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PREFACE 

 
 
This is a record of the proceedings of a joint conference incorporating the 23rd biennial 
conference of the Australian Association of Mathematics Teachers (AAMT) together 
with the 34th annual conference of the Mathematics Education Research Group of 
Australasia (MERGA). This is the first fully joint conference of the two associations in 
the history of mathematics education in Australasia. It brings together practitioners and 
researchers to discuss key issues and themes in mathematics education, so that all can 
benefit from the knowledge gained through rigorous research and the wisdom of 
practice. 
 The conference venue is Alice Springs in central Australia, a place rich in history and 
culture. This is reflected in the theme of the conference: Mathematics: Traditions and 
(new) practices. This theme highlights the importance of respecting traditional 
knowledge, including that of the first peoples of Australasia, and of forging new 
practices that promote rich and relevant mathematical experiences for students of all 
ages. 
 We are pleased to welcome any conference participants who are attending a MERGA 
or AAMT conference for the first time. We hope you will make yourselves known so 
you can be made welcome and introduced to others who share your research and 
teaching interests. Authors and presenters from many countries (e.g., Australia, New 
Zealand, Singapore, the United States of America, Papua New Guinea, the United 
Kingdom) are represented in these proceedings. There are participants from almost 
every university in Australia and New Zealand, teachers from government and non-
government school systems throughout Australia, and officers from government 
Ministries of Education. Our collective interests span the entire range from pre-school 
to postgraduate teaching of mathematics, mathematics teacher education and research in 
mathematics education. We particularly welcome local teachers from the central regions 
of Australia, and thank you for your generous hospitality. We look forward to the 
dialogue that will emerge from the varying perspectives brought by these participants. 
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Reviewing procedures 
All papers in these proceedings were submitted as either research papers or 
professional papers. Research papers were reviewed according to established MERGA 
processes, while professional papers were reviewed according to established AAMT 
processes. These two sets of papers are published as separate sections of the 
proceedings. They are preceded by a section that includes invited keynote papers, 
including the winner of the Beth Southwell Practical Implications Award, which was 
reviewed according to MERGA processes as part of its eligibility for the award. 

MERGA reviewing process 
All research papers submitted were blind peer-reviewed (without author(s) being 
identified) by one of ten review panels comprising mathematics education researchers 
with appropriate expertise in the field. Review panels were convened throughout 
Australia and New Zealand by experienced researchers who identified colleagues in 
their geographic region to join the panel. Panel convenors attended a training day where 
they reviewed ‘early bird’ papers according to clear reviewing guidelines that have been 
refined over a number of years. They then led their panels through the reviewing of a 
fixed number of conference papers. Each paper was independently reviewed by two 
panel members, who then discussed their assessments and produced a single consensus 
report that provided the author(s) with detailed feedback. For consistency, all reviews 
recommending that a paper not be accepted were reconsidered by two members of a 
small panel of highly experienced reviewers. Only those research papers accepted by 
two reviewers have been included in these conference proceedings. 
 The abstracts for round table discussions were also blind peer reviewed (without the 
authors being identified) by two experienced mathematics education researchers. 

AAMT reviewing process 
Professional seminars and workshops were selected as suitable for the conference based 
on presenters’ submissions of a formal abstract and further explanation of the proposed 
presentation. 
 Authors of professional seminar and workshop proposals that were approved for 
presentation at the conference were also invited to submit a written paper to be included 
in these proceedings. These papers were then scrutinised blind by two reviewers 
(without the author(s) being identified) and rated on categories developed for use in 
previous AAMT conferences and AAMT professional peer-reviewed journals; 
contradictory reviewer reports were resolved by the editor after obtaining a third 
independent peer review (without the author(s) being identified). Reviewers were 
chosen by the editor to reflect a range of professional settings as well as expertise in the 
substantive area addressed by a paper. Only those professional papers accepted by two 
reviewers have been included in these conference proceedings. 
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The editors of both the MERGA research papers and the AAMT professional papers 
would like to thank all those who assisted with the process for their professionalism and 
expertise. We particularly wish to thank Melinda Pearson and Kate Manuel in the 
AAMT office for coordinating the collection and dissemination of papers for reviewing 
and reports from reviewers, as well as providing professional editorial support. We also 
owe a great debt of gratitude to Judy Mousley for coordinating the MERGA reviewing 
process. Without her generous offering of time and expertise, the process would not 
have been possible. Toby Spencer’s contributions to editing the AAMT professional 
papers and expertise in producing a high quality professional joint conference 
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proceedings publication under considerable time pressures have been invaluable, and 
we are grateful for his outstanding work. 
 
 The spirit of cooperation between MERGA and AAMT has been a wonderful 
advertisement for the unity with which mathematics educators in all sectors view the 
world. We all value equity and excellence in mathematics education for all learners at 
all levels, and strive to learn more through research and practice. As Kurt Lewin once 
wrote, “There is nothing so practical as a good theory.” Equally we could say, “There is 
nothing so theoretical as good practice.” This conference is a shining example of how 
theory and practice in education can come together to enrich and inform each other. 
 We thank the AAMT office which has provided the infrastructure and organisation to 
make this conference possible, and the Local Organising Committee for enabling things 
to run smoothly at the conference itself. We trust that all participants will enjoy both the 
professional dialogue and the social interchange throughout the conference. 
 
Julie Clark, Judy Mousley and Steve Thornton (editors of research papers) 
Barry Kissane (editor of professional papers) 
Toby Spencer (editor of proceedings volume) 
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MATHEMATICS ASSESSMENT: EVERYTHING OLD IS 
NEW AGAIN? 

 
THE ANNUAL CLEMENTS / FOYSTER ORATION 

ROSEMARY CALLINGHAM 
University of Tasmania 

Rosemary.Callingham@utas.edu.au 

 
Over the past decade or so there has been much rhetoric about assessment. There are 
assessment websites replete with ―rich tasks‖, work samples, standards, and definitions. 
The MySchool website reports data from large scale assessments. Teachers are exhorted to 
use assessment as a tool for learning. What has all of this activity achieved? Research 
evidence is scant and conflicting. It is time to assess mathematics assessment and to 
reconsider the purpose, nature and use of assessment information.  
 
 

This is the first Clements-Foyster lecture to be delivered to a combined audience of 
practitioner and academic researchers. When MERGA was established in 1976 by John 
Foyster and Ken Clements, the AAMT already existed. At that time it had a research 
committee, which suggests that mathematics teachers recognised the importance of 
research. With the growth of MERGA, the AAMT research committee ceased to exist 
but over the years the two organisations have developed a strong mutual respect and 
have worked together productively to address a range of issues in mathematics 
education. With the introduction of the Australian curriculum, assessment of 
mathematics is a re-emerging focus and the topic of this address. 
 I aim first to briefly outline the history of assessment with a focus on mathematical 
knowledge. I will then examine a number of influential developments in more recent 
times, and consider current practices, before proposing some new ways of thinking 
about the purpose, nature and use of mathematics assessment information.  
 

Assessing mathematics 
Assessment of mathematical understanding goes back to ancient times. The traditional 
owners of the land we call Australia had a complex mathematics to describe kinship 
groups, arrangements for sharing food and other resources, and for navigation and 
describing position. This mathematical knowledge was passed to the youth of the group 
in a variety of ways: modelling, practice, direct instruction and story-telling. How was 
this assessed? Some of the knowledge would not have been formally assessed. Some 
may have been part of secret initiation ceremonies and some may well have been 
assessed in a public display of knowledge (Peterson, 2008). The key point is that the 
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―teachers‖ were also the assessors and getting the assessment right was fundamental to 
the survival of the group—very high stakes assessment.  
 Moving on to the ancient Greeks, Pythagoras is an important historical figure. In the 
Pythagorean brotherhood, whole numbers had religious status and formed the basis of 
secret rites. When one of their members, Hippasus, made the shocking discovery that 
the diagonal of a unit square could not be expressed as a whole number ratio, legend has 
it that he was drowned by the brotherhood members. This unhappy outcome was a 
consequence of challenging the teacher’s assessment and knowledge base.  

Imperial China used a complex system of examinations for admittance to the public 
service, the earliest system of standardised tests. Examinations took place at designated 
centres, and candidates were literally locked in for up to a week. Examinations were 
written, and all responses were copied by a scribe prior to assessment to prevent 
identification of the candidate. These examinations were very high stakes: success 
would guarantee a comfortable life not only for the examinee but for family and village 
as well. One of the ―Six Arts‖ examined was mathematics, both applied, as in taxation, 
and pure problems being given. Successful candidates were ―called to the bar‖ which 
separated them from the unsuccessful—similar language is used by lawyers to this day. 
Assessing mathematical knowledge has been an important element of education from 
the earliest days.  

More recent developments 
As schooling developed and became more formal, so did mathematics assessment 
processes. Teachers remained the principal assessors. Oral questioning of students, 
sometimes in public, was a recognised and respected approach to assessing students’ 
knowledge for the purposes of determining attainment, and this tradition is continued in 
the oral defence of PhD theses. Such oral examinations ―… allowed teachers to ask 
probing questions or even to help pupils by providing permissible hints‖ (Lewy, 1996, 
p. 225).  
 As educational opportunities expanded, formal examinations became more 
widespread in the west. Printed examinations were first used at Harrow School, one of 
the great public schools of England, in 1830. During the twentieth century the 
assessment emphasis moved to standardised tests and objective measurement that 
focussed on aspects such as identical conditions of testing, and statistical measures such 
as those relating to reliability. External tests at key points in schooling became 
widespread in some western countries, although not all. Bodin (1993), for example, 
described the French system, where students did not automatically move upwards from 
year to year, as one where assessment was carried out continuously by the teacher who 
did not have to account to anyone. The teacher awarded marks, calculated averages and 
these were assumed to be a measure of the achievement of the learner. Examinations 
were unknown. 
 The rise in external examinations, often presented at key points in schooling, in 
effect, separated testing and test development from the process of teaching (Grouws & 
Meier, 1992; Lewy, 1996). This separation was not unnoticed. Dennis (1926), for 
example, wrote  

In mathematics … the methods of testing have a strong effect upon the teaching. … For 
years we have been discussing and revising the teaching of mathematics, its aims, its 
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curriculum, the materials to be used, and the methods to be employed. But we have not 
given equal attention to the ways of testing the results (p. 58).  

Today, 85 years later, the same comments could be made about the new Australian 
Curriculum.  
 In Britain, by the early 1980s testing was widespread with over three-quarters of the 
responsible authorities using some form of testing, of which mathematics was usually a 
part. Much of this testing was driven by debate about standards of education (Gipps, 
1988). The concerns about standards were not new. Early in the 20th century high 
failure rates in tests were accepted as a way of maintaining standards – only the 
brightest and best survived the process. As pressure grew for a better educated 
workforce, compulsory schooling was extended, and it became the norm for children to 
move through the years of schooling with their age peers. New arguments for testing 
developed, based on equity, but still rooted in standards (Resnick, 1980). Tests were 
used to set standards and test results were assumed to be a measure of the success of the 
system. Large-scale testing programs were used as part of a ―carrot-and-stick‖ approach 
to improving the quality of education and teachers were expected to change their 
practice in response to this external pressure to raise standards of education (Darling-
Hammond, 1990). The question of the use of tests not only to describe standards but 
also to raise them continues today.  
 In 1998, Black and Wiliam’s seminal work changed the face of assessment. Their 
meta-analysis of a variety of research studies led to a series of influential publications 
about the use of feedback in classroom assessment (Black & Wiliam, 1998a, 1998b). 
Again the emphasis was on raising standards but this time through improving the 
classroom assessment process. Hattie (2009) reinforced the effectiveness of feedback, 
and reasserted the importance of teachers. When assessment and teaching are seamless, 
useful feedback is provided to students, and both teacher and students change what they 
do as a result, classroom assessment is a powerful tool.  
 Towards the end of the twentieth century, there were calls to build closer links 
between teaching, learning and assessment (e.g., Pellegrino, Chudowsky & Glaser, 
2001; Shepard, 2000), and to involve teachers more closely in the assessment process. 
There was an expectation that teachers would not only test knowledge recall, but instead 
would use complex tasks intended to provide an intellectual challenge (Lewy, 1996). 
One approach to this matter was termed ―authentic‖ assessment (Archibald & 
Newmann, 1988). Authentic assessment aimed to provide assessment tasks for students 
that were meaningful outside the school context, and which expected students to 
communicate their ideas through coherent writing, rather than through multiple choice 
responses. These ideas underpinned Queensland’s Rich Tasks as part of the New Basics 
project (Education Queensland, 2004), although there were also other theoretical 
considerations around intellectual quality. 
 During the late 1980s and early 1990s, in various parts of the world attempts were 
made to return assessment to the classroom. In Britain, common assessment tasks were 
used at Key Stages in education. California had a large-scale program of teacher-judged 
assessment, as did Ontario in Canada. In Australia, the idea of a student ―profile‖ took 
hold and this was seen as one approach to improved accountability in which teachers 
played a major role, culminating in the publication of Mathematics: A curriculum 
profile for Australian schools (Curriculum Corporation, 1994). These attempts to 
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develop large-scale teacher-judged assessment processes failed on two counts. The first 
was political. Authorities did not believe the evidence that teacher judgement was as 
reliable as a multiple choice test. The second was industrial. Teachers refused to accept 
the additional responsibility and workload. Perhaps this was an opportunity lost.  

The situation today 
Today, the situation in Australia is bewildering. NAPLAN provides an external measure 
of numeracy but teachers are urged to use formative assessment. External testing has 
become high stakes, with schools compared to other like schools using widely available, 
complex statistical information on the MySchool website. At the same time, systems 
advocate use of assessment for learning or assessment as learning and provide examples 
of open tasks, rubrics, descriptions of expected standards and many other resources 
aiming to lift the quality of teaching. Wiliam and Black (1996) used the ideas of 
meaning and consequences as one way of distinguishing formative and summative 
assessment. Formative assessment, they suggested, is characterised by some action as a 
result—the consequences of the assessment—whereas summative assessment has a 
focus on maintaining the same meanings across individuals and groups, as well as 
across time.  
 Despite the stress on assessment for learning, the emphasis on feedback and the 
plethora of advice to teachers, and external testing, there is little evidence that overall 
this activity has created improvement in students’ learning outcomes (Stiggins, 2007). 
Over a twenty-year period mathematics performance on statewide tests in Tasmania 
remained stable, although the tests themselves became harder, leading to a perception of 
falling standards (Griffin & Callingham, 2006). Initial comparisons on NAPLAN 
numeracy from 2008 to 2010 do not indicate any significant change across time for any 
grade group (Australian Curriculum, Assessment and Reporting Authority [ACARA], 
2010). Burgess, Wilson and Worth (2010), writing from an economics perspective, 
claimed that ―league tables‖ reporting assessment results for schools in England led to 
improved performance in contrast to Wales where league tables are not used. They 
quoted effect sizes of around 0.2 which is below Hattie’s (2009) suggestion that an 
effect size of 0.3 represents what would happen through a process of natural 
development. Internationally, Australia has slipped somewhat in rankings, and in PISA 
2009 its performance also declined significantly. In addition, a significant difference 
between male and female performance first seen in 2006 was confirmed, suggesting that 
gender equity issues are still of importance (Thomson, de Bortoli, Nicholas, Hillman, & 
Buckley, 2011). This decline happened despite the increased emphasis on statewide 
testing that grew throughout the 1990s and became NAPLAN in 2008. The evidence 
about improved performance from competitive assessment results is limited.  
 The situation in mathematics assessment in Australia today is thus somewhat 
confused. All states and territories undertake NAPLAN and these results are used for 
accountability at the local level. Australia participates in various international studies 
which are used as measures of the success of government policies. At the same time, 
teachers are bombarded with advice and resources about formative classroom 
assessment. There is an emphasis on giving feedback, improving teaching and providing 
detailed information to parents. Media and systems decry falling standards in numeracy, 
and parents are advised to consider assessment outcomes reported through MySchool 
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when they choose a school for their child. In summary, teachers and schools are getting 
mixed messages about assessment. On the one hand they are urged to bring assessment 
closer to teaching, on the other the assessment that counts is externally imposed testing. 
Confusion reigns. 
 It seems that the education community has not clearly communicated to those outside 
it what assessment is about, and what inferences can be validly drawn from the 
information presented. In part this is an issue of numeracy—it is, after all, a data 
interpretation exercise. There are also, however, issues around the use of assessment 
information that have remained unquestioned. Messick (1989) coined the term 
―consequential validity‖ to describe the use of assessment information. He stated  

Validity is an integrated evaluative judgement of the degree to which empirical evidence 
and theoretical rationales support the adequacy and appropriateness of inferences and 
actions based on test scores or other modes of assessment. (p. 13, emphases in original).  

The question that always needs to be asked is ―does this assessment provide suitable 
information on which to base future actions‖ about whatever claim is being made, 
whether that claim is about an individual student, a school or a system.  

Productive assessment 
Assessment is arguably the most powerful element in teaching and learning. Quality 
assessment can provide information to students, teachers, parents and systems in 
effective and useful ways. To be helpful, however, it must be broad ranging, collecting 
a variety of information using a range of tasks before, during and after a teaching 
sequence. At present there is a lack of consistency—in terminology, in approach and in 
use of assessment information. 
 One resource that may provide some direction is the AAMT position paper on the 
―Practice of Assessing Mathematics‖ (Australian Association of Mathematics Teachers 
[AAMT], 2008). Taking account of both classroom and external assessment, this 
document clearly makes the call that  

Students’ learning of mathematics should be assessed in ways that: 
• are appropriate; 
• are fair and inclusive; and 
• inform learning and action (p.1). 

This statement is consistent with Messick’s (1989) view of validity, and also recognises 
the reality of modern education. Large-scale external testing is here to stay, but does not 
have to have a negative impact on learning if it is used appropriately.   
 Assessment that provides useful, timely and appropriate information in fair and 
equitable ways is productive assessment. It may address the mathematical 
understanding of a child, the achievement of a class or the performance of a system, and 
can take place at any point in the learning and teaching cycle. Productive assessment 
includes productive tasks, productive dialogue, productive teaching practices and 
productive reporting. To illustrate these points, some examples of productive 
assessment are described here.   
 There are numerous wonderful tasks that promote and develop mathematical 
understanding in children. The key to making these tasks productive is to trust the 
students and allow them some freedom and control over what they choose to do. For 
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example, a Year 7 class started exploring the Task Centre activity called ―Sphinx‖ 
(Martin, 2000). They became very engaged with the problem and asked the teacher 
whether they could make a video about their investigation. Ultimately, the class 
produced a video that showed their learning about geometry, algebra, problem solving 
and many other incidental aspects of mathematics. This was an unintended assessment 
activity but one that produced very rich results for all concerned. 
 Productive dialogue can be any discussion that improves understanding. Take this 
example from a Year 8 classroom in a disadvantaged school during a learning sequence 
addressing 2D and 3D shapes: 

Student: We live on a circle, don’t we? 
Teacher: Are you sure? If we cut the earth in half we’d see a circle… Do we live on a 
circle? 
Student: Hang on, no, it’s a [long pause] It’s a cubic circle. 

The student successfully demonstrated his understanding of the difference between a 
circle and a sphere without having the technical language to describe this. The teacher 
was able to build on this understanding and to develop the appropriate mathematical 
language—a productive episode for both parties.  
 Quality mathematics teachers can turn almost any activity into a productive teaching 
event. A Year 1 teacher decided to use her students’ birthdays as a starting point for 
what she intended to be a unit on time addressing the months of the year, and so on. 
When trying to sequence the birthdays in the class by hanging cards on a line, the 
children were very insistent that the sequence should begin in the current month, rather 
than January which the teacher had anticipated. The teacher decided to throw the 
challenge to the class to represent the birthdays in ways that could be understood by 
other people. The representations produced gave some deep, and surprising, insights 
into the children’s understanding of data representation.  
 Productive reporting can be at any level. This scenario was observed in a Tasmanian 
primary school (Callingham, 2010).  

The teachers are meeting in grade teams. They are sharing the ―big books‖ about 
mathematics that the children in their class have produced. The discussion centres on 
what the books demonstrate about the children’s understanding, and what the teachers 
need to do to move that forward. In the discussion, teachers compare the work samples 
and make judgements about their own and other teachers’ students. They refer frequently 
to the state curriculum documents, NAPLAN results, the school policies and 
―throughlines‖ that have been developed collaboratively to ensure a common language 
and focus across the school. By the end of the meeting, all teachers have a commitment to 
some action for their class, and to increase the school focus on specific aspects of 
mathematics at which the students appeared to do less well on the NAPLAN. 

The teachers were reporting to each other, using data from various sources and 
committing to action as a result.  
 Teachers make a difference. They assess continuously in a variety of ways. It is time 
for a return to the traditions of assessment practice by recognising teachers’ authority in 
the [new] practice of mathematics assessment. 
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This paper centres on research on equity and mathematics education in Mexican American 
communities in the United States. This research is grounded on a socio-cultural perspective 
and encompasses work with teachers, students, and parents. We address questions such as: 
What are Latino/a immigrant parents’ perceptions of mathematics instruction? What do 
teachers see as obstacles and advantages in the mathematics education of non-dominant 
students? How does language policy affect students’ participation in the mathematics 
classroom? The findings are likely to be relevant to other settings with immigrant students 
and non-dominant students. 

Some context 
My entry into mathematics education was in great part through my experience as a 
Teaching Assistant for mathematics content courses for preservice elementary teachers. 
I became fascinated by how students made sense out of mathematics, and in particular 
those students who are not considered “successful” in mathematics by the traditional 
measures of success. As I write in Civil (2002): 

I became intrigued by the fact that the ‘more successful’ were less likely to make use of 
‘informal’ methods, everyday type reasoning, and would rather use a formula, algebra, 
school-like methods. The ‘less successful’ were often trying to make sense of the 
problems, making connections to everyday life. (p. 135) 

One of those “less successful” was Vicky, a preservice elementary teacher, who wrote 
in her journal, “There is hope yet when I can legally use my methods to solve a 
problem.” Her words are a constant reminder of how crucial it is that we listen to our 
students’ ideas and emotions about mathematics. Vicky’s approach to problems showed 
great insight and deep understanding, yet she did not seem to value it as much as her 
peers’ algebraic approaches. Preservice elementary teachers appeared to have rigid 
beliefs about what and how to teach in mathematics, beliefs largely grounded on their 
unsuccessful encounters with this subject (Civil, 1993). I could not help but wonder 

nd to children’s ideas about mathematics. When I shared how they were going to respo
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alternative algorithms that children may have used, the prospective teachers would often 
attribute them to “gifted children.” Years later, when I shared algorithms that immigrant 
children might bring with them, prospective teachers’ comments such as, “how can we 
be expected to know all these different ways?” or “This is nice but they need to learn to 
do things the U.S. way,” underscored for me the urgency to prioritize issues of equity in 
mathematics teacher preparation. Now I continue to wonder about the question of how 
teachers will respond to children’s ideas about mathematics and I am particularly 
interested in how the sociocultural context of students may play a role in teachers’ 
perceptions of students as doers of mathematics. In the last few years several projects 
across the world seem to be concerned with the need to make equity issues prominent in 
mathematics teacher education. But, as Gates and Jorgensen (Zevenbergen) (2009) 
write, in reference to two special issues of the Journal of Mathematics Teacher 
Education (JMTE) on social justice and mathematics teacher education: 

The publication of these two Special Issues is testimony to the continued concern in the 
mathematics education community over the problems of social justice, and the real need 
to bring it to the attention of mathematics teachers. However, we do need to ask—why 
has it taken so long? Why isn’t everybody—or at least more people—concerned about 
social justice? … Surely few would claim that the social conditions of our pupils were not 
our concern. Yet, we claim that is exactly what does happen in the field of mathematics 
teacher education—to a great extent. (p. 165) 

As I write this, another special issue from that journal on equity is almost ready. We 
could also raise the question of why “special issues” on these topics? What does that say 
about this topic in relation to what some call “mainstream” mathematics education 
research? As Martin, Gholson, and Leonard (2010) write in reference to the Journal for 
Research in Mathematics Education (JRME) special issues on equity, “In many ways 
this practice has helped to relegate these issues and the authors of such scholarship to 
the margins” (p. 15). This separation between  “mainstream” mathematics education 
research and equity research issues in mathematics education is quite problematic. I 
have argued before (Civil, 2006) for the need to bring together cognitive and 
sociocultural approaches to address the complexity of doing research in mathematics 
education, particularly when working in minoritised communities. In the next section I 
give some insights from a line of work in which we sought to develop mathematics 
learning environments that built on children’s and their families’ backgrounds and 
experiences. My focus will be on the importance of listening to students’ ideas about 
mathematics and of paying attention to the students’ context.  

Listening to students 
I have written elsewhere about the challenges and the affordances in developing 
learning experiences that build on community knowledge (Civil, 2002; 2007). Some of 
the issues encountered have to do with our valorisation of knowledge (Abreu, 1995), 
what we count as being “valid” mathematics in a school context, for example; other 
related issues have to do with our own limitation to see mathematics in everyday 
practices, due in part to our background in “academic” mathematics (González, 
Andrade, Civil, & Moll, 2001). Over the years, when reflecting on our work in 
connecting home and school mathematics, I have often raised the question of “where is 
the mathematics?” (Civil, 2007). The garden project (Civil, 2007; Kahn & Civil, 2001) 
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was one example of an experience in which we explicitly blended sociocultural and 
cognitive approaches to address this question of “where is the math?”. This project grew 
out of a teacher’s noticing that several of her students’ families had extensive 
knowledge and experience with gardening. The teacher decided to create small 
container gardens just outside her classroom and invited parents to come and help out 
with their knowledge as well with resources. 
 One of the mathematics topics explored through the garden project was that of area 
and perimeter. These concepts were grounded on the children’s experiences with the 
gardens that they tended to as part of this project. These gardens were enclosed in 
chicken wire (to protect them from desert creatures) and had to be covered with plastic 
during the winter nights. The gardens consisted of plants in pots since the ground 
outside the classroom was not conducive to planting. One real problem that the students 
(9-and-10-year-olds) encountered was how to maximize the space inside the enclosed 
gardens with the limited (and fixed) amount of chicken wire they had. From a practical 
point of view, we could argue that they did not need much mathematics to solve it. 
Students pulled here and there on the enclosure and crammed as many pots as they 
could. From a mathematical point of view, it is an optimization problem. We explored 
this problem in the classroom context, with artificial “gardens” made by a 3 feet string 
that they glued to poster board to make “gardens” for which they had to find the area 
(Civil & Kahn, 2001). Then, after the garden module was over and towards the end of 
the school year, I conducted task-based interviews with four students. Here is where I 
learned about Vickie’s thinking of linear units and square units. While she seemed to 
indicate that it did not make a difference whether one used centimetres or square 
centimetres for area, when talking about the plastic to cover she said square feet: 

Marta: OK, what about the feet? Because in the feet you told me very confident you said, 
“square feet” Could I have said that the area of this is 15 feet? 
Vickie: You should say square feet. 
Marta: OK, why do you think that? 
Vickie: Because they wouldn’t know what you mean you might say 15, 15 triangle feet or 
something. 

 The “they” in the last line was in reference to the people at the store where they sell 
the plastic to cover the gardens, a connection to outside school knowledge. Feet and 
inches are units that were familiar to them in their everyday context, while centimetres 
were more tied to the school context. Vickie may have known that in everyday life one 
uses “square feet” when talking about covering, but what this term meant to her remains 
to be seen, given her reference to triangle feet. Another student, Nathan, seemed 
confident that the shape with largest area (for a fixed perimeter) would be a circle, but 
when I probed him further, he added that for this particular task (where we were using 
square tiles to cover the area), a square would work best: 

Nathan: Well, our plant things were squares…  I mean were circles, but I think that it 
would have to be like a square this way, to hold more because these are square units.  
Because, I mean you can’t cut a plant holder in half…. Umm, well because circles will fit 
into circles right? … I mean you can fit circles into squares, but it is hard to fit a square 
into a circle…. I mean it’s like if you wanted to fill up the edges you would have to cut it 
in half. 
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Once again, we see a connection to the real life experience, here with the fact that the 
pots in the real garden were circular but in the task-based interview we are using 
squares to find the area (but for Nathan, these become also the “pots”). And finally, 
there is Jimmy, who was very patient with me as he tried to help me understand his 
reasoning for why the perimeter of a 9 cm by 2 cm rectangle was 8 cm. His explanation 
was based on a kinaesthetic experience that they had had in which they had created 
rectangles by lying down on the floor and counted from head to waist as 1 unit, and 
from waist to feet as another unit. So he drew a rectangle as if composed of 4 people, 
one per side and thus came up with an answer of eight. 
 These are very brief snippets on three students’ thinking about area and perimeter in 
the context of a project that was meaningful to them, judging by how eager students 
were to work in their gardens, talk about them, and engage in mathematical activities 
that were somewhat grounded in their experiences with the gardens. We made it clear to 
the students that we took their ideas seriously and in turn they took our questions and 
requests for explanations seriously. These experiences trying to connect home and 
school mathematics were fundamental to my most recent work, as they reinforced my 
view of the need for a holistic approach to the mathematics education of non-dominant 
students. Such an approach involves researchers listening to all interested parties, in 
particular parents, students, and teachers. I turn next to some lessons learned from this 
listening. 

