larger study. Permission was granted by the Ministry of 

Education and Human Resources to access secondary schools and to collect data for the 

study. Subjects were ensured confidentiality of the data gathered. One thousand and 

thirty seven Grade 8 students, involving 29 classes from 13 schools, participated in a 

preliminary mathematics test used for sampling purposes. However, the data reported 

in this paper are based on only 12 classes (6 boys and 6 girls) involving 410 students 

(plus one additional class for piloting purposes). The preliminary mathematics test was 

based on 22 questions (17 questions from the Grade 7 syllabus together with five simple 

word problems) printed on four pages. The objective of the test was to categorise the 

students into ability groups. Prior to administration, the test was piloted with nine 

Grade 8 students from different schools and abilities, and adjustments made. A 

marking scheme was developed for consistent correction and the maximum score was 

70 marks. Three sets of equivalent questionnaires were constructed for 

pre/post/retention tests. The items were multistep word problems adapted from past 

examination papers, research papers and Australian Mathematics Competition 

questions. An initial questionnaire of 16 questions was designed and piloted with 90 

students (3 groups of 30 students with high, average and low ability). Following the 

piloting, the questionnaire was amended and 10 items were retained. After further 

piloting, the pre/post/retention tests were reviewed and only 9 items were retained 

with a maximum score of 36 marks. Twenty-three items were divided into two 

worksheets with 12 and 11 items respectively. The worksheets contained multistep word 

problems involving the four basic operators (+, ─, ×, ÷).  

 The study was conducted during the first and second term of 2011. During the first 

term, the preliminary mathematics test was administered. Based on the scores, 

students were categorised into three ability groups as follows: High Achievers (marks ≥ 

50); Average Achievers (30 ≤ marks < 50); Low Achievers (marks < 30). Each ability 

group was further divided into two subgroups and randomly assigned to the control 

and treatment groups. Each subgroup consisted of two classes (one boys and one girls).  



 Subjects from the six subgroups (12 intact classes) took a one-hour pre-test at the 

beginning of the second term. The pre-test was also used for selection of homogeneous 

groups, but the subjects were unaware of who forms part of the survey. In this way, 

performances were comparable for different treatments. The pre-test was marked 

based on a marking scheme devised by the researcher. Each group attended at least two 

training sessions totalling 160 minutes to work out the worksheets. Most of the sessions 

were conducted during activity periods which are scheduled twice a week.  

• Control group (L2): Subjects were taught in English (L2) in the traditional 

manner. That is, the researcher worked out a problem as an example and asked 

subjects to solve other problems and finally correct the problems. 

• Treatment (L1): Subjects were taught using Mauritian Creole (L1) as the language 

of instruction. The researcher proceeded as for the control group but used Creole 

as the language of instruction instead of English, while retaining the technical 

terms in English. All written materials were in English. 

 One-hour post and retention tests were administered between one to three days and 

seven weeks respectively after the training sessions. The marks were then entered into 

statistical software (SPSS) for analysis. T-tests were used to analyse the data. After 

eliminating subjects who were absent during any one of the sessions 

(pre/post/retention tests or training), only 233 students were retained. The preliminary 

mathematics test as a set was found to be very reliable with Cronbach alpha greater 

than 0.8. The pre, post and retention tests proved to be reliable with Cronbach alpha 

close to 0.7 for each. 

 Correction of both the preliminary mathematics test and the pre/post/retention 

tests was made according to marking schemes devised by an experienced teacher and 

the researcher respectively. Both have at least eleven years of teaching experience at the 

secondary level and have marked scripts for the National Cambridge Examination for 

at least eight years. All training sessions were conducted by the researcher in order to 

reduce variation due to different teaching styles.  

The post-test results indicate a gain in performance (see Table 1 and Figure 1) over the 

pre-test for both groups. Performance on the retention test was similar to that of the 

post-test.  

Table 1. Mean scores and standard deviations for pre-/post-/retention tests. 

Group  Pre-test Post-test Retention test 

 n Mean SD Mean SD Mean SD 

L2 114 15.47 7.679 23.83 8.232 24.30 7.412 

L1 119 15.56 6.489 25.33 6.994 24.71 6.446 

 



 

Figure 1. Trends in performance for pre-/post-/retention tests for overall sample. 

 In order to investigate any statistically significant difference in performance between 

the strategies, a t-test was carried out. No significant differences between the scores 

were observed in the pre-test t(221) = –0.096, post-test t(221) = –0.490 and retention 

test t(223) = –0.447 performance, p > 0.05. Since the performance of the two groups 

was indistinguishable in the pre-test as well, the choice of language was not found to 

impact on achievement levels of students on word tasks.  

Independent of the teaching strategies employed, all ability groups improved their 

performance from pre-test to post-test as shown in Table 2. From post-test to retention 

test, a slight fall in performance was observed for high achievers in general (Figure 2), 

and for low achievers who were taught using L1 (Figure 4). A slight rise in performance, 

from post-test to retention test, was noted for average achievers (Figure 3) and for low 

achievers (Figure 4) who were taught using L2.  

Table 2. Performance of students in pre-/post-/retention tests,  
by ability groups and teaching strategy. 

Ability  Teaching 
strategy 

 Pre-test Post-test Retention test 

n Mean SD Mean SD Mean SD 

High  L2 36 23.47 3.443 32.08 3.901 31.28 4.676 

L1 33 21.94 4.220 31.70 3.746 30.36 4.336 

Average  L2 40 14.23 5.201 22.55 5.991 23.38 5.569 

L1 55 15.13 5.368 22.93 6.495 23.15 5.616 

Low  L2 38 9.21 6.010 17.37 6.619 18.66 5.781 

L1 31 9.55 3.510 22.81 6.306 21.45 5.999 

 

 



 

Figure 2. Trends in performance for pre-/post-/retention tests for high achievers. 

 

Figure 3. Trends in performance for pre-/post-/retention tests for average achievers. 

 

Figure 4. Trends in performance for pre-/post-/retention tests for low achievers. 

Among high achievers, the t-test confirmed that the use of L1 does not produce a 

statistically significant (p>0) gain in performance over the control group in the post- 

and retention tests (Table 3). Both strategies resulted in comparable mean performance 

(around 32 marks) and standard deviations for the post/retention tests.  
 



Table 3. T-test for pre-, post-, retention tests for average achievers. 

 Pre-test Post-test Retention test 

t 1.659 0.419 0.840 

df 67 67 67 

sig (1-tail) 0.051 0.339 0.202 

 

The t-test confirmed that performance of students in L1 group is not significantly 

higher than those for L2 group in post/retention tests (see Table 4). As for high 

achievers, the influence of language on performance is insignificant in this ability 

group.  

Table 4. T-test for pre-, post-, retention tests for average achievers. 

 Pre-test Post-test Retention test 

t –0.819 –0.289 0.197 

df 93 93 93 

sig (1-tail) 0.208 0.387 0.422 

 

A different scenario was observed in this ability group. The t-test showed that the L1 

group performed significantly better than the control group (see Table 5) in both the 

post- and retention tests. Further, the achievement of the L1 group in the low ability 

band was found to be similar to the performance of both L1 and L2 groups in the 

average ability groups for post-test. Such equilibration in performance is important 

given the statistically significant difference noted between these groups during pre-test.  

Table 5. T-test for pre-, post- and retention tests for low achievers. 

 Pre-test Post-test Retention test 

t –0.291 –3.467 –1.963 

df 61.215 67 67 

sig (1-tail) 0.386 0.005 0.027 

 

The teaching of mathematics is done in many countries in a language other than the 

natural language. There have been a lot of debates about the impact of these practices 

on underachievement in mathematics and the possible benefits that a switch to the 

natural language could generate. This quasi-experimental study shows that natural 

language is a factor which can lead to improvement in mathematics achievement; 

however, the improvement obtained is not generalised and is a function of student 

ability. Students who are high or average achievers in mathematics do not appear to 

benefit from the use of the natural language as the language of instruction. It is 

essentially students who are in the low ability bands who benefit the most. In this 

group, the impact of using Mauritian Creole on performance is substantial, and 



students are found to equilibrate their performance with average achievers. The benefit 

of using L1 for low achievers was still visible after two months. This behaviour of 

natural language utilisation on performance on word problems is attributed to the fact 

that English as a medium of instruction mainly poses a problem to low ability students 

in Mauritius. It is therefore highly probable that intervention in Creole helps students 

overcome this language barrier and produces higher gains in achievement on word 

problems. These observations clearly show that low achievers face difficulties with 

English language and consequently performed better when instructions were in Creole. 

These behaviours are in line with the cognitive load theory (Ong et al., 2009) and the 

‘bilingual views’ of bilinguals (Grosjean, 1992). The findings suggest that the use of 

natural language in the teaching of mathematics should not become a generalised 

policy, but its use should be permissible as a support for low ability students in 

particular. 
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Lecturers and teachers lament over the difficulties their students have writing 
coherent mathematical statements. Students’ habitual misuse of mathematical 
symbols, combined with an inability to explain what mathematical steps are being 
taken and why, is a concerning observation. At best this represents a lack of 
mathematical rigour and at worst, may undermine learning. This paper reports on 
findings to-date of a project which investigates the use of symbols in mathematics 
and related sciences, as students progress from secondary school to university, with 
a focus on implications for secondary school teaching and assessment. 

Being proficient in mathematical communication—that is, reading, writing and 

conversing mathematically—is a fundamental expectation of students throughout all 

levels of study in mathematics. This is reinforced by the Australian Curriculum for 

Senior Mathematics (ACARA, n.d.) which emphasises the importance of mathematical 

communication in the aims listed for every senior mathematical course, for example 

“Mathematical Methods aims to develop the students’… capacity to communicate in a 

concise and systematic manner using appropriate mathematical and statistical 

language”. Mathematics is a highly symbolic language, which increases the 

complexities of communication; indeed, research has shown at secondary level that the 

conciseness and abstraction of symbols can be a barrier to learning (MacGregor & 

Stacey 1997; Pierce, Stacey & Bardini 2010).  

 Our project ‘Secondary and university mathematics: Do they speak the same 

language?’, focuses specifically on the symbolic aspect of mathematical language in 

early university mathematics compared with secondary school, and how this impacts 

on students’ confidence and capability in mathematics (For more details of the project 

see Bardini, Pierce & Vincent 2015). 

 



As part of our study we asked educators what observations they had made of their 

students’ experiences with mathematical symbols and notation. These data were 

collected during face-to-face semi-structured interviews with six experienced Victorian 

senior secondary teachers (ST1-ST6) and twenty one first year university mathematics 

and/or statistics lecturers and tutors from four Australian universities (T1-T21). 

Analysis of transcripts of these interviews revealed multiple recurring themes, with 

almost all practitioners mentioning that their students have difficulties with 

communication in mathematics and statistics. Specifically, students were observed to 

struggle to: (i) write coherent mathematical statements and (ii) provide written 

reasoning in their workings. 

T2: They just don’t write down what they’re doing, they don’t explain. It’s just literally, 
they think they just need to write a page of equations with each [of] these funny little 
symbols joining everything together and they’ll think they’re done. 
T6: …just thinking about symbols. I mean one of the sort of things that I find …I really 
want students to do is like develop mathematical reasoning and communication skills and 
I find that often you see what is just a blind sort of statement of symbols one after the 
other and one of those things that I sort of try to get students to do is to basically write 
less symbols, write more English. Not necessarily less symbols but write more words to 
connect them…. 

 When we asked what difficulties they could recall students experiencing with 

symbols in mathematics, a number of examples were repeatedly highlighted. For 

example, T2 noted that “implications and therefores and equals—a lot of students seem 

to either want to use implications symbols instead of equals signs when they are writing 

out a page of equations, or just not use equals signs at all”. T5 highlighted that the “sum 

of symbol… it’s not only a confidence thing, but also just limited sort of intuition 

between seeing something and knowing what it means at all”. 

 Whilst many of the examples were provided by university educators, the majority of 

the notation difficulties mentioned related to that which students encounter during 

secondary schooling or earlier. A list of the most frequently mentioned symbols by 

these educators is summarised in Table 1. 

Table 1. Most commonly mentioned symbols perceived to present challenges for students. 

Symbol of concern % of educators who 
mentioned this (n= 27) 

Using ‘=‘ incorrectly/not at all 41% 

Not understanding ‘ ’ symbol 33% 

Using ‘ ’ inappropriately 26% 

Confusion with derivatives symbology,   or  26% 

Inflexibility changing letters/symbols in well-known formats  

e.g., y = mx + c  

26% 

Inverse e.g., sin–1(x) or f–1(x) misinterpreted as reciprocals 19% 

Use of Greek letters in any mathematical setting 19% 

Confusion over varied use of different brackets {}, [], (), 

e.g., matrices, order of operations,  

15% 

Confusion using  and  15% 

Set notation—reading or writing e.g.,  15% 



One factor which is considered a point of confusion for students with symbols, is the 

inconsistency of their usage. 

T15: I think it’s probably impractical to expect the first years to be able to adapt very 
easily to the [variety of] notation and so I think what we should do…there should be some 
standardsed set of notation and then we can say OK this is what we are going to use and 
this is this is how it is...the weight of evidence from what I’ve seen, is that the students are 
just tripping over unnecessarily. 

 Multiple symbols can have the same meaning, for example tan–1(x) and arctan(x) are 

both commonly used interchangeably in high-stakes examinations and textbooks, (see 

VCE Specialist Mathematics examinations (VCAA, 2016) and Specialist mathematics 

Units 3 & 4: Cambridge senior mathematics Australian curriculum/VCE (Evans, 

Cracknell, Astruc, Lipson & Jones, 2016)). To add further confusion the Specialist 

Mathematics examination formulae sheet (VCAA, n.d.) acknowledges the alternative 

notations with column headings sin–1(arcsin), cos–1(arccos) and tan–1(arctan).  

 Similarly, a symbol may be used for multiple purposes, across multiple subjects. The 

equality sign, which was highlighted by over 40% of the educators in our interviews, 

presents difficulties even for some high achieving students at university. One only 

needs to consider the multiple subtle differences in meaning for this symbol to see why 

it might be confusing: it is an equality in equations, an assignment in statements, an 

operator when calculating, and also in an ICT sense, in Excel all formulae are preceded 

with an ‘=’, or in popular programming languages like Python, ‘=’ is an assignment, 

whereas ‘==’ means to check for equality. Vincent, Bardini, Pierce and Pearn (2015) 

noted that “instead of serving a relational role between two equivalent expressions, the 

equals sign has been misconstrued as a cue that an answer is required, that is, an 

operation must be performed” (p. 3). Whilst many teachers would expect that a symbol 

as fundamental as the ‘=’ sign is well understood by their students by the time they 

reach secondary school or university, this is not necessarily the case, as is demonstrated 

in Figures 1 and 2. 

 
Figure 1. Student workings; not an ‘=’ sign in sight. 

 Whilst students do need to come to terms with the variety of notation used in 

mathematics, a strong argument can be made for a scaffolded introduction to a concept 

using consistent notation, and explicit explanation of symbolic synonyms or conversely, 

multi-purposed symbols. 



 Across the universities and secondary schools where we spoke with educators, few 

mathematics departments have a formal, well-understood policy for the consistent 

introduction and use of symbols. A complexity of achieving such a standardised policy 

in the mathematics/statistics department was highlighted by one academic: 

T15: …we all have our own opinion on that. But yeah I definitely think it should be 
standardised and I don’t think that there is a policy or if there is I don’t know of it. And I 
think especially in this department…I think here you can really struggle I think to get 
everybody to agree. Because everybody grew up with their own way and mathematicians 
get very attached to their notation 

 To further complicate the task of teaching the meaning of symbols, students refer to 

written materials which may not be consistent either with classroom instruction, or 

even necessarily between sections of the same textbook. For example, ST1, a co-author 

of senior secondary textbooks, suggested that when textbooks are being updated, “they 

write small sections of new things, so you are going to have a whole exercise of 

questions that would have been there 10 years ago, and won’t have been updated. So 

you’re going to have mixtures of things [referring to symbols]”. Additionally, online 

information which students may access to supplement their learning can also introduce 

different notation. 

T7: I will teach using letters a, b and c, but then if you go to say YouTube to watch a video 
and they might use alpha, beta and gamma or you know, m, n and p, and they sort of say 
‘well, hang on! It looks similar but you use a, b and c, and they’re using m, n and p 
T19: I tell them, forget about it if you have learned in YouTube or somewhere…lots of 
methods, lots of ways to solve it, makes them more confused than if there is just one. 

 Internationally, different notation is used in mathematics for example ‘,’ for a 

decimal point and  rather than . These students’ understanding of mathematical 

notation needs to be specifically contemplated, with differences being explicitly 

highlighted to minimise the likelihood of confusion. 

T9: Everyone says this happens [misuse of symbols], but you don’t really know whether 
this is one out of a thousand, or if it’s actually a real issue, and I can tell you it’s a real 
issue. This is a significant proportion of our top students. 