Listening to parents 
Parental involvement in my context is typically associated with physical presence of 
parents in the schools. Thus, if “parents don’t come to school” it often contributes to 
schools’ (teachers’, administrators’, even other parents’) deficit views of parents, 
particularly in working-class, non-dominant communities (Civil &Andrade, 2003). Our 
work with Latino/a parents is based on a redefinition of parental involvement. It is 
grounded on the literature on parental involvement from a critical perspective 
(Calabrese Barton, Drake, Perez, St. Louis, & George 2004; Delgado-Gaitán, 2001; 
Valdés, 1996) and draws on the concept of cultural and social capital applied to parental 
involvement (Lareau and Horvat, 1999). A key concept in our work is that of parents as 
intellectual resources (Civil & Andrade, 2003), which implies a need to learn about 
parents’ views and understandings of mathematics to engage them in an authentic 
partnership with schools. I concur with Valdés (1996) when she expresses her concern 
for any effort at parental involvement that “is not based on sound knowledge about the 
characteristics of the families with which it is concerned” (p. 31). 
 As I point out in Civil (2008; in press), immigrant parents in different parts of the 
world share several perceptions about the teaching and learning of mathematics. For 
example, one such perception is that schools in the receiving country are less 
demanding in both discipline and content than the schools in their country of origin. 
How do we learn from parents about their perceptions on the teaching and learning of 
mathematics? We have taken several avenues to do this: ethnographic household visits; 
mathematics workshops with parents; mathematical “tertulias”; and classroom visits 
(Civil & Quintos, 2009).  I describe each of them briefly here, but my focus will be on 
the classroom visits. The ethnographic household visits are grounded on the concept of 
Funds of Knowledge, which are “these historically accumulated and culturally 
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developed bodies of knowledge and skills essential for household or individual 
functioning and well-being” (Moll, Amanti, Neff, & González, 2005, p. 72). These 
household visits were my entry into the world of working with parents and most 
specifically trying to see schools from their point of view. 
 The idea of mathematics workshops with parents originated through some of these 
household visits, as parents (mothers mostly) expressed an interest in knowing more 
about the mathematics their children were learning in school. This led to a large parental 
involvement project in mathematics where among other activities parents participated in 
short courses (about eight two-hour sessions) on a variety of mathematical topics 
(numbers and operations; algebra; geometry; data analysis, etc). These courses allowed 
us to establish rapport with the parents and in time learn about their ideas about the 
teaching and learning of mathematics as they engaged as learners of mathematics 
themselves. The “tertulias” emerged from this work. We borrowed this term from 
Spanish, where it is related to the idea of gatherings in cafes or people’s homes to 
discuss literature, poetry, or art. Our mathematical “tertulias” (mathematical circles) are 
arenas for doing mathematics but also for engaging in a critical dialogue about issues 
related to mathematics education. For example, through these tertulias we learn about 
parents’ concerns that their children are not being taught basic skills such as the 
multiplication facts; or we learn about their views on the algorithm for division in the 
U.S. as compared to the one in Mexico (Civil & Planas, 2010); or about their 
expectations for more homework and a stricter approach to schooling. Some of these 
issues also come up in the debriefing of classroom visits. This last approach has proven 
to be particularly useful towards engaging with parents in a dialogue about teaching and 
learning mathematics. The visit to a mathematics class provides a shared experience that 
we believe facilitates this dialogue while allowing for our beliefs and values to emerge. 

A visit to a mathematics classroom 
To illustrate aspects of the process and some findings I have chosen a visit to a 7th grade 
classroom (age 12) in which 5 mothers, a parent liaison, and a graduate student 
participated. The topic of the lesson was order of operations. All the observers had a 
sheet with some questions to guide the visit (e.g., “what does the classroom look like?”; 
how would you describe the participation in this classroom?” “What kinds of problems / 
questions were posed in this class?”). During the debriefing we use these questions as 
starting points for the conversation. For instance, for the question “what does the 
classroom look like?”, all the mothers were in agreement that there were too many 
distractions and non-mathematics related objects (posters, family pictures, etc.). 
Unpacking these observations led to several comments pointing to a shared preference 
for a more teacher-centred classroom. For example, the mothers were concerned about 
the way the desks were arranged in the classroom. Students were sitting in groups and 
their concern was that no matter how, some of them were always with their back to the 
board. The mothers questioned the value of being in groups:  

Berenice: Well, I think there is more distraction by being in a group all the time… rather 
than being individually.  You’re there by yourself attentive to what, to what the teacher is 
going to say… 
Dolores: Or many times, if you’re in a group, the other one is going, is going to copy the 
one who, who… 
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Berenice: Yes.  
Dolores: Who is doing it right.  So he is going to depend on the one on the side.  
Berenice: On the neighbour. 
Dolores: I think that by being individually they learn better. They work harder. 

Along the lines of a teacher-centred approach, some of the mothers wondered about the 
role of one female student who seemed to be mostly helping other students. What was 
she learning? the mothers wondered. This concern was reinforced because one of the 
mothers noticed that this girl had used a calculator to help one of the groups but had 
come up with the wrong answer. The mother wondered whether the teacher was going 
to notice that or whether she trusted this girl as her assistant. 
 To be expected the mothers use their own experience from when they were in school 
as one of the lenses through which they view this classroom experience: 

Carlota: the tables were not like that [when she went to school].  We would sit normal…. 
There were no tables; everybody always facing the front.  The board was always in the 
front.  There were no boards around.  Only in the front and they would just write down 
what they were going to teach you in the class, and here I saw a lot of things written, 
which I don’t know if they’re going to go over them or if they went over in another class, 
I don’t know. That’s how I was taught.  Facing the front and the board and that was it.   
Reina: The same for me, and when we finished the board would be erased and we would 
start over the next day, and now when we got in there, there were already some 
calculations on the board. 
Carlota: It was written already. … But, but not in ours, because in our case children 
wouldn’t leave the classroom.  I mean, you stay in your classroom and the teachers would 
come in… but not here, you have to leave running, you go to your next class and you go 
to the next one, but not over there. 

Notice how in the first line Carlota says, “we would sit normal” to describe her 
experience in school in contrast with what she saw in this classroom. They wonder 
about boards with parts of mathematics lessons already written on them, as opposed to 
seeing the lesson unfold in the class. They also noticed that teachers stay in the 
classroom and that students are the ones who switch. These observations point to 
aspects of the cultural script that is associated with teaching in different countries 
(Stigler & Hiebert, 1999). Discussing the implications for the teaching and learning of 
mathematics of these different cultural scripts is something that could be pursued with 
parents (and teachers). 
 The mothers were quite engaged in this conversation as they expressed their opinions 
about pedagogical issues such as group work and the flow of instruction. A concern for 
distraction was quite prominent in this debriefing. Students should be attentive, facing 
the board, working individually. Marianela, another mother says, “It’s real casual… like 
one table, a boy finished but the other two didn’t, then he started to talk, but it wasn’t 
about math. So they should only talk about the math problems, not about other things.” 
 Much of the mothers’ talk could be associated with the tension “reform-traditional.” 
Whether it is about the pedagogical approach (e.g., group work) or what to learn, as I 
illustrate next, we could argue that tensions are normal, generational, etc. But it has to 
be seen also through the power lens, by which I mean that low-income, immigrant 
parents’ voices are often not heard in the school setting. 
 In terms of what to learn, two recurrent topics are the division algorithm, in which 
Mexican parents comment that their method is more efficient and requires mental 
arithmetic as the subtraction is done in the head (see Civil & Planas, 2010), and the fact 
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that their children are not being asked to know their multiplication facts, while in 
Mexico they would. The mothers noticed that among the many things posted on the 
classroom walls were the times tables. One of them commented: 

Carlota: They [teachers in Mexico] never posted the tables on the walls for us…. They 
would tell you “This table is for tomorrow and learn it,” and there we are “Taca, taca, 
taca,” like a little machine, and backward and forward… I struggled a lot with my 
daughter. She’s in sixth grade and I can’t tell you she knows the multiplication facts. I 
can’t tell you, and I struggled a lot with her. I tried every possible way, but what 
happened? That in Mexico the teacher demands for you to know the facts, but here the 
teacher doesn’t. I mean, he gives you that little table [in reference to printed 
multiplication tables] and, and the child doesn’t learn it. I’m like a crazy woman over 
here “Honey, learn it,” and if the teacher doesn’t demand it, I’m just like a crazy woman. 

 Carlota is not alone is expressing her frustration as to what many parents see as a 
disconnect between what they expect from schools in regards to their children’s 
education and what schools do. Recurrent issues that parents bring up in the debriefings 
and focus groups are: lack of homework; teachers do not demand enough; not enough 
emphasis on learning the facts (e.g., multiplication); loose sheets of paper instead of 
note taking and a notebook; lots of distractions; approaches to doing mathematics that 
are seen as inefficient and do not stress mental arithmetic (e.g., division). Some parents, 
however, do comment on the fact that the approaches that they (and their children) are 
currently learning put more emphasis on understanding the why behind the procedures 
instead of rote memorisation. I have often argued for the need to have spaces in which 
parents can get experiences with the mathematics their children are learning (and the 
pedagogical approaches) and most importantly, opportunities to engage in dialogue 
about these experiences. In particular, it is important to develop a dialogue between 
parents and teachers / school personnel. In a large parental engagement project we had 
teams of teachers and parents facilitating mathematics workshops in the community. 
This allowed us to explore power issues as some teachers saw themselves as the experts 
in the teaching of mathematics and were quite critical of having parents teaching these 
workshops because they did not have the “proper preparation.” A few parents asserted 
their right to be facilitating these workshops since they were participating in the same 
leadership development program along with the teachers. Furthermore, they saw 
themselves as better positioned to reach out to other parents since they were also parents 
in the community (see Civil & Bernier, 2006, for more details on these power issues 
parents-teachers). 
 In our current work, consistent with the need for a holistic approach to the 
mathematics education of non-dominant students, we have been working with teachers 
using a Teacher Study Group (TSG) format in which teachers and university researchers 
meet regularly to reflect on the teaching and learning of mathematics with an emphasis 
on equity. We worked with 26 teachers teaching grades 2 – 8 (ages 7-13) in two 
Teacher Study Groups (TSG). The overarching goals for the two TSGs were to enhance 
teachers’ mathematical understanding, primarily through focusing on students’ thinking, 
and to engage in conversations about the role of language and culture in the teaching 
and learning of mathematics. I turn next to some of our findings from listening to 
teachers in the TSG sessions. 
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Listening to teachers 
At MERGA in 2009 I described some of the characteristics of the work with the two 
groups of teachers (Civil, 2009) and shared some of the findings with respect to what 
teachers see as obstacles and advantages in the mathematics education of non-dominant 
students. In particular I pointed out that engaging teachers to talk about the role of 
language and culture in the teaching and learning of mathematics was not easy. With the 
second group of teachers a prominent theme was that of teachers invoking the culture of 
poverty as an “explanation” for the students’ performance in mathematics. However, as 
Gorski (2008) points out,  

The myth of a “culture of poverty” distracts us from a dangerous culture that does exist—
the culture of classism. This culture [of classism leads]…into low expectations for low-
income students…. The most destructive tool of the culture of classism is deficit theory… 
[which suggests] that poor people are poor because of their own moral and intellectual 
deficiencies. (p. 34) 

 In this section I focus on listening to the teachers as they talk about their students’ 
families. I do that to further stress the need for dialogue parents-teachers. When we 
asked teachers what they perceived as being obstacles to the mathematics education of 
non-dominant students, many mentioned the home environment. Teachers’ concerns 
ranged from parents’ low levels of schooling, therefore not being able to help their 
children with homework to “parents not caring about their children’s education” 
because they were not seen in the school. As I mentioned earlier, in my context, 
physical presence of parents at school is often used as an indicator of parental 
involvement. This is a narrow and not culturally responsive view of parental 
involvement. The topic of parents not caring / not valuing education came up several 
times during our TSG sessions. There are several avenues to challenge these deficit 
views, and a particularly powerful approach is through the concept of household visits 
in the Funds of Knowledge project (González, Moll, & Amanti, 2005). Another 
approach is through discussion of readings and experiences and having teachers offer 
alternative explanations when this issue is brought up. For example, in the exchange 
below, Olivia expresses her frustration at what she views as a lack of responsibility in 
her students (8-year-olds) and she attributes it to their parents. Michael offers a counter 
explanation. 

Olivia: When we hear about parents who are home, who stay at home and don’t do 
anything, and you try to contact them, you try to have them coming to the classroom, and 
they make no response. That’s frustrating. Like, I always tell my kids, “You have to be 
responsible. Your parents go to work. That’s their responsibility. You’re responsible for 
coming here and learn”, and they all say to me, “My mom doesn’t work. My dad doesn’t 
work”, blah, blah, blah, so they don’t see that responsibility. So it’s really, I mean, I think 
we’re all sympathetic when we see that someone is struggling, and we do whatever we 
can to support them, but, on the other hand, when we see parents who are just, “Here, 
take my kid,” then that becomes difficult.  
Michael: I had a parent who was unresponsive and her kid, who was really bright, was 
coming in late a lot and missing school a lot and it was really getting to be worrisome, 
and I could not get her to come in for a conference, and then finally, when she did, what I 
found out is that she had her sister’s kids in the house with her because her sister is being 
deported, and one of these kids has a lot of mental health issues and it’s just disrupting 
their entire home, and so it’s really difficult to get all these kids ready for school in the 
morning, whether she works or not and that’s the reason why the boy wasn’t getting to 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

18



CIVIL 

school on time, because his cousin is disrupting their home life, and so I didn’t 
understand that until I finally got to sit down with her. So, the point about being persistent 
with people and not making assumptions is really important, because once I got to talk to 
her, I could see she was definitely committed to her son’s education, but she’s just facing 
a lot of real challenges and getting it there.  [TSG, May 2009] 

 Olivia’s talk captures many of the stereotypes that I have heard in my work with 
teachers in non-dominant communities: “they stay at home and don’t do anything” (how 
do we know they “don’t do anything”? They could be having a situation similar to the 
one in Michael’s case; or they may not be able to work for a variety or reasons, 
including immigration status); they do not come to school (how welcoming are schools? 
How is the visit to the school presented to them?); “when we see parents who are just 
‘here take my kid’” (parents, and this is particularly the case with many Mexican 
immigrant parents, trust the school with their child’s schooling, they are not just 
handing him/her off).  
 I do not want to imply that teachers had deficit views about their students’ families. 
The situation is more complex and we could see teachers going back and forth between 
discourses. For example, later in that same session Olivia said:  

Olivia: I think our parents truly want the best for our kids.  I mean, for parent-teacher 
conferences, they do show up, I think they just don’t know what to do. I have had parents 
telling me, “I can’t help him with this work in third grade.  I don’t know this.” They can’t 
do the work.  They weren’t educated…. I think they are so overwhelmed with life and 
situations that happened, that they’re not really, they don’t have the tools…. I don’t feel 
like they have the tools to help their child.  It’s not from lack of desire.  They just don’t 
know what to do.  They’re overwhelmed by everything else that happens in life, and 
sometimes we lose sight of that because we're so frustrated in the classroom, and we 
think, it they would just help him with his homework, if they just didn’t help him read, 
but the reality is that we do what we can with what we have.  

Of course there is a lot that we could question about Olivia’s talk in this excerpt, such as 
her notion that parents do not have the tools. But we can also sense her not wanting to 
just dismiss the parents as uninterested in their children’s education. 
 Although the teachers’ talk about their students’ families may be seen as “interesting 
but unrelated to mathematics education,” I argue that whether teachers view parents as 
resources or as obstacles or as the reason for their students’ behaviour and performance 
should be of concern to mathematics educators. As Jorgensen (Zevenbergen) (2010) 
writes, “the solution cannot be found in looking from a mathematical lens but must be 
much broader if increased access to mathematics education is to be a reality of the 
future” (p. 26). Her study is centred in an extremely disadvantaged context in a remote 
Aboriginal community; arguably it is a context that at many levels is quite different 
from the one in my work. However, the low-income Latino/a communities where my 
work is located are marginalised not only because of poverty but also in terms of 
language and culture, particularly in the current anti-immigration movement in my local 
context. I do believe that we need to get a better understanding of how teachers view 
their students’ families and work towards moving away from deficit views to 
approaches that seek to understand parents’ circumstances and experiences. The fact 
that teachers who have been teaching in schools with a large number of students of 
Mexican origin seemed unaware of the difference in the representation for the division 
algorithm in the two countries (Mexico and United States), points once again to a lack 
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of communication between home and school. Some of the teachers in our work feel 
comfortable trying to make connections to their students’ home experiences in other 
subjects but not in mathematics: 

Penny: Some kids do come in knowing a lot because they maybe have worked at home 
with their family in building things or working on a car or anything at home where 
they’ve had like pre-measurement experiences.… But you know when I mostly bring it 
out is in reading or writing time. In math I haven’t seen it come out as much but then 
again maybe I am not being more aware of trying to ask those kinds of questions; maybe 
it’s just I am faulting on my part of not asking those kinds of questions in math, because I 
do do it in other areas. [Interview, September 2006] 

Making connections to students’ cultural and language backgrounds is a complex 
endeavour. In the first part of this paper I gave a glimpse of some of our work 
connecting home and school mathematics (for more on this see Civil, 2002; 2007). In 
this last section I return to the students focusing now on a different topic, the issue of 
how language policy in schools affects participation in the mathematics classroom. 

Listening to students, again 
Since 2000 bilingual education in the State where my research is located has been 
severely restricted. Furthermore, since 2006, English Language Learners (ELLs) are to 
receive 4 hours a day of English language instruction, raising serious concerns about 
their opportunities to learn other content areas and the segregation that this approach 
promotes. It is a clear example of subtractive schooling (Valenzuela, 1999), in which 
the culture and language backgrounds of ELLs are not used as resources but instead 
seen as a problem that needs to “fixed.” Many of the teachers in our work have had to 
switch from bilingual, additive approaches to Structured English Immersion (SEI) 
programs, where by law all instruction is in English with occasional clarification in the 
students’ home language. Teachers have shared their frustration at the language policy 
and some of them have commented on the effect it has on students’ participation in the 
classroom.  Matilde, a middle school teacher at a school where ELLs were segregated 
for most of the school day, shares her perceptions of these students when they are 
approaching the time in which they may be switched to a “regular” classroom: 

Matilde: I work only with ELL students … Our kids feel afraid to be in the regular 
classroom because they feel the other kids have the power. So, even if I have a very 
brilliant a kid, he goes to a nor- class, a regular classroom, and he is going to be one X 
student [meaning anonymous]. Because he is not going to be that brilliant because they’re 
going to ask them questions in English so they don't know how to explain themselves and 
they’re going to be quiet. So they’re going to be, relegated to the back of the class. So 
they are afraid to go to a regular class. [TSG, March 12, 2009] 

 I have discussed elsewhere several issues related to a restrictive language policy and 
students’ participation in the mathematics classroom (Civil, 2009; 2011; Planas & Civil, 
2010). Thus here, what I will do is provide a summary of some findings from this 
research. As Clarkson (2009) points out, we need to be aware of the specificity of 
different multilingual contexts as, “there is a danger that a model for teaching that may 
be useful in one such context can be assumed to be applicable in all multilingual 
contexts” (p. 151). My context is essentially a bilingual English-Spanish one, in schools 
in predominantly Latino/a communities with a strong affiliation with the Spanish 
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language, with several teachers and school personnel being bilingual themselves. Thus 
it is not unusual to hear both English and Spanish in the school grounds, and for 
students to use Spanish in their small group discussions. The language of instruction, 
however, is English. This is the result of a language policy that cannot be separated 
from the political environment of anti-immigration in my local context (this is also the 
case in other countries, as I discuss in Civil, 2008; in press). 
 I will centre my observations on a study with a small group of 8 ELLs, 7 of which 
were recent immigrant students from Mexico (had arrived within two years prior to the 
study). They were in 7th grade (12 year-olds) and were with other ELLs for most of the 
day (except for one elective, in which they were mixed with non ELL students). Very 
likely due to the small size of the mathematics class, the atmosphere in the classroom 
was very relaxed and family-like; students knew each other well and there was a lot of 
teasing going on. The teacher was Spanish dominant herself but taught in English most 
of the time. Students were expected to write in English and there seemed to be an 
implicit expectation that they would communicate in English when talking to the whole 
group. Probably not surprisingly, when presenting in English, their verbal and non-
verbal expressions were stilted and seemed tentative. Working in groups and then 
presenting a group’s approach to the rest of the class was not the norm in this school. 
Thus, as we encouraged students to do this, we also gave them the freedom to use 
Spanish to explain their thinking when they so wished. Allowing for that to happen gave 
us access to very rich and lively mathematical discussions, which in turn gave us a 
window into their thinking about mathematics. We would have missed this, had they 
(and we) not been able to access their home language. I want to stress not only the 
cognitive aspect but also the affective one. By having access to their first language 
students could use humour (which is culturally situated) and metaphors when solving 
problems. Such is the case of Carlos in solving a probability problem that had two 
spinners, one split in fourths with Yellow, Green, Red and Blue; the other one split in 
thirds with Red, Green and Blue; one of the tasks involved finding the theoretical 
probability of getting a match. Carlos right away said 3 out of 12: 

Porque, mira, aquí no están hablando del yellow. … Nomás el yellow está de metiche ahí, 
porque, mire, nomás está... Sale green, red, and blue.  Todo sale green, red, and blue, y el 
yellow también participa, pero haga de cuenta que el yellow no cuenta, pues. [Because, 
look, here they are not talking about yellow…. Yellow is just a busybody here, because, 
look, it’s just… We get green, red, and blue.  In everything we get green, red, and blue, 
and yellow also participates, but just suppose yellow doesn’t count.] 

Carlos’ use of the word “metiche” (busybody) is a cultural referent, which combines 
both humour and metaphor. He knew that there were 12 possible outcomes, and only 3 
of them were matches. His explanation combines mathematical talk with more of an 
everyday language by referring to Yellow as a “metiche.”  
 Encouraging the use of the two languages also gave us a window on the different 
strengths that students bring, such as a student, Octavio, who enjoyed engaging in 
mathematical arguments but did not show that inclination till the use of Spanish with 
the whole class became more visible. When presenting with his group on a somewhat 
difficult probability problem where they had to determine whether a game was fair, he 
relied on another student to translate into English and write on the white board his 
explanation. When another student challenged their work, Octavio argued with him in 
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Spanish. Yet, later on as he tried to explain in English why he thought the game was 
fair, his explanation was much harder to follow. Was it because of the language or 
because of the mathematical content? 
 Our research shows similar findings to those of Clarkson (2006) and Planas and 
Setati (2009) on the reasons and situations in which students switch languages (e.g., 
perceived difficulty). We also conducted task-based interviews in which similar to 
Clarkson’s study, we asked the students about their language use to solve problems. 
Besides the cognitive implications of this type of research, I want to emphasize the 
affective component. Although this classroom provided a safe environment in which 
students could use both languages to do mathematics, it was after all a case of 
segregation and the students were very aware of this. They knew that they were not in 
the “regular” classroom and several of them shared with me that they would have liked 
to be in an environment that was more English dominant and with non ELL peers (see 
Civil, 2011; Civil & Menéndez, 2011; Planas & Civil, 2010). Thus, I wonder, were we 
“right” in encouraging them to discuss mathematics in Spanish? Or was doing this 
contributing to their perception that they were not having enough opportunities to learn 
English? This raises many questions in my mind around the effect of language policy on 
students’ language identity in the mathematics classroom (and in school in general). 

Closing thoughts 
Like Jorgensen (Zevenbergen) (2010) and Martin et al. (2010), I argue for the need to 
find other approaches to address the mathematics education of non-dominant students. 
As Martin et al. write,  

Rather than generating concern about studies that do not give priority to mathematics 
content, it may be more informative to understand why studies that have continued to do 
so have offered so little in the way of progress for students who remain the most 
underserved. Minimal progress for these students would seem to demand that we pursue 
all promising areas of inquiry informing us about how to help them experience 
mathematics in ways that allow them to change the conditions of their lives. (pp. 16-17) 

One promising area of inquiry is one in which all interested parties really listen to each 
other and work on making “difference” a resource rather than an obstacle towards the 
teaching and learning of mathematics. We should examine how our values and beliefs 
about what counts as mathematics and who can learn it and how, support or interfere 
with the development of learning experiences that are culturally responsive to the 
students we have (we all bring values and beliefs, including students, parents, teachers, 
and university researchers). Teacher education programs need to engage teachers and 
preservice teachers in experiences with parents and children that allow them to examine 
the complexities of different perceptions and valorisations of knowledge as well as the 
role that multiple languages and language policies play in children’s learning of 
mathematics. To pretend that the cultural, social, language, and political contexts of 
non-dominant students can be put aside when teaching mathematics is educationally 
irresponsible. 
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The Beth Southwell Practical Implications Award was initiated and sponsored by the 
National Key Centre for Teaching and Research in School Science and Mathematics, 
Curtin University, Perth, Western Australia. Curtin sponsored the “Practical 
Implications Award”, as it was then known, for the first ten years. The Award is now 
sponsored by the Australian Association of Mathematics Teachers (AAMT). In 2008, 
MERGA was honoured to be able to rename the PIA as the Beth Southwell Practical 
Implications Award, in honour of MERGA’s and AAMT’s esteemed late member, Beth 
Southwell. 
 The award is designed to stimulate the writing of papers on research related to 
mathematics teaching or learning or mathematics curricula. Application for the award is 
open to all members of MERGA who are registered for the conference.  
 Applications for the PIA are judged against specific criteria by a panel consisting of 
two members of MERGA, two from AAMT, and chaired by the MERGA Vice 
President (Development). 
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Inquiry pedagogies are often advocated for equipping students with 21st century skills, but 
teaching mathematics through inquiry is difficult. A longitudinal study investigated 
teachers’ experiences of learning to teach mathematical inquiry over time. Using the 
Productive Pedagogies framework, this paper reports on aspects of practice that evolved for 
twelve primary teachers as they gained experience with inquiry over three years. 

 
School mathematics is criticised for emphasising closed problems with set answers 
(Hollingsworth, Lokan & MacCrae, 2003). Many students find mathematics boring and 
lacking relevance (McPhan, Morony, Pegg, Cooksey, & Lynch, 2008). Declines in 
students studying advanced mathematics has prompted recommendations to build 
capacity and interest in mathematics by improving mathematics teaching and promoting 
inquiry (Australian Academy of Science, 2006; Council for the Mathematical Sciences, 
2004). Inquiry addresses ill-structured problems, where the problem statement, goals, or 
solution paths contain ambiguities that require negotiation (Reitman, 1965). Most 
everyday problems are ill-structured; evidence is often conflicting, requiring one to seek 
potential causes of the problem and generate a range of possible solutions (Walker & 
Leary, 2008). Through mathematical argumentation, justification, and hypothesis, 
mathematical inquiry generates fresh understandings, appreciation of complexities in 
problem contexts and new questions to explore (Magnusson & Palincsar, 2005).  
 A major issue in mathematics education is to find ways to support teachers to 
develop inquiry pedagogies in mathematics. Researchers have identified challenges that 
teachers face when teaching inquiry (mostly in science): envisioning inquiry processes, 
managing uncertainties that arise, and creating a culture of inquiry (R. Anderson, 2002; 
Crawford, Krajcik, & Marx, 1998). Little is known about teachers’ experiences as they 
move from these challenges towards expertise.  
 A longitudinal study was designed to understand teachers’ experiences as they 
developed proficiency teaching mathematical inquiry. This paper presents findings from 
analyses of classroom lessons of twelve primary teachers’ over three years using the 
Productive Pedagogies framework (State of Queensland, 2002). Areas of their 
pedagogies that shifted are discussed.  
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Literature 
Inquiry is relatively uncommon in mathematics classrooms where the focus is on 
problems that are well-structured—that is, problems in which there are no ambiguities 
(context-free), or where the problem is embedded in context but decisions have already 
been made to address the ambiguities. Because of this, learners and teachers in 
mathematics may lack confidence to contend with uncertainties that arise or manage the 
deliberation needed to wrestle with complexities in the problem. Initial experiences can 
be especially daunting, as teachers are often disappointed when lessons do not run as 
expected (R. Anderson, 2002; Makar, 2010). “There is a danger that … initial 
difficulties with implementation and disappointment with student performance can lead 
to a premature rejection of [these] new pedagogies” (Krajcik et al., 1998, p. 341). 
 In a large scale review of literature on mathematics professional development, Doerr, 
Goldsmith, and Lewis (2010) conclude that “repeated cycles of experimentation, 
reflection, and revision [are] required to change elements of instruction” (p. 4), 
particularly in areas such as inquiry which are strongly connected to teachers’ beliefs. 
They suggest that key features of professional development that do make a difference—
substantial time investment, systemic support, and opportunities for active learning—
are rare in programs involving more than a few teachers. In evaluating sustained 
professional development projects, Heck, Banilower, Weiss, and Rosenberg (2008) 
report that teachers’ use of innovation was greatest in the first 80 hours of interaction 
and then leveled off, but after 160 hours, innovation increased again. This suggests that 
innovation is sustained in the long term, but only if teachers are supported over time, 
remembering that change is non-linear and idiosyncratic (Clarke & Hollingsworth, 
2002; S. Anderson, 2010).  

The Productive Pedagogies framework 
In order to understand teachers’ changing experiences of teaching inquiry, there is a 
need to document classroom observations of inquiry practices both within a single 
classroom over multiple years and collectively as teachers gain experience. Finding a 
framework without shortcomings was unlikely, particularly since characteristics that 
make up quality classroom pedagogies are contested. Productive Pedagogies was 
developed for the Queensland School Reform Longitudinal Study (QSRLS, 2001a) as a 
way to observe and document pedagogical practices across Queensland.  

Table 1. Productive Pedagogies (QSRLS, 2001a). 

Intellectual Quality 
 Knowledge presented as problematic 
 Higher order thinking 
 Depth of knowledge 
 Depth of understanding 
 Substantive conversation 
 Meta-language 

Supportive Classroom Environment 
 Students’ direction of activities 
 Social support for student achievement 
 Academic engagement 
 Explicit quality performance criteria 
 Student self regulation 
 Narrative 

Connectedness 
 School subject knowledge is integrated 
 Link to background knowledge 
 Connectedness to world beyond classroom 
 Problem-based curriculum 

Recognition of Difference 
 Knowledge explicitly values all cultures 
 Representation of non-dominant groups 
 Group identities in a learning community 
 Active citizenship 
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The opportunities provided by the Productive Pedagogies seemed positive in their 
emphasis on many of the same qualities valued in inquiry. Productive Pedagogies 
consists of 20 pedagogical practices organised into four main clusters: Intellectual 
Quality, Connectedness, Social Support and Recognition of Difference (Table 1). 
Although they have been critiqued even by their authors (e.g., Ladwig, 2007), the 
framework has been used extensively. Researchers have refined and updated the 
framework (Mills & Goos, 2007), but it has remained substantially unchanged since its 
publication in 2001. 

Method 
The research question was, “Which aspects of teachers’ practice change as they gain 
experience in teaching mathematical inquiry?” The data reported in this paper come 
from teachers who completed at least three years in an ongoing longitudinal design-
based research study. In design-based research, the researcher focuses on 
simultaneously studying and improving the research context through a number of 
reflective and retrospective cycles. The benefit of design-based research is that  

… in contrast to most research methodologies, the theoretical products of design 
experiments have the potential for rapid pay-off because they are filtered in advance for 
instrumental effect. They also speak directly to the types of problems that practitioners 
address in the course of their work. (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003, 
p. 11) 

Figure 1 represents the model used in the project to understand teachers’ changing 
experiences as articulated by the teachers in the study (Makar, 2008). 
 

 

Figure 1. Model of teachers’ changing experiences in learning to teach mathematics through inquiry. 

The first phase (2006–2007) included five teachers from a large primary school in a 
middle class suburb. The next phase (2007–2009) expanded to twenty teachers—six 
from the original school and fourteen teachers (the entire school) from a rural school—
in a low socio-economic area in the same region. As is common in longitudinal 
research, the project experienced attrition due to transfer. Data were collected from 23 
teachers, with new teachers recruited as teachers left. This paper limits its focus to the 
12 teachers in the study for at least three years. Five teachers (all female) were from the 
suburban school and seven (six female, one male) from the rural school. 
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 Teachers participated in three to four days of professional development per year and 
taught a mathematical inquiry unit each term (a term lasts 10 weeks). Professional 
development seminars gave teachers time to collectively reflect, share experiences and 
obtain peer feedback. During the seminars, teachers also engaged in learning 
experiences that highlighted particular aspects of inquiry (e.g., ill-structured problems, 
assessment, emphasising concepts), built understandings of inquiry processes (e.g., 
working with ambiguity, understanding the role of evidence) and developed a learners’ 
perspective of inquiry (e.g., experiencing frustration, breakthroughs, cognitive drivers).  
 The teachers developed their own units or modified published units; a unit lasted 
anywhere from two lessons to several weeks. During or after lessons, the researcher and 
teacher engaged in informal conversation to offer individualised support, query 
experiences, validate uncertainties and offer advice if requested. Advice was used 
sparingly to understand teachers’ experiences with limited support (the current phase 
includes more explicit and systematic feedback and targeted skills in teaching inquiry).  

Data collection and analysis 
Classroom lessons were videotaped; it was not possible to videotape every lesson, but in 
most cases at least two lessons from every teacher were taped each term. Five hundred 
and sixty-five lessons were videotaped in the first two phases (2006–2009). This paper 
presents analyses of these videos, limited to teachers in the project for at least three 
years. To gauge teachers’ pedagogies over time, a stratified random sample of lessons 
was selected to analyse, with lessons from each teacher randomly sampled according to 
the criteria in Table 2 to align with the model used in the project (Figure 1).  

Table 2. Categories of lessons in the sample coded. 

Category Cumulative terms teaching inquiry Random sample of lessons coded 
R Regular (non-inquiry) maths lesson (any term) 1 per teacher 
A First Inquiry (term 1 of their participation) 2 per teacher 
B Remainder of first year (terms 2-4) 2 per teacher 
C Second year (terms 5 – 8) 2 per teacher 
D Third year (terms 9 – 12) 2 per teacher 

 
Lessons were identified by a code to mask their category and analysed with the 
Productive Pedagogies Classroom Observation Scheme (Queensland School Reform 
Longitudinal Study [QSRLS], 2001b). The Scheme describes qualities of practice in 
each Productive Pedagogy on a scale of 1 to 5 (with 5 high). A team of researchers led 
by the author scored the sample after a period of moderation (and interim cross checks). 
One hundred and one lessons were analysed in all (in a few cases, only one taped lesson 
was available), with scores averaged across teachers’ two lessons.  
 Teachers were also assigned a difference score for each Productive Pedagogy and 
pedagogy cluster based on shifts during the first year (AB, the difference in their 
average A score and average B score), the first three years (AD) and comparisons 
between initial inquiry lessons and non-inquiry lesson (RA). Distributions of RA, AB 
and AD were tested with a two-tailed test of a single mean (e.g., Ha: RA≠0).  
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Results 
Figure 2 provides a snapshot of the distributions of the twelve teachers’ scores overall 
(average across Productive Pedagogies) and for each pedagogy cluster in the five 
categories—R (regular lesson), A (first inquiry), B (first year), C (second year) and D 
(third year). The graphs suggest that the teachers’ pedagogical practice generally 
improved over time. Some patterns are more complex, however, than the graphs reveal.  
 

 

Overall Intellectual 
Quality Connectedness Supportive 

Environment 
Recognition of 

Difference 
 R: 2.3 (0.42) 
 A: 2.9 (0.37) 
 B: 3.2 (0.32) 
 C: 3.2 (0.49) 
 D: 3.4 (0.55) 

R: 2.4 (0.73) 
A: 3.0 (0.42) 
B: 3.3 (0.47) 
C: 3.3 (0.61) 
D: 3.4 (0.73) 

R: 1.6 (0.37) 
A: 3.3 (0.57) 
B: 3.5 (0.64) 
C: 3.3 (0.63) 
D: 3.7 (0.84) 

R: 2.9 (0.49) 
A: 3.0 (0.47) 
B: 3.2 (0.51) 
C: 3.3 (0.44) 
D: 3.5 (0.53) 

R: 2.2 (0.37) 
A: 2.3 (0.57) 
B: 2.7 (0.35) 
C: 2.8 (0.52) 
D: 2.9 (0.49) 

Figure 2. Distributions of scores in each pedagogy cluster and overall for a regular lesson (R), first 
inquiry (A) and in inquiries in the first (B), second (C) and third years (D). The table shows means 
(sd) of each pedagogical cluster in each category of inquiry experience (R, A, B, C, D). 

Such broad comparisons offer only a vague impression of the teachers’ changes in 
pedagogical practices in their first three years. Of interest was whether patterns emerged 
within Productive Pedagogies over time. For example, did different pedagogical 
practices evolve at different times? Table 3 details breakdowns of change scores (RA, 
AB, AD) for each Productive Pedagogy and pedagogy clusters, discussed below. 

Intellectual quality 
Although it had a plateau in the second year, Intellectual Quality improved by about one 
point on average on the five point Observation Scheme from the regular maths lesson to 
the third year of inquiry. Three Productive Pedagogies showed significant improvement 
from the regular maths lesson to the first inquiry lesson (RA), particularly Problematic 
Knowledge and Higher Order Thinking. Metalanguage improved gradually but was 
consistently higher (low standard deviation) by the teachers’ third year. Substantive 
Conversation and Depth of Understanding appeared difficult areas to change. 

Connectedness 
Connectedness was the lowest cluster in the regular maths lessons ( = 1.6) yet 
increased to the highest ( = 3.7) by the third year. The improvement from a regular 
maths lesson to the inquiry lessons in all pedagogies in this cluster was significantly 
higher almost immediately. Knowledge Integration and Problem-based Curriculum 
increased quickly then plateaued or slightly declined. Link to Background Knowledge 
and Connectedness to the World increased slowly, ending strong by year three.  
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Supportive classroom environment 
Teachers noticed at once that students were engaged in inquiry lessons (similar reports 
are made by Kennedy, 2005), an observation supported by the data (t11=2.2, p=0.050). 
Some areas declined initially; this was most evident in Student Self-Regulation, related 
to classroom management, where teachers may have felt uncomfortable with less 
control and higher noise levels. Student Self-Regulation was generally high in regular 
lessons ( = 3.9, s=0.43) and never reached this level in inquiry. These pedagogies 
typically took longer to improve, with only two significantly higher by year three 
(Explicit Quality Criteria, Social Support for Achievement). This suggests that 
developing a classroom culture of inquiry may be one of the most challenging aspects 
of teaching mathematical inquiry. 

Recognition of difference  
This category did not demonstrate strong growth in teachers’ first year of teaching 
inquiry, particularly Active Citizenship which dropped dramatically. This may be a 
reflection of teachers’ initial classroom management concerns (Makar, 2010). Active 
Citizenship improved substantially by year three, ending strong ( = 3.5, s=0.75). 

Discussion 
This paper examined evidence of teachers’ pedagogical shifts over time as they gained 
experience in teaching mathematics through inquiry with support. In regular 
mathematics lessons, every pedagogical cluster scored on average below mid-level 
(score of 3 on a scale of 1 to 5) and most ended well above mid-level by the third year 
of inquiry teaching (Figure 2). In some pedagogies, such as Connectedness to the 
World, the average for the regular mathematics lessons was disappointingly low 
( =1.3). This may say as much about many regular maths lessons as it does about 
inquiry. If students are not made aware of the way that mathematics is used in the 
world, it is of no surprise that many students believe mathematics lacks relevance and 
choose to discontinue studying it (Australian Academy of Science, 2006; McPhan et al., 
2008).  
 Many pedagogies improved in the first year, declined slightly in the second year, and 
improved again in the third year. This pattern suggests the importance of supporting 
teachers in the first year (Makar, 2010), throughout the second and into at least the third 
year where they are gaining confidence. Innovative pedagogies place significant 
demands on teachers, and targeted, timely support appears to be vital. Recognising that 
the primary goal of professional development is the long term improvement of student 
learning, Doerr et al. (2010) counsel that professional development must likewise focus 
on sustained, long term change of teacher practice. In particular, their review of the 
literature suggests that (1) extended time investment, (2) sustained support and (3) 
repeated opportunities for teacher learning over time are required if there is an 
expectation for teachers to demonstrate shifts in practice.  
 It is well established in the literature on teacher education that pedagogical change is 
difficult. The research reported here provides preliminary insights into the potential for 
teachers’ pedagogical change when these three features—extended time investment by 
teachers and a teacher educator, sustained support and repeated learning opportunities—
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are in place. The teachers in this study committed substantial amounts of time and 
energy in developing, teaching and reflecting on mathematical inquiry units for their 
students, the researcher invested hundreds of hours in classrooms observing individual 
teachers’ lessons, and three to four days per year of professional development provided 
multiple opportunities for learning and reflection. Such a commitment from all parties 
questions whether this type of research can be scaled up. The next phase of the study 
(2009-2012) with over 40 teachers is currently underway, focusing on investigating and 
building foundations for a scalable model.  

Practical implications 
Teachers as well as those involved in teacher education and professional development 
must understand the nature of challenges and shifts associated with mathematical 
inquiry. For teachers, acknowledging that learning to teach mathematics through inquiry 
takes time can assist them in persisting through periods of frustration. Having a better 
understanding of the difficulties of learning to teach mathematics through inquiry may 
assist teacher educators in better supporting and validating teachers’ experiences with 
inquiry pedagogies. The study reported in this paper suggests several practical 
implications for teachers, schools and teacher educators, including areas of greatest 
challenge, improved awareness and attention to the “implementation dip” of new 
pedagogical practices and the value of longitudinal professional development. 

Patterns of pedagogical change and the “implementation dip” 

Although the combined average of teachers’ overall productive pedagogy score tended 
to rise as they gained experience (Figure 2), the changes did not happen in a linear, 
predictable fashion. In some areas, the improved practice was evident almost 
immediately. Even among those areas which improved in the first inquiry unit, the 
progression of pedagogical change in the following again was unpredictable. The 
pedagogical clusters of Supportive Classroom Environment and Recognition of 
Difference eventually rose significantly above that of a traditional mathematics lesson, 
but this took substantially more time.  
 Teacher educators, principals and policymakers need to expect rather than eschew 
the non-linear nature of teachers’ adoption and adaptation of new pedagogical practices. 
This study is a reminder that new practices not only take time, but improvement 
pathways shift and turn in unexpected ways. For example in this study, dips and 
plateaus were evident in pedagogies from every pedagogical cluster. Although 
implementation dips have been reported in the literature (see for example, work by 
Fullan (2007) and Pendergast (2005) on implementing whole school pedagogical 
innovation), they are typically met with surprise and disappointment. In some cases, a 
judgement is made hastily that the dip indicates the new pedagogical practice has gone 
into disuse. Instead, implementation dips need to be acknowledged as a normal part of 
the process so that teachers are supported and encouraged to persist through them rather 
than left feeling guilty. 
Sustained professional development 

The data suggest that the teachers’ overall pedagogical practices in the study improved 
within the first year of their engagement with inquiry (agreeing with research by Heck 
et al., 2008). It is important to note, however, that sustained engagement with 
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professional development was likely needed beyond this first year to maintain and 
further improve practices. The plateau or “implementation dip” that appeared for many 
of the teachers after the first year strongly suggests the importance of this ongoing 
support through this period when teachers’ initial engagement with inquiry may be 
starting to wane. The pressures of “performativity” (Ball, 2003) may have also 
amplified the dip as inquiry is sometimes considered to be at odds with accountability. 
 The design of this study ensured that the teachers received regular classroom support 
and professional development throughout the study. While it points to some positive 
outcomes of school-university partnerships, there are questions about whether this type 
of professional development can be applied more broadly. This and several other 
questions are raised by this study requiring further investigation.  
• What models of “scaling up” improve inquiry-based pedagogies in mathematics 

more broadly (e.g., peer coaching, whole school adoption)? 
• What supports can target an “implementation dip” to lessen its impact or duration? 
• How can more long-term classroom-based professional development be 

encouraged? What aspects (e.g., classroom feedback, reflection, collaboration) are 
most critical? 

• What other frameworks are effective for evaluating and self-assessing inquiry-
based teaching practices in mathematics? 

• How do teachers’ experiences with inquiry-based teaching affect their teaching of 
regular maths lessons? 

This study has implications as well for both teachers and teacher educators about the 
pedagogies of regular mathematics lessons. In particular, the pedagogy of 
Connectedness with the World was unexpectedly low. School mathematics is often poor 
at being explicit about connections between content being taught and the world beyond 
school walls. This study is a reminder of the importance in regular mathematics lessons 
of making the relevance and interconnectedness of mathematics explicit. 

Conclusion 
The findings of the longitudinal study previously published had been based on teachers’ 
self-reports of challenges and opportunities in teaching inquiry (Makar, 2007, 2010) and 
case studies of exemplars of teaching and learning (Allmond & Makar, 2010; Makar & 
McPhee, 2009; Fielding-Wells, 2010). This paper extends the evidence base of this 
longitudinal study by presenting analyses of quantitative data from repeated 
observations of teachers’ classroom practices over three years. As a body of work, the 
interweaving of multiple research approaches strengthens the overall message that 
implementing mathematical inquiry, while highly promising as a pedagogical practice, 
is challenging for teachers and requires substantial time and resources to operationalise.  
 In this study the changes to teachers' pedagogies were non-linear and did not follow a 
predictable curve. This is a timely reminder that facilitating teacher change is complex, 
even when teacher development strategies tick all of the “effective professional 
development boxes”. Perhaps this is because innovation is not a process of adoption, but 
rather a process of implementation involving progress and outcomes that are, 
necessarily, highly reliant on interaction with the particularities of the local context  
(S. Anderson, 2010). 
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In this paper we examine the nature of the instructional coherence across a series of lessons 
on linear equations. Using video and interview data from a Year 9 class in the New Zealand 
component of the Learner’s Perspective Study (LPS) we explore how the teacher’s 
pedagogical strategies associated with the selection and enactment of tasks and the action 
of ‘sowing seeds’ were key factors in establishing instructional coherence. We provide 
excerpts from classroom episodes to illustrate how instructional coherence supported 
students’ learning of mathematics.  

Introduction 
It is widely agreed that raising achievement, especially for those groups of students who 
are currently underserved in our classrooms, is a priority focus for educational reforms. 
In New Zealand we have an array of policy initiatives, supported by a ‘standards 
agenda’, that are designed to identify and address underachievement. Underlying these 
policy initiatives is the belief that teacher quality—and thus classroom instruction—is a 
major determinant of student progress in schools.   
 We know that effective pedagogy can take many forms. Anthony and Walshaw 
(2009) in their research review of practices relevant to New Zealand education context 
offered ten pedagogical principles. However they note that “any practice must be 
understood as nested within a larger network that includes the school, home, 
community, and wider education system” (p. 6). In arguing that teaching is a holistic 
and complex endeavour, it is clear that other synthesis, especially those related to East 
Asian classrooms, may offer different combinations of key principles that define 
effective pedagogical approaches.  
 ‘Coherence’ is one such factor that features in cross-national comparative studies. As 
reviewed by Chen and Li (2009), coherence is promoted as an important characteristic 
of mathematics classroom instruction in Asian countries. A review of earlier studies led 
these researchers to conclude that “coherent mathematics lessons can help lead to 
students’ better mathematics learning with connected and coherent conceptual 
understanding” (pp. 711-2). But what does a coherent mathematics lesson—or unit of 
lessons—look like, and how might coherent instruction support student learning?  
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Instructional coherence 
Instructional coherence is not a descriptor that is specific to the mathematics classroom. 
Indeed, Finley, Marble, Copeland, Ferguson and Alderete (2000) proposed that any 
teacher who brings “the components of the system—curriculum, instruction, 
assessment, external mandates, and community context—together intentionally with a 
focus on student learning” (p. 4) creates instructional coherence. Coherent instruction, 
they claim, supports teachers to make instructional decisions by using both the 
information collected in the classroom and information from external sources about 
what is important for students to learn.  
 Aligned with this perspective, existing studies on instructional coherence in 
mathematics classes have tended to explore the connectedness or integration of 
instructional elements. For example, Wang and Murphy (2004) defined instructional 
coherence as activities or events that are casually linked in terms of the structure of 
instructional content and the meaningful discourse reflecting the connectedness of 
topics. Schmidt (2008) argues that topics in mathematics “need to flow in a certain 
logical sequence in order to have coherent instruction” (p. 23)—a characteristic of 
mathematics curricula of top-achieving countries. As described by Fernandez, Yoshida, 
and Stigle (1992), lesson events that are coherent relate to each other in ways that allow 
students to infer relationships among events  
 Existing studies on coherence are largely sourced from cross-cultural comparative 
studies or Asian countries (e.g., Cai & Wang, 2010; Chen & Li, 2009; Shimizu, 2009). 
An impetus for studies in Asian countries originated in the widely disseminated finding 
by Stigler and Perry (1998) that found that both Japanese and Chinese mathematics 
lessons were structured more coherently than American lessons. It was noted that 
students in Japan would frequently spend an entire lesson studying one or two 
problems, a feature that was different to classes in American schools. Additionally, 
Hiebert et al.’s (2003) analysis of lesson in the TIMSS 1999 video study highlighted the 
explicit linking within the Japanese classroom that formed an identifiable lesson pattern. 
The lesson pattern was typically organised around (i) review of the previous lesson; (ii) 
presenting the problem(s) for the day; (iii) students working individually or in groups; 
(iv) discussion of solution methods; and (v) highlighting and summarising the main 
learning. Shimizu (2009) claimed that the ‘pulling together’ of the main points of the 
lesson, the ‘Motome’, was a key instructional factor to the effectiveness of the lesson.  
 Some studies suggest that coherency involves more than lesson structure as 
represented by sequencing of lesson events—it also involves the coherency of discourse 
that frames these events. For example, discourse associated with learning objectives 
may well serve to guide students learning in productive ways (Chen & Li, 2009). 
Conversely, when learning objectives override opportunities for students to build on 
their own thinking and reasoning, such discourse may limit opportunities for sense 
making (Askew, 2004). Discourse when viewed as a pedagogical tool also enables 
teachers to provide opportunities for students to participate in mathematical practices of 
argumentation. Such practices can help students build on their former mathematical 
knowledge, connect with their new knowledge, and comprehend their mathematical 
knowledge more deeply (Walshaw & Anthony, 2008).  
 Utilising a coherence lens, Sekiguchi (2006) characterised the effectiveness of a 
Japanese-style lesson by four aspects of the teacher’s classroom discourse management. 
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Rhetorical’ management, or coherence between goals and discourse production, is 
organised by the lesson’s “four-phase script” (p. 84) comprising the introduction, 
student working independently and in groups, student explanations, and teacher 
summary. Thematic’ management involves the coordination of the related topics within 
and across lessons that comprise a particular mathematical theme. Referential 
management refers to the ways that the discourse participants—the students and 
teacher—keep track of referents during discussions. Strategies include the deliberate use 
of processes such as “naming, symbolizing, drawing, reviewing, summarizing, and 
using textbooks, blackboards, worksheets, notebooks, and projectors” (p. 86). “Focus’ 
Management deals with strategies that direct students’ attention to see the ‘point’ of the 
lesson, including the use of comparison and contrast, discussion, and summary.  
 Teacher knowledge is also a key factor in developing coherence across linked lesson 
events or activities. Ma’s (1999) comparative study of teacher knowledge has been 
influential in highlighting the knowledge teachers were able to draw on as related to 
particular content topics, and how such knowledges influenced their instructional 
sequences for developing ideas and their access to students’ thinking.  
 We see from the literature that whilst there is agreement that instructional coherence 
is desirable, there is also evidence that what defines coherence, or is key to obtaining 
coherence, may in some instances be culturally prescribed. While educational systems 
and curricula may support coherence (Leung, 2005), it is clear that individual teacher’s 
enactment of pedagogical strategies in relation perceived students needs, mediated by 
individual teacher knowledge in its many forms, may serve to influence levels and 
qualities of instructional coherence. 

The case study 
As part of our participation in the New Zealand component of the Learners Perspective 
Study (LPS) the authors had sustained access to three different secondary classrooms. 
For one classroom our research team was particularly struck by the apparently seamless 
flow of the lessons across the unit of 10 lessons—creating a sense of coherency. It is 
difficult to describe the feeling of watching these lessons—for us as observers there was 
sense that learning was happening in a continuous fashion—that is, the learning 
trajectory seemed to evolve continuously rather than in discrete units defined by 
specific lessons objectives. The mathematics lessons of this classroom, we felt, could 
usefully be analysed using an instructional coherence lens. We were concerned to 
discern those key elements of the teacher’s pedagogical practice and knowledge base 
that determined the observed instructional coherence across the sequence of lessons.  

Case study context 
The case comprises a unit of lessons from a New Zealand Year 9 (Grade 8) classroom 
in a large coeducational urban school, catering for students from, in the main, the 
middle socioeconomic sector. The classroom teacher, Dave, with 4 years experience, 
was identified by the local mathematics community as an effective practitioner. His 
class of 30 students was one of two extension classes at the Year 9 level in the school.  
 In an interview following the sequence of lessons, Dave explained his teaching goals 
for the unit as twofold: (i) for students to be able to solve and understand linear 
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equations of the form ax ± b = cx ± d; and (ii) for students to develop an understanding 
of the meaning of equality (=). The sequence of lessons is summarised as follows: 

 L1:  Revisions of order of operations and algebraic notation and manipulation. 
 L2:  Solving 1-step linear equations of the form x ± b = c [using a working 

backwards model]. 
 L3:  Solving linear equations of form ax ± b = c. 
 L4:  Solving linear equations of form ax ± b = c using function boxes.  
 L5:  Solving linear equations of form ax ± b = c [introduced fractions, decimals].  
 L6:  Real world applications of solving linear equations. 
 L7:  Review of definition of equations and refocus on the meaning of the equal 

sign, introduction of balance model to solve 3x + 4 = 2x + 9. 
 L8:  Use of balance model to solve ax ± b = cx ± d. 
 L9:  Solving equations of form ax ± b = cx ± d. Introduction to systems of 

equations with infinite or null solution sets. 
 L10:  Real world applications of forming and solving equations. 

Data collection and analysis 
The teacher and his students agreed that our team could collect video, interview, and 
observe across a sequence of 10 lessons that represented a unit on algebra—focused on 
solving linear equations. Video capture involved three cameras: focused on the teacher, 
a group of students, and the whole class. Post lesson video-stimulated recall interviews 
involving the teacher and students generated further data. Triangulation of the video and 
interview data was enhanced by reference to researcher classroom observation notes, 
photocopies of written work by the focus students, photocopies of class activities, and 
teacher questionnaire data (for a description of LPS research design see Clarke, 2006).  
 We adopted a three-pronged analysis of instructional coherence. Firstly, we 
examined coherence across the intended and enacted curriculum across the lesson 
sequence. The analysis of lesson content and specified teacher objectives for lessons 
was the main data source. Then we tracked the connections of mathematical knowledge 
within and across the lessons, looking closely at the nature of tasks and at links between 
previous learning/knowledges and new knowledge construction. Lastly, we used the 
post-lesson student interviews (two for each lesson)—focused on students’ perspectives 
of their learning and the teaching process—to examine coherence in terms of zones of 
proximal development (Vygotsky, 1986).  

Establishing instructional coherence 
As we have seen in the literature review instructional coherence involves a combination 
of factors related to curriculum sequence, making connections within and between 
topics, creating clear organisational patterns and establishing social and mathematical 
norms, attending to and building on students’ existing understandings and knowledge, 
to name a few. But what is not so clear is what specific pedagogical actions a teacher 
might take within a lesson sequence to ensure that coherence is developed and 
maintained. In this section we discuss two distinct pedagogical strategies that we claim 
significantly contributed to the observed instructional coherence: (1) springboard tasks, 
and (2) sowing the seeds. We provide excerpts from three lessons to demonstrate how 
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these instructional approaches helped lead students to develop effective mathematical 
practices and sound mathematical understandings.  

Episode 1: Introducing methods for solving linear equations 
As was typical, Dave started lesson one (L01) with a set of student problems (see Figure 
1). Some problems required students to access previous knowledge in the form of 
consolidation/practice tasks; others required students to use existing knowledge to move 
towards new knowledge. The intention of the latter task was that these would act as a 
springboard for new learning.  
 

1. 5 x 14 - 9 
2. 13 + 2 x 17 
3. 3 + 8 x 7 - 10 

4. 5 + 32 
5. 111 - (17 x 3) 
6. (9 + 2)2  + (3 + 2 2) 

7. 120 ÷ 12 x 5 
8. 3 + (21 - 6 x 3) 
9. 2.4 + _ x 2 = 5.8 

Figure 1. L01 task.  

Dave’s instruction to the students that they should show their working reaffirmed the 
shared mathematical obligation (Cobb, Gresalfi, & Hodge, 2009) that was evident 
within the classroom environment:   

So all I want to do with this lesson is do a little bit of revision of the work that is going to 
be crucial to your understanding of the next topic. … the answers aren’t necessarily the 
most important thing, but the process of how we get the answer is really important. 

While students were engaged in this activity, Dave walked around the class providing 
individual assistance. Updating on progress, Dave remarked to the whole class: “I don’t 
expect everyone to finish number nine. ...But if you have had a go at number nine we 
will get some answers of those.”  
 In the whole-class discussion requests for solutions to problem 9 resulted in two 
alternative approaches. The first approach offered was: “I minused 2.4 from 5.8 and 
then what was left I divided by 2. Another student demonstrated his solution as follows: 
“2.4 plus 0.5 because 2.9 is half of 5.8.” Dave’s invitation for students to offer reasons 
why they might have two solutions, and whether or not both were correct, prompted 
students to refer back to the BEDMAS rules of operations. In summarizing their 
contribution Dave remarked: 

Okay, so another reason to be careful of BEDMAS is even if we don’t know what this is, 
it is a number that I have smudged. But it is still a number and normal rules work—times 
before plus. 

Utilising the student contributions, Dave drew attention to the new idea of ‘working 
backwards’ remarking that, “We are working backwards. Why did he undo the plus first 
when BEDMAS says do times first?” He provided justification for the method that 
would be revisited in Lesson 2 in the context of solving one-step linear equations:  
 In the post-lesson interviews one student confirmed the expectation they have a go at 
the springboard problems: 

Pat:  Question 9 was easy to understand. I just subtracted the 2.4 and went on from 
there. 

I:  What made you subtract? 
Pat:  I reversed what I would usually do and it just worked out. 
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I: So is the reversing thing not a foreign thing for you to do in maths even though 
you haven’t really been formally taught? 

Pat:  It was quite unusual but I just automatically tried to reverse it and see how it 
would work out, and it worked out. 

However, the second student, Vanessa, reported that she was unable to work out how to 
do number nine in the first instance. In the post-lesson teacher interview it was apparent 
that the choice of task was planned to support on-going learning linked to previous 
learning. Dave offered a metaphor of “sowing the seed” as follows: 

I just really wanted to make sure they were comfortable with that before the second day 
which was the start of solving equations. … so I sowed the seed in the first lesson with 
the idea of working backwards of solving an equation. 

Episode Two: Introducing a balance model 
The second lesson (L02) began with a discussion of the strategies for solving a set of 
puzzles that had been set as homework in L01. One of the puzzles is shown in Figure 2. 

Figure 2. The starter learning task in L02. 

     

Early in the discussion it became apparent that some students had used a trial and error 
method to balance the scales. After further discussion the teacher drew the students’ 
attention to the strategy of keeping the scales balanced: 

What I want you to be thinking about is the strategy of keeping the scales balanced. That 
is how Henry and Jack and some of you others managed to work it out. And that is a 
theme that we are going to revisit over the next few  

In the post-lesson interview Dave indicated that the use of the balanced scale puzzles 
was a precursor to extending their understanding of the meaning of the equal sign: 

Later on they are going to start doing complicated equations and they are going to need to 
understand that the equal sign doesn’t just mean calculate and up until now most of them 
think the equal sign means ‘works out to be’ or ‘I get this’. .. I am going to have to adjust 
their view of what the equal sign means and think of it in terms of balance scale. 