 That students do genuinely find mathematical notation a point of difficulty is 

strongly supported by literature. Chirume (2013) concluded that “students fail to grasp 

mathematical concepts because they take the symbols themselves as the objects of 

mathematics rather than the ideas and processes which they represent”. Our own early 

findings demonstrate some of these specific difficulties. Table 2 provides a summary of 

responses provided by 152 students in first year university, all of whom had successfully 

completed VCE Mathematical Methods (CAS) or equivalent (Bardini & Pierce, 2016). 

They were answering the question ‘Explain the meaning of -1 in the following’, as a 

written survey response (that is, not multiple-choice). 

 Table 2 demonstrates the significant proportion of first year university mathematics 

student respondents, who had experienced success in their senior secondary 

mathematics, but still held misconceptions in regard to the varying meanings of the ‘-1’ 

in a ‘template’ of __–1. Whilst most understood the meaning of , over half of the 

students thought that  represented the reciprocal or  and over 17% 

thought similarly in terms of . This does give educators reason for concern. 



Table 2. ‘Explain the meaning of –1 in the following’. 

 
No. 

Students 
 

No. 
Students 

, when 
 

No. 
Students 

 104 arcsin(x) 63  56 

Reciprocal of x 18  or cosec(x) 63  27 

8 Reciprocal 14 Inverse of  43 

9 Not (  1 Derivative 4 

10 Other response 4 Integral 4 

3 Missing/no idea 7 Other response 11 

   Missing/no idea 7 

 

 What is in an answer? 

T9 …so for them it’s all about the answers because so much of their work is multiple 
choice or short answer and it’s all about whether the answer is correct. ‘I got 5, it doesn’t 
really matter what I scrawled down on the piece of paper, I got 5, that was the correct 
answer’, whereas what we want to do at university is not just make them get the correct 
answer, but explain how they got it, set it out properly and we’re trying to teach them how 
to write mathematics, and that is a huge shift even for the top students. 

 The university lecturers we spoke with felt so strongly about this, that the majority 

of assignments given to students have a component of marks attributed exclusively to 

correct usage of mathematical notation, with the view that students will not value the 

feedback unless it has marks attributed to it. Further strategies are being used, such as 

providing to students documented guidelines for writing in mathematics with exemplar 

answers, in an attempt to upskill them in the early stages of their tertiary mathematics 

studies. Without the rigour in writing, it is considered (T6) that “these kinds of things 

are things that just sort of provide another impediment to their learning”. 

 However, it is not just at university where students need to write coherent 

mathematics. By requiring rigour in the workings and explanations of students, we gain 

an insight into their misconceptions and depth of knowledge. Figure 2 shows a 

student’s workings where they were asked to find the argument of the complex number 

. This was a first year university student, but could equally have been a 

student of VCE Specialist Mathematics with a question of this nature. This student has 

made multiple errors, from not labelling what they are doing, stating they are using tan 

not arctan and stating that one line of workings is equal to the next when it clearly is 

not. However, the final answer of  is, in fact, correct. Had this question been 

examined via a multi-choice mechanism, the student would have been awarded full 

marks. However, when the teachers, lecturers and tutors we interviewed were 

presented with this, most indicated they would mark students down with varying 

severities, for workings which were plainly incorrect and all clearly provided feedback 

that the student needed to use mathematical notation more accurately. T9 noted, 



“…this is completely incoherent and they’ve come out with some angles and it just 

doesn’t make any sense… we would not be awarding marks for stuff that makes no 

sense and we can’t even work out what their answer is, and notationally it’s just 

rubbish”. Some educators inferred that the correct answer implied an understanding of 

the concepts, whilst others such as ST4 thought that “It makes you wonder when you’re 

looking at it, about the students’ understanding of exactly what they are doing, whether 

they have memorised a step or whether they actually understand exactly what it is that 

they have worked out”. 

 

Figure 2. Multiple errors in these workings but a correct final line. 

We must consider that some students in every classroom—even some of our most 

capable students—will bring with them misconceptions and misunderstandings 

regarding the use of symbols, including those symbols we would expect to be well 

understood from prior years of learning. One of the challenges facing educators is in 

the identification of these misconceptions, so that they can be directly challenged and 

unwound. 

 When reviewing student work, it is tempting to infer that a student properly 

understands the mathematics when the final result is a correct answer, even if there are 

a few ‘careless’ notational errors peppering the workings. However, if this were the 

case, those students should be able to readily produce correct workings and 

explanations when specifically asked to do so. What we have seen in practice, is that 

students do misunderstand how to read and use mathematical notation and that some 

students are completing workings by implementing a memorised process to achieve a 

final ‘correct’ result, with limited understanding of the underlying mathematics.  

In the classroom setting, by carefully and explicitly introducing new notation and 

placing high value on students’ correct use of mathematical notation from early 

mathematics instruction onwards, teachers will draw attention to clear mathematical 

communication. Strategies such as having students read each other’s work, or asking 

them to correct deliberately constructed poor examples may alert them to the 

importance of their own clear and correct use of symbols and words to communicate 

mathematical thinking. Given implications for learning if students do not fully grasp 

the subtle nuances of the symbols and notation in mathematics, the opportunity for 

early intervention in this regard is one that cannot be missed. 
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The advantages of using multiple-choice (MC) items in assessments of 
mathematical achievement are such that they will continue to be used. Periodically 
the ongoing concerns with the use of MC items and the effects of these concerns on 
the measures of student achievement are the subject of discussion and comment. It 
is possible, however, to identify the associated problems and address the concerns 
in new ways that can lead to improved measures without adding to the test 
demands on the students. 

One structural type of item used to assess mathematical achievement is the multiple-

choice (MC) item. It typically contains a stem (introductory text) and a list of options 

from which the students choose the best answer to accurately complete the stem or 

answer the question posed in the stem. Selection of the correct option, the key, is 

typically awarded one mark and zero is given for all other selections and for missing 

responses. There are usually three or four incorrect options and these are often referred 

to as distractors. In another type of item, described as being a constructed response 

(CR), the student creates a response to the stimulus or question provided rather than 

select from the available options. 
 There are several reasons why MC items are more popular than other types of items 

in some testing situations. Students find them attractive because they know the answer 

is there and they do not need to find it. Furthermore, they know they can guess if the 

answer is not readily recognised and hence score points when the answer is unknown. 

Not having to show working appeals to many students though others prefer to write out 

their solutions and many teachers prefer to see this evidence of students’ mathematical 

thinking. A further attraction for some students is the objective scoring process because 

the marker cannot be prejudiced by poor handwriting, bad grammar or personal bias. 
 There is anecdotal evidence of the increasing use of MC items in classroom tests. 

This increase may be occurring because more recent textbooks not only contain MC 

items for students, but also provide teachers’ versions of the text which provide sets of 

topic tests containing MC items. The attraction of using MC items in large-scale 

assessments continues (e.g., NAPLAN) and there is evidence to suggest their use is 



becoming more extensive. Betts, Elder, Hartley and Trueman (2009) suggested that the 

increase could be attributed to the fact that a broader range of the curriculum can be 

covered with fewer items than would be needed if only CR items were used. 

Furthermore, MC items are easier to score and to administer to a large cohort of 

students with a less costly marking process and a shorter turnaround time for providing 

feedback.  

Writing effective MC items is necessary if assessment data is to be valid and reliable. 

Haladyna, Downing and Rodriguez (2002) tested and validated an MC, item-writing 

guideline for classroom assessment and suggested their taxonomy might have uses for 

large-scale testing. Their recommendations included (a) placing the main idea in the 

stem rather than in the options, (b) keeping choices independent, (c) writing stems and 

options using positive language, (d) presenting choices vertically rather than 

horizontally, (e) ensuring all distractors are plausible, and (f) using typical errors of 

students to write these distractors. Haladyna et al. (2002) also recommended that 

writers should try to have options of approximately equal length and of similar 

grammatical structure to prevent clues being given to the key. They also recommended 

that writers avoid “all of the above” and take care when using “none of the above”.  

 Connolly (2011) describes other factors that need to be considered when writing 

multiple-choice items. These include (a) content, (b) proficiency aspects of 

mathematical competence, (c) context and (d) literacy demands. The content and 

proficiency aspects should be mapped to the expectation of the students’ curriculum. 

Contexts need to be chosen so that they are sufficiently familiar for the student so as 

not to confuse or distract them from the mathematical demands of the task (Cumming 

& Maxwell, 1999). Greenlees (2010) summarised this imperative more succinctly by 

describing the attempt to make questions more realistic as confounding. The students 

can be affected by too much unrelated information which they try to use to solve the 

problem rather than be specifically drawn to the relevant mathematics.  
 The common language of the items needs to be appropriate for the age of the test-

takers and the mathematical aspects tested rather than the literacy ones. Abedi and 

Lord (2001) in their study of language in mathematics tests recommended that item 

creators (a) use active tense rather than passive tense, (b) remove infrequently used 

words, (c) separate conditional sentences into two sentences, (d) rewrite relative 

clauses, for example ask determine the number of, rather than how many components 

(e) change complex expressions to simple ones, and (f) use concrete descriptions rather 

than abstract ones, for example, replace the cost with the cost of the car. 

Even though there has been an increase in the quality and the popularity of MC items 

there are several issues of concern. One concern is the perceived bias for gender and the 

idea that males are more able than females to respond to MC items. The second 

concern relates to the level of thinking that can be assessed by MC items and the belief 

that only low-level cognition is addressed. The process by which a respondent selects a 

correct option is a third concern as the selection may be for the wrong reason or 

because the student has guessed. Either way, the score will be inflated and not an 



accurate reflection of the student’s knowledge or achievement. It is also a concern when 

students are not given credit for selecting an option that is not correct but which 

reflects an understanding of the problem which is greater than that shown by the 

selection of any of the other distractors.  

Garner and Engelhard (1999) found males significantly outperformed females in the 

MC items relating to proportional reasoning, geometry, number and data analysis 

whereas females significantly outperformed the males on MC items in algebra. 

However, research findings from Behuniak, Rogers and Dirir (1996), Betts et al. 

(2009), Bond et al. (2013), Bonner (2013), deMars (1998) and O’Neil and Brown (1998) 

show no significant differences in achievement between males and females on MC 

items. There is insufficient evidence to support this concern. 

Addressing high levels of thinking in MC items has been described by McCurry (2008) 

as encouraging conceptual thinking and testing understanding as well as knowledge. 

This may include following an argument, making judgements, interpreting unfamiliar 

stimulus material, discriminating between concepts and analysing reasons which 

support conjectures.  

 One item from a previous investigation by the author required the students to 

interpret an unfamiliar situation and to understand the concept of 120% to work 

backwards to 100%. The item, reproduced below, was deemed to test higher order 

thinking and only 18% of over 130 students from Years 9 and 10 chose the correct 

answer.  

The number of frogs in the creek in 2011 was 120% of what it was in 2010. If there were 
60 frogs in 2011, then in 2010 the number of frogs must have been  
1. 40     2. 48     3. 50     4. 72     5. 80 

 Higher-order thinking can also be facilitated in MC items (Haladyna et al., 2002) 

with the provision of visual material such as a graph or table to provide a context for 

the item and hence extend the thinking required to select the correct option. According 

to Zoumboulis (2015), item writers can be trained to write MC items that test high 

order thinking. This concern with the levels of thinking tested using MC items is best 

addressed through improving the quality of the MC items themselves. 

Guessing occurs when students have low ability relative to the item and it results in 

similar proportions of students selecting each option when the concept is unfamiliar. 

This can be seen in Figure 1 where the horizontal axis represents student ability (Person 

Location in logits) and the vertical axis represents the empirical probability of the 

student selecting a particular option. Option 5 was rejected by most students and at the 

lowest ability level, where the mean location is about -1.3, the proportion of students 

selecting each of the other options is about 0.3. This pattern is suggestive of guessing. 

The item (option 1. was excluded) from the author’s previous study is reproduced 

below.  

 



The best estimate for the value of the number at P (yellow dot) on this number line (on 
which 0 and 1 are labeled) is 

 
2. 65%     3. 6.5%     4. 6.5     5. 7% 

 

 

Figure 1. Distractor curves for Item 15. 

 The opportunity to guess is reported by Betts et al. (2009) as causing students’ 

scores to be inflated thus decreasing test reliability and the validity of any measures or 

scales determined from test scores. Strategies to minimise the effects of successful 

guessing in MC items relate to scoring penalties, test design and post-hoc analysis. In 

the conventional and most popular method of scoring one mark is allocated to the 

selection of the key and zero marks allocated for any other selections. With this type of 

scoring it is advantageous to guess, yet students will still omit items. Other scoring 

methods involve penalties and marks are deducted for incorrect or missing responses. 

A common technique, known as formula scoring is summarised in the formula given 

below (Lindquist & Hoover, 2015, p. 16). 

 
  where S = corrected score, R = number of correct answers,  

 W = number of incorrect options chosen, n = total number options 
 

 Using different scoring techniques is at times associated with undesirable 

consequences. There may be extra demands placed on test-takers and these include 

longer times needed to complete tests, increases in taking risks when deciding to omit 

or complete items and the need to consider more strategies for test completion. All of 

these can influence test reliability by introducing unrelated factors which can increase 

the error in measuring the intended construct. There is no evidence to suggest that such 

penalties are used in large-scale tests within Australia. 

 Another strategy designed to reduce the level of guessing is to provide a test that is 

not too hard for the test-taker. An algorithm can be used to detect student success on a 

limited number of questions and according to those responses change the student’s 

pathway through the test (ACARA, 2014). This process may be described as “computer 



adaptive testing” or “tailored testing”: the test is tailored to the student’s ability. In 

theory, students responding to items more commensurate with their own ability are 

less likely to guess. When determining the level of difficulty of the MC test items using 

Rasch Measurement Theory, allowances can be made to adjust the item difficulty 

according to the probabilities of the students guessing behaviours. According to 

Andrich, Marais and Humphry (2015), such adjustments can lead to the formation of 

more accurate scales of achievement for the test-takers. 

A major criticism of using MC items to assess student understanding is that they are 

usually marked right or wrong and any partial knowledge that the student might have 

about the item’s content is not rewarded with a score. In the author’s previous 

investigation the existence of partial knowledge was indicated when the proportion of 

students selecting the incorrect option was higher than that predicted by the analytical 

model. This can be seen by the curve for Option 1 as shown in Figure 2. The item was as 

follows: 

 

The price of a maths text book has risen 25% to a new cost of $100. The old price must 
have been: 
1. $75     2. $80     3. $100     4. $125     5. None of the above 

 

 

Figure 2. Distractor curves for Item 60. 

 As expected, very few students chose any of the last three options as they would have 

known that the answer had to be less than $100. The proportion of students selecting 

$75 is high throughout the low and average ability range and the associated thinking is 

that $75 + 25% = $100. This incorrect selection for this item indicated students were 

thinking of fixed or absolute change rather than proportional change. Rewarding 

partial knowledge can be achieved by scoring the elimination of distractors, by asking 

students to rate the options in order of preference, by asking students how confident 

they feel about the answer they have chosen or by scoring the distractors. Having 

partial knowledge of a concept can be considered as being on the way to developing a 



full understanding of the concept and it is hypothesised that MC items can be written to 

allow students to demonstrate their partial knowledge and be rewarded for such. 

One of the aims of the current study is to demonstrate that it is possible to improve the 

amount of information about students that can be collected from MC items by giving 

credit for partial knowledge. Sixty MC items were developed using the guidelines 

described previously. The items were mostly written by the author and the remainder 

were adopted and adapted from research studies. For each item there was one 

distractor written to reflect any partial knowledge that the student might have, as well 

as the key. The other two distractors were designed to provide less information about 

student learning.  

 The context chosen for the study is Proportional Reasoning which has been 

described by Siemon, Bleckly and Neal (2011, p. 22) as a key concept for students 
in early secondary, “without which, students’ progress in mathematics will be 

seriously impacted”. Items were designed to test the skills and understanding 

necessary for the development of sound proportional reasoning, the ability to solve 

problems when the relationship between quantities or variables is proportional. The 

skills and understanding that Year 8 students cover in their study of the Western 

Australian curriculum include understanding and manipulating ratios, rates, fractions, 

decimals and percentages.  

 The test items were written at a level deemed to reflect the standard to be achieved 

by Year 8 students. There were three review processes used to check the items before 

the test was administered to the students. Firstly the items were analysed by five 

experienced teachers of Year 8 mathematics and the feedback on the difficulty of the 

item, the appropriateness of the language used and the mapping to the curriculum was 

provided. Secondly two teachers with expertise in assessment review analysed the items 

in respect of the distractors to be awarded partial knowledge. In the third review 

cognitive interviews were conducted with 10 Year 9 students with the aim of checking 

that the items were consistently interpreted as intended by the author. Following these 

reviews, some items were edited with diagrams added and language simplified. 