The post-lesson interview with the two students Pat and Ruth confirmed their struggle 
with the puzzle activity. Sowing the seeds early in the sequence of lessons possibly was 
an indication that the teacher had a strong sense of his students’ need to revisit these 
ideas over an extended sequence of lessons. The idea of the balance model to solve 
equations was not formally introduced until lesson 7.  

Episode three: Using equations in solving practical problems 
The fifth lesson began with students working on a problem set that included two 
challenge problems: 

Challenge 1: The perimeter of this rectangle is 15m.  2.2m 
Form and solve and equation to calculate the length of this rectangle.                  x 
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Challenge 2: A rectangle has an area of 72m2. Its length is twice its width. Calculate the 
perimeter.  

After a brief review of the first four problems, Dave invited one student Charley to 
present his thoughts about the fifth problem. While Dave accepted Charley’s solution 
method, he pressed his students to apply their current learning to the challenge problem:  

Charley: I did 2.2 times 2 is 4.4 and then I did 15 minus 4.4 which is equal to 10.6 so 
then I divided it by 2 and got 5.3. 

Dave: What does 5.3 represent? 
Charley: The length. 
Dave: The length. Who agrees that that is the length? Anyone like to suggest another 

method that uses that x? Henry. 
Henry: I did 2x plus 2.2 times 2. Like the way it is up there and so I worked backwards. 

Even though Henry tried to use x to solve the unknown Dave engages in further probing 
aimed to highlight the formation of an equation: 

Dave: Where did you get your 2x from? 
Henry: The fact that x equals the two lengths. 
Dave: Right, opposite sides of a rectangle have the same length. If that is x, that’s x, 

and that’s 2.2, and this might be 2.2. What does perimeter mean? 
Henry: All of the sides added together. 
Dave: And what does all of that [2x + 2.2 × 2] equal if we add them all together? 
Henry: I don’t know. 
Dave: Have we been given more information in that question? 

The students’ preference to use pre or partial algebraic process to solve the unknown 
was again observed in the discussion of the sixth problem. Here, Dave required a 
student to explain his solution of 6 + 6 + 12 + 12 = 36 to the sixth problem as follows: 

Dave: So how did you get that one must be twelve and one must be six? 
S: Because it said that the length must have been twice the width. 
Dave: Good so did you use the x at all? 
S: No, I didn’t. 
Dave: Okay, that is a really good method the guess and check … I would like if you 

have had a go at this to try and form an equation like we did for the last one and 
solve that equation to get this answer which is the perimeter.  

The intent to introduce a new method with this springboard task was confirmed by the 
teacher in the post-lesson interview:   

The main goal was partly to cement their ideas of how to solve equations really and also 
to introduce the idea of using equations to solve problems. …I deliberately try and push 
them as far as I could today. …But I don’t mind doing that because when I go back on 
Monday …I am going to give them exercises out of [text] and after what I have done with 
them today they are hopefully going to find it straightforward. 

Dave’s pedagogical decision to return to the problem was informed by his knowledge 
about his students’ learning potential and current understandings: 

I felt at this stage if I take it any further I was going to lose some of them, I was hoping 
someone would come with ... we choose 72 so that when they divide by 2 they are going 
to get 36 and they would be able to spot that if ‘x square’ is 36 they will spot 6 they 
wouldn’t have necessarily gone onto explanation on how we got that 6. So I was hoping 
someone would have come up with that equation in which case I would have followed it 
through. But I felt at this stage the only solution I got were the guess and check points, so 
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I thought I would sow the seed that there’s an algebra method there but I felt if I was 
going to carry on too far I was going to lose too many of them.   

Discussion and implications 
In the foregoing section we provided three episodes to elucidate the coherence of 
Dave’s instruction. These episodes were selected to exemplify two instructional 
approaches that were regularly observed in the 10 lesson sequence: one concerns the 
nature and enactment of the tasks; the other is the teacher’s action of “sowing seeds”. 
 The teacher regularly posed a set of tasks for students to work on prior to new 
instruction. Typically, the first a few problems acted as revision or consolidation 
activities, while the last few problems were challenging. These ‘springboard’ tasks 
generated new ideas that were central to learning goals that were more fully developed 
later in the lesson, and or revisited in subsequent lessons. We claim that this 
instructional approach supported coherence as characterised by the connections of 
students’ existing (and prior) knowledge to new knowledge. The success of the linking 
was supported by the opportunities for student to work independently on the problem 
set prior to the more formal introduction of new knowledge and the subsequent 
obligation for students to explain and justify their thinking through class discussion.   
 In our exploration of Dave’s metaphor ‘sowing the seeds’, the ‘seeds’ correspond to 
the multiple layers of new knowledge and methods embedded in the intended 
curriculum. It appears that Dave sowed seeds with a careful consideration of the 
distance between the actual and potential development of individual students. These 
seeds assisted Dave to plan a logical sequence of knowledge construction that builds 
and links to students’ existing and emergent ideas. Such orientation to and anticipate of 
further learning, we claim, is a hallmark of coherence.  
 In combination, sowing seeds and the use of springboard tasks supported the 
provision of appropriate challenge for students and affirmed the expectation that 
struggling with the task was the norm and that not all students would be immediately 
successful. We hypothesize that Dave’s expectation that students needed to experience 
struggle as a natural way of learning was indicative of his awareness of the need to 
establish appropriate zones of proximal development for his students. As Dave reflected 
in a post-lesson interview: “I deliberately try and push them as far as I could today (to 
introduce the idea of using equations to solve problems)”. The press for students to 
engage and resolve springboard tasks, combined with the sowing of seeds, appeared to 
be a conscious way the teacher scaffolded students within their zone of proximal 
development. However, an overriding question remains concerning the reasons for the 
implementation and effectiveness of the two instructional approaches: How effective 
would these strategies be in other classes, especially those classes which contain mixed 
or predominantly low-achievement levels? 
 This analysis is limited in that it offers an insight in to one classroom. But as noted 
earlier, this classroom stood out for us in terms of the seamless, almost invisible, way 
that learning and teaching appeared to be structured. Attending to features of coherence, 
a concept that is more typically applied to Asian classrooms studies, has provided a 
useful lens to look at how this teacher promoted mathematical learning.  
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This paper reports on the perceptions of mathematics education of in-service and preservice 
primary school teachers involved in an innovative model trialled in the final mathematics 
curriculum unit of a B.Ed. program. Questionnaire items asked about the value of time 
spent in classrooms, the importance of theoretical understandings, and of linkages between 
theory and practice. Both groups reported valuing time in schools, understanding the 
theories that underpin practice, and lecturers with recent classroom experience, but there 
were also interesting differences between the groups at the beginning and at the end of the 
unit, and some change for each group. 

Introduction 
Concerns about best practice and pedagogy for mathematics teacher education and the 
perceived theory-practice divide have been raised by researchers, teacher educators, 
school educators, and the public (Kolthargen, Loughran, & Russell, 2006). There is a 
perceived gulf between the pedagogies that preservice teachers are introduced to and 
encouraged to adopt through their education courses, and the practices they encounter in 
classrooms (Kolthargen et al., 2006; Taylor, 2002). Preservice teachers report 
dissatisfaction with what they have learned in their teacher education programs 
(Australian Secondary Principals’ Association, 2007) considering some of it irrelevant 
(Kolthagen, 2010; Shuck, 1996). Consistent with this, there is evidence that they 
consider the most valuable aspects of their university courses to be those which have the 
most apparent relationship to classroom practice (Beswick, 2006; Shuck, 1996). Klein 
(2006, p. 335) suggested that “preservice teachers’ ways of being a teacher of 
mathematics has less to do with theory and policy than their previous (and current) 
experiences of institutionalised teaching and learning.”  
 The study reported here was designed to examine the potential, in terms of closing 
the theory-practice divide, of closely linking university learning experiences with 
classroom practice in the context of the final mathematics curriculum unit of a primary 
(Grades 3-6) and early childhood (Grades K-2) Bachelor of Education program. The 
specific research questions addressed were; 
1. To what extent do preservice and practising teachers share beliefs about 

mathematics teacher education?  
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2. How might these beliefs be influenced by a mathematics curriculum designed to 
link university and school contexts? 

Relevant literature related to nature and origins of the perceived gap and to influencing 
belief systems is reviewed in the sections that follow. 

Bridging the gap 
What preservice teachers view in schools during their practicums has a profound effect 
on their view of what is best practice in mathematics teaching (Beswick, 2006; 
Kolthagen, 2010; Shuck, 1996) and often this reinforces preconceived ideas of teaching 
pedagogy which were formed during their own schooling, and that are contrary to 
understandings that their teacher education courses are designed to develop (Beswick, 
2006, Klein, 2006). Consistent with this, Calderhead and Robson (1991) found that 
preservice teachers’ experiences and beliefs held from their own education influenced 
the pedagogy they used in classroom teaching and their ability to make the transition to 
new ideas presented to them. Kolthagen et al. (2006) suggested that programs need to 
focus on the preservice teacher as a learner, able to reflect on experiences and practice 
and to be able to analyse and make meaning from them. 
 The perception of a theory-practice divide is shared by many practising teachers and 
may be linked to distorted recollections. The ability to recall events accurately naturally 
declines over time (Basden, Reysen, & Basden, 2002). This fact and the propensity for 
people to form false memories, perhaps influenced by recollections of others shared and 
reinforced in social contexts such as school settings, can result in a lack of realisation by 
teachers that many of the practices they use are in fact linked to their university teacher 
education courses (Basden et al., 2002; Beswick & Dole, 2008). 
 Allen, Butler-Mader, and Smith (2010) argued that the theory-practice gap can be 
bridged by forging university school partnerships. Their study involved the recruitment 
of practising teachers as secondees and sessional tutors to a university as part of a 
university school partnership. Such an approach was supported by Nelson (2005, cited 
in Allen et al., 2010 p. 623), in his role as Australian Minister for Education, who 
commented that, “Many who train teachers do not see themselves as members of the 
teaching profession itself. Perhaps we need more teachers in universities with teaching 
appointments”. However, according to Allen et al. (2010, p. 622), school personnel 
working in universities still “saw the work as separate and distinct from their work in 
schools” and the study identified the need for ongoing communication and the sharing 
of ideas between the university and the schools involved.  
 An important role of mathematics educators is to influence preservice teachers to 
teach differently from the ways in which they were taught (Goos, 2009). Because 
preservice teachers value lecturers who are enthusiastic and passionate about 
mathematics, and know their subject (Beswick & Dole, 2008; Hill, Lomas, and 
McGregor, 2003), the credibility of lecturers and tutors themselves may have an impact 
on helping preservice teachers to embrace new ideas. In fact Hill et al. (2003) found that 
the quality of lecturers was one of the two most influential factors in determining the 
quality of a preservice teacher education program, and that this was influenced by the 
lecturer’s expertise in school classroom contexts. Programs such as that which formed 
the context of this study have the potential to strengthen lecturers’ knowledge of school 
classrooms and build their connections with the contexts that preservice teachers value, 
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thereby enhancing their credibility and influence and hence the value attached to 
university aspects of mathematics teacher education. 

Beliefs systems and change 
A further aspect of the theoretical underpinnings of the study lies in understandings of 
beliefs and the conditions under which they are most likely to change. Beliefs are 
understood as anything that a person regards as true (Beswick, 2007) and, consistent 
with a constructivist view, as distinguishable from knowledge only in terms of the 
degree of consensus that they attract (Beswick, 2011; Guba & Lincoln, 1989). Greens’ 
(1971) widely accepted description of belief systems in which beliefs are characterised 
by varying degrees of centrality (a function of the number and intensity of connections 
with other beliefs), and subject to clustering, whereby parts of an individual’s belief 
system can be held in isolation from other beliefs, is foundational. Belief systems are 
also dynamic with the relative centrality and influence of beliefs shifting according to 
the context (Beswick, 2003). 
 Clustering can result when beliefs arise in differing contexts. For example, beliefs 
about teaching that originate in an individual’s experience of teaching as a school 
student and beliefs about teaching that are formed in the context of university based 
teacher education may be held in distinct clusters. Belief clustering provides an 
explanation for the ability of teachers to endorse the aims of teacher education programs 
whilst simultaneously agreeing with apparently contrary practices in a school context.  
 Together belief clustering and the dynamic nature of their interconnections explain 
why preservice teachers so often revert to teaching in the ways that they were taught 
(Ball, 1990). Classroom contexts evoke beliefs formed in similar contexts as students, 
and these may not have been reconciled with contradictory beliefs formed subsequently. 
It is these classroom connected beliefs that exert the dominant influence on practice in 
that context. Awareness of a disjunction between beliefs about teaching that underpin 
practice and those that are promoted in teacher education programs may lead teachers to 
rationalise the difference by rejecting those perceived as less relevant and adopting the 
notion of a theory-practice divide. Bridging the gap can therefore entail substantial and 
onerous intellectual work and requires that teachers have the opportunity, time and 
support to work through the process to arrive at an integrated system of beliefs about 
teaching and hence more balanced views of the benefits of the university and school 
based aspects of their courses. Experiences that closely link university and school based 
learning might provide such an opportunity. 

The study 
Consistent with the literature, the project that formed the context of this study was 
embedded in a partnership between schools and a university in which connections and 
communication were forged. Importantly, the partnership was initiated by a school 
principal who saw mutual benefits for school and preservice teachers. Opportunities 
were provided for students to apply their theoretical understandings and knowledge of 
mathematics teaching to a classroom situation in partnership with classroom teachers 
and university personnel. In this way preservice teachers and the practising teachers 
who acted as their mentors were assisted to marry new ideas with their own. 
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The final mathematics curriculum component of the B.Ed. (Primary and Early 
childhood) program in within which the study was conducted aimed to bring together 
aspects of the preservice teachers’ knowledge described by Shulman (1987), namely 
their knowledge of mathematics content, general pedagogy, mathematics curricula, 
students as learners of mathematics, and pedagogical content knowledge for 
mathematics teaching, applying them to the classroom context. The previous units in the 
mathematics curriculum sequence had been half-units comprising weekly 1-hour 
lectures and 1-hour tutorials over a 13-week semester. The students had also had the 
opportunity to study some mathematics education elective modules. 

Participants 
Ninety six of the 106 preservice teachers enrolled in the fourth and final half unit of 
mathematics curriculum in the B. Ed (early childhood and primary) course at the 
University of Tasmania participated in the study, along with 32 teachers (referred to as 
mentor teachers) and school leaders from three primary schools. The preservice teachers 
who chose not to participate in the study were involved in the unit in exactly the same 
ways as those who did but simply opted not to submit data. 
 One of the schools involved was a small (enrolment of approximately 160) city 
school in a socio-economically disadvantaged area and the other two schools had 
approximate enrolments of 260 and 380 and were in moderately socio-economically 
disadvantaged areas. The smaller of these schools was an outer city suburb with an 
intake from some country areas as well as adjoining suburbs. The other was an inner 
suburban school in a smaller regional city.  

Questionnaires 
Data were collected in a range of ways including interviews, field notes, and classroom 
observations but only the questionnaire data are relevant to the current study. 
Participating mentor teachers, principals and preservice teachers were invited to 
complete pre- and post- questionnaires. The initial questionnaires were identical for all 
groups and comprised six sections that asked about: (1) expectations of the project; (2) 
confidence to teach mathematics; (3) beliefs about mathematics and numeracy in 
everyday life; (4) beliefs about mathematics in the classroom; (5) beliefs about 
mathematics teacher education; and (6) the respondent’s role, gender, school or campus. 
Sections 2, 3, 4, and 5 comprised items requiring responses on 5-point Likert types 
scales such that 5 represented the highest level of agreement or confidence and 1 the 
lowest. Section 5 on Mathematics teacher education is relevant to the current study and 
its 16 items are listed in Table 1. 
 The final preservice teacher questionnaire repeated all of the sections from the initial 
questionnaire that required responses on Likert type scales whereas the final teacher 
questionnaire (also completed by principals) repeated only the section on mathematics 
teacher education. Both final questionnaires contained additional open-response items 
focussed on evaluation of the unit. In all cases responses were anonymous with 
respondent devised codes used to match responses across the two surveys.  

Procedure 
Prior to the start of the unit the preservice teachers were randomly placed in groups of 
four with a mentor teacher from one of the three schools involved in the project. This 
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meant that students may not have been working in their chosen specialisation (early 
childhood (Grades K-2) or primary (Grades 3-6)). This was appropriate because the 
degree towards which the preservice teachers were working qualified them to teach 
from K-6. The randomised allocation to groups was also designed to mirror the realities 
of working with unfamiliar colleagues in school settings. 
  The initial questionnaires were distributed and completed in meetings that involved 
preservice teachers and mentor teachers on each of the two campuses where the 
program ran. The main purpose of these meetings was to introduce the unit structure 
and provide opportunities for the principals to address the preservice teacher cohorts 
and for initial meetings of preservice and mentor teachers to occur.  
 Mentor teachers identified the school students with whom the preservice teacher 
groups would work, and the first 6 weeks of the semester were used for collaborative 
planning by preservice and mentor teachers, administration of agreed pre-assessment 
tasks to the small groups of students with whom the preservice teachers would be 
working and for preservice teachers to become familiar with the classroom environment 
and particular students to which they had been assigned. Preservice teachers also 
attended mathematics education workshop/tutorials at the university. These 2-hour 
sessions focused on assessing and planning models, mathematics curricula, creating a 
positive classroom climate, use of ICT, and the mathematics knowledge required for 
teaching. Individual groups met with their university lecturers for further pedagogical 
and content support as they were planning and designing assessment tasks and 
analysing student responses to these. 
 In the following weeks the preservice teachers worked in the schools for six weekly 
sessions and had ongoing meetings with their mentor teachers. University staff 
maintained contact with the preservice teachers and school personnel and visited the 
schools several times. At the end of the semester the preservice teachers, teachers and 
school leaders participated in a meeting and celebratory afternoon tea to share 
experiences and highlights of the project. The final questionnaires were administered at 
these sessions. 
 Assessment of the unit was entirely separate from the research and required 
preservice teachers to submit reflective journals detailing their learning from the 
experience and philosophical statements relating to their beliefs about mathematics 
teaching and learning. Pre- and post-project comparisons of questionnaire responses 
were made using t-tests and effect sizes, d, calculated as described by Burns (2000). 

Results and discussion 
Table 1 shows the means and standard deviations for the teacher and preservice teacher 
responses to each of the 16 items about mathematics teacher education on the initial and 
final questionnaires. There were many fewer responses to the final questionnaire, 
particularly from preservice teachers. This reflects the much lower attendance at the 
final meeting as a result of the competing priorities for preservice teachers’ time at the 
ends of semesters. 
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Table 1. Teachers’ and preservice teachers’ beliefs about mathematics teacher education. 

Item Teachers Preservice teachers 

Initial 
mean  

Initial 
SD 

Final 
mean  

Final 
SD 

Initial 
mean  

Initial 
SD 

Final 
mean 

Final 
SD 

 

(n=32) (n=20) (n=96) (n=27) 

1. The more time preservice 
teachers spend in schools and 
classrooms the better. 

4.77 0.43 4.75 0.44 4.62 0.63 4.63 0.63 

2. It is important to understand the 
theories on which teaching practices 
are based.  

4.20 0.71 4.35 0.59 4.24 0.75 4.27 0.67 

3. All aspects of teaching can be 
learned in schools and classrooms. 

2.93 1.02 3.10 0.97 3.20 1.16 3.23 1.14 

4. What is taught at university about 
maths teaching is useful in the 
classroom. 

3.47 0.78 4.05 0.51 3.71 0.74 4.00 0.69 

5. The classroom teacher is the most 
important influence on school 
students’ mathematics learning. 

3.60 0.81 3.80 0.89 3.88 0.75 3.84 0.85 

6. All aspects of teaching can be 
learned at university. 

1.80 0.81 1.60 0.75 1.98 1.03 1.85 1.12 

7. Working with individual students 
is a useful part of teacher education. 

4.10 0.80 4.55 0.61 4.20 0.71 4.48 0.65 

8. Teachers can easily describe the 
reasons for their teaching decisions.  

3.70 0.79 4.00 0.86 3.45 0.77 3.19 0.85 

9. Regular time in school 
classrooms throughout the semester 
is more effective than blocks of 
time. 

3.97 0.81 3.85 0.93 3.88 0.90 4.04 0.87 

10. The university teacher is an 
important influence on preservice 
teachers’ learning about 
mathematics teaching. 

3.83 0.75 4.10 0.64 4.04 0.75 3.88 0.82 

11. It is important that teachers can 
articulate the theory that informs 
their teaching decisions. 

3.90 0.80 4.20 0.70 3.96 0.75 4.12 0.77 

12. I can see connections between 
what I have learned about teaching 
maths at university and working in 
school settings. 

3.55 1.15 3.65 0.67 3.93 0.70 4.12 0.77 

13. It is important that lecturers 
have recent classroom teaching 
experience. 

4.37 0.67 4.50 0.61 4.33 0.72 4.77 0.43 

14. Spending time in schools and 
classrooms is not necessarily 
beneficial.  

1.77 0.73 1.30 0.57 1.83 1.10 2.23 1.42 

15. University and school based 
learning experiences are equally 
important. 

3.63 0.89 3.80 0.83 3.73 0.86 3.69 1.09 

16. Analysing the work of 
individual students can provide 
important insights into mathematics 
teaching. 

4.23 0.82 4.50 0.51 4.19 0.67 4.23 0.65 
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 On average, the preservice teachers and their mentor teachers agreed at both the start 
and end of the project with Items 1, 2, 7, 13, and 16. These concerned the value for 
preservice teachers of spending time in classrooms, working with individual students, 
and analysing students’ work, as well as the importance of understanding the theoretical 
bases of teaching practices, and having lecturers with recent classroom experience. Both 
groups of participants at both survey administrations disagreed on average with 
statements that “All aspects of teaching can be learned at university” (Item 6) and that, 
“Spending time in schools and classrooms is not necessarily beneficial” (Item 14). 
Although consistent with the literature documenting preservice teachers’ valuing of 
classroom based learning (Beswick, 2006; Schuck, 1996), these results suggest that both 
preservice and inservice teachers also regard theoretical understandings of their work as 
important. 
 Pairs of significantly different means are in bold or, in the case of Item 14 for which 
there was a significant difference between the initial and final means of the teachers’ 
responses, and also between the final mean for teachers and the final mean for 
preservice teachers, one significantly different pair is bold and the other italicised. 
There were no significant differences between the overall views of the preservice 
teachers and their mentor teachers at the start of the semester, but there were differences 
for three items at the end. Preservice teachers finished the unit less inclined than their 
mentor teachers to agree that teachers can easily give reasons for their teaching 
decisions (Item 8, t(44)=3.18, p=0.003, d=0.94) and more likely to agree that they could 
see connections between their university learning about mathematics teaching and their 
work in school settings (Item 12, t(44)=-2.06, p=0.046, d=0.54). Their disagreement 
with Item 14, that time in schools is not necessarily beneficial, was on average less 
strong than their mentor teachers’ at the end of the semester (t(44)=-2.75, p=0.009, 
d=0.65). In each case the effect sizes were moderate to large (Burns, 2000). 
 The direction of change of the means for Item 8 for mentor teachers and preservice 
teacher indicate that the difference between their responses at the end of project resulted 
from a combination of the changed levels of agreement of the two groups. Increased 
agreement on the part of the mentor teachers that they could articulate reasons for their 
teaching decisions, perhaps as a consequence of needing to do so in their work with the 
preservice teachers, made a contribution. In addition, preservice teachers adopting a 
more critical stance in relation to teachers’ knowledge and decision making also 
contributed to the significant difference for Item 8. Both changes can be regarded as 
positive outcomes of the approach. There is also evidence from Item 12 that the project 
assisted preservice teachers to connect their learning in the two contexts. The difference 
for Item 14 is a consequence of stronger disagreement on the part of mentor teachers 
and weaker disagreement on the part of preservice teachers that time in schools is not 
necessarily beneficial. This suggests that the mentor teachers may on average have 
viewed preservice teachers’ involvement in their classrooms more positively than the 
preservice teachers themselves did. 
 The mentor teachers’ views differed from the start to the end of semester for three 
items. They were more inclined at the end to agree that both university learning about 
mathematics teaching (Item 4, t(48.0)=-3.21, p=0.002, d=0.75), and work with 
individual students were valuable (Item 7, t(48)=-2.13, p=0.038, d=0.56). They 
disagreed more strongly than before that time in schools was not necessarily valuable 
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(Item 14, t(46.6)=2.53, p=0.015, d=0.64). The project thus appears to have influenced 
mentor teachers to value university learning more highly while at the same time 
reinforcing the value they attach to preservice teachers spending time in schools. The 
only change for preservice teachers was towards stronger agreement that their lecturers 
should have recent classroom experience (Item 13, t(69.1)=-3.85, p=0.000, d=0.61). 
Given the other changes noted this difference may reflect the preservice teachers’ 
appreciation of the way that their lecturers were able to work with the schools and to 
mediate their involvement in the school context. Although beyond the scope of this 
project it is possible that, consistent with Hill et al.’s (2003) reasoning, the lecturers’ 
ability to perform this role enhanced their status and influence with the preservice 
teachers. 

Conclusion 
In terms of the research questions, this study provides evidence that inservice and 
preservice teachers share similar beliefs about mathematics education. School 
placements are therefore likely to reinforce preservice teachers’ beliefs in the value of 
classroom experience in learning to teach (Beswick, 2006; Schuck, 1996). However, the 
data also show the potential of integrated school and university programs such as that 
described here have the potential to influence the beliefs of both inservice and 
preservice teachers towards a more balanced view of the worth of university and 
classroom based learning. 
 The data suggest that inservice and preservice teachers ended the program valuing 
both classroom practice and the theories on which it is based. There was a significant 
increase in beliefs that what is taught at university is useful in classrooms. This suggests 
that working with university courses and preservice teachers may help practising 
teachers to see the connection between theory and practice and may counteract some of 
their distorted recollections of their own teacher education courses (Basden et al., 2002; 
Beswick & Dole, 2008). The study also suggests that strong links made between 
university courses and practice, and strong communication pathways between school 
personnel, university lecturers and preservice teachers as in this study may assist 
preservice teachers to make connections between their learning in the two contexts. 
 Preservice and inservice teachers agreed that working with individual students can 
provide important insights into mathematics teaching. There is likely, therefore, to be 
value in strengthening this element of preservice mathematics education courses even in 
more traditional contexts where work samples and video excerpts can be used. 
 The study also raises questions about the implications of preservice teachers’ valuing 
of lecturers with recent classroom experience. Specifically, what qualities of these 
lecturers are considered important by preservice teachers? And to what extent does the 
status that experience affords them affect their ability to influence students’ beliefs? 
 Although ideas from the beliefs literature constituted part of the theoretical 
framework of the program and have explanatory power in terms of teachers’ practices, 
little is understood of the ways in which particular beliefs interact and are influenced by 
the myriad factors involved in learning to teach mathematics. There is a need for fine-
grained in-depth studies using mixed methods to chart the changes in individual’s 
beliefs, including about mathematics education, and the factors that trigger them. 
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It may seem that improvisational drama and primary mathematics are two diametrically 
opposed disciplines, the former being based around emergence and uncertainty and the 
latter based around predictability and certainty. In this paper I argue that creative 
mathematics teaching and learning requires a certain amount of unpredictability and that, 
particularly with regard to problem solving, learners‘ solutions have a certain quality of 
emergence that is not dissimilar to improvisational drama. By examining children‘s 
solutions to non-routine problems I consider what mathematics education might gain 
from attending to the discipline of improvisation. 

Theoretical background 
Collaborative emergence 
Sawyer (2001) traces the origins of the concept of emergence to work in 1875 by the 
philosopher George Henry Lewes and Lewes‘ distinction between two types of 
effects: resultants and emergents. The main qualities of emergent effects, Sawyer 
argues, are that outcomes cannot be fully understood or predicted by studying the 
constituent parts, as illustrated by Lewes‘ example of the effect of water emerging 
from the combination of oxygen and hydrogen. Understanding the properties of water 
cannot fully be achieved by reduction to the study of the properties of oxygen and 
hydrogen (although quantum physics now overturns this claim). This non-reductionist 
aspect of emergent phenomena means that they are multiplicative rather then additive 
in their nature (Davis & Simmt, 2003). Sawyer does not define resultant effects but I 
take these to be those effects that are predictable through the study of their component 
parts, typified by the behaviour of billiard balls.  
 Although the concept of emergence has been developed since Lewes‘ time, 
particularly in the physical sciences, it probably began to have most impact on 
educational research with the development of artificial intelligence systems that 
displayed intelligent behaviour based on simple, local rules of interaction and without 
the need for a central leader. Thus models of how insect colonies create complex 
structures or birds fly in symmetrical flocks became canonical examples of emergent 
systems (Clark 1997). From these simple forms of emergence it has generally become 
accepted that group behaviour can be considered as emergent when there is no 
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structured plan for the group to follow, and where there is no leader directing the 
group (Sawyer, 1999). Classrooms and students are, however, fundamentally different 
from anthills and ant, or flocks and seagulls, in the range of actions and agency 
available to the participants. To distinguish between systems where there is 
interaction but not agency, in the sense that individuals within the system can 
intentionally change the direction of what is emerging, I am using Sawyer‘s phrase of 
collaborative emergence to encompass phenomena ―that result from the collective 
activity of social groups‖ (Sawyer, 1999, p. 449). 
 Whilst not necessarily using the terminology of collaborative emergence, most 
teachers and researchers might consider group behaviour as emergent when there is 
no pre-determined plan or script that a leaderless group is following. In the context of 
this paper, the groups that I am considering to be engaged in collaborative emergent 
activity are pairs of children working on finding a solution to non-routine 
mathematics problems. As the children were not given any direction from the teacher 
as to how to solve the problems, nor were they assigned particular roles within their 
pairs (in particular, neither child was asked to act as ‗leader‘ of the pair) their problem 
solving activity fits with Sawyer‘s criteria to be classed as emergent.  
 A key theoretical and analytical shift in treating group activity as collaboratively 
emergent is that ―interaction among constituent components leads to overall system 
behaviour that could not be predicted from a full and complete analysis of the 
individual components of the system‖ (Sawyer, 2000, p. 183).  