In November 2016 the test was given to over 1200 students and in the table of results 

for the first 10 items (Table 1), the percentages of students who are correct and who 

have selected the options designed to be awarded worth partial credit (PC option) are 

highlighted. For these ten items, the percentage of students selecting either the key or 

the PC option is between 62% and 90%. This is to be expected given that the test was 

done at the end of the year and students should have covered the test content 

 
  



Key Correct answer 

PC Option created for partial credit 

OPTIONS 

Item 1 2 3 4 

1 48% 8% 40% 4% 

2 24% 22% 38% 17% 

3 13% 11% 10% 66% 

4 16% 6% 73% 5% 

5 65% 7% 13% 15% 

6 17% 35% 28% 20% 

7 24% 36% 26% 14% 

8 8% 78% 12% 2% 

9 56% 18% 7% 19% 

10 12% 46% 28% 13% 

Table 1. Proportions of students selecting each option. 

 For Item 1 the students (40%) selecting the PC option may have understood the 

relative change in size but have not processed the indirect nature of the proportion. 

Their response is arguably better than the one where the change is a factor of 2. 

Item 1 
If the number of people sharing the cost of building a Cat Refuge were to quadruple 
(multiply by 4), then the amount of money that each person needs to give will  
a. reduce to a quarter of the original amount 
b. reduce to a half of the original amount 
c. increase to four times the original amount 
d. increase to double the original amount 

 For the PC option in Item 4 it is assumed that the students thought that 100 km/h 

was equivalent to 1 km/min and hence used the speed incorrectly. Students might have 

determined that the answer had to be greater than 100 km but there is no other 

justification for the selection of the last option. The proportion of the responses, 73% 

for the key and 16% for the PC option, are justifiable. 

Item 4 
Milly drives her delivery truck from the farm to the depot at an average of 100 km per 
hour. 
The journey takes 90 minutes. What is the distance from the farm to the depot? 
a. 90 km 
b. 100 km 
c. 150 km 
d. 175 km 

 Item 7 was the only item in which the PC option and not the key was selected by the 

highest proportion of the students. The selection of 4% to represent the percentage 

increase was almost as high as the selection of the key. This result is difficult to justify 

but a possible explanation involves the ‘fourness’ of the difference between 1.2 and 1.6. 

Item 7 
Oil production was forecast to be 1.2 million barrels per day.  
Instead, it reached 1.6 million barrels per day.  



This increase in what was forecast is closest to 
a. 4% 
b. 25% 
c. 30% 
d. 40% 

 For Item 9, the key was selected by 56% of the students and the PC option was 

selected by 18% but option d. was selected by 19%. It was not expected that the students 

would fail to see the two errors in this option, namely that $800 was not decreased by 

more than $100 and that $66 + $44 is not $100. The representation of 44% as $44 was 

identified as an additive error and a misconception that could represent a stage in the 

learning of percentage increase.  

Item 9 
The correct answer in a student’s homework was $744.  
The question could have been 
a. Increase $600 by 24%  
b. Increase $700 by 44% 
c. Decrease $700 by $44 
d. Decrease $800 by $166 

Creating MC items in which distractors can be scored requires a qualitative approach as 

well as an analysis of the numerical results. To justify awarding partial credit to one of 

the distractors requires knowledge of the development of student learning, 

consideration of the conceptual understanding of the content, and an awareness of the 

errors often made and of the misconceptions commonly held. The numerical analysis 

can reveal unexpected misconceptions as well as provide evidence to support the 

existence of the students’ partial knowledge. The confirmation or otherwise of the 

planned partial knowledge, or the recognition of it when not expected can provide the 

classroom teacher with valuable information for the identification of tasks that would 

support the development of greater conceptual understanding.  

 It is possible to apply different scores to the students’ responses to the items and 

apply Rasch measurement theory to the results. This would allow a comparison of the 

measurement scales for both item difficulty and student achievement under different 

scoring methods. One such scoring method could include awarding some credit to the 

students who select the PC option but a greater credit for those selecting the key.  

The support of the author’s supervisors, Chapple Professor David Andrich and 

Professor Peter Merrotsy, in previewing this article has been invaluable. The author 

also wishes to acknowledge the support of the Australian Government through an 

Australian Government Research Training Program Scholarship. 
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After more than 40 years of 100% school-based assessment, Queensland will 
introduce the new Queensland Certificate of Education (QCE) system commencing 
in 2019, which includes a common external assessment of senior subjects. This 
paper outlines the research, consultation and rationale that underpins the position 
on technology allowed in the external examinations for Mathematical Methods and 
Specialist Mathematics in Queensland, specifically, a supervised examination in 
two papers: technology-free and technology-active (handheld non-CAS graphics 
calculator). 

Queensland is one of the few educational jurisdictions in the world with a system of 

100% school-based assessment in senior secondary schooling, with the majority having 

some form of external assessment of senior subjects (McCurry, 2013). In 2019 this 

changes, with the Queensland Government introducing the new Queensland Certificate 

of Education (QCE) system (starting with students entering Year 11). In the new 

system, subject results will be based on a student’s achievement in three school-based 

assessments and one external assessment set and marked by the Queensland 

Curriculum and Assessment Authority (QCAA). External assessment results will 

contribute 25% towards a student’s result in most subjects. In mathematics and science 

subjects, it will generally contribute 50% (Department of Education and Training, 

2016).  

 This paper outlines issues related to the use of technology in the external assessment 

for Mathematical Methods and Specialist Mathematics,1 and the research, consultation 

and rationale that underpins the final position for these new Queensland syllabuses.  

Pedagogical approaches that use the power of technologies in a variety of forms and 

contexts, that assist students to make the bridges between real-life modelling, symbolic 

1 These are newly developed Queensland senior secondary mathematics subjects, which are developed from the 
equivalent senior secondary Australian Curriculum. 



and visual representations of mathematical phenomena, are encouraged in the 

mathematics teaching profession. Technology use can and does involve multiple forms, 

nevertheless, calculators are the technology most commonly used in mathematics 

lessons at all levels (Norton & O’Connor, 2016).  

 Reliance on calculators is often raised as a concern, with some considering their 

overuse to be a problematic trend; arguing students do not gain fluency with basic facts 

and processes because they rely on calculators for simple numerical calculations 

(Norton & O’Connor, 2016). Hattie (2009) examined the research on the effectiveness 

of calculator use in learning. Overall, the presence of calculators in mathematics has a 

low positive effect. Their use is supported for computation, practice, checking work and 

aiding conceptual understanding—when used purposefully in teaching and learning.  

 A stronger positive effect is found when examining the use of graphics2 calculators. 

Ellington (2006) conducted a meta-analysis on forty-two studies comparing the 

learning and achievement for students with access to graphics calculators to students 

who did not have access to graphics calculators. The conclusion from the meta-analysis 

was unambiguous in its support for their use, stating that “graphing calculators should 

be an integral part of the study of mathematics” and “[t]here were no circumstances 

under which the students taught without calculators performed better than the 

students with access to calculators” (Ellington, 2006, p. 24). A more recent review, 

published by the National Council of Teachers of Mathematics, reached the same 

conclusion. The research consistently shows that the use of calculators in mathematics 

does not lead to negative outcomes in development of skills and procedural fluency, 

and has a positive impact on understanding concepts and student disposition (Ronau et 

al., 2011).3 

An environmental scan of the external assessment requirements of Australian and 

selected international jurisdictions was undertaken by reviewing documentation 

provided on the relevant jurisdictional websites. The majority have two sections or 

papers for their external assessment, often with one technology-free and one 

technology-active. The scan is summarised in table 1 for the equivalent of Mathematics 

B (Mathematical Methods). 

 

 

 

2 Note that graphics, graphing and graphics display are often used interchangeably, when referring to large screen 
calculators that allow for graphs, tables, matrices, statistical displays and other complex data and mathematical 
operations. This paper refers to graphics calculators unless in quotations. 
3 Based on a synthesis of nearly 200 research studies, dating from 1976 to 2009. 



Table 1. External assessment in other jurisdictions. 

Jurisdiction External assessment information 
Victoria 66% external assessment – examination 

Paper 1 (technology-free): 22%  
• 60 minutes  
• No technology or notes of any kind permitted  

Paper 2 (technology-active): 44% 

• 120 minutes
• One bound reference allowed

New South Wales 50% external assessment – examination 
• 180 minutes  

• Section 1 Multi-choice (10 marks) 
• Section 2 Short-response questions (90 marks)

South Australia 30% external assessment – examination 
Examination (technology-active)  

• 120 minutes  
• Two unfolded A4 sheets (four sides) of handwritten notes 

Western Australia 50% external assessment – examination 
Paper 1 (technology-free): 35% 

• 50 minutes  
Paper 2 (technology-active): 65%  

• 100 minutes  
• Notes on two unfolded sheets of A4 paper 

International 
Baccalaureate (IB) 

80% external assessment – examination 
Paper 1 (technology-free): 40% 

• 90 minutes (Mathematics SL)  
Paper 2 (technology-active): 40%

• 90 minutes (Mathematics SL)

Hong Kong 100% external assessment 
Paper 1: 65% 

• 135 minutes 
• Conventional questions 

Paper 2: 35% 
• 75 minutes 
• Multiple-choice questions  

 

 A scan of the technology allowed in external assessment in Australian and selected 

international jurisdictions, by reviewing information provided on the relevant 

jurisdictional websites or contacting the jurisdiction directly, was also undertaken. The 

majority require some form of graphics calculator.4 The scan is summarised in table 2. 

 

 

 

4 As noted by Kissane, McConney and Ho (2015), there is no clear consensus internationally about the type of technology 
allowed in external examinations, and the picture of what is allowed between and within nations is complex and 
changing. However, the general trend is for the inclusion of more technology, not less.  



Table 2. Functionality of calculators allowed in external assessment in other systems. 

Jurisdiction Scientific 
calculator 

Graphics calculator 
(non-CAS) 

Graphics calculator 
(CAS) 

Austria Y Y Y

China N N N

Denmark Y Y Y

Finland Y Y Y

Germany5 Y Y Y

Hong Kong Y N N

India N N N

International Baccalaureate Y Y N

Israel Y N N

Netherlands Y Y N

New South Wales Y N N

New Zealand6 Y Y N

Northern Territory Y Y N

Norway Y Y Y

Singapore Y Y N

South Australia Y Y N

Switzerland Y Y Y

Tasmania Y Y Y

United Kingdom Y Y N

United States Y Y Y

Victoria Y Y Y

Western Australia Y Y Y

Key stakeholders—teachers, a mathematics education academic and the Victorian 

Curriculum and Assessment Authority (VCAA) Mathematics manager—met on 23 

February 2016 to discuss calculator (and other digital technology) functionality within 

external assessment contexts. To set the scene, the VCAA Mathematics manager 

outlined Victoria’s journey (see Leigh-Lancaster, 2010), noting they only moved to 

using computer algebra system (CAS) calculators after extensive trials and decades of 

experience in implementing state-wide external examinations. Participants then 

provided their views on four possible options for technology in external examinations: 

graphics calculator with CAS functionality, graphics calculator without CAS 

functionality, scientific calculator only, or other options such as BYO devices or school 

supplied laptops.  

 A variety of issues and positions were raised. A common theme was schools’ 

concerns for the cost of purchasing or upgrading to a different type of technology than 

5 Summarising a jurisdiction such as Germany is, overall, not completely possible. Similar to Australia, Germany has 
states which all have their own independent senior curriculum and assessment (Kissane, McConney & Ho, 2015).  
6 Graphics calculators (CAS) are allowed in higher lever statistics and calculus courses.  



that which they were currently using,7 as well as the cost and time associated with 

teacher professional development to learn something new. The incoming change to 

curriculum and assessment will account for a significant proportion of school budgets 

and teacher professional learning, planning and preparation time, as it is.  

 When participants were asked if they could accept a compromise, different to their 

first preference, scientific calculator only was the most popular second choice (but no-

one’s first choice). The major concern raised about using a scientific calculator only, is 

it essentially endorses the primacy of a technology that many schools have moved 

beyond. However, it was pointed out by the university academic and other participants 

that the significant majority of first-year university mathematics, physical science and 

engineering courses, only allow scientific calculators in their examinations. They use 

more powerful or professional software such as MATLAB or R in ‘laboratory’ 

components. 

During the syllabus development and consultation process in 2016, QCAA surveyed 

Mathematics Heads of Department8 about the technology they allowed in their school-

based examinations for Prevocational Mathematics and Mathematics A, B and C.9 The 

results are provided below. 

 

Figure 1. Technology use in mathematics examinations. 

7 Kissane, McConney and Ho (2015, p. iv) investigated this and found that when adjusting for CPI changes graphics 
calculators (CAS and non-CAS) are no more expensive that scientific calculators in the 1970s or graphics calculators in 
the 1990s. Further, calculator manufacturers also offer emulators for Windows, Mac OS X, Android and iOS at prices 
ranging from free to $50. 
8 Via an email sent to the QCAA’s primary contact for senior secondary at all schools (the ‘school moderator’). 
9 These subjects are broadly aligned with, and will be respectively replaced by Essential Mathematics, General 
Mathematics, Mathematical Methods and Specialist Mathematics. 



118 responses were recorded, which represents more than 20% of the secondary 

schools in Queensland.10 For Mathematics B and C, the significant majority use graphics 

calculators (both non-CAS and CAS, with more using non-CAS). This is consistent with 

a previous survey of technology use in mathematics classes in Queensland schools 

(Goos & Bennison, 2008, p. 120). 

QCAA invited CAS specialists, including those with expertise in Texas Instruments, 

Casio and HP calculators, to provide expert advice on the advantages CAS functionality 

can bring to students.  

 One specialist was asked to detail the advantages CAS provided over a non-CAS 

graphics calculator for each question in the 2016 external assessment for Mathematics 

B that QCAA was trialling with Year 11s. They found that CAS functionality could, 

overall, give advantage in some questions due to function notation, speed, exact 

numerical arithmetic functionality, trial and error testing by ‘button pressing’ and 

solving trigonometric equations exactly. This advantage would most likely benefit high 

achieving students who know how to use CAS calculators effectively, which would bring 

into question the assessment’s validity (Pantzare, 2012). They did note that the use of 

cues in the paper minimised the CAS advantage as it specifically requested an algebraic 

approach.  

 As part of the consultation the other specialists worked through the VCAA 

Mathematical Methods (CAS) external assessment paper, demonstrating the approach 

to solving questions using their CAS model of calculator. Even more so than with the 

QCAA trial paper for Mathematics B (Year 11), for the VCAA paper (Year 12), CAS 

provided significant extra functionality beyond a graphics calculator (non-CAS), 

specifically when manipulating mathematical expressions symbolically and evaluating 

functions with symbolic arguments.  

 In the experience of the specialists, many of the reasons teachers and students prefer 

the CAS models have little, if anything, to do with CAS functionality. It is the other 

features of the models, such as bigger and higher quality touch screens, data logging 

applications, and more aesthetically pleasing industrial design, that teachers and 

students prefer. As with most technology, the latest models are easier to use 

irrespective of CAS functionality.  

 The specialists viewed their CAS models as excellent teaching tools, but 

acknowledged the challenge of writing examination questions for them. They also noted 

that in their experience university lecturers tend not to like CAS calculators (or indeed, 

any graphics calculator) and that this is unlikely to change. 

 Out of this process came the following recommendations for the development of 

future external assessment: 

• QCAA should develop a two-tiered exam system, that is, a technology-free paper 

and a technology-active paper.  

• A technology-active paper should focus on ‘non-traditional questions’—modelling 

and problem solving, and model creation. 

10 The sum totals for each subject are not 118 and vary from subject to subject, as respondents were able to select more 
than one response for each technology type. 



• QCAA should scrutinise the external assessment with a variety of devices, 

checking the differences between functionality to minimise the risk of inequality.  

Based on consideration of the research and consultation outlined above, the final 

position reached by QCAA, the syllabus Expert Writing Teams (EWT) and Mathematics 

Learning Area Reference Group (LARG)11 for the external assessment in Mathematical 

Methods and Specialist Mathematics is a supervised examination in two papers: 

technology-free (Paper 1) and technology-active (Paper 2), with access to an approved 

handheld graphics calculator (non-CAS) for Paper 2. The following section briefly 

discusses the rationale for this position.  

As noted previously, it is normal practice for high school students to use calculators in 

their mathematics studies. There is evidence that calculator use supports conceptual 

understanding and improves student motivation. The combination of this research 

evidence and current practice makes the use of some form of graphics calculator 

technology in mathematics teaching and learning essential. Given the external 

assessment will be worth 50% of the subject result, the style of assessment and 

assessment conditions will have significant influence on classroom teaching and 

learning. If this technology is a necessary part of teaching and learning in senior 

mathematics, it necessarily must be a part of the external assessment. However, as is 

recognised in the literature, and raised by academics and industry bodies, students’ 

foundational knowledge and skills are seen to be declining, and an over-reliance on 

technology is viewed by some to be a contributing factor.  

 Therefore, there are two key but paradoxical issues to consider when it comes to the 

use of technology in mathematics: 

1. technology is an essential part of mathematics learning in the 21st century; 

2. students lack foundational knowledge and skills in mathematics, and an over-

reliance on technology may be partially to blame. 

The external assessment practices, in the clear majority of jurisdictions reviewed, 

manage this dichotomy through the use of two papers, one with technology and one 

without. In this way technology is recognised for its ability to enhance conceptual 

understanding, but an over-reliance on technology is mitigated.  

 The focus of these two papers, as outlined in the following diagram, will be different 

and serve two equally valued educational aspects of mathematics. The technology-

active paper will have a greater focus on conceptual understanding and the application 

of mathematics in context. The technology-free paper will have a greater focus on 

foundational knowledge and procedural skills.  

11 Syllabuses were developed by EWTs, and the suite of syllabuses in a learning area was overseen by a LARG, each 
consisting of a QCAA officer, practising teachers and academics. The Mathematics EWTs and LARG were consulted 
about the use of technology throughout the development of the syllabuses. 



 

Figure 2. Focus of technology-active compared to technology-free12. 

Not all the technology-active questions will require students to use technology. They 

will be expected to make decisions about when and how to use the technology to 

respond to a question. There will be questions for which the use of technology is 

essential, questions for which it is unnecessary, and questions for which either option is 

appropriate. Some questions in the technology-free paper will require numerical 

calculations and some will not, such as defining mathematical terms, some geometric 

proofs and transformations of graphs. 

The next consideration is the functionality of the technology that will be allowed in the 

external assessment. Four broad options for technology use in examinations were 

considered:  

1. handheld scientific calculator only,  

2. handheld graphics calculator (non-CAS),  

3. handheld graphics calculator (CAS), and  

4. other devices such as iPads and laptops with software such as GeoGebra, 

MATLAB, Mathematica or the calculator emulators such as those provided by 

Texas Instruments, Casio and HP.  

 Kissane (2000) discusses technology change in school mathematics curriculum and 

assessment and asks us to consider the speed at which different technology is 

implemented. He specifically cites the need to ensure adequate professional 

development for teachers—that it is unrealistic to expect too much change and that too 

much change will likely be unproductive. The Western Australian School Curriculum 

and Standards Authority recently published a commissioned research report on the use 

of technology in mathematics education and the related use of hand-held calculators 

with or without CAS in assessment. The report notes that teachers are supportive of 

technology and developing their effective use of it, but have frequently been without 

adequate support and saddled with unrealistic expectations (Kissane, McConney & Ho, 

2015).  

 For Queensland teachers, the change in curriculum with the new mathematics 

syllabuses and the associated new assessment requirements are significant. It is 

essential, therefore, that where possible extraneous changes are kept to a minimum. In 

the current syllabuses for Mathematics B and Mathematics C, a graphics calculator (or 

12 Adapted from Computerbasedmath.org 2016, Computer-Based Math for Policymakers, 
http://computerbasedmath.org/apply/policymakers.html 



equivalent) is the minimum requirement for technology use (Queensland Studies 

Authority, 2008, p. 9). The survey of Mathematics Heads of Department (Figure 1), as 

well as a number of other informal surveys of teachers at QCAA meetings, indicate that 

the majority use handheld graphics calculators (non-CAS) in their Mathematics B and 

C classes.13  

 All Mathematics B and C teachers are expected to have competency with the core 

functionality of graphics calculators, but not with the extra functionality of CAS. When 

compared to any other option, the introduction of CAS calculators through external 

assessment would impose a ‘hidden curriculum’ on significantly more senior 

mathematics teachers in Queensland. As such, option 2, graphics calculator without 

CAS functionality, is the proposed option for Mathematical Methods and Specialist 

Mathematics.14  

The proposed technology-active paper will initially be limited to handheld graphics 

calculators (non-CAS). Given the high-stakes nature of the external assessment, it is 

essential that QCAA develop an examination that is fair and equitable in its design and 

administration.  

 At this stage of curriculum development and implementation in senior secondary 

mathematics in Queensland, moving to CAS and/or other software/hardware would be 

‘a bridge too far’ for many schools and teachers. However, the technology allowed in the 

technology-active paper should be revised periodically. Irrespective of the technology 

initially approved for use in the external assessment, a regular review process will be 

undertaken to monitor and evaluate technology developments.  

This paper was based on and adapted from an earlier version that was published on the 

QCAA website during consultation on syllabus drafts. The author acknowledges 

Emeritus Professor Barry Kissane for feedback on the earlier paper, Dr David Leigh-

Lancaster (VCAA) for ongoing consultation and enthusiasm about the use of technology 

in mathematics, the teachers and calculator experts who gave up their time to consult 

with QCAA, and the QCAA senior mathematics curriculum team, in particular Sue 

Jones Luan Phan. 
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If “the purpose of life is to contribute in some way to making things better”, how 
might we make mathematics better?15 Teachers often explain multiplication and 
division with repeated addition and subtraction. Yet such approaches do not extend 
beyond the positive integers. By contrast, the ideas of René Descartes and Isaac 
Newton on multiplication and division can be extended from the naturals to the 
reals. So, I reveal how, if they were alive today, they might explain multiplication 
and division visually in ways seldom seen in western mathematics curriculums.  

The ‘Cartesian plane’, named after Descartes, has both a horizontal x-axis and a vertical 
y-axis, that intersect at zero. The plane thus has four quadrants, the first of which is 

often used for an area model of multiplication. For example, a rectangle drawn with a 

base of 8 and a height of 3 will cover 24 ‘square units’ on the Cartesian plane, as shown 

as Figure 1. A rectangle with base of 3 and height of 8 also covers 24 square units.  
 

 

Figure 1. An area model depicting 8 × 3 on the Cartesian plane. 

 The ‘Cartesian product’, also named after Descartes, consists of a product set formed 

from two or more other sets. For example, a child has a set of 8 shirts, each a different 

colour and a set of 3 skirts, each a different colour. Altogether there are 24 different 

colour combinations of ‘shirt and skirt’ that can be worn.  

15 Quote attributed to American Senator, Robert F. Kennedy. 



 Modern mathematics began with two great advances from the 1600s. The first was 

analytic geometry, primarily attributed to Descartes, while the second was calculus, 

attributed in priority to Isaac Newton and publication to Gottfried Leibniz. However, 

neither the Cartesian Plane nor the Cartesian Product has anything to do with the 

original writings of René Descartes on multiplication.  

 Importantly, Isaac Newton read Descartes’ 1637 La Géométrie and 1644 Principia 
Philosophiae (Principles of Philosophy). After this, Newton developed calculus and 

formulated the laws of motion and universal gravitation, later published in his 1687 

Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural 

Philosophy). 16 Having climbed such scientific heights seldom seen before, Newton went 

on to write Arithmetica Universalis (Universal Arithmetic) published in 1707.  

 So, having built a reputation as a mathematical and scientific genius, did Newton 

draw upon repeated addition, equal groups, arrays, or area models to explain 

multiplication? Or, for that matter, did Descartes? No.  

Today, some might think little about how strange it is that the ‘multiplication’ of two 

one-dimensional lines produces two-dimensional area. Yet, if you were to stack an 

infinite number of horizontal lines 1 metre long side-by-side, (rather than end-on-end), 

the breadth of that stack of lines would be zero. That is because, as Euclid defined in 

Elements around 300 BCE, a line is a breadthless length.17 So, the repeated addition 

model, applied to lines, works in only one dimension, when adjoined end-on-end. 

Similarly, an area has length and breadth only, so if you were to stack an infinite 

number of areas 1-metre square, the height of that area would also be zero.   

 Lines cannot be added to make area and areas cannot be added to make volume, so 

why pretend they can? This pretence is evident from the widespread use of the area 

model of multiplication (via the repeated addition of same-size areas) and the magical 
length × width calculation. Similarly, a two-dimensional area multiplied by a 

perpendicular line gives us ‘length × width × height’ which magically converts the two-

dimensional area into a three-dimensional volume. If people have not been confused by 

this, it is perhaps evident they have not thought about this. Euclid thought about this, 

which is why he carefully wrote about squares on a line, and not squares of a line. The 

point may be subtle 18, (as well as zero magnitude in all dimensions), yet it is important. 

Whether you say multiplication is repeated addition or not, an infinite number of 

points repeatedly added will never make a line, nor lines areas, nor areas volumes.  

If Descartes were alive today, he might be surprised to see so many students being led 

to believe multiplication is only repeated addition. We can explain how 2 × 3 is equal to 

2 × (0 + 1 + 1 + 1) and 0 + 2 + 2 + 2. Yet later on with 2 × –3, we get 2 × (0 – 1 – 1 – 1) 

and 0 – 2 – 2 – 2, so multiplication is repeated subtraction! So, multiplication is much 

more than repeated addition. By adopting the insights of Descartes and Newton, a 

meaning can be given to multiplication and division as applied to the real numbers 

16 The term ‘natural philosophy’ evolved into physical sciences and physics. 
17 Euclid’s Elements, Book I, Definition 2. 
18 A point has zero magnitude, or as Euclid wrote in Elements, Book I Definition 1, ‘a point is that which has no part’. 



generally. Yet, such ideas are uncommon today, because a London haberdasher, Henry 

Billingsley, changed Euclid’s (proportional) multiplication definition into an illogical 

repeated addition algorithm (Crabtree, 2016).   

 The first heading in Descartes’ La Géométrie was Problems the construction of 

which require only straight lines and circles. Descartes’ first diagram depicted the 

multiplication of line segments via similar triangles. The diagram was not new, as it 

was taken from Euclid’s Elements. 19 Euclid defined a number as a multitude of units, 

and thus, for Euclid, the unit was not a number. The innovation of Descartes, almost 

2000 years later, was to make one of the three given straight lines a unit (with length 1) 

while the other two straight lines were the two lines (numbers) to be multiplied. 

Translated from the French, we read: 

...in geometry, to find required lines it is merely necessary to add or subtract other lines; 
or else, taking one line which I shall call unity in order to relate it as closely as possible to 
numbers, and which can in general be chosen arbitrarily, and having given two other 
lines, to find a fourth line which shall be to one of the given lines as the other is to unity 
(which is the same as multiplication)... 

Descartes’ original multiplication diagram and explanation is shown as Figure 2.    

 

For example, let AB be taken as unity, and let it be required to multiply BD by BC, then I 
have only to join the points A and C, and draw DE parallel to CA; and BE is the product of 
this Multiplication. 

Figure 2. The diagram Descartes used to explain multiplication. 

 We can update Descartes’ diagram for our ‘Cartesian Plane’ because the angle at B in 

the triangle is irrelevant, and also works as a right angle as shown in Figure 3. 

19 The diagram Descartes tweaked was from Euclid’s Elements, Book VI, Definition 12, To find a fourth proportional to 
three given straight lines. 



 

Figure 3. How to create similar triangles to reveal a multiplied by b = c. 

Given Descartes depicted multiplication with triangles, we first test whether or not an 

area model can emerge, not from unit squares, but from unit triangles. The short 

answer is yes, as shown in Figure 4. 

 

Figure 4. An area model for triangular units. Interactive applet at 
www.jonathancrabtree.com/mathematics/the-multiplication-triangle. 

 The above 10 × 10 multiplication table contains 100 triangles just as the standard 10 

× 10 table contains 100 squares. With, for example, 5 × 5, the triangle contained by the 

points 0, 5 and 5 contains 25 triangular units. (Our standard table with products in 

squares is better pedagogically, as areas in the ‘real world’ are quoted in square units.) 



In 1707, Newton followed Descartes with a similar explanation of multiplication, 

translated from the Latin in Arithmetica Universalis, shown below as Figure 5.   

 

If you were to multiply any two Lines, AC and AD, by one another, take AB for Unity, and 
draw BC, and parallel to it DE, and AE will be the product of this multiplication, because 
it [AE] is to AD as AC, [is] to AB Unity. 

Figure 5. The diagram Newton used to explain multiplication. 

Because multiplication is a proportional concept, in all arithmetical equations, as the 

unit is to the multiplier, the multiplicand is to the product. With the simple example of 

two multiplied by three, written 2 × 3, as 1 varies to make 3, so 2 varies to make 6. Such 

proportional covariation (PCV) failed to emerge, either via the area model of 

multiplication or repeated addition model (Crabtree, 2016). As a line segment of 1 is to 

a line segment of 3, a line segment of two must be to a line segment of 6. To say a line of 

1 is to a line of 3 as a line of 2 is to a rectangle of 6 is nonsense. Yet, with the 

DesCartesian multiplication model, we have a multiplication model that preserves 

proportional relationships, as is evident in Figure 6. 

 

Figure 6. The standard area model for 2 × 3 alongside Descartes’ proportional approach, 
which reveals ‘as 1 is to 3, so 2 is to 6’. To multiply 2 by 3, a line is drawn from the unit 1 to the 

multiplier b, which is 3. Then a second line, parallel to the first drawn, is drawn from the 
multiplicand a, to produce the product c. 



 We can imagine ‘two square units stacked three times’ in the above, and also 

demonstrate commutativity of multiplication as shown in Figure 7, where we might 

imagine ‘three square units stacked two times’.  

 

Figure 7. The standard area model for 3 × 2 alongside Descartes’ proportional approach 
which, via similar triangles, reveals ‘as 1 is to 2, so 3 is to 6’.  

 From the diagrams of Descartes and Newton, we have straight lines going up and 

down (albeit at an angle) and horizontal lines going left and right. Importantly (for 

what we are about to develop) with the following comments, Newton introduced the 

notion of positive and negative line segments that encompassed irrationals.  

In Geometry, if a line drawn any certain way be reckon’d for affirmative, then a line 
drawn the contrary way may be taken for negative: As if AB be drawn to the right; and BC 
to the left; and AB be reckon’d affirmative, then BC will be negative… 

and 

Multiplication is also made use of in Fractions and Surds, to find a new Quantity in the 
same Ratio (whatever it be) to the Multiplicand, as the Multiplier has to Unity. 

 By the 1680s, Newton had drawn curves in all four quadrants, consistent with our 

understanding of the Cartesian Plane. These were published in 1704 as an appendix to 

Opticks. However, with the mathematics community focussed on what was to become 

algebraic geometry, the DesCartesian multiplication model, as applicable to the reals, 

appears to have been overlooked. Thus, primary mathematics teachers focus on the 

first quadrant of the Cartesian plane for the simple reason an area cannot be ‘less than 

zero’. Yet, such difficulties dissolve with the DesCartesian multiplication model. For 

example, beyond the first quadrant, the combinations of ±2 × ±3 are shown in Figure 8. 



 

Figure 8. Combinations of ±2 × ±3 depicted with ‘DesCartesian Multiplication’, where 1 is the 
unit, b is the multiplier, a is the multiplicand and c is the product. Interactive applet at  

www.jonathancrabtree.com/mathematics/what-is-descartesian-multiplication 

 Regardless of the sign, in all cases: as 1 is to b, so a is to c. What we also see, is how 

the multiplication of similarly signed factors results in a positive product, while 

differently signed factors result in a negative product.  

After Descartes explained multiplication, he used the same diagram (Figure 2) to 

explain division. “If it be required to divide BE by BD, I join E and D, and draw AC 

parallel to DE; then BC is the result of the division”. 

 Thus, for division all we need do is ‘invert’ the multiplier, so instead of it 

encapsulating the ratio 1 to b, it becomes the divisor encapsulating the ratio b to 1. In 

multiplication, whatever we did to the unit to make the multiplier, we do to the 

multiplicand to make the product. Unsurprisingly, (given division is the inverse 

operation of multiplication), in division whatever we did to the divisor to make the unit, 

we do to the dividend to make the quotient. As usual, a picture is worth a thousand 

words, so Figure 9 depicts 9 ÷ 3. Again, consistent with proportional covariation (PCV) 

however 3 is varied to make 1, so 9 is varied to make the quotient. 



 

Figure 9. ‘DesCartesian division’ depicting 9 ÷ 3. To divide 9 by 3, a line is drawn from the 
divisor b, to the unit 1. Then a second line, parallel to the first drawn, is drawn from the 

dividend a, to produce the quotient c. 

Division has both a ‘repeated subtraction’ (quotitive) model and an ‘equal shares’ 

(partitive) model. Yet, without citing sign laws, if mathematics teachers rely only on 

these models, they simply cannot explain how to solve 9 ÷ –3. There are no negative 

threes in positive nine and you cannot divide nine into negative three groups. Yet, with 

the DesCartesian division model, there is little difficulty, as shown below in Figure 10. 

 

Figure 10. DesCartesian division depicting 9 ÷ –3. 

 The DesCartesian diagram depicting –9 ÷ –3 is shown in Figure 11. Put simply, as  
–3 is to 1, so –9 is to 3. In accordance with the laws of sign, our negative dividend 
divided by a negative divisor produces a positive quotient. To vary –3 and make 1, we 
take one of three equal parts of –3, which is –1, and change its sign to make 1. Having 
done that, we take one of three equal parts of –9, to get –3 and change its sign to make 
3.  