Performance and improvisation 
Performance in some of the educational literature has perjorative overtones. For 
example, Dweck (2000) talks of ‗performance oriented‘ learners as learners who are 
keen to be seen to ‗performing‘ in correct and acceptable ways and that as such 
‗performance‘ is not always linked to understandings. Similarly, there are overtones 
sometimes of being taught to ‗perform‘ in the ‗training‘ sense of the word. 
 In contrast to such views of performance as not creative or allowing for agency, I 
am using the term in the sense used by Holzman (2000), in that the majority of our 
activity could be thought of as having an element of performance, and that one 
reading of Vygotsky is that we learn and develop through performing.  

Performative pyschology is based in an understanding of human life as primarily 
performative, that is, we collectively create our lives through performing 
(simultaneously being who we are and who we are becoming) (Holzman, 2000, p. 88) 

Although very young children learn to talk through joining in performances of 
conversations that are co-created and improvised between the child and more 
experienced others, as they grow older much of what children learn becomes 
routinized and rigidified into behavior (Holzman, 2000). An important distinction that 
Holzman makes here is between behaviour and activity: the former being a focus on 
the ‗self-contained individual‘ and activity as what people engage in together ‗rather 
than as the external manifestation of an individualised, internal process‖ (Holzman, 
2000). 
 One activity that adults engage in which is clearly performative, in the sense of 
collectively creative, is improvisational drama, in which actors create scenes without 
a pre-determined script. I explore here ways in which problem solving could be 
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considered similar to improvisational drama. Of course much of what passes for 
problem solving in school mathematics would be better described as exercises in that 
the method of solution is, in a sense, scripted and all the performer (child) has to do is 
replace certain elements. But problems for which pupils do not have a ‗script‘ could, I 
argue, be understood as involving improvisation. Together, improvisation and 
emergence provide lens for examining problem solving activity and raise questions 
about assumptions and practices in teaching primary mathematics. 

An example of collaborative emergent problem solving 
The school context 
This example comes from a two-year teaching experience in a primary school, Bow 
Bells, in the east end of London. The school is located in a traditionally working-class 
area but more recently there was also a high immigrant population, with many of the 
children starting school speaking almost no English. On measures of performance 
judged by national tests, only around 45% of pupils at age eleven were attaining the 
expected level 4 in the tests, compared with government targets of 80%. Inspection 
reports painted a picture of a school in difficulty, a consequence of which was that 
teachers were reluctant to apply to work there. The school was thus in a downward 
spiral. To counteract this, the local education authority had put in a new head-teacher, 
a specialist in literacy.  
 At that time I was looking to go back to do some school teaching. Several years of 
my own research had revealed little evidence of the sort of problem solving that was 
written about, and I had begun to wonder if teachers were right in sometimes thinking 
that academics in their ivory towers had got it wrong and that, given the constraints of 
schools, problem-solving based teaching was not possible. In approaching a local 
authority for a school to work in, Bow Bells was suggested.  
 At initial meetings with the teachers, two things were frequently commented on. 
First, teachers would talk about the limited language facility of the children (even for 
those children for whom English was their first language) and that consequently there 
was little point in asking the children to talk about mathematics. Second, and linked to 
the first point, there was a general sense that the children had little to contribute to 
mathematics lessons: it was important to equip children with the ‗basics‘ before they 
would be able to engage in any form of problem solving. This attention to the ‗basics‘ 
permeated throughout the school from the classes of five-year-olds to the eleven-year-
olds and the predominant style of teaching across all the years was one of the teacher 
demonstrating a method on the board and the children subsequently completing 
practice worksheets.  
 The local authority was able to provide money for support in mathematics and so a 
colleague, Penny Latham, and I were able to work there more intensively than I 
originally anticipated: I was there one day a week for eight weeks each term and 
Penny there for two days a week, both of us over the course of two years. We agreed 
with the staff that our main focus would be on supporting the children in being able to 
talk about mathematics and to develop their mathematical understanding from 
problems and problem solving.  
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 I have set out this context at some length as I want to make it clear that the children 
we were working with were not ‗privileged‘ and did not have the kinds of teaching 
that might pre-dispose them to finding solutions to problems without being shown a 
method for doing this. The example that follows is typical of the sort of work we did. 
It comes from a class of six- and seven-year olds, one term into our second year of 
work with them and their teachers. 

Improvised solutions: Jelly beans 

The lesson started with a discussion about the idea of equal. I put up on the 
board 

25 + 10 = 15 + 10 + 10 

and asked the children to decide in their pairs whether they thought this was true or 
not. The class were all agreed that it was not true: because 25 + 10 made 35 not 15. 
Asked about the +10 + 10 that followed after the 15 and the children were clear that 
these were not relevant (one child suggested that the board had not been cleaned 
properly). Like many children of this age they had appropriated the idea that the 
equals sign means ‗makes‘ and that what immediately followed it had to be the 
answer.  
 I talked about how the three numbers to the right could be added, representing this 
by adding them pairwise, 15 + 10 and 25 + 10, drawing lines down from the 15 and 
10 and recording 25 below and then drawing a line down from the 25 and second 10 
with the 35 below. Amid groans that I had (again) tried to ‗trick‘ them, there was a 
general agreement that the statement was true. My recording stayed on the board for 
the rest of the lesson. 
 I then set up the main problem for the lesson, presenting it orally. I talked about 
visiting a friend, Richard, who ran a sweet shop and how he had posed a problem that 
he hoped the children could help with. He kept jars of different flavours of jellybeans 
from which he made up orders. I asked for suggestions as to the flavours of beans he 
might have, in the expectation that the children may have seen the Harry Potter 
movies and come up with some ‗exotic‘ flavours. But they stuck with traditional fruit 
flavours, so I added in fish and broccoli. The six flavours were listed on the board and 
how many beans there were of each flavour: 

Strawberry  72 
Orange  23 
Apple  33 
Cherry  16 
Fish   80 
Broccoli  72 

The problem was that Richard had an order for 300 beans and did not know if he had 
enough beans in total. Were the children able to find out?  
 There was a general murmuring of this being hard, but this was the second year of 
working with the children and they had come to accept that we would give them 
challenging problems to work on but also trust that they would get there in the end. In 
particular, good habits for working in pairs had been established, including that when 
working in pairs the children would share one piece of paper. They also knew that 
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they could use any of the practical materials in the room and record their working in 
whatever way they found helpful.  
 A few pairs got out base-ten blocks to model the problem practically but most used 
paper and pencil. I want to examine the solutions of two pairs of children that are 
typical of the sorts of approaches the children took. 
 

 
 

Figure 1. Amy and Ali’s solution. Figure 2. Ben and Beth’s solution. 

Sawyer (2000) argues for the analysis of collaborative emergence through examining 
group interactions, texts produced (including spoken texts), and the historical 
development of the group. As data were not systematically collected on the group 
interactions, I focus here on the physical texts that the pairs of children produced and 
then turn attention to the historical context that I consider supported the emergence of 
these texts. 

Texts 

Figure 1 shows the work of Amy and Ali. They copied down the numbers in the order 
in which they were on the board, but then started adding them systematically. They 
began with the largest pair, 80 and 72, adding these through the co-ordinated actions 
of Amy counting on in tens from 72 while Ali kept track of the number of tens added 
on. Both children put out fingers to keep track of action and keep their counting in 
time. Hence when Ali reached 80 Amy simultaneously reached 152. Then to add on 
the second 72 they turned to using the empty number line, drawing other number lines 
to add on 33, 23, and 16 in that order.  
 Figure 2 shows the work of Beth and Ben. Like Amy and Ali they started by 
copying down the list of numbers, ticking off 80 but then could not decide what to do 
next. Ben suggested writing the numbers down as tens and ones and they wrote the 
tens out, in the same order but horizontally, ticking them off as they went. It was not 
clear who chose to record the pairwise addition of the tens by appropriating the ‗pull-
down‘ notation that was on the board from the introductory activity.  
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Do these examples constitute examples of a collaborative emergent system? 

Sawyer argues that a collaborative emergent system has the characteristics of:  
 

1. unpredictability;  
2. non-reducibility to models of participating agents;  
3. processual intersubjectivity;  
4. a communication system that can refer reflexively to itself, and within which the 
processes of communication themselves can be discussed; and   
5. individual agency and creative potential on the part of individual agents  

(Sawyer, 1999, p. 453) 

These solutions, and those of other children, were unpredictable given the range of 
solution methods. I had not planned to use the notation that morning that Beth and 
Ben used, but in the language of improv drama, it proved to be a ‗good offering‘. In 
improv drama scenes, good offerings are ‗lines‘ that open up possibilities for other 
players, as opposed to bad offerings that close things down. For example, in response 
to a simple opening of ‗Hi Mike‘ ‗Hey sis‘ would be a good offering, while ‗Who are 
you? I‘ve never seen you before‘ is a bad offering. 
 We knew the children well enough to know that the difficulty of the problem 
meant that no-one in class would have been able to solve the problem alone and the 
origins of the solutions cannot be reduced to an account of the understandings of 
individual children. The whole lesson was based on the processes of intersubjectivity 
together with individual agency and creativity. Sawyer‘s fourth point is the least 
obvious, although the lesson finished with these pairs of children presenting their 
solutions to the class and a discussion of the clarity of each solution and which the 
children preferred.  

Do these examples count as improvised?  

It is easier to determine what is not improvisation than what is (Sawyer, 2000). 
Although we had worked with the children on using empty number lines, we had not 
used them for successive calculations as the children did here, and the use of the 
‗pull-down‘ notation was certainly improvised as the children had never been exposed 
to this before. Similarly we had never taught or observed the co-ordinated counting in 
tens activity of Amy and Ali. While the popular impression of improvisation is that it 
all has to be made up, it is more a sense of coordinating previously known and used 
elements in new ways, and it is in that sense I argue these are improvised solutions. 

Improvisation, like composition, is the product of everything heard in past experience, 
plus the originality of the moment. The contents of even a very accomplished 
improviser‘s solos are not all fresh and original, but are a collection of clichés 
established patterns, and products of memory, rearranged in new sequences, along with 
a few new ideas. (Coker, 1964, p. 36, original emphasis). 

Historical context 
One aspect of the historical context is the attention to artefacts and tools that the 
children drew on. They were familiar with base-ten blocks. We had worked on 
fluency in adding multiples of ten, and emphasised the strategy of starting with the 
larger number when adding two numbers. We had introduced the children to the 
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empty number line and had worked with it long enough for this to be a model for 
addition for many of the children (Gravemeijer, 1999). 
 But in addition to these ‗cognitive‘ supports I want to make links to play and 
performance and the history of this that we, the class, had established, as I consider 
these as central to the children ‗buying into‘ a problem that had a level of challenge 
beyond anything they had met before. 
 Becker (2000) in his analysis of jazz improvisation argues for the importance of 
having ―a real shared interest in getting the job done‖ (p. 175). Like other researches 
leading to rich pupil solutions (for example, Fosnot & Dolk, 2001) the considerable 
time spent at the beginning of the lesson setting the context for the problem was not 
simply window dressing or a device to make some unpalatable calculations 
acceptable. There was a general ‗suspension of disbelief‘ created by spending time 
setting up the scenario and in getting ‗buy-in‘ from the children. This is not mere 
speculation: in the early part of setting up the problem, one of the girls repeatedly 
whispered to her neighbour ―It‘s not true you know. He doesn‘t really have a friend 
with a shop.‖ This increasingly became a stage whisper obviously intended to be 
overheard by everyone, so I stopped and we spent some time talking about whether it 
mattered if the ‗story‘ was real or not. Although some of the children were 
disappointed that I would not reveal the truth, they were generally content to ‗play 
along‘. Such ‗playing along‘ helps, I suggest, in the children being willing to ‗play‘ 
with a problem. This is in contrast to some views that ‗artificial‘ problems do more 
harm than good. While I would agree that the ‗quick‘ word problem about shopping, 
followed by another about ‗cooking‘ does not encourage engagement, I think more 
use could be made of more extended narrative scenarios to hook children in. 

Discussion 
Persons in environment 
In her interpretation of the work of Vygotsky as a performative psychology, Holzman 
(2000) argues for being clear about distinguishing learners from their context but not 
treating them as separate from the context. 

While we surely can be (and are, in Western cultures) distinguished from environment, 
this does not mean we are separate from it. Instead of two separate entities …  there is 
but one, the unity ―persons-environment.‖ In this unity, the relationship between 
persons and environment is complex and dialectical: environment ―determines‖ us and 
yet we can change it completely (changing ourselves in the process, since the ―it‖—the 
unity ―persons-environment‖— includes us, the changers). (p. 86–87) 

This has echoes of the emergence concept of downward causation (Campbell, 1974). 
―In downward causation, an emergent higher level property begins to cause effects in 
the lower level, either in the agents or in their patterns of interaction‖ (Sawyer, 1999, 
p. 455). Is it meaningful (or helpful) to talk of downward causation in the sense of the 
solutions that the children produce having some quasi-autonomous effect on the 
learners? In other words, is there a sense in which the solutions are manifesting 
themselves through the children, rather than the children are simply producing the 
solutions?  
 Experienced improvisers testify to downward causation. Although at the beginning 
of a scene, improvising actors have a whole range of options open to them (indeed, 
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one of the disciplines of improv is to keep these options open for as long as possible), 
once the form and content of the scene starts to emerge, actors will talk afterwards of 
the scene ‗writing itself‘. Similarly jazz musicians report a sense of the music playing 
the band:  

The players thus develop a collective direction that characteristically—as though the 
participants had all read Emile Durkheim—feels larger than any of them, as though it 
had a life of its own. It feels as though, instead of them playing the music, the music, 
Zen-like, is playing them. (Becker, 2000, p. 172) 

Even if it is only metaphorical to talk of downward causation, engendering a sense of 
this plays, I suggest, an important role in moving from either a teacher-centred or a 
pupil-centred lesson to a mathematics-centred one. The (tacit) sense of the solutions 
having some agency rather than being the ‗property‘ of specific children may account 
for why that even at this young age the children were able to talk about the solutions 
without being defensive or possessive of them. Again there are resonances with jazz. 

Likewise, people must have a real shared interest in getting the job done, an interest 
powerful enough to overcome divisive selfish interests. In an improvising musical or 
theatrical group, for instance, no one must be interested in making a reputation or 
protecting one already made. (Becker, 2000, p. 175) 

Conclusion 
If it is the case that paired or group work that allows for collaborative emergence can 
result in more sophisticated, improvised, mathematical performance than could be 
achieved by the individual pupils then this has implications for the planning and 
implementation of lessons. First, most teachers base their planning on what they 
consider to be the needs of the individuals in their class which, as indicated here, are 
necessarily at a lower level of mathematics than could be achieved collectively. In the 
case of the children at Bow Bells school there was a clear pay-off from working at 
this more challenging level. These children were in Year 2, one of the years of 
primary schooling where the children have to take one of the externally set ‗National 
Tests‘. Not only did over 90% of the children reach the expected level on these tests 
(substantially higher than in previous years), but the children themselves commented 
on how easy they had found the test. Second a focus on the collective outcome 
presents challenges to the discourse of the individual that currently structures 
assessment activity.  
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Recent decades have seen growing concern over the lowering levels of engagement with 
mathematics in Australia and internationally. This paper reports on a longitudinal study on 
engagement with mathematics during the middle years and explores the influences of 
teachers on the participants‟ engagement with mathematics. Findings reveal that 
development of positive pedagogical relationships forms a critical foundation from which 
positive engagement can be promoted. 

Introduction 
In recent decades there has been growing concern over the lowering levels of 
engagement with mathematics in Australia (Commonwealth of Australia, 2008; State of 
Victoria Department of Education and Training, 2004; Sullivan & McDonough, 2007; 
Sullivan, McDonough, & Harrison, 2004) and internationally (Boaler, 2009; Douglas 
Willms, Friesen, & Milton, 2009; McGee, Ward, Gibbons, & Harlow, 2003). The issue 
of lowered engagement levels in mathematics during the middle years (Years 5 to 8 in 
NSW) could cause wide-reaching consequences that have the potential to affect our 
communities beyond the obvious need to fill occupations that require the use of 
mathematics. Disengagement with mathematics leads to reducing the range of higher 
education courses available to students through exclusion from courses requiring 
specific levels of mathematics. In addition, students who discontinue studying 
mathematics limit their capacity to understand life experiences through a mathematical 
perspective (Sullivan, Mousley, & Zevenbergen, 2005). Arguably one of the most 
significant influences impacting on engagement in mathematics is the teacher and 
teaching practices, or pedagogy (Hayes, Mills, Christie, & Lingard, 2006; NSW 
Department of Education and Training, 2003).  
 This paper is derived from a longitudinal case study on engagement in mathematics 
during the middle years of schooling in which a group of 20 students experienced a 
range of mathematics teachers and pedagogical practices during their final year of 
primary school and the first two years of secondary school. Data were collected from 
the group across the three school years through individual interviews and focus group 
discussions. This paper is an exploration of the influences of teachers and their practices 
on the participants‟ engagement with mathematics. The theoretical framework 
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underpinning this paper is based on current theories and definitions of engagement, and 
literature defining „good‟ teaching of mathematics. A brief overview of the literature is 
now provided. 

Engagement  
Recent research into student engagement, the Fair Go Project (Fair Go Team, NSW 
Department of Education and Training, 2006) focussed on understanding engagement 
“as a deeper student relationship with classroom work” (p. 9). The Fair Go Project 
found that students need to become „insiders‟ within their classroom, feeling they have 
a place and a say in the operation of their classroom and the learning they are involved 
with. They have a need to identify themselves as „insiders‟ as well as to be identified as 
„insiders‟ by their teachers, students and all stakeholders 
 In addition to the definition of engagement described above, there are others that 
should be considered. Some definitions view engagement only at a behavioural level 
(Hickey, 2003), where others view engagement as a multidimensional construct 
(Fredricks, Blumenfeld, & Paris, 2004). Fredricks et al. (2004) define engagement as a 
deeper student relationship with classroom work, multi-faceted and operating at 
operative, affective, and cognitive levels. Operative engagement encompasses the idea 
of active participation and involvement in academic and social activities, and is 
considered crucial for the achievement of positive academic outcomes. Affective 
engagement includes students‟ reactions to school, teachers, peers and academics, 
influencing willingness to become involved in school work. Cognitive engagement 
involves the idea of investment, recognition of the value of learning and a willingness to 
go beyond the minimum requirements. In terms of engagement with mathematics, 
engagement occurs when students are procedurally engaged within the classroom, 
participating in tasks and „doing‟ the mathematics, and hold the view that learning 
mathematics is worthwhile, valuable and useful both within and beyond the classroom. 
 Why is engagement with mathematics so crucial? In an investigation into the reasons 
students are choosing not to pursue higher-level mathematics courses, McPhan, 
Moroney, Pegg, Cooksey and Lynch (2008), claim “curriculum and teaching strategies 
in the early years which engage students in investigative activities and which provide 
them with a sense of competence are central to increasing participation rates in 
mathematics” (p. 22), yet many attempts to investigate the lack of engagement with 
mathematics have failed to find good reasons for students‟ difficulties. It is claimed 
students who are engaged with school are more likely to learn, find the experience 
rewarding and continue with higher education (Marks, 2000).  

‘Good’ teaching and mathematics 
The pedagogical practices employed within mathematics classrooms cover a broad 
spectrum from the „traditional‟, text book based lesson, to the contemporary or „reform‟ 
approaches of problem solving and investigation based lesson, or a combination of both. 
When asked to recall a typical mathematics lesson, many cite a traditional, teacher-
centred approach in which a routine of teacher demonstration, student practice using 
multiple examples from a text book and then further multiple, text book generated 
questions are provided for homework (Even & Tirosh, 2008; Goos, 2004; Ricks, 2009).  
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 An alternate approach to teaching mathematics reflects a constructivist perspective 
where students are provided with opportunities to construct their own knowledge with a 
focus on conceptual understanding rather than instrumental understanding. Such an 
approach fosters problem solving and reasoning and is consistent with frameworks for 
quality teaching (Newmann, Marks, & Gamoran, 1996; NSW Department of Education 
and Training, 2003). 
 Although there are arguments for using either or both approaches, there is strong 
support for an investigational, contemporary approach to teaching and learning 
mathematics (Anthony & Walshaw, 2009; Boaler, 2009; Clarke, 2003; Lovitt, 2000). 
Open-ended, rich tasks transform students‟ beliefs about problem solving and alter the 
culture of mathematical engagement. Evidence suggests that providing middle years 
students with engaging mathematical tasks supported by appropriate teaching strategies 
leads to sustained improvement in learning outcomes (Callingham, 2003).  
 Much research has been conducted on effective teaching of numeracy and 
mathematics, with a particular emphasis on the pedagogical content knowledge (PCK) 
required for effective teaching of mathematics (Askew, Brown, Rhodes, Johnson, & 
Wiliam, 1997a; Delaney, Ball, Hill, Schilling, & Zopf, 2008; Hill, Ball, & Schilling, 
2008; Shulman, 1986). In support of the need for strong PCK it can be argued that 
teachers with higher mathematical qualifications do not necessarily produce strong 
learning outcomes in their students as a result of weak understandings of how students 
learn and the pedagogies that are appropriate for particular mathematics content 
(Askew, Brown, Rhodes, Wiliam, & Johnson, 1997b).  
 In recent years the Australian Association of Mathematics Teachers (AAMT) (2006), 
developed a set of standards that reflects current literature on effective teaching of 
mathematics and represents national agreement of teachers and stakeholders on the 
required knowledge, skills and attribute of quality teachers of mathematics. Data 
informing this paper were analysed against the backdrop of the above literature on 
engagement, effective teaching and current teaching standards. The following is a brief 
description of the methodology used in the study. 

Methodology 
The participants in this case study were derived from a Year 6 Cohort in a western 
Sydney catholic primary school and were identified through Martin‟s (2008) Motivation 
and Engagement Scale (High School), as having strong levels of engagement with 
mathematics. The instrument consisted of a 44 item Likert scale requiring students to 
rate themselves on a scale of 1 (Strongly Disagree) to 7 (Strongly Agree) and was 
adapted to be specific to mathematics. The group of 20 participants made the transition 
together to the local catholic secondary college which had been in operation for only 
two years prior to the group‟s arrival. The participants represented a diverse range of 
mathematical abilities and cultural backgrounds, and most came from families with two 
working parents. 
 During the study the students participated in individual interviews during Year 6 and 
again in Year 8, and a series of focus group discussions at five points across the 
duration of the study. In addition, teachers identified by the students as „good‟ 
mathematics teachers were interviewed and observed during several mathematics 
lessons. The students formed three focus groups; a boys group, girls group and mixed 
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gender group. Each interview and focus group discussion was loosely based on the 
following set of discussion points/questions: (a) Tell me about school; (b) Let‟s talk 
about maths; (c) Tell me about a fun maths lesson that you remember well; (d) When it 
was fun, what was the teacher doing?; and (e) What do people you know say about 
maths?  
 The data gathered were transcribed and coded into themes. In terms of the students‟ 
perceptions of mathematics teaching, two major themes emerged as being influential on 
their engagement with mathematics: teachers‟ pedagogical repertoires, those day-to-day 
practices that teachers implement in their teaching of mathematics, and the pedagogical 
relationships formed between teachers and students.  

Results and discussion 
During Year 6, the participants experienced pedagogies that included a significant focus 
on cooperative learning. The opportunities for interaction and dialogue that this 
provided had a positive influence on the students‟ engagement with mathematics, with 
one student saying: “You‟ve got like more options to choose from rather than if you‟re 
by yourself” and another: “working with partners is fun because you could find different 
strategies and you have fun and it‟s easier”. It can be argued that the classroom practice 
of cooperative learning has positive results in terms of providing a safe environment in 
which the students are able to learn within a positive classroom culture. The ability to 
associate learning in mathematics as fun appeared to be a powerful influence on 
engagement, and the following quote summed up the collective feeling of the majority 
of participants: “The group can work it out together to try and solve the problem and 
you‟ve like learned something new or how to work out something”. 
 One Year 6 teacher, Linda, who was identified by the students as the „best‟ 
mathematics teacher, was described by several students as someone who enjoys 
teaching and has a passion for mathematics. Alison attributed this quality to increasing 
her own engagement: “She just puts a lot of enthusiasm in maths and makes it really fun 
for us. She gets all these different maths activities. She just makes it really fun for us 
and I quite enjoy maths now because of that”. 
 It appeared the teacher‟s enthusiasm for mathematics fostered positive attitudes and 
excitement towards mathematics, reflecting the findings from research (Askew et al., 
1997b) and recommendations by the AAMT (2006). In addition to her passion for 
mathematics, the students witnessed Linda as having fun teaching. Tenille said: “It‟s 
fun when the teacher, like, while you‟re doing the work, she also has fun teaching the 
maths as well”. 
 When the students moved on to Year 7, they were faced with a new set of 
pedagogies, and a new set of mathematics teachers. In contrast to the approaches used 
during their primary years, the students were expected to work on an individual basis, 
using computer-based interactive tutorials and mathematics textbooks. This 
significantly reduced classroom interaction and dialogue, and rather than having a single 
mathematics teacher, students were provided with a rotation of four different teachers.  
 Although the availability of computer technology provided the opportunity for 
teachers to deliver a new and relevant way of teaching and learning (Collins & 
Halverson, 2009), they instead appeared to be used as replacements for teachers. Alison 
picked up this emerging idea among the students: 
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… it's probably not the best way of learning because last year at least if you missed the 
day that they taught you, you still had groups so your group could tell you what was 
happening. Where now, we‟ve got the computers and it‟s alright because there is, um, left 
side of the screen does give you examples and stuff, um, but if you don‟t understand it, 
it‟s really, hard to understand. 

It is reasonable to suggest that the website and textbook were not necessarily bad 
resources. However, the data was showing that it was the way they were used in 
isolation that meant the students began to disengage from mathematics. During Term 2 
of Year 7 the students were given the opportunity to engage in tasks that were more 
interactive and hands-on, consistent with recommendations from research (Boaler, 
2002; Callingham, 2003; Lowrie, 2004). Several of the students commented on this 
change, with Fred saying: “We‟re doing more hands-on tasks than what we were used 
to, like what we used to do. It‟s more interesting”. The students found the incorporation 
of concrete materials made their mathematics lessons more interesting, and the 
opportunity to work in groups during one particular activity made those lessons 
memorable, with Rhiannon giving this reason: “… because we got to create the shape 
by using straws, in groups. Not by ourselves”. In addition to the benefits of being able 
to work collaboratively, George felt he and his group made more of an effort than usual: 
“It was good because we could make it ourselves and we could like put effort into it”. 
 When the students reached Year 8, the school‟s structure had been reviewed and 
during Term 2, the students were provided one regular mathematics teacher per group. 
The newly formed mathematics classes appeared to increase the students‟ engagement, 
allowing stronger teacher/student and peer relationships to develop. In terms of the 
resources that were used in the Year 8 lessons, there was less reliance on the students‟ 
laptops and more emphasis on using text books. Kristie described a typical routine:  

Well, we just got our text book and the laptops don‟t come out in maths as much or at all, 
unless you‟ve forgotten your text book or something like that. And, um, maths is good, 
we separated into groups and the teacher‟s out the front and he‟ll tell us what to do and 
you pretty much put your hand up if you need help, and he‟ll help you and then you have 
the text book out and you answer the questions in your maths book. 

Although it has been found that a traditional approach to teaching mathematics may 
have a negative influence on student engagement, in this case the students saw it as an 
improvement on previous pedagogies and appeared to experience higher levels of 
engagement. One aspect of the teachers‟ pedagogies that had a positive effect on the 
students‟ engagement was the students‟ perceptions of an improvement in teacher 
explanations. George made this comment which reflected the feelings of many of the 
students: “I think maths has improved because the teachers go through it with you more, 
whereas last year they would just set you a task and leave you with it”. Billy, a student 
who struggled to maintain his engagement in mathematics, added: “Sir just writes stuff 
on the board and then he explains it really good and we learn about stem and leaf 
graphs. He teaches it really good and other teachers just write it down and say „go do 
that‟”. 
 During the final data collection, Alison made a comment that was reflective of the 
group‟s feelings once they were assigned their regular teachers and were able to begin 
building positive pedagogical relationships: “The teachers know where we‟re coming 
from and what we need to learn and they learn, not what the group needs, but what we 
need”. The data shows that the students appeared to re-engage with mathematics when 
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they felt the teachers knew them in terms of their mathematics learning needs. The 
opportunity to establish positive pedagogical relationships with teachers appeared to 
provide students with a sense of belonging, an important aspect of an effective 
mathematics classroom (Boaler, 2009).  