 

Figure 11. DesCartesian division depicting –9 ÷ –3. Interactive applet at  
www.jonathancrabtree.com/mathematics/what-is-descartesian-division 

Because we can make triangles between 0 and any two other points, one on each axis, 

the DesCartesian model for multiplication and division applies to the set of real 

numbers. These approaches to multiplication and division are in fact, applications of 

proportional covariation (PCV). From this long overdue historical evolution of 

arithmetical ideas, with further research and development by the mathematics 

education community, together, we might implement new approaches and unlock 

further useful and powerful ideas for teaching mathematics. 
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“Mathematicians see generalising as lying at the very heart of mathematics” 
(Mason, Graham & Johnston-Wilder, 2005, p. 283). The Australian Curriculum: 
Mathematics develops number and algebra together as they complement each 
other. Developing number and algebra together provides opportunities for 
searching for patterns, conjecturing and generalising mathematical relationships. 
Further, it allows the focus to be on the process of mathematics and noticing the 
structure of arithmetic and our number system, rather than the product of arriving 
at a correct answer. 

Algebraic reasoning underpins all mathematical thinking, as it allows us to explore the 

structure of mathematics. It pervades all of mathematics and is about describing 

patterns of relationships, generalising mathematical ideas and identifying 

mathematical structures (Ontario Ministry of Education, 2013; Van der Walle, Karp & 

Bay-Williams, 2010). Kaput and Blanton (2005) defined “Algebraic reasoning [as] a 

process in which students generalse mathematical ideas from a particular set of 

instances, establish those through the discourse of argumentation and express them in 

increasingly formal and age appropriate ways.” (p. 99) 

 Focusing on algebraic reasoning alters the study of number and operations from a 

focus on finding numerical answers to arithmetic problems, or a product approach, to 

providing opportunities for discovering patterns, conjecturing and generalising 

mathematical relationships, a process approach (Schoenfeld, 1987; Siemon, Beswick, 

Brady, Clark, Faragher & Warren, 2015). It is the patterns that provide insights into the 

structure of mathematics. Noticing the structure of arithmetic forms the foundation of 

algebraic understanding. Continual development on recognising pattern and structure 

has been seen to have a positive influence on overall mathematical achievement and 

builds a stronger foundation for algebraic reasoning (Mulligan, Mitchelmore & 

Prescott, 2006). A deep understanding of numbers, operations and the relationships 

between them is necessary for the development of number and algebra sense and an 

acute sense of number, along with an appreciation of pattern and relationships are 

necessary requirements for deep mathematical understanding (Siemon et al., 2015). 



It can be seen that patterns are at the core of algebraic reasoning. Searching for 

patterns is a process natural to people (Mason et al., 2005; Siemon et al., 2015). The 

study of patterns in schools generally begins with repeating patterns, moving onto 

growing patterns and investigating and employing patterns in the number system. The 

study of patterns is necessary prior to the development of functional thinking, which 

focuses on the relationships between two or more varying quantities. Another critical 

idea in algebraic reasoning is the notion of equivalence. Equivalence is usually 

represented by an equal sign, an important, but poorly understood, symbol in 

mathematics. In order to comprehend the notion of equivalence, students need to 

understand that the equal sign represents a balance on either side, rather than meaning 

find the answer. Generalisation encompasses all of these big ideas, as we can generalise 

about pattern, about equivalence and about function and generalisation lies at the heart 

of algebraic reasoning (see Figure 1). 

 

Figure 1. Big ideas of algebra. 

 Reframing Mathematical Futures II (RMFII) is a three-year project funded by the 

Australian Government Department of Education and Training under the auspices of 

the Australian Mathematics and Science Partnership Programme (AMSPP). The project 

is working with industry partners and practitioners in each State and Territory and the 

Australian Association of Mathematics Teachers (AAMT) to build a sustainable, 

evidence-based, integrated learning and teaching resource to support the development 

of mathematical reasoning in Years 7 to 10. The data collected in the algebraic 

reasoning component of the RMFII Project has reinforced pattern and function, 

equivalence and generalisation as the big ideas of algebraic reasoning (Day, Stephens & 

Horne, in press). 

The process of generalisation is about noticing structure. Mason et al. (2005) stated 

that even very young children can generalise and specialise when they first come to 

school. While generalising is natural, students need time to notice that they have this 

sense of generality and they need opportunities to practise, strengthen and extend this 

natural ability to generalise. Asking students questions about what they notice, whether 



they can see any patterns and how they are making sense of the mathematics is 

important. 

 Often, in order to try to make sense of the mathematics, students will specialise. 

Specialising may take the form of trying several numbers to see what is happening in a 

problem. This is a natural approach to mathematical thinking (Mason et al., 2005; 

Siemon et al. 2015) and it helps students in sense-making while collecting data about a 

problem. Sense-making is easier if the problems are set in meaningful contexts, as the 

context allows students to relate what they are seeing back to a specific context. 

Familiar contexts can be presented using concrete materials, with diagrams and with 

numbers. Using a concrete-representational-abstract (CRA) approach with students 

has been shown to be effective (Mudaly & Naidoo, 2015; Sousa, 2008; Witzel, Mercer & 

Miller, 2003)  

 Once students are alerted to the idea that patterns are important and they begin to 

notice patterns, they are in the thinking process of generalisation (Siemon et al., 2015). 

Questioning students about what they notice, what changes and what stays the same, is 

important for students to start recognising the structure of the patterns. Eventually 

students will become attuned to the fact that what changes are variables and the things 

that stay the same are constants. Other questions that should be routinely asked of 

students are whether what they have identified always works and in all cases and for all 

operations (Cooper & Warren, 2008; Kaput, 1999). Much of algebraic reasoning is 

about searching for, describing, generalising and justifying patterns (Steen, 1988). 

 Providing students with the time to think, form and try to articulate generalisations 

to themselves before sharing with a small group or the whole class is essential (Mason 

et al., 2005) if students are to be confident in articulating ideas. It should be noted that 

students often do not attend to the same things as their teachers. They see things in 

different ways and it is the role of the teacher to listen carefully to student explanations 

about how they ‘see’ a problem and acknowledge and celebrate articulations and 

demonstrations that are correct, but not necessarily the same way the teacher ‘sees’ a 

problem. Experience with generalising in different contexts may lead to multiple 

expressions of the same thing (Mason et al., 2005). This, in turn, can often lead to an 

investigation of equivalent expressions. 

Many problems that are designed as arithmetic problems for young students can be 

extended into generalisations. The following question (Figure 2) was designed for a 

Year 2 class as a problem-solving question. 

 

Figure 2. Line up question (adapted from Lovitt & Williams, 2015). 



 Rather than just seeking the answer to this question, although seeking solutions is 

useful, there is an opportunity to take this question further. After students have had the 

opportunity to solve this problem, they can be asked to explain how they ‘saw’ the 

problem and draw pictures to represent what their visualisations were. An example of 

the three ways most students visualise this problem are included in Figure 3. This is an 

important step for students to see important ideas emerge: that different students 

visualise problems in different ways, that there are several ways to arrive at a correct 

answer and that there are multiple ways to write equivalent expressions for the same 

problem. 

 

Figure 3. Line up visualisation pictures. 

 Students may then be asked to use the visualisation that makes sense to them to 

work out how many students would be in the line if they were 100th from either end and 

explain in words and/or pictures the process they went through to work out the answer. 

If students are able to do this successfully they may be asked to generalise the situation 

in words, pictures and/or symbols (depending on their readiness for symbolic work).  

 The three generalisations from the visualisations, in order, are: 

 

t = 2(n – 1) + 1 

t = n – 1 + n  

t = 2n – 1 

 

Interestingly, the third visualisation, which provides the generalisation in the simplest 

form is the one that the fewest students nominate as their preferred visualisation. 

Overwhelmingly students ‘see’ this problem as the first visualisation. That suggests that 

we should allow students, at least initially, to generalise problems as they visualise 

them and not always insist that algebraic expressions are in their simplest form, as the 



expressions need to make sense to the students. Eventually students will be expected to 

be able to move flexibly between equivalent expressions and express them in their 

simplest form, but we may rush students to this stage without recognising that they 

need to first make sense of the problem within its context. 

 Several arithmetic worded problems can be modified to encourage students to notice 

the structure of the mathematics. For example, a typical textbook question may read  

Abbey is 140 cm tall. Ben is 4 cm taller than Abbey and Abbey is 6 cm shorter than 
Charlie. How tall are Ben and Charlie? 

By taking out the initial piece of information that Abbey is 140 cm tall, the question 

may be changed to encourage students to notice the structure and relationships 

contained in the question: 

Ben is 4 cm taller than Abbey. Abbey is 6 cm shorter than Charlie. Draw a picture showing 
Abbey, Ben and Charlie’s heights. Explain what the 4 and the 6 represent. Try to express 
these height comparisons in other ways. (Adapted from Carraher, Brizuela & Schliemann, 
2000) 

By removing the information of how tall Abbey is, the students are forced to consider 

the height comparisons rather than just perform two computations. This can be taken 

even further with the introduction of the n-number line (Figure 4), which pays 

attention to the structure of number lines. 

 

Figure 4. n-number line. 

Now the question can be asked if Abbey is n cm tall, position Ben and Charlie’s heights 

on the n-number line. What about if Ben were n cm tall, where would Abbey and 

Charlie be positioned? If Charlie were n cm tall, where would Abbey and Ben be 

positioned?  

 Visual growing patterns are another good way of helping students to notice 

structure. A great deal of mathematics can be mined from even simple growing 

patterns. One idea is to use triangles that are used in the construction of bridges and 

other structures. The simplest of these is known as a Warren truss and is pictured in 

Figure 5. 

 

Figure 5. Warren truss. 

 Students should be encouraged to build this model using popsticks so that they can 

manipulate the model and show the structure they are considering by physically 

moving pieces of the model. Questions such as “What changes and what stays the 



same?” will encourage students to notice structure and there will be different ways in 

which the students see the structure. After some initial questions about how many 

popsticks would be needed to make bridges of certain lengths, students could be asked 

to find how many popsticks would be needed to build a bridge that contains 100 

triangles as part of its Warren truss. Students should be able to demonstrate on their 

model how they worked it out. This is a good time for students who ‘see’ the problem 

differently to share their reasoning with other members of the class. In this way 

students hear of other visualisations and notice different structures. From this point 

students could be asked to generalise their result in words, pictures or symbols. A range 

of generalisations that have been observed in classrooms are included in pictorial and 

symbolic form in Figure 6. 

 

Figure 6. Warren truss bridge generalisations. 

 Another type of task that is suitable for students noticing structure is the 

investigation of number structures. For example students might investigate the sums of 

odd and even numbers, the property of commutativity, or the sums of consecutive 

numbers (Driscoll, 1999, Lovitt & Williams, 2015). One activity that assists students to 

recognise structure uses the story of the 18th century mathematician Carl Frederich 

Gauss being given the task by his teacher to add up all the numbers from one to 100. 

Students can use concrete materials to represent a simpler version of this problem by 

looking at how they might add the numbers from one to ten (see Figure 7). 



 

Figure 7. Concrete representation of adding the numbers from one to ten. 

 Through small group discussions about how these numbers could be combined in 

some way to make the addition easier there are generally three strategies that emerge 

in classrooms. These strategies represent three different visualisations that students 

see, and all are valid ways to solve this problem. Some students think that number 

combinations to ten are easy to work with, so they group their concrete materials in 

tens (see Figure 8). Other students notice that if they add the lowest number and the 

highest number and keep doing this with pairs of numbers that they have five equal 

groups of 11 (see Figure 9). Occasionally students will use the knowledge that arrays are 

useful representations and combine their model with a neighbouring group’s model to 

form an array which is double the number that is required (see Figure 10). 

 When different groups share their strategies with the class it can be seen that those 

who visualised the problem in groups of ten found the solution T = (5 × 10) + 5 = 55, 

those who saw the problem in groups of 11 found the solution T = 5 × 11 = 55 and those 

who formed a rectangular array found the solution T = (11 × 10)/2 = 55. Once students 

have identified their preferred method for summing the numbers from one to ten they 

can apply a similar strategy to the original challenge of summing the numbers from one 

to 100. These types of problems allow students to focus on the structure of the 

numbers, rather than just adding numbers together. 

 



  

Figure 8. Grouping in tens. Figure 9. Grouping in 11s. 

 

 

Figure 10. Forming a rectangular array. 

 Teachers can follow an activity like this by setting further challenges such as finding 

strategies for adding all the even numbers from one to 100, or all the numbers on a zero 

to 99 chart, or all the numbers on a multiplication chart. The major challenge could be 

to work out a strategy to find the total of all the numbers from one to n, the 

generalisation of the problem. 

Teachers may use the development of number and algebra together as a powerful tool 

towards algebraic reasoning through the process of generalisation by providing 

students with a variety of ways in which to notice structure. Whereas arithmetic 

thinking tends to be about a product, finding the correct answer, algebraic thinking and 

reasoning is about the process of noticing pattern and structure in a variety of contexts. 

The noticing of structure assists students to make sense of the mathematics rather than 

just applying operations on numbers without necessarily understanding why they are 



doing so. Understanding how our number system is structured greatly helps students to 

reason mathematically. 
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Primary school teachers teach at least eight if not nine subjects (including religious 
education in some schools). The ability to develop in-depth content knowledge and 
pedagogical content knowledge in each of the topics, in each of these subjects is 
challenging. This paper discusses the development and beginning implementation 
of a detailed sequence of concepts compiled by the author with the intention of 
supporting teachers to support students to understand place value, one of many 
topics in the Mathematics curriculum. 

Working as a mathematics education consultant in schools both as a system-based 

advisor and private consultant I am regularly asked to support teachers to work with 

students who do not understand place value. As reported by other researchers 

including Rogers (2013), I too am regularly dismayed at the superficial understanding 

so many primary students exhibit in relation to place value. I have also observed 

repeated amazement by teachers when I demonstrate lessons, or discuss the ‘big ideas’ 

relating to place value in comments such as ‘I have never thought about it that way’.  

 Primary school teachers teach a number of subjects and while they continue to learn 

and access professional development it is not surprising that they do not have an in-

depth understanding of the many concepts that underpin mathematical topics such as 

place value. This paper outlines the development of a list of concepts I hope will 

support teachers to develop their knowledge of this topic to help them plan and present 

lessons to assist their students to understand the concepts. 

Research has recognised that teachers require a range of types of knowledge. Shulman 

(1986) described seven types of teacher knowledge: knowledge of content, general 

pedagogical knowledge, curriculum knowledge, pedagogical content knowledge, 

knowledge of students, knowledge of educational contexts and knowledge of 

educational ends, purposes and values. Based on the work of Shulman and colleagues 

(e.g., Shulman & Grossman, 1988), Borko and Putnam (1995) proposed a model of 

teacher knowledge organised around three domains of knowledge: general pedagogical 



knowledge, subject matter knowledge and pedagogical content knowledge. Table 1 

outlines these domains and their components. 

Table 1. Domains and components of the knowledge base of teaching (Borko & Putnam, 1995) 

Domains Components 

General pedagogical knowledge 
 

Learning environments and instructional 
strategies 
Classroom management 
Knowledge of learners and learning 

Subject matter knowledge 
 

Knowledge of content and substantive 
structures 
Syntactic structures 

Pedagogical content knowledge  
 

Overarching conception of teaching a subject 
Knowledge of instructional strategies and 
representations 
Knowledge of students’ understandings and 
potential misunderstandings 
Knowledge of curriculum and curricular 
materials 

 

 Teachers I had been supporting appeared to lack mathematical subject matter 

knowledge, and also welcomed suggestions about pedagogical content knowledge. 

Teachers have access to Australian Curriculum documents and often commercial maths 

programs and resources. These documents provide descriptions, glossaries and 

activities but lack mathematical depth to help the teachers develop their subject matter 

knowledge. A sequential list of big ideas and concepts that under-pin Mathematics 

could be a valuable support for teachers. Table 2 provides an example of how several 

concepts can underpin one Australian Curriculum description. I started to draft such 

lists for mathematics topics in a number of areas I had received requests for assistance 

about, including place value. 

Place value is not a single concept. Schmittau and Vagliardo (2006) used concept 

mapping to describe place value as a complex system. Price (1998) described how the 

development of connected memory structures or schema can assist students to 

understand complex numeration concepts like place value. He described how assisting 

students to develop powerful schemas to understand the complexities of place value 

was attractive to mathematics educators but commented that for many students such 

schemas had not developed. My anecdotal observations lead me to suspect that many of 

the teachers I was supporting may not have developed a rich schema for a deep 

understanding of our base-ten number system themselves. This lack of subject 

knowledge would likely inhibit their ability to design learning activities and identify 

common misconceptions in their students. 