Implications and conclusion 
The most powerful influence on engagement in mathematics for these students appeared 
to be that of their teachers. This influence can be viewed at two interconnected levels. 
The first level includes the pedagogical repertoires employed by the teacher, and the 
second, the pedagogical relationship that occurs between the teacher and students. That 
is, the connections made between the teacher and student, and the teacher‟s recognition 
of and response to the learning needs of his or her students. Although this study has 
limitations in terms of the selective nature of the sample, it is suggested that the 
development of positive pedagogical relationships forms a critical foundation from 
which positive engagement can be promoted and this may be generalised to a wider 
student population. 
 The findings discussed in this paper imply that many middle years students are still 
dependent on high levels of interaction within the mathematics classroom. Repetition of 
the current study within different school contexts would be of benefit in further 
exploring the concept of engagement with mathematics. Further studies on engagement 
with mathematics during the later years would be beneficial in terms of investigating 
whether pedagogical relationships remain as important for older students. Although 
student achievement and its relationship to engagement levels was not a focus of this 
study, such an exploration would also be worthwhile for future research.  
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Teacher-student relationships can strongly influence academic achievement 
and motivation, particularly for minority group students. Teaching practices 
contributing to strong academic relationships are therefore vital to 
understand. This article describes such practices drawn from observations of 
100 Year 10 mathematics lessons involving six teachers and their classes 
across three mid-low socio-economic schools. For many indigenous 
(Māori), New Zealand Pacific, and New Zealand European students, 
evidence emerged that essential caring teacher behaviours include and 
extend beyond traditional mathematics teaching practices. Findings are 
presented using an holistic model of health and well-being that encompasses 
cognitive, social, physical, and spiritual dimensions. 

Introduction 
Culturally-linked issues affecting academic achievement are essential for educators to 
address (e.g., Alton-Lee, 2003; Castagno & Brayboy, 2008; Ministry of Education, 
2008; Pang, 2005; Tyler et al., 2008; Villegas & Lucas, 2002), particularly in 
mathematics, a gate-keeper subject, where differences in achievement by ethnicity are 
often found. The importance of effective teacher-student relationships for learning, 
particularly for indigenous and marginalised students, is well documented (e.g., Bishop, 
Berryman, Tiakiwai, & Richardson, 2003; Eccles, 2004; Gay, 2000; Gorinski, 
Ferguson, Wendt-Samu, & Mara, 2008; Ladson-Billings, 1994). Teachers‟ care for their 
students is seen by many as an essential component of learning-focussed teacher-student 
relationships (e.g., Bishop et al., 2003; Gay, 2000; Hackenberg, 2010; Hill & Hawk, 
2000; Noddings, 1992). Students who see their teachers as caring are more likely to 
continue with mathematical study (Noblit, Rogers, & McCadden, 1995; Ocean, 2005), 
and have positive academic attitudes, motivation, and engagement (Gay, 2000; Hudley 
& Daoud, 2007; Wentzel, 1997).  
 New Zealand schools, like many internationally, are becoming increasingly 
ethnically and culturally diverse. This paper describes factors that contribute to teacher 
care found within one part of a mixed-method study carried out with six New Zealand 
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multiethnic (indigenous Māori, New Zealand Pacific1, and New Zealand European) 
mathematics classes and their teachers. Firstly, the theoretical and contextual 
background to the study is discussed. Next, Durie‟s (1998) holistic model of health and 
well-being is described in relation to this study, and then the study, analysis, and 
findings are outlined.  

Theoretical background  
Teachers showing care for their students is advocated by many and a broad range of 
caring teacher behaviours are discussed in the literature (e.g., Hackenberg, 2010; 
Haynes, Ben-Avie, & Ensign, 2003; Noddings, 1992, 1995). Authors in the field of 
culturally responsive teaching also promote caring teacher practices (e.g., Bishop et al., 
2003; Gay, 2000; Ladson-Billings, 1994; Wlodkowski & Ginsberg, 1995). Yet how 
caring relationships can be nurtured may vary across ethnicities (Thompson, 1998) and 
research is needed to illuminate such differences and teacher care in general within 
mathematics instruction (Hackenberg, 2010).  
 Particularly relevant to this study, manaakitanga (nurturing relationships) is a 
bedrock concept for all tikanga (Māori cultural practices) (Macfarlane, Glynn, Grace, 
Penetito, & Bateman, 2008). Caring for people is also fundamental for many Pacific 
groups and, using a Tongan example, involves developing three aspects of the “tangata 
kakato” (the total person) (Koloto, 2004, p. 61): “mo’ui fakasino” (physical well-being), 
“mo’ui faka’atamai” (intellectual well-being), and “mo’ui fakalaumalie” (spiritual well-
being) (p. 62). Implications of such cultural perspectives of interpersonal care within 
classrooms include expectations by students and their families of the constant use of 
caring teacher practices.  
 Care can be shown in many ways: such as by showing respect, giving advice, or by 
acknowledging someone or their feelings (Noddings, 1992). Students‟ experiences of 
teacher care are affected by the classroom environment (e.g., Bishop et al., 2003) and 
teaching practices (e.g., Anthony & Walshaw, 2007; Bishop et al., 2003; Gay, 2000; 
Noddings, 1992; Pang, 2005; Wlodkowski & Ginsberg, 1995). Specific teacher practices 
found to help develop caring teacher-student relationships include: involving students in 
classroom decision-making (e.g., Alton-Lee, 2003); using „safe‟ questioning practices 
(e.g., Bills, 2000); creating a sense of shared endeavour; and incorporating particular 
pedagogies, for example, collaborative work (e.g., Hill & Hawk, 2000). 
 Understanding factors conducive to caring teacher-student relationships in 
mathematics learning is particularly important given persistent achievement gaps 
between those of dominant and marginalised ethnic groups, and the lack of 
representation of marginalised groups within mathematically-rich and mathematically-
dependent disciplines. The literature provides a strong case for teachers to show care to 
their students. However, less focus has been given to how teacher care can be 
holistically shown within multi-ethnic classrooms, classrooms with indigenous students, 
and within mathematics learning. In this study, teacher care was explored by focussing 
on their care for students‟ mathematical progress and for their students as culturally 
located individuals.  

                                                        
1 People living in New Zealand who have strong cultural, heritage, and family connections to their Pacific Island 
countries of origin. 
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The whare tapa wha model 
Durie‟s (1998) whare tapa wha model of health and well-being (literally translated as 
„the four-sided house‟) was chosen to discuss factors contributing to teacher care found 
in the study. The model has four mutually supportive dimensions: taha hinengaro 
(representing people‟s cognitive, psychological, and emotional well-being), taha 
whānau (relating to interpersonal characteristics), taha wairua (representing spiritual 
elements), and taha tinana (relating to physical well-being). In Durie‟s model, balance 
across the four dimensions is important.  
 Mathematical thinking can contribute to the taha hinengaro, and elements 
contributing to „affect‟ such as mathematical self-concept to taha hinengaro and taha 
wairua. The suitability and timeliness exploring the model in this study is confirmed 
through the more recent use of the whare tapa wha model within mathematics educator 
professional development towards engaging Māori learners (Tertiary Education 
Commission, 2010). 

The study 
Participants included six mathematics teachers and their Year 10 classes from three 
urban mid-low socio-economic secondary schools with roughly equal proportions of 
Māori, New Zealand Pacific, and New Zealand European students. Teachers‟ ethnicities 
included four New Zealand European, one Māori/New Zealand European, and one New 
Zealand Asian. The 161 student participants included roughly even numbers of the 
target ethnicities2 and of males and females. Students‟ self-reported ethnicities indicated 
many had multiple heritages, making reporting of results by ethnicity unsuitable. 
 Māori and New Zealand Pacific cultural advisors were consulted regarding all stages 
of the study (Averill, 2009). Reported here are the findings from the central data 
collection method of the larger investigation, classroom observation. An observation 
schedule was designed using ideas drawn from a wide range of literature, extensive 
consultation with cultural, teacher, and student advisors, and extensive piloting (Averill 
& Clark, 2007). Three data gathering periods were used - the initial four weeks of the 
school year, two-weeks after roughly 10 school weeks had passed, and another two-
weeks 10 school weeks later. The complete data set comprised 100 lesson observations. 

Analysis 
Analysis is largely drawn from the data from the two study teachers whose practice 
most consistently displayed acts described in the literature as caring. Durie‟s (1998) 
whare tapa wha model was used as an interpretive typology and results will be 
discussed as they relate to the four sides of the whare in turn. 

Taha hinengaro 

Practices that assisted in building safe, purposeful, and engaging learning environments 
are pertinent to the taha hinengaro. These included teachers creating warm, caring 
classroom atmospheres with a clear focus on mathematics learning by consistently 
reinforcing firm boundaries, and setting high (yet attainable) expectations and ensuring 
students were aware of these. Teachers showed care for student learning by giving clear 

                                                        
2 As recorded by schools for the Ministry of Education.  
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signals (“I‟ll know you are ready when your arms are folded and your mouths are 
closed.”), being consistent in and explicit about their practice (“I‟m coming around to 
see your progress. You‟ve got five minutes and then we‟ll see what we think about one 
another‟s ideas”), capitalising on students‟ reactions and responses to promote learning, 
and by showing they liked and respected their students.  
 Caring teachers created a sense of urgency for completing tasks and maintained 
students‟ engagement by constantly challenging their thinking (e.g., by adding new 
ideas to discussion, helping students invent and incorporate new rules to a game, and 
varying activities or their styles of questioning). Involving students in lesson-related 
decision making (e.g., in selecting tasks or the level of difficulty of the tasks), varying 
lesson tasks, and sanctioning humour were further practices that showed care for 
students‟ mathematical progress.  
 Observed behaviours less caring of students‟ mathematical learning relating to taha 
hinengaro included teacher-directed rather than student-centred practices, lack of 
variety in lesson activities, setting uninspiring tasks, low teacher expectations (e.g., 
providing little work, accepting off-task behaviour), and reacting negatively to student 
humour or suggestions.  

Taha whānau 

Practices relating to taha whānau, those that appeared to help develop a sense of 
community and social responsibility, fell within four areas: nurturing class community; 
nurturing personal responsibility; care for learning needs; and care for students as 
individuals within their wider family and community contexts. Teachers nurtured 
students‟ sense of class community by letting students know something about them as 
individuals by telling students about themselves at the start of the year and sharing 
personal information relevant to students‟ learning. For example, one teacher discussed 
her child‟s collection of cereal box cards when introducing related probability 
simulation work.  
 Teachers nurtured students‟ sense of personal responsibility by showing interest in 
and concern for them within and outside mathematics learning (e.g., discussing health 
issues related to smoking with a student athlete smoker). Teachers used inclusive 
language (e.g., “let‟s see what happens when…”), prioritised students and their 
learning, and incorporated activities that encouraged a sense of community (e.g., 
mathematical games, group tasks, stories). They carefully selected learning activities 
that required or enabled students to share aspects of their own knowledge and 
personalities and used opportunities to acknowledge shared endeavours (e.g., a school 
athletics competition). Caring practices included addressing students‟ learning needs by 
attending to students‟ concerns, making calculators, equipment, and homework books 
available, and by showing care regarding whakaiti (humility) and whakamā (shyness, 
embarrassment). 
 Practices relating to taha whānau that undermined students‟ senses of community 
and community purpose included not knowing or making mistakes with students‟ 
names, disregarding students‟ concerns and interests, and public admonishment. 

Taha wairua 

Teacher practices relating to caring for the taha wairua included showing respect for 
students (e.g., by using praise, providing timely feedback about learning, and explaining 
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their practice) and encouraging students to self-assess their progress. The teachers 
typically exhibiting most care for their students incorporated one-to-one interaction with 
all students every lesson, often multiple times. These teachers enhanced students‟ sense 
of personal mathematical identity through modelling their own, showing students they 
were aware of their progress, providing many suitable engaging tasks to fill the lesson, 
relating tasks to students‟ lives, and being positive and encouraging. 
 Teach care was less apparent in lessons with few opportunities for students to share 
responsibility for their learning and little provision for student enjoyment, interest, one-to-
one teacher-student interactions, or mathematical success.  

Taha tinana 

Practices pertaining to students‟ physical well-being and movement and were interpreted as 
relating to the taha tinana. Examples included students writing mathematical questions and 
working on the board, moving as part of a game or to indicate their progress, carrying out 
mathematical tasks outside the classroom, and being able to move around the room (e.g., to 
obtain assistance from peers or open windows). Teachers showed care for students‟ 
physical well-being through ensuring the classroom environment was comfortable, 
acknowledging the effects of the environment (e.g., heat) on students‟ learning, and 
showing concern for students‟ physical well-being. In the most caring classrooms 
teachers worked close to students, placing the students as important participants, 
showing them that the teacher was ready to assist, and enabling privacy. 
 Teachers less caring of students‟ physical well-being included few opportunities for 
movement and at times gave instructions resulting in student discomfort (e.g., insisting 
on the removal of non-uniform jersey). 
 In summary, teacher practices relating to care for students as culturally located 
individuals fitting within one or more dimensions of Durie‟s (1998) model were present, 
with many discussed above. Other examples included teachers pronouncing students‟ 
names correctly, acknowledging students‟ culturally-based knowledge, and greeting or 
praising students using Māori or Pacific Nations‟ languages. However, very few 
instances of further use of Māori and Pacific languages or of mathematical contexts 
drawn from these cultures were observed. 

Discussion and conclusion 
Attaining equitable access to mathematical achievement has been a persistent challenge 
for many education communities. Caring teacher-student relationships focused on 
enhancing learning offer one pathway towards maximising motivation and achievement. 
This study adds to the literature on teacher care by illustrating how caring classroom 
practices can be linked to the interrelated cognitive, social, emotional, physical, and 
dispositional aspects of mathematics learning. 
 Few culturally-linked models for mathematics teaching exist. This study illustrates 
how a model drawn from indigenous perspectives can inform teaching of indigenous, 
minority, and dominant culture students. Whilst the framework is drawn from 
indigenous Māori perspectives, the dimensions are universal and transferable to other 
cultures as they relate directly to the human condition and interpersonal relationships. 
Similar models drawn from other communities are worthy of investigation to further 
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add to our understanding of how best to enhance teacher-student relationships towards 
maximising mathematics learning. 
 Further exploration is possible into ways of using the model to develop teachers‟ 
practice in mathematics and other curriculum areas, and how caring teacher-student 
relationships can be enhanced through reflecting students‟ families, cultures, cultural 
identities, and lives in instruction. 
 This study indicates that a model recommended for teachers to improve their 
teaching of a group of students less well served by mathematics education can be 
relevant for teachers of students of many ethnicities. With increasingly diverse 
combinations of students‟ ethnic backgrounds and the challenges sometimes found 
within projects targeting specific ethnic groups (e.g., McKenzie & Scheurich, 2008; 
Theoharis, 2007), the generic nature of many aspects of caring teaching practice as 
suggested by this study provides a way towards enhancing equity of access to 
mathematics learning.  
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That preservice teachers’ understanding of what constitutes good teaching is partly shaped 
by their experiences as students in the classroom is well documented; but how they give 
shape to their recollections is underexplored. In this study, preservice teachers wrote about 
their perceptions of good teaching in narrative reflections of their experiences as school 
students. Almost 25% of the cohort chose to write about a mathematics teacher. Narrative 
analysis was used to investigate the content and the form of the 31 reflections to provide 
insight into how preservice teachers reconstruct their narratives of experience. Three 
distinctly different story types were found.  
 

Preservice teachers come into teacher education programs with existing beliefs about 
what is good teaching mostly developed from their experience as a student; however, 
preservice teacher beliefs appear limited, underdeveloped, and particular to individual 
experience (Fajet, Bello, Leftwich, Mesler & Shaver, 2005; Lortie, 1975; Minor, 
Onwuegbuzie, Witcher & James, 2002; Prescott & Cavanagh, 2006). They have been 
shown to affect how preservice teachers respond to teacher education programs 
(Richardson, 2003). This paper contributes to a better understanding of preservice 
teacher beliefs by investigating the form as well as the content of narrative expressions 
of beliefs concerning good teaching.  
 The line of inquiry reported here emerged from a larger study that investigated how a 
second year subject in a four year teacher education program contributed to the 
development of professional teacher identity of preservice teachers (Balatti, Knight, 
Haase & Henderson, 2010). Prior to this subject, the preservice teachers (primary and 
secondary) have little or no experience teaching in a classroom. Also at this point, 
students have had no curriculum methodology subjects.  
 The learning identity framework (Falk & Balatti, 2003) underpinning the 
pedagogical approach used, views teacher identity in terms of “identity resources” that 
is, those behaviours, knowledges, beliefs and feelings that come from having a sense of 
belonging (or aspiring to belong) to a community of practice (Wenger, 1998) in this 
case, of teachers. According to this framework, identity resources come from the 
identity formation, re-formation and co-construction that occur through interacting and 
storying. 
 Polkinghorne (1988, p. 18) defines story or narrative as “a meaning structure that 
organizes events and human actions into a whole, thereby attributing significance to 
individual actions and events according to their effect on the whole.” Narratives are 
open to contention and revision and can be reworked any number of times.  
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In the subject, preservice teachers were asked to write online weekly narratives that 
included reflections on their past school experiences and their teaching experiences 
during their school placements. One of the first tasks was to write about their experience 
of good teaching at school.  
 Approximately 25% of the responses concerned good teaching in the context of 
mathematics classrooms. Moreover, despite the prescriptive requirements of the task, 
the narratives displayed a range of content and structure that suggested further 
investigation was warranted. 
 This paper reports the insights that a narrative analysis of this set of experiential 
stories provides concerning preservice teacher understandings of what constitutes good 
teaching. In particular, it provides responses to the following questions: 

 How do preservice teachers appear to make their judgements of what constitutes 
good teaching? 

 What do preservice teachers consider to be good teaching or a good teacher in the 
mathematics context? 

Method 
The texts analysed were written in the first week of the subject which is delivered in the 
first semester. The non-assessable task read as follows:  

We’d like you to write about a memory you have of a good teacher or of good teaching 
that you experienced as a child. Start by giving a context (e.g., your age at the time, 
subject). Then tell us why you thought that person was a good teacher. (Did you think this 
at the time or is this what you think only in retrospect?) Follow this by telling the story of 
a particular incident (or practice) that supports your claim. Conclude with a sentence or 
two showing the links between what the teacher did and what you know so far from your 
readings about what constitutes good teaching.  

Of the 145 preservice teachers enrolled at the time, 136 completed the writing task. Of 
these, 31 wrote narratives of good teaching in a school mathematics context.  
 Analysis of the data comprised narrative analysis (Clandinin & Connelly, 2000; 
Riessman, 2008) followed by inductive analysis (Patton, 1990). The narrative analysis 
entailed both structural analysis and thematic analysis (Riessman, 2008).  
 As a starting point, the structural analysis used Labov’s six elements of narrative 
structure (as cited in Riessman, 2008) and the thematic analysis identified the content of 
the narratives that directly or indirectly revealed participants’ perceptions of qualities of 
good teaching. This phase produced the aspects of the narratives that were further 
analysed inductively.  
 The coding categories emerged from the data and were readjusted through the 
constant comparative method (Patton, 2002) across the 31 narratives. Figure 1, below, 
summarises the analytic process. The Nvivo 9 qualitative data processing software was 
used to assist with the coding of the data and the cross-tabulating of codes.  
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Figure 1. The analytic process.  

Findings and discussion 
This section is organised around the two research questions. The data selected to 
illustrate the findings are the three complete narratives reproduced below. The choice to 
use complete narratives rather than fragmented excerpts aligns with the preference in 
narrative analysis to retain stories “intact for interpretive purposes” (Riessman, 2008, p. 
74). Examples were chosen for their brevity, to illustrate the three story types evident in 
the data, and to illustrate some of the indicators that preservice teachers use to 
determine what constitutes good teaching in the mathematics classroom.  

How preservice teachers construct narratives of good teaching 
The task elicited three different story forms which we called turning point stories (8), 
critical moment stories (7) and pattern of practice stories (16). All texts fell into only 
one of the three categories.  
 Turning point stories (see Tom’s below) refer to the stories in which a new teacher 
changes the student’s mathematics learning trajectory from a negative to a positive one 
in terms of engagement and/or performance. In these stories, the teacher is presented as 
the “saviour” to whom the student (the narrator) responds positively and becomes the 
“saved”.  

Story type one: Turning point stories: Tom’s story 

I started high school at an all boys school in NSW. When males going through puberty 
are all together, rebelling and all of the things that we go through during that time, it can 
be tough for teachers. I can see that now. I had a mathematics teacher that would show no 
respect for his students and would actually insult us if we didn’t understand a 
mathematics problem. I wasn’t understanding mathematics at all and I thought it was just 
me and my family genes. I am the first in the family to finish high school and the younger 
brother. 
 I had to change schools half way through year nine because I couldn’t keep up with 
athletic commitments. I changed to a co-ed state school. One of my first classes was 
Maths and I dreaded it. I sat down to a female teacher and actually understood everything 
the teacher wrote on the board. By creating a safe and supportive learning environment 
my new teacher had me loving mathematics. I wasn’t worried about being embarrassed to 
ask or even answer questions, because it was all right to get something wrong.  

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

84



BALATTI & RIGANO 

The second story type, the critical moment stories (see Cathy’s below), is similar to the 
first story type in that the story narrates an event in which the main characters are the 
teacher and the student (the narrator). However, unlike the first story type, the student 
does not have a history of poor results and/or disengagement. Rather, they are stories of 
teachers who recognise that the student is in trouble and who intervene in a timely 
manner thus averting a negative outcome for the student. These are the “just in time” 
stories where through the vigilance and action of the teacher, students are spared a bad 
outcome. In these stories, the teacher is the watchful protector and the student is again 
the “saved”.  

Story type two: Critical moment stories: Cathy’s story 

In primary school (grade 3) I could never grasp the concept of measurement. 
Measurement was one of the most difficult concepts for me to learn. I couldn’t 
comprehend the difference in length between a millimetre, centimetre or a metre. My 
teacher noticed I was struggling in this area. Instead of making me feel stupid (like the 
other students did, when I answered a question wrong), she took me aside one afternoon 
and asked me to do a “special” task for her. Of course, being young and receiving 
personal attention from my teacher, I greatly accepted her “special” papers and completed 
them for her. As years went on, I now realise that her “special” papers were extra Math 
exercises that helped me understand. 

The third story type is markedly different from the previous two. The patterns of 
practice stories (see Pat’s below) as the name suggests describe patterns of behaviour of 
good teachers. Of the 16 stories of this type, 12 were of the one teacher and the other 
four described patterns across more than one teacher with one of the teachers being a 
mathematics teacher. These stories do not refer to a pivotal or critical event and the 
narrator is usually absent from the story other than as one of a number of students. In 
these stories, the students are content and even thrive. The teacher is the trustworthy and 
trusted shepherd or nurturer and the students are the flock. 

Story type three: Pattern of practice stories: Pat’s story 

Mr Jones, my Maths teacher in Year 10 who later became my Maths C and Physics 
teacher in Year 11 and 12 was the best teacher I ever had. He was always so enthusiastic 
about what he taught even when we were struggling to understand the concept of an 
‘imaginary’ number or, in my case, graphs. He always listened to our questions, no matter 
how stupid they seemed later and encouraged us to explore anything that interested us in 
our classes. In my case, this meant that Mr Jones was always willing to talk over the 
possibility of aliens and the creation of the universe. He involved us in debates and 
discussions and always tried to make everything interesting and fun. Which was a hard 
thing to do when you’re teaching complicated maths and science to a group of teenage 
girls! He was also a teacher who was unafraid to have a little fun in the classroom which 
made the whole learning process so much easier. He was most definitely the kind of 
teacher I want to be someday....only, I hope to have slightly better drawing and spelling 
skills! 

Stories often conclude with a coda in which the readers are brought back to the present 
and this is sometimes done with changes in perspective. To encourage students to 
reconstruct their narrative from the viewpoint of a preservice teacher, the task had 
invited them to relook at a past experience either with “older eyes” or through the lens 
of the literature. A little over half the group included this aspect in their narrative (Table 
1). 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

85



BALATTI & RIGANO 

Table 1. Evaluation of significance of story from a new viewpoint. 

Narrative type No of narratives including new viewpoint 

 Revision of past 
experience 

Reference to 
academic literature 

Neither 

Turning point stories (n=8) 1 2 5 

Critical moment stories (n=7) 3 4(1) 1 

Patterns of practice stories (n=16) 4 7(3) 8 

Total 8 13(4) 14 

 Note: Numbers in brackets indicate stories that included both viewpoints. 
 

Preservice teachers’ understandings of good teaching 
Within their narratives, the subjects described good teachers in terms of personal 
qualities they displayed, the behaviours they demonstrated, and/or the impact they had 
on their students. Table 2 summarises the attributes that “good teachers” possess. 
Although present in some narratives as contributing to good teaching, the least noted 
attributes were the mathematical content knowledge and behaviour management skills 
of the teacher. The most cited were the teachers’ capacity to relate to their students and 
good teaching skills. A finer grained analysis revealed that good teaching involved 
organisational skills, communication skills, use of creative and enjoyable tasks, using 
real life applications, and learner centred strategies.  

Table2. Narratives recording attributes. 

Narrative type No of narratives recording Attributes 

 Teaching 
skill 

Content 
knowledge 

Forging 
relationship 

Behaviour 
management 

Personal 
style 

Turning point stories (n=8) 5 1 3 1 4 

Critical moment stories (n=7) 4 0 4 1 0 

Patterns of practice stories (n=16) 11 4 7 3 6 

*Total 20 5 14 5 10 

*Note: Some narratives had more than one category of attribute of good teaching evident. 
 

Most preservice teachers also defined good teaching in terms of the teachers’ impact on 
them personally or on others. Table 3 shows the categories of impacts that emerged 
from the data. Learning outcomes refer to improved performance in mathematics, the 
strongest impact for story types one and two; affective-self refers to outcomes to do 
with feeling valued or self esteem, the strongest impact for story types two and three; 
and affective–mathematics refers to students’ feelings toward mathematics. 
 The final level of coding undertaken looked for patterns between teacher attributes 
and the student impacts for each of the story types. Because of the small size of the data 
set, no meaningful comments can be made other than to say the teaching skills was the 
category most cited in relation to impacts for all three story types. For both the turning 
point and critical moment stories, teaching skills were associated most with improved 
learning outcomes; for the pattern of practice stories, teaching skills were associated 
mainly with affective outcomes to do with the self.  
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Table3. Narratives recording impacts. 

Narrative type Impacts 

 Learning outcomes Affective–Self Affective–Maths None 

Turning point stories (n=8) 6 2 2 0 

Critical moment stories (n=7) 7 5 1 0 

Patterns of practice stories 
(n=16) 

3 8 4 4 

Total 16 15 7 4 

Note: Some narratives described more than one kind of impact.  

Conclusion and implications 
This research studied snapshots, in the form of written narratives, of 31 reconstructed 
memories of preservice teacher experience of good teaching in a mathematics 
classroom. Using narrative and inductive analytic techniques, it explored how the 
narratives were constructed and what they said about good teaching. The three distinctly 
different story types that emerged and the different levels of engagement evident in 
adopting new viewpoints suggest that how preservice teachers think about their 
experiences of good teaching may be as relevant to teacher educators as the content of 
their narratives. Further research is required with larger data sets that investigates 
possible patterns involving preservice teacher story types and openness to learning the 
new identity resources (Falk & Balatti, 2003), including deeper knowledge of what 
constitutes good teaching, that come with becoming a teacher. Even without these larger 
studies, there may be merit in having preservice teachers use the methodology to study 
narratives of teacher experience. Understanding how they have constructed their 
narratives may help preservice teachers reflect more profoundly upon their own 
developing practice. 
 In the second set of findings concerning the characteristics of good teaching, the 
narratives looked to the attributes of the teacher and to the impact that the teaching had 
on the students. There was strong awareness that teaching skills and ability to relate 
well with students contribute to good teaching. In contrast, less awareness existed for 
the importance of content knowledge. Interestingly, while learning outcomes i.e., 
mathematical content knowledge, was the most cited form of impact that good teaching 
had on students, mathematical content knowledge was one of the least noted as an 
attribute of a good teacher. Further research that develops a better understanding of the 
reasons for preservice teachers not articulating it is recommended.     
 As teacher educators we can look at what preservice teachers bring in terms of their 
past experiences as a deficit or as resource to capitalise on and to further develop. A 
better understanding of their past experiences as students that the analytic approach 
used is this paper offers, may improve the likelihood of transforming past experiences 
into a resources for developing professional teacher identities.  
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This paper outlines a qualitative approach for analysing interview transcripts. The approach 
involves identification of comments related to research interests, formation of clusters to 
group comments and then confirmation of themes in the data related to pre-determined 
research interests. Descriptions of each participant’s views on each theme are summarised 
as case-studies. Illustrative examples from teacher interview data on teaching and learning 
will show how the approach can be implemented. The approach used is based on the work 
of Chesler who used grounded theory to explore views of a group of professionals.  

 
Theme analysis is a common approach used to analyse interview transcripts (see for 
example Strauss & Corbin, 1990). This paper will outline an approach for theme 
analysis and for developing case studies related to themes. The approach will be 
illustrated using data from a study on teaching and learning mathematics with 
technology.  
 Given that themes are statements that encapsulate recurring ideas in interview 
transcripts and are likely to ‘emerge from them on intensive analysis’ (Tesch, 1990, p. 
60) it is important to find a way to identify themes. In theme analysis there is the 
possibility to explore all themes emerging from data or else restrict the identification of 
themes to those which are related to specific research interests. The approach in this 
paper limits the themes by identifying only those related to specific research interests. 
Flick (2006) and Chesler (1987) also reported approaches where themes were focussed 
on specific areas of interest. This differs from some approaches to theme analysis where 
all emerging themes are identified in interview transcripts, often as an initial stage in the 
formation of theories (Strauss & Corbin, 1990).  
 The next section will outline one method for identifying themes based on an 
approach described by Chesler (1987). Chesler provided a seven step sequential 
analysis for development of theories and the first four steps in his approach can be used 
to identify emerging themes related to specific research questions. His approach, also 
reported in Miles and Huberman (1994), can be used to provide a description of 
phenomena under investigation. In this paper use of pen-and-paper or technology (in 
this case a computer algebra system, or CAS) for understanding in a secondary 
mathematics classroom will be used to provide illustrative examples of the approach 
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used for theme analysis. The context of the study is discussed further in the section 
describing the data used to provide illustrative examples.   

Chesler’s approach for analysing interview transcripts 
The first step of Chesler’s analysis required researchers to “underline key terms in the 
text” (p. 9). This involved reading the transcript and underlining key terms deemed to 
be relevant and important to the research questions.  
 The second step, carried out concurrently with underlining of key terms, was to 
“restate key phrases in the margin of the text” (p. 10) using words as close as possible to 
the text in the interview transcript. Chesler stressed the need to be able to use the 
restatements of the key phrases to go back to comments in the transcript.  
 The third step was to “reduce the phrases and create cluster” (p.10) by placing 
phrases with the same focus together in a cluster. Chesler suggested checking the 
original transcript when assigning phrases to clusters as he believed it could be difficult 
to know the exact meaning of a phrase in the absence of the context of the original text. 
This highlights the importance of step two in Chesler’s approach where the researcher 
ensures that the restated phrases are able to be used to return to the original transcript. 
Next, ‘constant comparison’ (see for example Bryman, 2004, p. 403) was used to reduce 
the number of clusters to form ‘meta-clusters’. Strauss and Corbin (1988) acknowledge 
the role that the researcher’s experience and knowledge plays in grouping of comments. 

Later, as we move along in our analysis, it is our knowledge and experience 
(professional, gender, cultural, etc) that enables us to recognize incidents as being 
conceptually similar or dissimilar and to give them conceptual names. It is by using what 
we bring to the data in a systematic and aware way that we become sensitive to meaning 
without forcing our explanations on data (Strauss & Corbin, 1988, p. 47) 

Analysis of the meta-clusters provided the overriding themes emerging from the data. 
Finally, prior to developing a theory, Chesler’s fourth step involved generalisation of 
the phrases within a cluster to provide an analysis of the meaning of the cluster.  

Data to illustrate approaches 
The data used to illustrate the process of theme analysis and development of case 
studies in this paper is from teacher interview transcripts. These interview transcripts 
are from a study that was part of a Victorian research project investigating the 
implementation of CAS in year 12 mathematics (see Stacey, McCrae, Chick, Asp, & 
Leigh-Lancaster, 2000). CAS is a technology which is able to automate many 
mathematics procedures and when this research project was undertaken it was the first 
time that CAS was allowed in year 12 examinations in Victoria. The teachers and 
students were the first to undertake a year 12 mathematics subject where CAS was 
allowed in all aspects of the course. Students were provided with a handheld CAS for 
use in class, at home and in examinations.  
 The teachers were experienced year 12 mathematics teachers who had taught year 11 
maths with CAS, but this was the first time they had taught a Year 12 mathematics 
subject where CAS was assumed in the examinations. Semi-structured interviews were 
conducted with each teacher mid-year and also following the end-of-year examinations 
in November. The interviews were intended to cover a number of issues, as part of data 
collection for the research project, so there were numerous foci for questions. As a 
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result, it was necessary to decide on an approach for analysing interview transcripts to 
investigate particular research interests for this study, which was part of the larger 
research project (for further information about the research project see Ball & Stacey, 
2005a, 2005b, 2006; Flynn, 2003; Stacey, 2003).  
 The research area investigated in this paper is the use of pen-and-paper or CAS in 
senior secondary school mathematics. For the purposes of this paper it is useful to know 
that the teachers had to come to personal decisions about the extent and nature of pen-
and-paper and CAS use in their classrooms, in the context that students were allowed to 
use CAS in examinations. In the following sections the examples used to illustrate the 
analysis are related to use of pen-and-paper or CAS.  

Analysis of interview transcripts to determine themes 
This section describes the nine-stage approach used for analysis of interview transcripts 
to determine themes in this paper. Figure 1 provides an overview of the analysis 
process, which comprises nine stages. The two terms ‘theme’ and ‘emerging theme’ 
indicate the results of two different aspects of the analysis of interview transcripts. 
Emerging themes are the product of stages 1–3 and themes will be confirmed following 
stage 6. There are two additional stages for the development of case studies which are 
shown in Figure 5 and which will be described later in this paper. Stages 1–2 will now 
be described.  
 

 

Figure 1. Cycle for analysis of interview transcripts to determine themes and produce case studies. 

Identification of emerging themes  
The product of stages 1–3 will be a list of emerging themes evident in the interview 
transcripts and related to specific research questions (refer to Figure 1). These three 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

91



BALL 

stages are different to the initial steps described by Chesler, who started his analysis by 
underlining key terms and then paraphrasing these key terms in the margin of the text.  

Stages 1–3  

In stage 1, the researcher identifies the key component of the research question. The 
reason that the term key component is used is that some research questions may have a 
number of components which need to be investigated. For this paper the key component 
is use of pen-and-paper or CAS in class.  
 Stages 2–3 are carried out concurrently. To identify emerging themes the interview 
transcripts need to be read a number of times. The process is commenced by reading the 
interview transcript and recording a draft list of emerging themes. This list is a first 
attempt at emerging themes and will be modified (either by adding, deleting or 
rewording) as interview transcripts are re-read a number of times. In this analysis the 
goal is not to find all emerging themes in the data but instead to find those specifically 
related to research areas of interest. Themes unrelated to the research questions are not 
considered.  
 As outlined previously, Strauss and Corbin (1988) stressed the importance of a 
researcher’s experience and knowledge in recognising similarity and differences in 
comments and this will be important when identifying themes. To recognise recurring 
ideas in data requires the ability to recognise words and expressions that may be 
referring to a common idea, hence the need to have appropriate experience and 
knowledge of the research area. Themes are not going to be repeatedly stated in 
interview but instead will need to be in inferred by the researcher. As a result it is 
important, using the illustrative examples in this paper, that the researcher is able to 
recognise recurring ideas associated with pen-and-paper or CAS. The documentation 
following stages 1–3 is a list of emerging themes. The final wording of the confirmed 
themes will be decided in stage 6. 
 As there is no documentary evidence for stages 1–3, except for a list of emerging 
themes, it is only possible to provide a statement of a theme here to illustrate the stages. 
One emerging theme was “students’ understanding” in the context of classes with 
access to both pen-and-paper and CAS.  
 Following are descriptions of the other stages (4–6) used to confirm themes with the 
illustrative examples related to the emerging theme “students’ understanding”.  

Formation of clusters 
The goal of stages 4–6 is to produce a list of clusters, each of which contains 
paraphrased comments with the same focus related to the research interest (see Figure 
1). These three stages are independent of stages 1–3 and hence the emerging themes are 
not referred to for stages 4–6. To carry out stage 4 it is necessary to go back to the data 
and do a separate analysis of the interview transcripts. 

Stage 4 

First return to the interview data and research question/s and highlight key comments 
related to each research question. This process will most likely require re-reading of the 
interview transcripts a number of times, particularly if each research question is 
considered separately. Note that a sentence may contain more than one key comment, 
particularly if sentences are lengthy.  
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Figure 2 provides an illustrative example of the outcome of stage 4 using an excerpt 
from a teacher interview. This excerpt was chosen as there is a focus on understanding, 
which linked directly to the emerging theme being used as an illustration in this paper. 
In this case the research question was related to use of CAS or pen-and-paper in class 
and four comments are highlighted. It is important to note here that the researcher had 
observed many classes where CAS was available and this aided in the ability to 
recognise words that signalled pen-and-paper or CAS use. To conduct stage 4 the 
researcher recognised words or phrases that identified relevant comments to be 
highlighted. Some examples in Figure 2 are the terms “by-hand” and “manual” which 
referred to pen-and-paper in the context of the research question. Part of the third 
highlighted comment “if they didn’t fiddle with it a bit themselves they didn’t have a 
strong sense of ownership over it” may seem irrelevant at first. However, in the context 
of the fully highlighted comment this statement suggested that students needed to have 
an understanding of the mathematics by performing some pen-and-paper or CAS work 
(i.e. “fiddling with it”) so that they would not be perturbed by unexpected technology 
displays or outputs. This stresses the need for the researcher to be able to interpret the 
interview comments in the context of the study and to recognise relevant comments, 
rather than only look for key words. If a researcher only highlights comments with the 
terms by-hand or pen-and-paper or similar then the third highlighted comment “there 
was an element of magic with a lot of the things ... they were less able to say well that’s 
just a case of this or I know why that’s doing it now” would be excluded. The second 
highlighted comment “A more likely sequence is for me to start with manual” where the 
term “manual” refers to pen-and-paper may also be missed. The ability to interpret the 
comments made by the teacher in the context of the research questions is essential here 
in order to be able to identify relevant phrases and comments to highlight. 

Stage 5 

The purpose of stage 5 is to reduce the data to assist in formation of clusters in stage 6. 
Highlighted comments will be paraphrased and the paraphrased comments will be 
recorded in the margin of the interview transcript. The intent here is not to focus on the 
precise wording of the paraphrased comments, as they are not used for reporting, but 
instead to ensure that each paraphrased comment accurately summarises the key idea 
highlighted in the interview transcript. This will assist in stage 6 when paraphrased 
comments with a common focus are collected to form a cluster. As stated previously 
some sentences may contain multiple foci and hence one sentence may result in more 
than one paraphrased comment.  
 Paraphrasing will enable teacher comments with a common meaning, but different 
wording, to be represented by the same or similar comments. Referring again to Figure 
2 it can be noted that the last three paraphrased comments all refer to learning 
mathematics with pen-and-paper prior to use of CAS, even though the wording of each 
phrase is slightly different. The difference reflects the additional focus of the teacher 
comments, namely the ability to “deal with syntax and unexpected outputs” (i.e. for 
working with CAS) and “for simple cases to develop understanding of mathematics” 
(i.e. to perform simple cases using pen-and-paper to develop mathematical 
understanding). Figure 3 provides additional examples of paraphrased comments related 
to pen-and-paper or CAS. Implicit in the teacher’s second highlighted comment in 
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Figure 3 is that pen-and-paper should be used to develop mathematical understanding 
(“Once they understand how they’ve got it”) before a CAS can be used (“then use the 
calculator” implies following pen-and-paper). Again, the researcher needs a good 
understanding of the research context in order to recognise this.  
 
Stage 4 – Highlighted interview comments related to research 
question 

Stage 5 – Paraphrased 
comments 

Sometimes, when I’m getting them to look for patterns and things 
and see if they can see anything that’s there I might start with that 
and then use that as the basis for exploring why that might be the 
case and then often we would go back to then doing something by-
hand. A more likely sequence is for me to start with manual because 
I kept getting the feed back in different ways from the kids and from 
their work that there was an element of magic with a lot of the things 
and if they didn’t fiddle with it a bit themselves they didn’t have a 
strong sense of ownership over it and once they got lost in the syntax 
or they got lost in the unusual nature of the output, an unfamiliar 
output, then they were less able to say well that’s just a case of this 
or I know why that’s doing it now because this is just a separated 
fraction or (...). So I think I kept feeling reinforced in the view that 
with all the new procedures you really needed to spend some time to 
make sure they could do the simple cases by-hand and if you didn’t 
you were battling, you were battling with the majority of the kids (...) 
because they don’t know (...), they don’t know what the building 
block was. So I’m more reinforced about the view than I was even 
when I was doing graphical calculator stuff (...) 

Sometimes CAS used to 
generate patterns for exploration 
and then pen-and-paper. 
 
Normally start with pen-and-
paper 
 
Pen-and-paper first to 
understand mathematics and be 
able to deal with syntax and 
unexpected outputs  
 
Pen-and-paper first for simple 
cases to develop understanding 
of mathematics. 

Figure 2. Interview excerpt illustrating stages 4-5 (Teacher 1 end-of-year). 

Well I think that’s when you have to do things by-hand. I feel you 
need to be able to show them how to come up with things by-hand so 
that they can understand where this part of the equation comes from, 
where the solution might come from, and how it all fits together.  
Once they understand how they’ve got it, they can then use the 
calculator (...) 

Pen-and-paper for 
understanding 
 
Once students understand the 
maths (using pen-and-paper) 
students can use CAS – teacher 
legitimizing CAS use. 

Figure 3. Interview excerpt illustrating stages 4-5 (Teacher 2 mid-year). 

Stage 6 

The purpose of stage 6 is to form a number of clusters, with each cluster containing a 
group of paraphrased comments with the same focus. This is the last stage where the 
paraphrased comments are used.  
 Two or more paraphrased comments will be required for formation of an initial 
cluster. “Constant comparison” (see for example Bryman, 2004, p. 403) is used to 
finalise the clusters and occurs as paraphrased comments are assigned to clusters. 
Constant comparison involves comparison of paraphrased comments within and across 
clusters as they are formed to ensure that each cluster accurately reflects the data within 
it. Where a paraphrased comment appears to belong to two clusters the comment will be 
compared to other comments in each of the two clusters, searching for similarities and 
differences. If it is still not evident which cluster the paraphrased comment belongs to 
then the two possible clusters will be reconsidered to determine if they are sufficiently 
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different to warrant two clusters, or whether they should be consolidated to form one 
cluster. If the two clusters are combined then each paraphrased comment will be 
individually reconsidered to determine appropriateness for inclusion in the new 
combined cluster.  
 Each cluster will be labelled with a name to represent the main focus of the 
paraphrased comments within the cluster. An example of a cluster with some associated 
paraphrased comments is shown in Figure 4. Note here that each comment refers to the 
order in which pen-and-paper or CAS is used in class. Some comments specifically 
state that CAS or pen-and-paper should be first, while other paraphrased comments, for 
example, to use “CAS for checking pen-and-paper sketching of graphs”, suggested that 
pen-and-paper was first. One cluster, “students’ choice of CAS or pen-and-paper”, 
contains the paraphrased comment “Teacher encourages able students to use pen-and-
paper first and then use CAS once they know how to do something”. This paraphrased 
comment was originally assigned to the cluster “pen-and-paper or CAS first” (Figure 4), 
but then on reconsideration was placed in the “students’ choice of CAS or pen-and-
paper” as the focus was on the teacher encouraging able students to use pen-and-paper 
first. With a focus on mathematically-able students, there is a suggestion that there 
might be different decisions to be made, depending on students’ facility with pen-and-
paper techniques.  
 

Pen-and-paper 
or CAS first 

 Teacher demonstration of pen-and-paper first then CAS for speed 

 Teach pen-and-paper first and then CAS 

 CAS for checking pen-and-paper sketching of graphs 

 Always do graphs with pen-and-paper first and then check results 

Figure 4. Example of cluster with some paraphrased comments in cluster. 

Confirmation of themes 
The intention of stage 7 (in Figure 1) is to confirm and hence finalise the themes. This 
involves clarifying the wording of the themes and checking that the themes are 
supported by the interview data. Stage 7 uses the outputs of stages 1-3 and 4-6, making 
use of the emerging themes and clusters. 

Stage 7 

First allocate each cluster to an emerging theme. Where clusters appear to align to two 
emerging themes, the statements of the emerging themes will be reconsidered and 
reworded if necessary to clearly distinguish the two themes. Themes will be discussed 
with a second researcher, who will also have read the teacher interview transcripts, to 
clarify descriptions of themes. Themes will be confirmed when they have one or more 
clusters listed under them. If an emerging theme does not have an associated cluster 
then this will not be included as a final theme. 

Development of case studies using themes and teacher comments 
The final two stages of the process (stages 8 and 9 in Figure 1) are used to produce case 
studies for each theme. 
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Stage 8  

In this stage participants’ comments related to each theme are collected. Note that 
individual participants may or may not make comments relating to every theme.  
 For stage 8 the researcher returns to the original interview transcript, considers each 
highlighted comment and assigns each comment to a theme. The result of this process is 
a collection of interview comments for each theme. 
  Figure 5 illustrates two teacher comments related to the theme “students’ 
understanding”. The first comment suggests that the teacher believes that students need 
to see pen-and-paper work (“by-hand”) to understand the mathematics prior to use of 
CAS (“understand where this part of the equation comes from, where the solution might 
come from, and how it all fits together”). The focus for this comment appears to be the 
teacher’s desire for students to develop understanding before using the CAS calculator. 
The second comment in Figure 5 also focuses on the importance that the teacher places 
on students developing understanding before using CAS.  
 

 I think that’s when you have to do things by-hand. I feel you need to be able to show them how to 
come up with things by-hand so that they can understand where this part of the equation comes 
from, where the solution might come from, and how it all fits together. Once they understand 
how they’ve got it, they can then use the calculator. 

 ... it helps them to see how the actual solution is developed and what different parts of the solution 
refer to, and where they fit in. But then once they know how to do it and once they understand 
how to do it then they don’t need to do that over and over again, they can use the calculator. So I 
think they do need to do that in order to develop understanding but then once they know how to 
do it, they know how to do it, and they can use the calculator. 

Figure 5. Collection of sample interview comments related to a theme - students’ understanding. 

Stage 9  

In stage 9 the comments for each participant for each theme are summarised to produce 
case studies. The case studies provide a summary of each participant’s position in 
relation to each theme for which comments are provided. There is no illustrative 
example provided for this stage in this paper. 

Conclusion 
The cycle for analysis requires identification of terms, comments and emerging themes 
related to a given research question, familiarity with the research area and the context in 
which the participant (in this case the teacher) works. The paraphrasing of comments is 
a practical way for the researcher to engage with the interview data and decide on the 
key focus for each interview comment. The formation of clusters by grouping 
paraphrased comments provides a second opportunity to consider key messages in the 
data. The use of clusters to confirm themes provides yet further consideration of the 
data. This structured cycle for analysis of interview transcripts has proven helpful for 
identifying emerging themes, confirming these themes and then producing case studies. 
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This paper reports on one aspect of a two-year design study aimed to assist second-grade 
Filipino children solve additive word problems in English, a language they primarily 
encounter only in school. With Filipino as the medium of instruction, an out-of-school 
pedagogical intervention providing linguistic and representational scaffolds was 
implemented with 17 children. Pre-intervention, children experienced linguistic difficulties 
and were limited to conceptualising and solving simple additive structures. Post-
intervention interviews revealed improved understanding of more complex structures, but 
only when linguistic difficulties were minimised.  

 
Filipino children from disadvantaged families are expected to learn mathematics and 
solve word problems in English, a language they primarily encounter only in school 
(Young, 2002). Thus, it is not surprising that many Filipino students who have 
completed two or three years of schooling are unable to solve even simple addition and 
subtraction word problems (Bautista, Mitchelmore, & Mulligan, 2009; Bernardo, 1999). 
While language problems often arise as a cause for poor performance in mathematics 
(Philippine Executive Report on the TIMSS, cited by Carteciano, 2005), what is not 
clear is whether lack of English language proficiency is the main reason for Filipino 
children’s poor problem-solving performance. This study attempts to provide insight 
into these issues by addressing the following research questions: 
1. Is the failure to solve problems due to linguistic difficulties and/or to an 

inadequate understanding of the semantic structure and associated mathematical 
relationships in the given problem?  

2. Is it possible to improve young Filipino children’s strategies for solving addition 
and subtraction word problems presented in English? 

Although the study was conducted in the Philippines, it has applications to similar 
contexts where children learn mathematics in a language not widely spoken in the 
community. Such is the case in remote Indigenous communities in Australia, as well as 
in several developing nations in Asia and Africa. 
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Theoretical background 
The classification of addition and subtraction word problems according to their 
semantic structure (see Table 1) has formed the basis of a long tradition of research on 
addition and subtraction word problems (Carpenter & Moser, 1984). 

Table 1. Some types of addition or subtraction word problems. 

Problem Type Problem 
Join  Alvin had 3 coins. Then Jun gave him 8 more coins. How many coins 

does Alvin have now? 
Separate  Dora had 11 mangoes. Then Dora gave 6 mangoes to Kevin. How many 

mangoes does Dora have now? 
Combine  Tess has 5 hats. Rodel has 8 hats. How many hats do they have 

altogether? 
Missing Addend  Jolina had 7 pencils. Then Alma gave her some more pencils. Now 

Jolina has 12 pencils. How many pencils did Alma give her? 
Part Unknown Jimmy and Mia have 11 marbles altogether. Jimmy has 4 marbles. How 

many marbles does Mia have?  
Compare  Rica has 12 books. Luis has 7 books. How many more books does Rica 

have than Luis? 
Equalise Rica has 12 books. Luis has 7 books. How many books does Luis need 

to have the same number of books as Rica? 
 

Recent theories on word problem solving processes have drawn on the text 
comprehension theories of van Dijk and Kintsch (1983). When solving problems, the 
solver first integrates the textual information into an appropriate situation model, or a 
mental representation of the situation being described in the problem, which then forms 
the basis for a solution strategy (Mayer, 2003; Thevenot, 2010). Because the 
construction of a coherent situation model depends on adequate proficiency in the 
language of the text (Zwaan & Brown, 1996), children solving problems in a language 
not widely spoken outside school are clearly disadvantaged. Unless children’s 
proficiency in their second language allows them to use their bilingualism as a cognitive 
tool (Clarkson, 2007), they struggle with linguistic structures that would not be as 
problematic for native speakers (Martiniello, 2008).  
 This is not to say that linguistic factors are the only barriers to problem 
comprehension and solution. Strong part-whole knowledge and a flexible understanding 
of number meanings are seen as essential for recognising the structure of additive 
problems (Poirier & Bednarz, 1991; Zhou & Lin, 2001). For example, children may fail 
to solve the Missing Addend problem in Table 1 if they can reason about a set only if 
they know its cardinal measure. In Vergnaud’s (2009) terms, they lack essential 
concepts-in-action. Interestingly, the advantage of expertise in the problem domain (in 
this case, part-whole knowledge) on the construction of situation models is widely 
recognised in text comprehension research (Hirsch, 2003).  

Method 
The intervention study reported here is part of a larger project aimed to improve word 
problem solving performance in the Philippine context. A design research methodology 
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(Lesh & Sriraman, 2010) was adopted, as it is particularly appropriate for identifying 
and responding to conditions for success (Dede, 2004). The study involved several 
iterations of assessments and interventions (Table 2).   
 Data reported in this paper refer to 17 children (11 girls, 6 boys; mean age: 7.8 years) 
from public schools in the Greater Manila area who voluntarily participated in a parish-
based tutorial program from June to September 2009. They were taught in shifts of 4-8 
students by the author and two volunteer tutors who were trained on the pedagogical 
approach.  

Table 2. Design study process and timeline. 

Oct-Nov 2008 Feb-Mar 2009 Apr-May 2009 Jun-Sep 2009 Oct 2010 
Written test  
(N = 75) 
Interview 
(N=7) 

Written test  
(N = 348) 
Interview 
(N=50) 

Pilot intervention 
(N = 90) 

Intervention  
(N = 17) 

Community 
consultations 
(N = 23 teachers) 

 
 Consistent with features of a design study, pedagogy was informed by an integration 
of van Dijk and Kintsch’s (1983) linguistic comprehension theory and Vergnaud’s 
(2009) theory of mathematical learning, as well as by earlier stages of the study (Table 
2). The following section briefly describes how the pedagogical approach was designed. 
 The decision to use Filipino as the medium of instruction during the intervention, to 
provide word lists of common English words, and to present text in simplified formats 
was based on several convergent findings. First, two written tests administered to two 
different samples of Grade 2 and Grade 3 students (Bautista, Mitchelmore et al., 2009; 
Bautista & Mulligan, 2010a) confirmed that Filipino students were more successful in 
solving word problems written in Filipino than equivalent problems written in English. 
Second, interviews with 57 children from 15 public schools (see Bautista, Mulligan, & 
Mitchelmore, 2009, for interviews with 7 of these children) showed that children could 
not use English even for social conversation, and a considerable number used Filipino 
rules to decode English text, making it very difficult to teach them in English.  
 Because it was hypothesised that word problem solving involves more than linguistic 
competence (Vergnaud, 2009), the intervention aimed to strengthen children’s concepts-
in-action by presenting each additive structure in Table 1 through a range of 
representations (Lesh, Post, & Behr, 1987). For example, a concrete representation for 
the Separate problem structure in Table 1 was to briefly display, then screen, 11 
counters (Wright, Martland, & Stafford, 2000). Without allowing the child to see, 6 
counters were then removed. The child was then asked in Filipino, ―There were 11 
counters, but then I took away 6 counters. How many counters are there now?‖ These 
various representations were particularly helpful given that the children in this study 
struggled with textual representations (Bautista & Mulligan, 2010b).  
 The primary data source was the individual scaffolded pre- and post-intervention 
interviews illustrated in Figure 1 (see Bautista & Mulligan, 2010b for details). In 
essence, the interview schedule involved presenting the first six word problems in Table 
1 for the child to read and solve in English. However, if the child reached an impasse, 
successive linguistic and mathematical scaffolds were provided. The mathematical 
scaffold was either a concrete representation of the task or a transformation of the 
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Compare problem to a mathematically simpler Equalise task (see Table 1). All number 
triples were in the range 1-20, and based on Carpenter and Moser’s (1984) procedure. 
Pre- and post-intervention tasks differed only in their surface elements (e.g., using 
mangoes instead of coins) and in the number triples used. The interviews were 
conducted in Filipino by the author. 

 

Figure 1. Structure and sequence of the interview protocol. 

Results 
The results are discussed in terms of the two research questions. 

Linguistic and/or mathematics difficulty? 
The scaffolding techniques in the pre-intervention interviews were used to investigate to 
what extent linguistic or mathematical factors impeded word problem solving. The Pre-
intervention graph in Figure 2 shows the type of scaffold that facilitated correct 
solutions. Darker areas in the graph represent instances when linguistic scaffolds were 
necessary and sufficient for success. The extent of the dark regions shows that the 
children were dependent on linguistic scaffolds—very few of them could solve 
problems in English, without assistance. However, the linguistic scaffolds were 
primarily helpful for the Join, Separate and Combine problems. In contrast, the 
linguistic scaffolds facilitated correct solutions for less than a quarter of the children for 
the remaining problems, indicating underlying mathematical difficulties.  
 Linguistic difficulties were reflected in children’s struggle to interpret the text. 
Thirteen children had difficulties in decoding text (7 in English, 6 in Filipino), and one 
could not read at all. Further, several children knew only a few basic English words. For 
example, 11 children did not understand the statement, ―Alvin had 3 coins.‖ Difficulties 
in retrieving textual information also occurred for Filipino problems. For example, 4 
children could not identify the giver from the Filipino translation of the statement, 
―Then Alvin gave her 8 more mangoes.‖  
 Mathematical difficulties were observed in the Missing Addend, Part Unknown, and 
Compare problems. Some children were limited to conceptualising and reasoning about 
disjoint subsets with known quantities. For example, C71 constructed two disjoint sets, 
instead of one set having a subset for the Part Unknown problem, even when a 
corresponding concrete task had been provided, and even when smaller numbers were 

                                                        
1 To preserve anonymity, codes were used in place of children’s names. The coding conventions will be explained in 
a later section. 
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used (2 +  = 6). Only 10 children correctly solved the Compare problem, pre-
intervention, and 8 of these managed to solve only the corresponding Equalise task.  

Figure 2. Text processing strategies before and after the intervention. 

Intervention outcomes 
The Post-intervention graph in Figure 2 presents the step in the interview, post-
intervention, at which a correct solution was achieved. While performance on the 
Missing Addend, Part Unknown, and Compare problems improved post-intervention, 
the children’s unfamiliarity with the language continued to prevent them from solving 
word problems presented in English. When A2 was asked if there was any word he did 
not understand, he looked at the text and said, ―Lahat ‘yan [All of them].‖ The words 
directly taught during the intervention were largely just memorised. When C5 was 
asked what ―more‖ meant, she said, ―Nakalimutan ko [I forgot].‖
 Children were also found to construct a situation model based on isolated words 
from the text. For example, C2’s understanding of ―Alvin had 3 coins‖ was reduced to 
one word: ―Pera [money]‖. Having been exposed to various additive structures during 
the intervention, however, some children tried to determine which of these structures 
matched the problem text. For instance, after B2 read the English Missing Addend 
problem, she asked whether it was an ―Ilan yung lagpas [How many more]‖ task. 

Individual student profiles 

To further investigate the outcomes of the intervention, an analysis of each child’s 
progress was made. An analysis of the interviews revealed that children could be 
classified into distinct categories according to their (1) level of mathematical strategies, 
and (2) level of text processing strategies. Table 3 describes children’s increasing levels 
of mathematical strategies, from counting strategies to more advanced relational 
strategies (e.g., calculating 9 + 6 as 9 + 1 + 5). Similarly, Table 4 shows levels of text 
processing strategies, which are based on the interview structure in Figure 1. 
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Table 3. Most sophisticated strategy observed at each level. 

Level Addition Strategies Subtraction Strategies 
1 Erroneous Strategy/Count All Erroneous Strategy/Separate 
2 Count All Separate 
3 Count On Count Up 
4 Mental Mental 
5 Bridge-through-ten/Compensation Bridge-through-ten 

Table 4. Level of text processing strategies. 

Level Description 

1 Needed to have the text elaborated or concretely presented to them for most problems 
2 Could use Filipino text to solve word problems, albeit limited to Join, Separate, and Combine 

problems 
3 Could use Filipino text to solve at least one of the Missing Addend, Part Unknown, and 

Compare problems 
4 Could use English text to solve at least three problems 

 
 The matrices in Figure 3 display the levels for each child pre- and post-intervention 
along two dimensions: mathematical and text processing levels. The pre-intervention 
matrix was divided into four regions (A, B, C, and D), representing various 
combinations of high and low levels on each dimension. Children were then assigned 
codes based on the region where their results were located in the matrix. For example, 
children in the upper right region were all prefixed B. This system was developed in 
order to more easily compare pre- and post-intervention results. The numbers in 
parentheses represent the number of problems each child solved correctly.  