 Many researchers have identified concepts that need to be understood for students 

to become place value experts (Ross 1989, Rogers, 2012). Rogers (2012) conducted a 

comprehensive search of literature on the topic and focussed on work of Rubin and 

Russell (1992) and Ross (2002) to identify seven components of place value. Rogers 

noted that there is no developmental order implied in the list: 



• Count: Counting forwards and backwards in place value parts (e.g., 45, 55, 65 is 

counting using the unit ten). Bridging forwards and backwards over place value 

segments (e.g., 995 and one more ten requires bridging forwards over hundreds 

to thousands).  

• Make/represent: Make, represent or identify the value of a number using a 

range of materials or models—these may be proportional, non-proportional, 

canonical and noncanonical.  

• Name/record: Read and write a number in words and figures (e.g., 75 is written 

as ‘seventy-five’). Identify the value of digits in a number (e.g., the value of 3 in 

345 is 3 hundreds). Rounding numbers to the nearest place value part (e.g., 

round 2456 to the nearest thousand).  

• Rename: Recognise and complete partitions and regrouping of numbers. (e.g., 

1260 has 126 tens).  

• Compare/order: Compare numbers to determine which is larger or smaller 

and place them in descending or ascending order. 

• Calculate: Apply knowledge of place value when completing calculations (e.g., 

45 by 10 is 45 tens)  

• Estimate: Use knowledge of magnitude of numbers when estimating (e.g., 

estimate how many oranges fill a classroom: 10? 100? 100 000?)  

 Other authors have identified concepts relating to place value which theoretically fit 

within the components above. Examples include the odometer principle (YuMi Deadly 

Centre, 2014) which states that in any place-value position, numbers count the same as 

in the ones place, counting forwards from 0 to 9 and then back to 0 with the digit to the 

left increased by 1; the recursive HTO pattern (Siemon, Beswick, Brady, Clark, 

Farragher & Warren, 2011); composite units / super-unitising and sub-unitising 

(Siemon et al., 2011, Baturo, 1998); and the recursive multiplicative relationship 

between the places where “10 of these is 1 of those” (Siemon et al., p. 302). Place value 

is a complex mathematical topic with a multitude of big ideas and connected concepts 

to be understood. A list of these big ideas of place value would need to include all these 

big ideas presented in a way that made sense to teachers. 

When learning mathematics, students progress through topics and associated concepts 

which get increasingly more sophisticated. This educative progression has been 

identified as back as far as Piaget (1952). Carpenter and Fennema (1991) noted that 

teachers need an understanding of the stages students move through when developing 

concepts and procedures. The Queensland University of Technology (QUT) YuMi 

Deadly Centre (2014) believes that it is “essential for teachers to know what 

mathematics precedes, relates to and follows what they are teaching” (p. 2). Recent 

studies in Australia have used this idea to identify learning progressions; e.g., Growth 

Points (Clarke et al., 2002) and Learning Assessment Frameworks (Siemon, Izard, 

Breed & Virgona 2006).  

 The idea of a list of the progression of concepts for place value as a teaching tool 

appealed to me as a way of supporting teachers who lacked subject matter knowledge of 

this topic. I began to draft a conceptual development list for place value based on ideas 

and concepts gathered over many years working with teachers, researching in 



mathematics education and working with other researchers. My intention was to write 

the list in teacher-friendly words rather than academic speak and for the list to progress 

from early concepts through to more advanced concepts. The statements are intended 

to be what we would like students to understand about place value rather than what we 

would like them to do. My intention was for this list to be a reference document for 

teachers. Teachers could then plan learning activities to help the students achieve these 

understandings. Below is an early section of the progression which currently is over 

three pages long and still being drafted.  

A base-ten number system uses only 10 symbols to represent any number large or 
small. 
The Hindu-Arabic number system uses 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. 
hen counting forwards, the digits in a place are named in order, from 0 to 9 and then 
back to 0 in that place. When the digit in a place returns to 0 the place to the left 
increases by 1 (odometer principle) e.g., 17, 18, 19, 20, 21Numbers beyond ten can be 
considered as 1 ten and some extras… 
Teen numbers consist of a full 1 ten and extra ones, but not enough extra ones to make 
another ten. 
Multiples of ten consist of several groups of ten and are written to show the number of 
tens with zero ones e.g., 4 tens = 40. 
2-digit numbers consist of a number of tens and a number of ones with the tens 
recorded in the place to the left of the ones e.g., 45 is 4 tens and 5 ones. 
2-digit numbers are ordered according to the number of tens and then the number of 
ones. 
Adding a multiple of ten to a number will increase the number of tens by 1 but not 
change the number of ones e.g., 45+30 = 75. 
There are 10 tens in 1 hundred. 
The place of a digit in a number indicates its value e.g., 4 in the tens place is worth 4 
tens. 
The value of a digit is determined by multiplying its face value by the value assigned to 
its place in the number. 
Zeros are used to show when a number has none of a particular place value e.g., 30 is 3 
tens and 0 ones; 405 has 4 hundreds, 0 tens and 5 ones. 
Zeros are used a place holders to maintain the place value structure of a number e.g., 
304 is a 3-digit number that consists of 3 hundreds, 0 tens and 4 ones. 

 The concept development list extends through whole number place value concepts to 

concepts for decimal place value while aiming to include all big ideas including the 

structure of our number system, reading, writing and ordering numbers, the 

relationship between the places, the role of the decimal point and use of zero etc. Below 

is part of the conceptual development sequence as it extends into decimals 

The structure of the Hindu-Arabic number system extends to the right to allow us to 
show parts of whole numbers using place value 
The structure of the place value system remains constant—moving numbers to 
different positions in the place value chart will change the value of the digits. The place 
value chart structure including the decimal point does not move  
Multiplying and dividing numbers by powers of ten will move the numbers in relation 
to the place value chart and will change the value of digits 
The groups of three (HTO) structure continues to the right of the ones place although 
it is rarely used to describe decimals e.g., tenths, hundredths, one thousandths, ten 
thousandths etc. 
The groups of three (HTO) structure is reversed in the decimals because the first place 

is 1÷10 (  ) which is tenths  

 
 
 



WHOLE NUMBERS PARTS OF WHOLES 

thousands ones parts thousandths 

T O H T O T H O T  
     

    
 

    1 1÷10 1÷10÷10 1÷10÷10÷10 etc.  

Mixed numbers are fractions that have a whole component and a part component. 

With fractions the number of parts (denominator) can be any number e.g., 2   

The decimal point is used to mark the ones place so numbers can be read and 
interpreted using place value e.g., 4.56 is 4 wholes, 5 tenths and 6 hundredths or 4 
wholes and 56 hundredths 
The decimal point marks the separation of the whole component of a number and the 
part component e.g., 4.5 is 4 ones (whole) and 5 tenths (part) 
Zeros are used as place holders in decimals numbers to show there are no digits of a 
particular value in a number e.g., 4.06 is 4 ones, 0 tenths and 6 hundredths  
Zeros placed to the right of decimals do not change the value to the number as they do 
not add any further places of value e.g., 5.6 is the same as 5.60 

The teaching of number concepts requires the student to abstract the learning from 

examples and activities provided by the teacher. Number concepts cannot be perceived 

directly with the physical senses. They can be represented or symbolised but the 

meaning must be abstracted by the learner (Price, 1998). The activities that teachers 

prepare need to provide examples and stimulus for students to abstract the concepts. 

The choice of resources can support student understanding. There has been discussion 

in the literature about the benefits of particular resources for teaching number and in 

particular teaching place value. 

The use of hands-on materials is widely recognised as beneficial to the development of 

students’ conceptual understanding in mathematics. Price (1998) reported that 96% of 

teachers he surveyed believed that materials benefitted children’s learning and that 

curriculum documents recommended the use of materials. However, he commented 

that the use of materials to support place value learning needs careful planning and 

that teachers cannot assume that students are making sense of the representations the 

same way the teacher is.  

 Place value blocks, also known as multi-base arithmetic blocks (MAB), are the most 

common classroom hands-on material used to support the learning of place value 

concepts (Price, 1998). The structure of these blocks models the base-ten number 

system as the size of each block is proportional to the value it represents. However, the 

effectiveness of these blocks for teaching place value concepts has been questioned by 

several authors including Booker, Bond, Sparrow & Swan (2010); Fuson, (1990); 

Siemon et al., (2011); Miura and Okamato (2003); Price (1998); and Anna Rogers 

(2009). Using MAB to model place value concepts requires the students to see the 

relationship between the different blocks; that is, they require an understanding of area 

to see that the hundred is equivalent to 10 tens and volume to see the thousand block as 

10 hundreds. I have observed many students counting to check how many segments 

there are in a ten block not trusting or knowing that it is being used to represent 1 ten. I 



have also observed students who believe the thousand block to be equivalent to 6 

hundred as they see the faces as 100 but fail to recognise there would be more cubes 

‘inside’ the block. 

 Another resource that can be used to represent the multiplicative relationship 

inherent in place value and to represent the idea that ‘10 of these is 1 of those” 

described by Siemon et al. (2011) is ten frames. I have used ten frames successfully to 

teach early place value concepts and my experience demonstrates that the 

multiplicative nature of place value is clearer for students to comprehend with this 

resource than with MAB. Ten frames are a frame that has space for ten objects. As the 

frame is always visible, the relationship to ten can be reinforced whether the frame is 

full or not. When the frame is full there is no need to count to find the quantity of 

objects. Siemon et al. (2011) describe how ten frames can help students gain a sense of 

ten. Double ten frames provide a clear representation of teen numbers as 1 ten and 

extras (see Figure 1).  

 

Figure 1. Double ten frames representing the teen number 13 as 1 ten and 3 ones. 

 Multiple ten frames can be used to represent two-digit numbers where the total 

quantity is visible as well as the multiples of ten place value structure. Figure 2 shows 

ten frames used to represent the number 45 in three different ways (canonical and non-

canonical partitioning) and how a digit only focus showing a 4 and a 5 is clearly not 

representing the quantity. This material does get cumbersome when representing 

three-digit numbers although the multiplicative relationship of 1 hundred as being the 

same as 10 tens can be represented clearly. Additionally, students can benefit from this 

representation as a support of their understanding of the multiplicative structure of our 

number system that further abstract concepts can be built from (see Figure 3). 

  

Figure 2. Using ten frames to represent 45 in many ways  
and how a digit focus is clearly not 45 dots. 



  

Figure 3. Representing numbers beyond 100 using ten-frames. 

 Other materials used to represent place value concepts include unifix cubes and 

bundling sticks which allow the building and un-building of tens. With both of these 

materials the ten is not immediately visible requiring counting to check if there are 10 

cubes or 10 sticks in a ten. Use of a range of representations and materials in a teacher’s 

program is to be encouraged in conjunction with knowledge of the concept the activity 

or lesson intends to teach. If the concept is for students to understand that 10 ones is 1 

ten then bundling sticks would be a valuable resource. If the concept is to move from 

counting all to identifying ten without counting then ten frames would be valuable. 

The conceptual development sequence described in this paper along with draft 

sequences for other mathematics topics have been shared with four schools in 

Queensland. Teachers are using the document to support their planning of 

mathematics activities. Some teachers are using the conceptual statements as learning 
intentions as part of a visible learning focus (Hattie, 2012). Others are using the 

statements as checklist items to guide observational formative assessment. The use of 

ten frames to develop early place value concepts, in particular the multiplicative 10x 

relationship between adjacent places appears to be helping students to understand how 

place value works ahead of discussions about the structure of the whole number system 

and beyond. Table 2 shows how one school has been using the concept statements to 

plan and record lessons connected with the Australian Curriculum. 

 Other teachers have begun using the conceptual statements to differentiate learning 

experiences by helping them to identify prior or later concepts or concepts that 

individuals or small groups of students might be missing.  

 
 



Table 2. Example of a possible lesson heading using the concept list. 

Lesson focus The place of a digit determines its value 

Australian 
Curriculum 

Year 2 ACMNA027 Recognise, model, represent and order numbers to at 
least 1000 

Concepts The most important place in our number system is the ones place. As long 
as we know which digit is in the ones place we can read any number, large 
or small. 
The value of a digit is determined by its place. Without a place value chart 
the value of a digit is not known unless the ones place can be identified. If 
there is only one digit the digit is assumed to be the ones place e.g., a 4 is 
assumed to be 4 ones.  
Recording a digit in a particular place does not represent the number with 
the same value until all the places to the ones place have been filled e.g., 4 
in the hundreds place is not the number 4 hundred. It needs zeros in the 
empty tens and ones places to make the number 400. 

Activities Give each student a 3-digit number place value chart with headings H, T 
and O). 
Ask: What do you think the H, T and 0 are short for? (Hundreds, Tens and 
Ones) 
What do you think we are going to put into the columns? (Many will say 
numbers. Lead them to realise that they will use digits) 
What is a digit? (Accept a range of answers and ask student for more 
information… discuss this important structural aspect of our number 
system – Digits are used to make numbers. They are the building blocks of 
numbers. Compare to letters for words... letters make words, digits make 
numbers. We can have 1 letter words, and we can have 1-digit numbers) 
How many digits are there in our number system? (Ten 0-9)  
etc.  

 

The development and implementation of these concept lists is a work in progress. Some 

schools are trialling them and using them in a variety of ways. Anecdotal observations 

indicate a positive initial response and that teachers are developing mathematics 

subject matter knowledge and pedagogical content knowledge. These lists are providing 

personalised professional development and empowering the teachers to plan lessons to 

focus on these concepts as they can plan for what they want their students to 

understand rather than what they want them to do. There is potential for more formal 

data collection and research in the use of these conceptual development statements 

which I hope to gather and report on in the future. 
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Mathematical induction is a proof technique that can be applied to establish the 
veracity of mathematical statements. This professional practice paper offers insight 
into mathematical induction as it pertains to the Australian Curriculum: 
Mathematics (ACMSM065, ACMSM066) and implications for how secondary 
teachers might approach this technique with students. In particular, literature on 
proof—and specifically, mathematical induction—will be presented, and several 
worked examples will outline the key steps involved in solving problems. After 
various teaching and learning caveats have been explored, the paper will conclude 
with some mathematical induction example problems that can be used in the 
secondary classroom.  

A significant amount of mathematics involves the examination of patterns. Many of 

these patterns are concerned with generalisations about sequences and series. 

Mathematical induction is a method of proof argument that is based in recursion, and it 

is used for proving conjectures which claim that a certain statement is true for integer 

values of some variable. One idea that has been used to illustrate this method is to 

imagine a number of dominoes lined up in a row (Peressini et al., 1998). These authors 

suggest that for each integer k ≥ 1, if the kth domino falls over then it will cause the  

(k + 1)st domino to fall over as well. Furthermore, it could be argued specifically that if 

the first domino is pushed over, then all remaining dominoes would also fall.  

 If we suppose that for each positive integer n, S(n) is a statement written in terms of 

n, then the principle of mathematical induction can be explained generally in two steps: 

 

1. If S(1) is true, and 

2. for all integers k ≥ 1, the assumption that S(k) is true implies that S(k + 1) is true,  

then S(n) is true for all positive integers n. 

 

In other words, we commence the proof method through a verification of Step 1 (the 

initial step), or by pushing over the first domino. Then, we assume that S(k) is true for 

a particular but arbitrarily chosen integer k ≥ 1, known as the inductive assumption. In 

Step 2 (the base induction step) we show that the supposition that S(k) is true implies 



that S(k + 1) is true. Compared with the domino line-up, Step 2 corresponds to the 

assumption that if the kth domino falls then so will the (k + 1)st domino. 

Mathematical proof involves following a logical way to explain a hypothesis and to offer 

a cogent explanation of how deductive reasoning has been used to reach a conclusion.  

(Hanna, 1995; Tall, 1998). During the proving process, proofs require us to create “a 

sequence of steps, where each step follows logically from an earlier part of the proof 

where the last line is the statement being proved” (Garnier & Taylor, 2010, p. 50). The 

concept of proof is considered to be central to the discipline of mathematics, and 

because of this centrality, scholars have argued that proof should feature prominently 

in mathematics education (Ball et al., 2002; Baştürk, 2010; Siemon et al., 2015). 

Specifically, proof is recognised as an essential tool for promoting mathematical 

understanding in students (Ball et al., 2002; Reid, 2011) and for providing educators 

with insight about how students learn mathematics (Wilkerson-Jerde & Wilensky, 

2011). Güler (2016) proposed that proof is important in mathematics education for 

various reasons, in that it: improves skills in problem solving, persuasive 

argumentation, reasoning, creativity and mathematical thinking. Moreover, proof 

forms the basis of mathematics, enables mathematical communication to transpire, 

and prevents rote learning of information. 

Mathematical induction is considered one of the most powerful tools for proving 

statements in discrete mathematics (Ashkenazi & Itzkovitch, 2014). While there is 

endless scope for the types of problems mathematical induction can be applied to, three 

popular ‘types’ of problems are used by teachers when teaching this type of 

mathematical proof to secondary students. These problem types include: General 

series, divisibility and implication. Each of these types will now be presented as a 

worked example. 

Let us propose that we are interested in finding a general statement to explain the sum 

of n consecutive odd integers starting at 1. If we tabulate our findings for the first 10 

natural or counting numbers, and their partial sums, we have: 

Table 1. Counting numbers and their sums, 1 ≤ n ≤ 10. 

n 1 2 3 4 5 6 7 8 9 10 
Tn 1 3 5 7 9 11 13 15 17 19 

Sn 1 4 9 16 25 36 49 64 81 100 

 

 It should be noted that the row Tn represents the nth odd integer, and the row Sn is 

the sum of the first n odd integers. One interesting pattern that can be observed is that 

the last row of the table, Sn, shows all integers n2 for n ≥ 1. A cursory comparison 

between the three rows reveals that the sum of the first n odd numbers appears to be 

the square of n. In making this statement, we have arrived at a conjecture—which is the 



first step in working towards a theorem—but we may not even know if the statement is 

true! The following worked example provides a precise mathematical statement of the 

result we are trying to prove. 

Worked example 1: General series 

Prove by mathematical induction that for all integers  

 

 
 
Worked solution 
1. Initial step: We need to show that the conjecture is true for a small value of n, e.g.,  

n = 1. Substituting this value into the series we have: 

 

 1 = 12  

 we have shown that S(1) is true 

 

2. Inductive Step: Here we assume the statement (inductive hypothesis)  

 

  (1) 
 

is true for a fixed but arbitrary value of  and verify that the statement  

 

  (2) 

 

Looking back at (1), we can see that the series  exists in (2). 

We therefore substitute k2 into (2) for , and algebraically 

rewrite the Left Hand Side (LHS) until it equals the Right Hand Side (RHS). 

 

 LHS  

   

   

   

  = RHS 

 

Conclusion: Because we have verified the initial and inductive steps we can conclude by 

induction that the statement  

 

   

 

is true for all integers . 

 

Worked example 2: Divisibility 

Prove by mathematical induction that for all integers  

 



  is divisible by 8.  

 

Worked solution 
1. Initial step: We need to show that the statement S(1) is true. Substituting n = 1 into 

the expression gives us: 

 

  

 

which is clearly divisible by 8. 

Therefore, S(1) is true. 

 

2. Inductive step: We assume that the statement (inductive hypothesis) 

 

  is divisible by 8   (1)  

 

is true for a fixed and arbitrary value of . We must verify that the statement  

 

  is divisible by 8 

 

is true. Now, we manipulate the expression  using algebraic rules until it 

becomes divisible by 8. 

 

   

   

   

   

   (2) 

 

Now because from (1) we have assumed that  is divisible by 8, there are two 

terms which are divisible by 8—one proven through clear algebra, and the other via an 

assumption from the inductive step. As such, both terms of (2) are divisible by 8 and 

therefore so is their sum. In other words, S(k+1) is true. 

Worked example 3: Inequalities 

Using mathematical induction, prove that for all integers  

 

  

 

Worked solution 

1. Initial step: We need to show that the statement S(3) is true. Substituting n=3 into 

this expression gives: 

 

   

    



Therefore, S(3) is true. 

 

2. Inductive step: We assume that the statement (inductive hypothesis) 

 

  (1) 

 

is true for a fixed and arbitrary value of . We must verify the statement  

 

   (2) 

 

We now manipulate both sides of (1) to transform it into (2). In other words, the 

inductive statement will be manipulated algebraically so the values of n = k have been 

transformed into n = k + 1. Once we have done this, by implication we will have shown 

that the statement will remain true for all values of k and the very next value after k. 

Ideally, the ‘finished product’ will look like: 

 

   

 

Some annotations have been included on the RHS of the inequality to assist in 

following the steps in working out. 

 

         Multiply both sides by 2 

          Simplify 

         Re-express the RHS terms 

         Rearrange the RHS terms 

         Factorise the first two terms 

      

Now, as the original problem stated,  which implies that the LHS of the original 

statement 2n + 1 > 1. In particular, if we substitute n = 3 into the LHS we obtain a value 

of 7, which is clearly greater than 1. As such we can create a concatenated inequality 

statement: 

 

  >  

   

 

In this way, the inductive step S(k) has implied S(k+1) is true.  

A review of literature on mathematical induction reveals that this method is difficult to 

teach for a variety of reasons (Ashkenazi & Itzkovitch, 2014; Harel, 2002; Stylianides et 

al., 2007). To commence, Ashkenazi and Itzkovitch (2014) contended that although 

secondary school and university students can successfully apply this proof method to 

statements of the kind they are accustomed to, they do not understand the correctness 

of the proof. Put another way, these authors suggest that most students learn how to 

use the method mechanically; such learning does not foster a deep understanding of 

the correctness of the method and ultimately contributes to a failure to solve problems 



of a different style (Ashkenazi & Itzkovitch, 2014). Echoing the contention of these 

authors contention, both Harel (2002) and Stylianides et al. (2007) asserted that 

undergraduate university students often display both a fragile knowledge on 

mathematical induction and a propensity to follow the steps without understanding 

what they are doing. In his analysis of students’ attempts at mathematical induction, 

Harel (2002) further identified two specific difficulties experienced by students. First, 

students tended to consider mathematical induction as a case of circular reasoning as 

they believe that the proof assumes S(n) is true for all positive integers. Second, 

students demonstrated a belief that the general argument for mathematical induction 

can be derived from a number of particular cases, rather than proving for all cases.  

Divisibility 

An alternative method that can be used to prove induction divisibility problems (such 

as Worked example 2) requires the use of two assumptions. Because the strength of a 

mathematical argument relies on the extent to which assumptions are minimised, the 

method shown below should be treated cautiously and avoided. If we recommence 

Worked Example 2 at the inductive step, it could be written that: 

 

 for some integer A,  

 

We can rearrange this inductive assumption as  (1), which will be used 

when manipulating the statement S(k+1). Herein: 

 

   

   

   

We now substitute (1):   

   

   

   

 

which is clearly a multiple of 8. 

 Having completed the necessary algebraic manipulations to reach a final statement 

which is divisible by 8, we are able to conclude that the conjecture is indeed true. 

However, looking back at the Inductive Step, we assumed that not only was the 

conjecture true for  but we also assumed that it was equal to a 8A (a multiple of 8) 

for . As such, the inductive assumption itself rested upon an assumption, which is 

a practice that should be avoided. Rather, to fulfil the logical steps of the proof we need 

to actually use the inductive assumption of the proof (i.e., ) in the final stages 

and not a substitute. 

The purpose of this paper was to offer insight to educators about proof by mathematical 

induction as it pertains to the Australian Curriculum: Mathematics. In particular, this 

method of proof has been outlined in a step-by-step fashion, and some worked 

examples have been offered to amplify these steps and the theoretical approach overall. 



Additionally, a cursory review of literature has revealed how scholars have championed 

the place of proof in a mathematics curriculum. In a study where mathematics 

professors were asked to evaluate and score undergraduate university students’ 

completion of proofs (an example of mathematical induction was Task 4), these 

professors acknowledged that the most important characteristics of a well-written proof 

are logical correctness, clarity, fluency, and demonstration of understanding of the 

proof (Moore, 2016). It is the author’s hope that this paper will be useful to 

mathematics educators within Australia—and perhaps internationally—as they model 

to secondary students how to apply the principles of mathematical induction to 

statements. Moreover, it is hoped that as students strive to master those characteristics 

of well-written proofs, their efforts will be underscored by a demonstration of 

procedural understanding. 

Use mathematical induction to prove that for all positive integers n: 

1.   

2.   

3.  

Use mathematical induction to prove that for all positive integers n: 

4.  is divisible by 4 

5.   is divisible by 80 

6.  is divisible by 3 

Use mathematical induction to prove the following statements for all natural numbers 

: 

7.   

8.  

9.  
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Fractional thinking with its interconnected constructs is key to understanding 
number and multiplicative thinking. Identifying students’ thinking and choosing 
questions to develop understanding and proficiency is a challenge for teachers. 
This paper examines the results of six tasks completed by 570 middle years’ 
students from Victorian schools. These tasks, administered as part of a Fraction 
Screening Test, not only reveal students’ thinking but also provide examples for 
teachers of the type of questions that will guide students forward in their thinking. 
In particular, questions that prompt ‘reverse thinking’ are often overlooked but are 
powerful in challenging students to generalise. 

Kieren (1980) suggested that there are five interconnected sub-constructs or 

interpretations of fractions that are both mathematically and psychologically 

dependent. These interpretations include part/whole, measure, operator, quotient and 

ratio. Conceptual understanding of fractions incorporates the ability to make 

connections within, and between, these different interpretations. Kieren (1980) 

suggested that difficulties experienced by children solving rational number tasks arise 

because rational number ideas are sophisticated and different from natural number 

ideas and that children have to develop the appropriate images, actions, and language 

to precede the formal work with fractions, decimals, and rational algebraic forms. 

Empson, Levi and Carpenter (2010) suggest that students should develop and use 

computational procedures using relational thinking to integrate their learning of whole 

numbers and fractions. 

 Many researchers believe that much of the basis for algebraic thought rests on a 

clear understanding of rational number concepts (Kieren, 1980; Wu, 2001) and the 

ability to manipulate common fractions. According to Wu (2001) the ability to 

efficiently manipulate fractions is “vital to a dynamic understanding of algebra” (p. 17). 

The National Mathematics Advisory Panel (NMAP, 2008) stated that the conceptual 

understanding of fractions and fluency in using procedures to solve fraction problems 

are central goals of students’ mathematical development and are the critical 

foundations for algebra learning.  



 Siegler et al.’s (2012) analysis of longitudinal data from both the United States and 

United Kingdom showed that competence with fractions and division in fifth or sixth 

grade is a uniquely accurate predictor of their attainment in algebra and overall 

mathematics performance five or six years later when other factors were controlled. 

They controlled for factors such as whole number arithmetic, intelligence, working 

memory, and family background.  

 Pearn and Stephens (2016) identified Year 8 proficient fractional thinkers as 

students who demonstrated a capacity to represent fractions in various ways, and to 

use reverse thinking with fractions to solve problems. Their research also suggested 

that effective reverse thinking depends on a capacity to apply multiplicative operations 

to transform the value of known fractions to make a whole. Pearn and Stephens (2007) 

used a Fraction Screening Test and Fraction Interview using number lines to probe 

students’ understanding of fractions as numbers. Results from these assessments 

showed that successful students demonstrated easily accessible and correct whole 

number knowledge and knew relationships between whole and parts. A number line 

representation of number quantity has been shown in cognitive studies to be 

particularly important for the development of numerical knowledge and a precursor of 

children’s academic success (Siegler & Booth, 2004).  

 This paper is about the sort of questions that teachers need to ask in order to prompt 

structural thinking about fractions. It will focus on question sequences that drive the 

need for generalisation - not just finding an answer to one particular question but 

developing patterns of thinking that apply to similar questions.  

According to the rationale given for the Australian Curriculum: Mathematics (ACARA, 

2016) the mathematics curriculum “focuses on developing increasingly sophisticated 

and refined mathematical understanding, fluency, reasoning, and problem-solving 

skills. These proficiencies enable students to respond to familiar and unfamiliar 

situations by employing mathematical strategies to make informed decisions and solve 

problems efficiently.” 

 In Table 1 are examples of Content Descriptors from The Australian Curriculum: 

Mathematics (ACARA, 2016) for Years 5–8. The Content Descriptors for Years 5–7 

include those that refer to fraction calculations and the use of number lines to locate 

and represent fractions. The Content Descriptors for Year 8 include solving problems 

involving rates and ratios. 

 The quote from the rationale of the Australian Curriculum: Mathematics (ACARA, 

2016) above suggests that students need “to respond to familiar and unfamiliar 

situations by employing mathematical strategies”; however, there are no references in 

the Content Descriptors about starting with a known fractional part and requiring 

students to find the whole (see Pearn & Stephens, 2007). In fact there is very little 

attention in these Content Descriptors to helping students to understand the structural 

properties of fractions that will be necessary to deal successfully with “a range of 

problems involving rates and ratios” as stated in ACMNA188. Essentially this requires 

students to be able to deal multiplicatively with fractions.  
 



Table 1. Examples of Content Descriptors  
(Australian Curriculum: Mathematics, ACARA, 2016). 

Year Content Descriptors 

5 Compare and order common unit fractions and locate and represent them on a 
number line (ACMNA102)  

Investigate strategies to solve problems involving addition and subtraction of 
fractions with the same denominator (ACMNA103)  

6 Compare fractions with related denominators and locate and represent them on 
a number line (ACMNA125) 

Solve problems involving addition and subtraction of fractions with the same or 
related denominators (ACMNA126)  

7 Compare fractions using equivalence. Locate and represent positive and negative 
fractions and mixed numbers on a number line (ACMNA152)  

Solve problems involving addition and subtraction of fractions, including those 
with unrelated denominators (ACMNA153)  

Multiply and divide fractions and decimals using efficient written strategies and 
digital technologies (ACMNA154)  

8 Solve a range of problems involving rates and ratios, with and without digital 
technologies (ACMNA188) 

 

 Pearn & Stephens (2016) argue that effective reverse thinking depends on a capacity 

to apply multiplicative operations to find the whole when details of a fractional part are 

known. This position guided the selection of fraction tasks from the Fraction Screening 

Test that forms the basis for this study. 

This paper examines the results of 570 students for five fraction tasks from the Fraction 

Screening Test (Pearn & Stephens, 2014). These students came from ten Victorian 

schools. Eight of the schools were from metropolitan Melbourne, whereas the other two 

schools were from regional Victoria. Table 2 shows the number of students from each 

year level. 

Table 2. Number of students from each year level. 

Year 5 Year 6 Year 8 Total 

187 265 118 570 

 

 The Fraction Screening Test (Pearn & Stephens, 2016) is divided into three parts. 

Part A includes 12 routine fraction tasks that include topics such as equivalent 

fractions, ordering fractions and recognising simple representations. For example, 

Figure 1 includes two of the 12 tasks from Part A. Task A4 includes the familiar fraction 

of one-half and a picture of four lollies. Task A12 includes an unfamiliar fraction of one-

seventh and has no diagram. Both these tasks deal with unit fractions where students 

are expected to find the whole. The first could be solved additively by adding another 

four lollies or multiplicatively by doubling. The second task is less attractive to solve 

additively and was intended to be solved multiplicatively. 

 

 

 



A4.  
This is one -half of the lollies I started with. 
 
 
How many did I start with? ___ 
 

A12.  
To buy a new workbook I spent $4.  

This is  of what I saved up.  

How much did I save up? ____ 

Figure 1. Two examples of Part A tasks. 

 Part B includes five number line tasks. Task B2 in Figure 2 requires the students to 

mark where the number 75 would be given the distance from zero to 25. In order to 

solve this task successfully, students need to recognise 75 as a multiple of 25. They are 

expected to explain that in their answer to part b.  

 

 

Figure 2. Task B2 from Part B. 

 Task B4 from Part B shown in Figure 3 is similar to Task B2 as students are required 

to mark where the number one would be given the distance from zero to one-third. In 

order to solve this question additively or multiplicatively students need to recognise the 

relationship between one-third and the whole. 

 

Figure 3. Task B4 from Part B. 

 Figure 4 shows Task B5 from Part B and tests whether students believe three-

quarters is ‘nearly one’ or can determine that the correct response is C and give an 

appropriate and reasoned answer as to why Response C is the correct one. This 

question also requires students to understand the structural relationship between 

three-quarters and one whole. That is, one-quarter more needs to be added; and to find 

a measure for one-quarter students need to partition three-quarters into three parts. 

Alternatively, having found one-quarter, students could multiply that by four. 



 

Figure 4. Task B5 from Part B. 

 Part C included three questions that explicitly required students to use reverse 

thinking using less familiar fractions (see Figure 5). Student performance on these 

three tasks was reported by Pearn and Stephens (2016). Two student performances on 

the task shown below in Figure 5, where no diagram is given, are discussed later (see 

Figures 6 and 7). Whether finding the number of CDs additively or multiplicatively, it is 

essential to find the equivalent number of CDs represented by one-seventh and then 

scale up to find the number of CDs in Kaye’s collection, which is 21 CDs. 

 

 

Figure 5. Example of Part C task. 

 The six tasks shown in Figures 1–5 either start with the part and require students to 

find the whole as in Figures 1 and Figure 5; or have number lines marked with a given 

fraction as in Figures 3 and 4, where students are asked to show where the number one 

would be marked. 

The two tasks shown in Table 3 were successfully answered by at least 80% of the 

students. These two tasks involve familiar unit fractions and small numbers 

representing quantities. The same group of students were far less successful with the 

three tasks shown in Figures 2, 3 and 4 using number lines where students needed to 

understand structural relationships as ratios. The reverse fraction task shown in Figure 

5 was the most difficult for students in Year 6 and Year 8.  

 Most students confidently and correctly answered Task A4 in which were included a 

familiar fraction, one-half, and a picture of four lollies. Table 3 shows that 

approximately 95% of Year 5 students, 96% of Year 6 students and 98% of Year 8 

students correctly identified the whole was eight lollies given that one-half of the whole 

was represented by four lollies (Task A4, Figure 1).  

 Overall 66% of the total number of students correctly answered Task A12 with 

another 16.3% giving the correct answer without the dollar sign. This means that 



overall about 82% of the students could actually complete the calculation with this 

fraction task without a diagram. In Table 3 the numbers in brackets are the percentages 

of students who correctly calculated the cost of the workbook for task A12 but did not 

include the dollar sign. 

Table 3. Percentage of correct responses to Part A from Fraction Screening Test tasks. 

Task Year 5 
(n = 187) 

Year 6 
(n = 265) 

Year 8 
(n = 118) 

Total 
(n = 570) 

A4. This is one-half of the lollies I started 
with. 
How many did I start with? ___ 
(Shown in Figure 1) 

94.7 95.5 97.5 96 

A12. To buy a new workbook I spent $4. 

This is  of what I saved up. How much 

did I save up? 
(Shown in Figure 1) 

60.4 
(+ 22) 

67.9 
(+ 14) 

72 
(+13) 

66 
(+ 16.3) 

 

 Table 4 shows the percentage of students who successfully completed the three 

number line tasks. These tasks do not require students to mark a fraction of the 

number line but instead need them to mark in a larger whole number (Task B2, Figure 

2) or the number one when given the number one-third (Task B4, Figure 3), or when 

given the fraction three-quarters (Task B5, Figure 4). 

 Table 4 shows that nearly 57% of the students were able to place the number 75 

accurately by marking three times the distance from zero to 25. However, nearly 35% of 

the total number of students placed number 75 three-quarters of the length of the 

whole line as though the line were drawn from zero to 100. Their justifications 

incorrectly implied that the end point of the line was 100. 

Table 4. Percentage of correct responses to Part B Fraction Screening Test tasks. 

Task Year 5 
(n = 187) 

Year 6 
(n = 265) 

Year 8 
(n = 118) 

Total 
(n = 570) 

B2a. This number line shows 0 to 25. 
Place the number 75 on the number line 
as accurately as you can. (See Figure 2) 

52.9 56.2 64.4 56.8 

B4. This number line shows where the 

number  is. Put a cross (x) where you 

think the number 1 would be on the 
number line. (See Figure 3) 

54.4 63 76.3 63 

B5. On this number line 0 and the 

number  are shown.  

Circle the letter that represents where the 
number 1 would be. (See Figure 4) 

70 76.2 85.6 76 

 

 Overall 63% of the total number of students accurately placed the number one on 

the number line when they were given the distance from zero to one-third. Nearly 16% 

of all students marked the number one at the end of the number line. For Task B5 76% 

of the total number of students chose the correct letter C to indicate where the number 

one would be. Approximately ten percent of the students chose each of A or B. 



 Table 5 below examines the performance of students from two of the ten schools 

referred to earlier. At the time of writing, Year 5 data for this question were not 

available. However, the data below are from intact classes in the two schools concerned, 

and show how difficult this task is for nearly half of the Year 8 students. 

Table 5. Percentage of correct responses to reverse fraction task (Figure 5). 

Task (Figure 5) 

 
Year 6 

(n = 67) 
 

Year 8 
(n = 118) 

Total 
(n = 185) 

 

57 54 54.9 

 

 Figure 6 shows a typical response using additive thinking. In the first place the 

student has deduced that one-seventh of the collection must be equivalent to three CDs. 

This student then shows that three-sevenths is equivalent to 9 CDs, so adds the nine to 

the 12 CDs that comprised four-sevenths to get a total of 21. This shows clear 

understanding of the relationship between four-sevenths and one-seventh and how the 

whole can be thought of as four-sevenths and three-sevenths combined. 

 

Figure 6. Additive solution to reverse fraction task in Figure 5. 

 Figure 7 illustrates a more complete multiplicative solution. In the first and second 

lines the student divides 12 by four to show that three CDs is equivalent to one-seventh. 

This is stated (idiosyncratically?) in the second line as an equivalence statement 

between a fraction and its related numerical quantity. In the third line the student 

scales up from one-seventh to a whole by multiplying the equivalent quantity by seven. 

 

Figure 7. Multiplicative solution to reverse fraction task in Figure 5. 



For teachers these six questions are important as representing the kind of questions 

that need to be asked. First, they reveal students’ thinking and show where students are 

performing. Second and equally important, they help to guide students’ thinking. These 

questions are intended to act as prompts to guide teachers to move students towards 

generalised understanding and proficiency. Developing and guiding students’ 

structural understanding of fractions requires them to be able to use both 

multiplicative and additive methods. Later work on ratios and proportion will clearly 

preference the ability to use multiplicative thinking. Teachers need to recognise that 

additive thinking, whilst effective, should be seen as a bridge to more confident 

multiplicative thinking. 

 This study shows the importance of including work on number lines, either 

involving fractions where the whole is unknown, or whole numbers that are multiples 

or fractional parts. Prior work on locating and representing fractions on a number line 

involves partitioning a length to find fractional parts. But a structural understanding of 

fractions also requires students to be able to move from a known fraction on a number 

line to find an unknown whole. 

 Explicit inclusion of reverse fraction tasks similar to that shown in Figure 5 are 

necessary to strengthen and guide understanding of ratios and proportion. In later 

work on solving linear equations with rational coefficients students need to be fluent in 

simplifying fractional values of an unknown using procedures similar to those 

discussed in this paper. 
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The aim of this workshop is to trial a professional learning activity developed as 
part of the Reframing Mathematical Futures II Project (RMIT and AAMT). The 
activity models a classroom lesson based on three of the Big Ideas underpinning 
statistics: Variation, Expectation, and Distribution. The lesson is created with 
cartoon characters in PowerPoint. Using student responses from research, 
participating teachers view the classroom interaction and discuss how the 
classroom teacher could scaffold students’ progress. This is followed by the use of 
an Australian open data set to illustrate the Big Ideas in a related authentic context. 

The Reframing Mathematical Futures II project (RMFII; Siemon, 2016) is extending 

previous work that used rich assessment tasks to identify an evidence-based learning 

and assessment framework for multiplicative thinking in the middle years (Siemon, 

Breed, Dole, Izard & Virgona, 2006). The RMFII project is using a similar approach to 

develop evidence-based learning progressions in mathematical reasoning, specifically, 

algebraic, spatial and statistical reasoning. Based on literature reviews and the big ideas 

in each area, a range of rich assessment tasks have been developed and trialled, with 

the results used to identify learning progressions in each area. Targeted teaching advice 

and resources are being developed for each learning progression for teachers to use. 

Ultimately, the materials and professional learning associated with the project 

outcomes will be disseminated through the AAMT’s Dimensions portal. 

 This presentation is a result of the work in statistics based on the big ideas of 

variation, expectation, and distribution. Variation is the foundation big idea that 

underpins all of statistics: without variation to characterise differences there would be 

no statistics (Moore, 1990). Expectation arises from variation when an attempt is made 

for example to describe a typical value or a chance. Distribution is the lens through 

which variation is viewed, identifying and describing it in order to look for and confirm 

expectation. Distribution underlies data representation for samples and populations. 

These are the big ideas used in conjunction with randomness and informal inference 

for decision-making (see http://topdrawer.aamt.edu.au/Statistics/Big-Ideas). 



Following the work of Watson and Callingham (2003) and Callingham and Watson 

(2005), and follow-up analysis from the RMFII data, an eight-zone hypothetical 

learning progression was developed (Watson & Callingham, 2017). This is shown in 

Table 1. In a classroom setting, a teacher is likely to have students displaying 

understanding across a range, if not all, of these zones. In individual encounters with 

students, it may be possible to detect the student’s current learning zone and choose a 

question or response that will help scaffold the student to reach a higher zone. Some 

examples of scaffolding questions are given in Watson (2016). In a whole-class 

discussion, however, with students operating in many zones, the teacher is faced with 

on-the-spot decisions on how to proceed. 

Table 1. Hypothetical learning progression for statistical reasoning with selected examples 
(from Watson & Callingham, 2017). 

Big 
idea 

Variation in 
expectation 

Variation in 
distribution 

Variation in  
inference 

Zone 1 
Idiosyncratic response or single procedural focus 

Uncertainty expressed as 
50% 

Reads single value on 
graph 

Ignores context 

Zone 2 
Considers aggregated information but without recognising value 

Anything can happen Describes isolated 
features of a graph 

One characteristic of a 
sample 

Zone 3 
Emerging statistical appreciation but without explanation 

Claims for average 
without justification 

Elaborated physical 
description of graphs 

Choose “all” for sample 

Zone 4 
Recognises influence of variation but interprets inappropriately 

Rejects “luck”; suggests 
unlikely 

Does not distinguish scale 
in graph reading 

Recognises sample but not 
its bias 

Zone 5 
Straightforward explanation and simple numerical justification 

Orders chance phrases 
correctly 

Appropriate attention to 
graph details 

Partial recognition of 
sample requirements 

Zone 6 
Informal appreciation of uncertainty and variation in choices 

Recognises outlier Recognises correct 
variation in graphs 

Suggests random sampling 

Zone 7 
Makes inferences across ideas using proportional reasoning 

Creates appropriate 
probability distribution 

Creates hypothesis based 
on data 

Criticises sample size and 
bias 

Zone 8 
Integrates proportional, statistical, and contextual reasoning 

Correct association in 2-
way tables 

Conclusion with both 
positives & negatives 

Includes human/  
psychological component 

Based on the previous research and data from RMFII students, one of the professional 

learning (PL) resources developed envisages a classroom context, reviewing the three 

big ideas of statistics, setting a task based on the weather, and moving to Australian 

national data to challenge students’ critical thinking further. The students’ responses in 

reviewing the ideas and in task discussion are all taken from actual student responses. 

The leader of the PL stops throughout the presentation of the classroom scenario 

asking participating teachers to suggest (i) what their students might say and (ii) how 

they would respond to their classes at this point. Some suggestions are then provided 

from the teacher or other students in the scenario. The final section of the PL illustrates 



the possibilities for continuing to reinforce the big ideas through the introduction of 

weather data from Australia’s capital cities (see www.bom.gov.au/climate/data). 

Although not linked directly to the hypothetical learning progression during the 

presentation, further discussion can help teachers to place their students’ on the 

progression with respect to the scenario context. 

 The presentation used here is created in PowerPoint with cartoon characters telling 

the classroom story. The reader needs to imagine the dialogue and responses being 

presented on the forward click of a mouse (or key), not all at once as shown in the 

figures here. They can be managed at the discretion of the presenter depending on what 

the teachers in the audience wish to contribute. The pace depends on the context of the 

PL session, as does further work linking teachers’ beliefs about their students’ abilities 

to progress to higher zones of the hypothetical learning progression. 

In the classroom a teacher may start a review of the big ideas, for example, by asking 

students about “things that vary” leading to asking for a definition (Watson, 2016) or 

start with a reminder of the definition and ask students for examples. The latter is 

shown in Figure 2 as an introduction to the context for the lesson, focussing on the 

weather. 

 

 

  

 

Figure 2. Reviewing the big ideas. 

 After each initial question by the cartoon teacher, participating teachers can be 

asked what their own students would say before seeing the responses in the 



PowerPoint. After the second slide in Figure 2 asking about expectation, teachers could 

be asked how the student responses illustrate different types of expectation (e.g., 

probabilities, modes, means, or ranges). They could also be asked to think about other 

examples of data sets that would elicit responses not given by the students, such as 

house prices and the median. 

There are three stages to the class interaction that follows the last slide in Figure 2. 

Figure 3 shows the teacher asking how the value of 17°C was found. After the question 

is asked, before showing the responses from the cartoon students, the participating 

teachers can have a discussion about what their students would say. 

 

  

Figure 3. How to find the ‘average’ temperature. 

 Next, the teacher asks for description of Hobart’s weather for an exchange student 

focussed on variation and expectation, as shown in Figure 4. 

 

 

 

Figure 4. Focussing on variation and expectation. 

 The cartoon teacher then moves to the big idea of distribution asking his students to 

draw a sketch that would show the variation and expectation for the maximum 

temperatures in Hobart throughout the year. Again teachers are asked what their 



students would draw and perhaps to draw how they would represent the scenario 

themselves. Several responses from research are shown in Figure 5 with class 

interaction. 

 

  

 

  

Figure 5. Distributions produced by students to show the weather over a year. 

 Finally the teacher presents a different representation to challenge the students’ 
thinking in representing data like those based on temperatures. This is shown in 
Figure 6. 
 

Figure 6. A different representation for temperature. 

The lesson scenario then moves on to introduce students to a national data set of 

average monthly maximum temperatures for 54 years from Australia’s nine capital 



cities and asks for speculation on differences and similarities in the cities based on 

students’ knowledge of Australia’s geography. This moves the students into an 

authentic context where the data do not fit simple explanations. The initial dialogue 

begins with speculation. 

Riley: I reckon that Hobart will be the coldest and Darwin will be the hottest! 
Mia:  I don’t know, maybe Canberra is colder because it is inland and at a higher 

elevation. 
Teacher: So what do you mean by colder? 
Riley & Mia: We’re thinking of the mean maximum temperature for the year. 
Teacher:  You are talking expectation! 
Sophie:  What about the different seasons? 
Niko:  I think that Canberra will be hotter in the summer and colder in the winter. 
Teacher:  So why would you want to consider seasons? 
Sophie:  Because of the different variation and expectation! 
Teacher:  Well done. We can have a look at Hobart and Canberra across the seasons, as 

well as overall …So, what do you want to look at first? 
Niko:  Summer and winter. 

 The teacher produces the distributions of average monthly maximum temperatures 

for Hobart and Canberra in summer and scaffolds the discussion as seen in Figure 7. 

 

 
 

 
 

Figure 7. Comparing summer data for Hobart and Canberra. 

 In looking at the data for winter for the two cities, the mean values (expectation) are 

nearly identical but there is more variation in the data for Canberra, which is discussed 



by students. Students are then given the task to write a paragraph comparing spring 

and autumn between the two cities. Four examples are shown in Figure 8.  

 

  

Figure 8. Describing the difference in the two cities for spring and autumn. 

 The teacher does a quick review of the three big ideas in relation to the discussion of 

the capital city temperatures.  

Teacher: Let’s review the big ideas we have used. Which did we use the most? 
Class:  VARIATION! 
Teacher: And it occurred in many ways, didn’t it? What next? 
Class: Distribution. 
Emma: Because we had to have distributions to look at the variation! 
Teacher: Definitely. What is left? 
Class: Expectation. 
Jack: But where was it? 
Sophie: I think it is in the averages, because they summarised what was happening in 

the variation. 
Teacher: Right, but anywhere else? 
Sophie: Maybe with the box plots, because they summarised the middle, and the top 

and bottom 25%, easily. 
Teacher: Definitely, well done. We needed all three Big Ideas to tell the story. To 

finish, would you like to see all of the capital cities together? 
Class: YES! 

 Finally, the data for all years and months for all cities are displayed and students ask 

for the distributions to be ordered by expectation, that is, by their increasing mean 

values, as seen in Figure 9. 
 
 
 
 



  

Figure 9. Data from all Australian capital cities. 

 Using weather and temperatures of Australian capital cities links well to Science and 

Geography and shows the power of ‘interpreting statistical information’ as a part of 

numeracy in the General Capabilities of the Australian Curriculum (Australian 

Curriculum, Assessment and Reporting Authority, 2013). Hobart was chosen as a 

starting point because as the southern-most capital, intuition may suggest it is the 

coldest without further consideration. Choosing Darwin as a starting point would be 

similar but offers much less internal variation and greater variation in expectation 

across cities. 

 Although formal analysis of difference and similarity can be quite complex and not 

appropriate at middle or high school, introducing the concepts in context with 

graphical representations alerts students to possibilities and the value of the Big Ideas. 

It builds intuitions that are useful when checking out the validity of formal calculations 

in later studies. 

Weather offers many possibilities for activities employing and emphasising three of the 

big ideas of statistics—variation, expectation, and distribution—and how they 

contribute to drawing inferences. Some of the original material from which examples 

were chosen is found in Watson and Kelly (2005) and Watson, Callingham, and Kelly 

(2007). The classroom scenario described illustrates possibilities for teacher interaction 

and students. Further uses of the weather data are detailed in Watson et al. (2011) and 

more data are available at the Bureau of Meteorology website. Other topics and 

scaffolding related to the big ideas of statistics are discussed in Watson (in press). This 

suggested method of providing interactive PL for teachers is just part of the RMFII’s 

aim to improve mathematical futures. The provision of tests, which provide teachers 

with responses like illustrated here, and specific learning progressions, such as seen in 

Figure 1, are part of the vision of the project. Teachers in the project are encouraged to 

share their experiences and those of their students with the wider education 

community (e.g., presentations at this AAMT conference). 

Thanks to Sue Stack who created the cartoon characters and to Di Siemon for her 

continued support. 
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