 

Figure 3. Student profiles before and after the intervention. 

Prior to instruction, children’s mathematical levels were associated with the number of 
word problems they solved correctly. Children at higher mathematical levels tended to 
solve more problems than those at lower mathematical levels. However, post-
intervention, it became possible for children with low mathematical levels to solve five 
or six problems. Remarkably, all children who could solve problems in English (Level 4 
in text processing) could also utilise sophisticated mathematical strategies (Level 5 in 
mathematics), both pre- and post-intervention. 
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A comparison of the matrices demonstrates how each child progressed during the 
intervention. However, the matrices also reveal conditions for success. For instance, the 
only children who reached Level 5 in mathematics were those prefixed A and B. Thus, 
these were children who already utilised a range of strategies before the intervention. 
The rest of the children continued to count by ones. Similarly, post-intervention, only 
three children could solve word problems in English (Level 4 in text processing), and 
they were all prefixed B. These were the children who, prior to the intervention, could 
solve some of the more difficult problems without the need for read-aloud or narration 
supports. In contrast, seven children continued to rely on substantial help from the 
interviewer. These seven included two children who, in spite of having low text 
processing levels, had high mathematical levels—A1 who was a non-reader and C4 who 
read one syllable at a time, often with errors.   

Discussion 
Although this part of the larger study involved a small sample, which does not permit 
generalisation, the results provide a rich description of how language proficiency and 
reading skill interact with word problem solving performance. There were apparent 
linguistic difficulties observed, as when children could not understand simple English 
statements, or when reading difficulties prevented them from retrieving information 
explicitly stated in the text. Indeed, these challenges were more pronounced than those 
commonly reported in the literature, which tends to relate to difficulties with academic, 
rather than conversational, language (Fillmore, 2007), and to comprehension difficulties 
associated with ambiguous text (Cummins, 1991).  
 This is not to say that linguistic difficulties were the only obstacles to solving word 
problems. Mathematical difficulties were uncovered, but only when linguistic 
difficulties were minimised through the provision of linguistic scaffolds. Consistent 
with findings from monolingual children (Carpenter & Moser, 1984), the data indicate 
difficulties in conceptualising certain semantic structures. Some children found it 
difficult to conceptualise relations involving comparisons and sets with unknown 
quantities. Thus, they failed to solve the Missing Addend, Part Unknown, and Compare 
problems even when linguistic scaffolds were available. 
 Concerning the attempt to help children solve word problems in English, the findings 
demonstrate that while it is possible to help children conceptualise a wider range of 
additive situations and advance their mathematical strategies, children’s pervasive 
reliance on linguistic scaffolds suggests difficulties in mapping the text to mathematical 
knowledge. To compensate, some children constructed situation models based on a few 
words and the situations they encountered during the intervention. Although the data 
could not directly establish that children’s weak linguistic skills encouraged such coping 
strategies, it remains clear that their linguistic difficulties inadvertently presented them 
with no other option. 
 The finding that all children who had advanced text processing strategies in English 
also utilised advanced mathematical strategies suggests possible connections between 
mathematical strategies and the ability to solve word problems in an imported language. 
Further research is needed to investigate this conjecture. 
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Implications 
This study has a number of educational implications. First, it critically questions the use 
of an imported language for mathematics instruction. However, as there are pragmatic 
difficulties in changing the language policy in Philippine classrooms (Bernardo, 2008), 
other avenues for coping with language issues need to be explored. Recommendations 
include code-switching, the development of materials in the local language, and 
equipping teachers with tools for teaching in the imported language.  
 Second, as reading difficulties definitely limited children’s text-processing strategies, 
reading comprehension strategies should be integrated into the mathematics classroom 
(Fogelberg et al., 2008), and reading instruction should be provided to non-readers. 
 Third, teachers should provide children with opportunities to develop their 
conceptions of relational structures by creating lessons that incorporate various 
representations. A range of representations is particularly helpful as children who 
struggle with one representation may be able to handle other forms of representation.  
 Fourth, children’s continued reliance on unitary counting suggests that they may 
benefit from an intervention specifically focussed on developing relational strategies 
(Gersten et al., 2009). Left unattended, these unitary counting strategies may impede 
performance on multidigit addition and subtraction (Ellemor-Collins, Wright, & Lewis, 
2007).  
 Finally, written tests should be supplemented with individual interviews or informal 
conversations because language issues may conceal underlying mathematical 
difficulties. However, considering the onerous time demands these may place on 
teachers with large classes, a whole-class assessment followed by individual interviews 
for a target group of low-attaining students may be feasible (White, 2008).  
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The ability to apply mathematical and statistical thinking within context is an essential skill 
for graduate competence in science. However, many students entering the tertiary sector 
demonstrate ambivalence toward mathematics. The challenge, then, is to determine how 
science curricula should evolve in order to illustrate the integrated nature of modern science 
and mathematics. This study uses a document analysis to examine degree structures within 
science programs at a selection of Australian tertiary institutions. Of particular interest are 
the signals these degree structures send in terms of the relevance of the study of 
mathematics prior to entry to university and the quantitative content within. 

Introduction 
The increasing dependence of modern science on data, algorithms and models has 
resulted in a greater need for science graduates to achieve competency in Quantitative 
Skills (QS)1. This fact is acknowledged through publications such as the Bio 2010 
report from the National Research Council of the USA (NRC, 2003). More recently, the 
Learning and Teaching Academic Standards—Draft Science Standards Statement 
Consultation Paper, published by the Australian Learning and Teaching Council 
(ALTC, 2010), provides clear statements on learning outcomes for Australian science 
graduates. The document represents the opinion of academic scientists in Australia and 
details threshold learning outcomes that all recent graduates of science are expected to 
demonstrate. These are “minimum standards” and many are explicit regarding the use of 
QS.  

                                                        
1 In this article the adjective “quantitative” is used to describe the fundamental skills that allow a scientist to use 
mathematical and/or statistical thinking and reasoning to gain understanding of scientific processes. In the context of 
primary and secondary education, the term “numeracy” has frequently been used in place of quantitative skills. For 
example, in The Report of the Numeracy Strategy Education Development Conference, published by the Australian 
Association of Mathematics Teachers (AAMT, 1997), numeracy is described as the ability to use mathematics to 
achieve some purpose in a given context.  
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Meeting the need for increased proficiency with QS is a considerable challenge for 
tertiary educators when one considers the environment in which these advances need to 
occur. The report by Brown (2009) details the downwards trend in the mathematical 
preparedness of students entering the sector. With students displaying weaker skills and 
increasingly negative feelings towards quantitative tasks, tertiary science educators are 
struggling to understand how best to foster the development of QS in science students.  
 The challenge for science and mathematics educators of how best to demonstrate the 
intimate relationship between the disciplines is a source of continuing conjecture and 
robust debate. Wood and Solomonides (2008) argue that when teaching mathematics, a 
context-based approach produces graduates who are more workplace-ready. Thus, many 
academics seeking to engage students in learning how to use mathematics skills favour 
interdisciplinary or integrated approaches because they involve context (see for 
example, Matthews, Adams and Goos (2009)). Similarly, Venville, Wallace, Rennie 
and Malone (2002) report that secondary school teachers employ these approaches to 
enhance pupil engagement in learning. While placing material in context may be a 
useful motivator, Tariq (2008) is one of many who report that the contextual nature of 
the problems in science requiring QS poses additional challenges for many students. 
 Despite the large body of literature discussing the teaching of QS to science students, 
there is still substantial confusion and variation in opinion regarding its importance. The 
negative attitude students display towards applying QS is perhaps reflective of a larger 
body of opinion in society that expresses confusion, or worse mistrust, when 
quantitative arguments are used to discuss issues in science. Undoubtedly there are 
many factors leading to this negative view of the quantitative nature of modern science. 
This publication considers the influence the Australian tertiary sector has on the 
perception of the importance of QS in science. The analysis uses publically available 
documents (internet web pages) which the institutions either contribute to, or publish 
themselves, regarding academic preparation for, and content within, science degree 
programs. Accessible information includes (i) science degree entry requirements; (ii) 
prerequisite or assumed knowledge requirements for subjects within the degree 
program; and (iii) subject or unit descriptions. Through these documents, it is possible 
to gain some insight into the portrayed value of proficiency with QS in science. This 
information is of interest and importance, not only to prospective science students, but 
also to secondary educators who have to grapple with this issue and frequently look to 
the higher education sector for leadership in terms of a consistent message that can help 
motivate themselves and their students. Furthermore, secondary teachers and guidance 
officers often advise students on subject choice in the later years of secondary school, 
and their views are heavily influenced by the content of these documents. Therefore, we 
explore the following research question:  

What is the apparent relevance of QS in Science in tertiary education, as portrayed by 
publically available documents? 

We also briefly comment on the literature to illustrate some approaches to the delivery 
of QS to science students. Whilst not within the direct scope of the above research 
question, this allows conclusions to be drawn regarding alignment between the 
importance of QS in science as portrayed beyond the tertiary education sector, and 
efforts within institutions to embed QS in science. 
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Method 
The study involved documenting four characteristics of the Bachelor of Science degree 
programs at a selection of Australian universities. These particular degree programs 
were chosen over other degree programs that may be labelled as science degrees, in 
order to maintain consistency through the study. The only exceptions to this protocol 
were in instances where a Bachelor of Science was not offered by particular institutions, 
but a Bachelor of Applied Science was in existence. 
 The universities chosen for the study were those that were reported to have had 
enrolments of greater than 1800 students in the natural and physical sciences in the year 
2005 in a study commissioned by the Australian Council of Deans of Science; see 
Dobson (2007). This results in a sample of 17 tertiary institutions representing over 
73% of the total cohort of students across Australia studying the natural and physical 
sciences in 2005. It is anticipated that the messages these institutions transmit have the 
greatest impact on the public perception of importance of QS in science. 
 The following characteristics were chosen as indicators of the publicly portrayed 
importance of QS in science: 
1. Entry requirements requiring prior study in mathematics; and 
2. Compulsory requirements for mathematics, statistics or QS within the degree 

program. 
In addition to investigating these two factors in the context of science in general, they 
are also applied to study within a specific science major2, chemistry. The decision to 
investigate a particular major arose for two reasons. Firstly, the requirements for 
prerequisite study for some majors may be different to the requirements for the science 
degree as a whole.3 In this study we measure the publicly portrayed importance of prior 
knowledge of mathematics for success in a chemistry major as part of a science degree. 
Secondly, through subject sequences and prerequisite and assumed knowledge 
requirements, we wish to determine whether it is possible to observe development of 
QS through the major. Specifically, we investigate how deeply is it possible to observe 
subjects that develop QS4 within the chemistry major.  
 Chemistry was chosen as an appropriate representative major for two reasons. 
Firstly, it is recognised that the variety of programs represented by the Bachelor of 
Science is considerable, so using minimum standards to measure the articulation of the 
importance of QS may be similarly varied. By focusing on the sequence of subjects that 
defines the chemistry major in each program (note that most Bachelor of Science 
degrees have such a major), some of the variability is removed. Secondly, we note that 
the Draft Science Standards Statement Consultation Paper, published by the ALTC 

sponding document for the discipline of chemistry, titled (2010), has resulted in a corre

                                                        
2 In this publication a major refers to a sequence of subjects that a student must complete as a part of a 
science degree, in order to be deemed proficient in the discipline area named as the major. Typically, a 
major represents about one third of the total number of subjects required for graduation with a science 
degree. 
3 For example, this frequently occurs in physics majors where successful completion of secondary school 
physics may be a prerequisite for the major, despite the absence of a physics prerequisite for entry in to 
the degree program itself.  
4 Subjects that develop QS are defined to be discipline-specific subjects that have mathematics, statistics 
or quantitative skills subjects, as either prerequisite, or assumed knowledge. 
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the Chemistry Academic Standards Statement—Consultation Phase published by the 
ALTC (2011). Similar to the overarching document it states very clearly that QS are 
essential for graduating chemistry majors. 

Prior mathematics study required for entry into science degree programs 

The requirements for prior study in mathematics for entry to a science program were 
identified using information from tertiary admissions centres in each state of Australia. 
These centres were used because many students prefer to access information regarding 
tertiary entrance requirements in one place. For example, the University Admissions 
Centre (UAC) in New South Wales “processes applications for admission to most 
undergraduate courses at participating institutions” (UAC About us, 2011a). In their 
first quarterly newsletter for 2011 (UAC, 2011b) they comment on their publication 
University Entry Requirements 2014 Year 10 Booklet, stating that: 

The booklet is a valuable tool for Year 10 students choosing their subjects for years 11 
and 12. It shows all the prerequisites, assumed knowledge and recommended studies for 
university courses starting in 2014. Each Year 12 school in NSW and the ACT will 
receive four complimentary copies of the booklet in mid-May. 

For the purposes of this study we report the occurrence of a secondary level 
mathematics subject as a prerequisite or assumed knowledge for entry into a science 
degree.  

Compulsory mathematics, statistics, or QS subjects 

Some science degree programs have compulsory mathematics, statistics or QS subjects 
embedded within their structure. Although many majors require some such subjects, we 
identified the minimum requirements within any major of the degree program, and 
report the minimum number of these compulsory subjects that must be completed to be 
awarded the degree. 

Prior mathematics study for entry into the chemistry major 

We report the percentage of first year chemistry subjects that have an explicit 
mathematics prerequisite, statement of assumed knowledge, or recommendation of 
previous study.  

QS requirements within a program to satisfy chemistry major 

For the chemistry major in each Bachelor of Science degree, we determine the 
percentage of chemistry subjects beyond first year that develop QS. 

Results 
A summary of the data collected is presented in Table 1. The institutions in the table are 
ordered according to enrolments in the natural and physical sciences in 2005, as 
presented in the table by Dobson (2007, p. 23). The institutions are labelled according to 
their affiliations; “G8” represents membership of the Group of Eight, “ATN” represents 
membership of the Australian Technology Network and “IRU” represents membership 
of the Innovative Research Universities.  
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Table 1. Summary of results showing entry requirements in mathematics, and compulsory 
mathematics/statistics/QS subjects for Bachelor of Science degrees, and prerequisite requirements for 

chemistry majors and higher level chemistry subjects.  

University Mathematics 
background 
from 
secondary 
school: 
P=Prerequisite 
A=Assumed  

Compulsory 
mathematics
/statistics/QS 
subject 

Percentage of 1st 
year chemistry 
subjects in the 
chemistry major with 
secondary level 
mathematics as 
prerequisite or 
assumed knowledge 

Percentage of 2nd and 
3rd year chemistry 
subjects in the chemistry 
major with 1st or 2nd 
year 
mathematics/statistics/ 
QS subjects as 
prerequisites or assumed 
knowledge 

University of 
Melbourne (G8) 

P 0 33% 0% 

University of 
Sydney (G8) 

A 2 50% 33% 

Monash University 
(G8) 

None 1 0% 0% 

University of 
Queensland (G8) 

P 1 0% 0% 

University of New 
South Wales (G8) 

A 0 0% 38% 

University of 
Western Australia 
(G8) 

P 0 0% 0% 

University of 
Adelaide (G8) 

A 0 0% 0% 

RMIT University 
(ATN) 

None 1 0% 0% 

Australian National 
University (G8) 

None 0 0% 15% 

Murdoch 
University (IRU) 

None 0 0% 25% 

Queensland 
University of 
Technology (ATN) 

A 1 0% 0% 

University of 
Technology, 
Sydney (ATN) 

A 1 0% 8% 

La Trobe 
University (IRU) 

P 0 0% 0% 

Curtin University 
of Technology 
(ATN) 

P 1 0% 0% 

University of 
Western Sydney 

None 0 0% 12% 

Griffith University 
(IRU) 

P 1 0% 0% 

James Cook 
University (IRU) 

P 1 50% 0% 
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One immediate observation from the table is the dominance of the Group of Eight in 
terms of enrolments in the natural or physical sciences. Dobson (2007, p. 23) reports 
that these institutions account for the preparation of nearly half of Australia’s science 
graduates. We anticipate that this group sends strong signals regarding the importance 
of QS in science. 

Mathematics preparation from secondary school 

The strongest signal in any of the four data categories was in the required mathematics 
background from secondary school. Twelve of the seventeen institutions include 
mathematics from secondary school either as a prerequisite or as assumed knowledge. 
This signal was almost uniform across the Group of Eight institutions with only two of 
the eight not requiring or assuming mathematics from secondary school for students in 
their science degree program. 
 Anecdotally there is some discussion around what many regard as the weaker 
message associated with the word “assumed” when it is used in place of “prerequisite”.  

Compulsory mathematics/statistics or QS subjects in science degrees 

Eight of the 17 institutions in the table have a compulsory mathematics, statistics or QS 
subject within the Bachelor of Science. It is difficult to draw a conclusion from this 
statistic, except perhaps to observe that a significant number of institutions appear to 
believe that students enter their science programs with adequate QS preparation from 
secondary school for the needs of the full degree program. Development of QS within 
these programs must be facilitated solely within discipline-specific subjects, relying at 
most on previous secondary-level mathematics study. 

QS in chemistry majors 

The table shows some uniformity in the portrayal of the importance of QS within 
chemistry majors: very few subjects comprising chemistry majors appear to develop 
QS. That is, there is very little reliance on building QS through links between secondary 
school mathematics and first year chemistry, or through links between tertiary 
mathematics/statistics/QS subjects and higher-year chemistry subjects. Anyone using 
these measures alone may conclude that the relevance of QS to becoming a capable 
chemical scientist is quite tenuous. 

Discussion 
The data presented in Table 1 are revealing in terms of measuring external perception 
of the value of QS in science. This type of data represents information that is accessed 
by practicing secondary school teachers and guidance officers, as well as by budding 
science students and their parents when choosing senior secondary school. Some 
students may enjoy science, but experience anxiety towards mathematics, so any hint 
that the study of mathematics is unnecessary, or can be postponed until later, may result 
in poor subject selection in the senior school. 

Misalignment of external perceptions with efforts towards increased 
understanding of the need for QS 

Whilst being a credible measure of the portrayed importance of QS in science, the data 
accessed in this study and summarised in Table 1 are a crude measure of the actual 
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relevance of QS in science. These data hide significant efforts in both secondary and 
tertiary education to demonstrate the links between mathematics, statistics and science.  
 Huntley (1998) explains that approaches to curriculum organisation that foster 
understanding of the intertwined nature of mathematics and science almost certainly 
involve interdisciplinary or integrated approaches. It is certainly the case that such 
approaches may not be revealed by the documents analysed in this study.  
 At the secondary level, Venville et al (2002) conclude that the authenticity offered by 
integrated or interdisciplinary approaches provides an opportunity to enhance pupil 
engagement with school, and that process and higher-level cognitive skills may be 
increased. Goos and Askin (2005) report on a problem-based Year 10 course at a 
Brisbane school that integrated mathematics and science. The course showed success 
with students empowered to make more effective decisions about future careers through 
an understanding of how mathematics and science are used in “real life” situations. 
 In the Australian higher education system, Bridgeman and Schmid (2010) report on 
an interdisciplinary approach in laboratory exercises in first year chemistry subjects at 
The University of Sydney, which facilitate the development of skills in statistical 
analysis in a science context. Similarly an interdisciplinary teaching intervention at The 
University of Queensland highlighting the links between mathematics and science is 
discussed in Matthews et al. (2009). The intervention, in the form of a first year subject, 
was designed to demonstrate the need for QS in modern science and to improve 
mathematics skills of students when applied in the context of science.  
 The preceding two paragraphs briefly touch on the literature revealing efforts to 
foster an understanding of the value of QS in science. The approaches adopted in these 
examples are not widely recognised outside science education, and often struggle to 
gain acceptance amongst educators themselves as Goos and Askin (2005) and 
Henderson, Beach, Finklestein and Larson (2008) discuss.  
 Perhaps one of the greatest barriers to the tertiary sector transmitting uniform signals 
regarding the importance of QS in science is a lack of understanding within the sector as 
to the most effective way to demonstrate the links between mathematics and science. 
Without continued efforts in these areas, tertiary science educators are unlikely to be 
able to meet the ambitious goals they have set themselves through the standards 
reported in the Learning and Teaching Academic Standards draft consultation paper 
published by the ALTC (2010).  
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It has been established that the use of interactive whiteboards (IWBs) does not of itself 
imply interactive pedagogy. Indeed it has been argued that precursors for a change from 
teacher-centred to interactive pedagogy include a high degree of technical IWB 
competence. Based on the responses of secondary mathematics teachers at one school to a 
brief professional learning program we suggest that awareness of the potential of IWBs to 
enhance student engagement and hence learning, and commitment to collaboration and 
improved teaching, can motivate experimentation with the technology such that technical 
competence and pedagogical change occur together. 

 
Over the past decade interactive whiteboards (IWBs) have been embraced by school 
systems in the UK and more recently Australia and New Zealand. Initiatives such as the 
Schools Whiteboard Expansion project have provided funds for at least one IWB for 
each subject department in participating UK secondary schools (Moss, Jewitt, Levačić, 
Armstrong, Cardini & Castle, 2007), while in Australia the significant costs involved 
have not deterred their rollout in Victoria (Jones & Vincent, 2006) and other states. Lee 
(2010) used the term “digital take-off” to describe teachers’ rapid adoption of the 
technology in their classrooms, but others (e.g., John & La Velle, 2004; Serow & 
Callingham, in press) have reported that a minority of teachers resist IWBs, avoiding 
their use by citing technical and other difficulties. 
 In spite of the widespread enthusiasm for IWBs research that demonstrates impacts 
on students’ learning is scant (Jones & Vincent, 2006). Changes to teaching that have 
been associated with the use of IWBs include speeding the pace of lessons, providing 
access to a wider range of multimedia resources, and allowing for greater interaction in 
lessons (Moss et al., 2007). Although these changes can be positive they are not 
necessarily so. For example, Biggs (1987) suggested that increased speed of delivery 
can result in surface learning, while Moss et al. (2007) cautioned that greater access to 
resources can result in increased reliance on commercially prepared materials and 
observed that this appeared to be more likely for mathematics teachers than those in 
other areas. In addition, they noted that the interactive potential of IWBs required 
intentional planning in order to be realised, and Hodge and Anderson (2007) have 
suggested that an IWB can result in less interaction and a greater emphasis on whole 
class teaching. 
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 Beauchamp (2004) proposed a five stage hierarchical model for the adoption of 
IWBs. The five stages, as described by Muir, Callingham and Beswick (2011, p. 2) are 
as follows: 
1. Blackboard substitute: Turn on IWB, Find relevant files, Use the IWB pen, 

Students don’t use the IWB  
2. Apprentice: Use prepared files—predominantly presentation, Save new pages 

created during lesson, Students have some access planned by teacher, Sometimes 
use other programs (e.g., Powerpoint), Sometimes use material from Internet or 
elsewhere 

3. Initiate: Have multiple windows open and available, Use “flip charts” created with 
IWB software, Save work systematically in “favourites” folder, Students have 
access to choice of IWB tools on teacher direction, Use of a wider range of 
programs including specialist software, Use of different Internet sites 

4. Advanced: Use work from students (scanned or saved), Students have frequent 
access to the IWB, sometimes spontaneously, Use of media files (e.g., video, 
sound files) prepared by teachers, Use of hyper-links—non-linear thinking, Use of 
“improved” lessons with focus on student learning rather than technical capability 

5. Synergistic: Teacher and students confident and competent with IWB, Teacher 
has technical and content competence so that lesson structure is fluid and 
responsive to students, IWB use embedded in lesson activities beyond 
presentation. 

In the study reported here, Beauchamp’s (2004) hierarchy was used both as a 
framework for teachers to reflect on their current and desired IWB use, and to analyse 
the use of IWBs by five secondary mathematics teacher participants. In light of the 
conflicting literature about teachers’ willingness to embrace IWBs and the impacts of 
the technology on teaching, we were particularly interested in the extent to which IWBs 
might be a catalyst for pedagogic renewal in mathematics when they were the focus of 
shared professional learning. The specific research question addressed by the study was: 
How might the use of IWBs influence the mathematics teaching of a group of secondary 
mathematics teachers in the same school? 

The study 
The five teachers whose mathematics pedagogy was the focus of this paper were the 
secondary teachers in a group of eight teachers who participated in a small study of the 
potential pedagogical impacts of IWBs. The study was conducted over a period of 
approximately 12 weeks in the final school term (of three). 

Participants 
The five secondary teachers all taught at least one mathematics class at the same Grade 
7–10 suburban government high school. Details of their teaching experience, 
qualifications, and current mathematics teaching responsibilities are shown in Table 1. 
Mathematics Extended is an elective subject chosen by students who enjoy the subject 
or want a firmer basis for subsequent study of the discipline. Maths Applied and Maths 
Methods Foundation are preparatory subjects for pre-tertiary subjects available in 
Grades 11 and 12. 
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The school, Queensbridge High, had very recently invested in IWB technology but 
funding had not extended to the provision of training for teachers in their use. 

Table 1. Details of participating teachers. 

Teacher  Qualifications Teaching 
experience  

Position in the school Current mathematics teaching 

Tammy B.App.Sc, B.Ed 10 years Teacher 8 Maths, 10 Maths Applied 

Kylie B. App.Sc. 12 years Advanced Skills 
Teacher, Mathematics 
leader 

10 Maths Methods Foundation, 9 
Maths Extended, 7 Maths , 9 
Maths 

Louise B.Ed., M.Ed. 24 years Assistant principal  9 Maths 

Steve B.Ed. (Prim) 5 years Teacher 7 Maths 

Claire B.Ed. (Prim) 10 years Teacher 7 Maths, 8 Maths, 10 Maths 

Instruments  
Data were collected using a range of instruments including student surveys. Although 
relevant to the current study students survey data are not included here due to space 
constraints.  

Lesson observation 

Each teacher was observed teaching one mathematics lesson using the IWB as they 
normally would. The observer recorded as much detail of the lesson activity as possible 
focussing on the teacher’s actions (e.g., instructions, explanations, monitoring), student 
activity (e.g., groupings, extent of engagement and participation), and the use of the 
IWB (e.g., what was displayed on it, who used it). The times at which various episodes 
of classroom activity changed were also recorded. 

Interview 

Immediately after the lesson observation each teacher was asked about the degree to 
which the lesson was typical in terms of their IWB use, the extent to which they 
believed that the lesson could have been conducted without the IWB, student 
involvement in the lesson, and specific aspects of IWB use or related resources that had 
been observed. They were then asked to describe what they regarded as the main 
advantages of using IWBs in mathematics teaching, how they would like to use the 
IWB, and what supports they believed would be necessary to help them to achieve this.  

Teaching journal 

Each teacher was asked to document their IWB use for a period of 10 school days. To 
this end they were provided with 10 pages, each containing a table in which to record 
predefined codes which referred to the topics being taught, instructional objectives, the 
student grouping used (whole class, small group, or individual), role (integral or 
supplementary) and primary use (whiteboard, data display, IWB) of the IWB, resources 
used in conjunction with the IWB (internet, virtual manipulative, game, text book, 
other), IWB features used (e.g., cover and reveal, blinds, spotlight) and the approximate 
division of IWB use between teacher and students (teacher dominated, 50/50 teacher 
and students, student dominated), throughout the day. 
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Workshop notes 

Three, approximately monthly workshops were held with the teachers, and notes were 
made during these by one of the researchers and a research assistant. In the final 
workshop teacher presentations and other evidence of their work with IWBs was also 
collected.  

Procedure 
The lesson observations and teacher surveys were conducted prior to or immediately 
after the first of the workshops. Teachers were asked to complete the journal for a 10- 
day period during the four weeks between the first and second workshops. After each of 
the first and second workshops the teachers were encouraged to try something of what 
they had learned and to report back on this in the next session. 
 The first workshop was a half-day event that introduced the teachers to the project 
and to Beauchamp’s hierarchy of IWB use. Each of the researchers involved shared 
some IWB resources that would be potentially useful for the teachers. These included 
the Gapminder website, virtual manipulatives, GeoGebra, and Learning Feder@tion 
objects. The teachers also had an opportunity to share their favourite IWB resources and 
features. 
 The morning of the second session was devoted to teachers discussing their recent 
IWB use followed by a presentation from an external IWB professional learning 
provider that focussed on the features of IWBs, commercially available IWB software 
packages, and peripheral devices. In the afternoon each of the researchers presented a 
mini-lesson aimed at provoking discussion of the variety of ways in which an IWB 
might be integrated with traditional tools, used to enhance activities that could be done 
without the IWB, or could facilitate learning experiences that would be very difficult to 
provide in another way. 
 The final, half day, workshop was an opportunity for the teachers to showcase their 
IWB use and to report on their experiences of experimenting with new approaches to 
IWB use in their contexts over the course of the project.  

Results and discussion 
In the following sections results are presented and discussed chronologically. Due to the 
short time frames involved and the complexities of school life not all data were 
collected for all teachers but sufficient were gathered to chart the progress of the 
Queensbridge High teachers. 

Lesson observations and interviews 
Four teachers (all but Louise) were observed and interviewed although one teacher, 
Tammy, was in a room that had no IWB. Kylie, Claire, and Steve were all teaching 
Grade 7 classes and all used the IWB for an initial activity that involved a puzzle or 
game to be completed within a limited time. Claire and Steve made no use of the IWB 
during the main part of the lesson but in each case a group of two or three students who 
completed their work early were allowed to use the IWB for a further task or game. In 
Claire’s lesson the task related to the lesson focus on expressing patterns algebraically 
but the number puzzle chosen by Steve was not connected with the lesson. Kylie did not 
use the IWB at the end of her lesson but did use it at various times throughout the 
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lesson, primarily to display and record information. She also made use of an online 
dictionary to show the meaning of ‘round’ in the context of decimal numbers. 
Consistent with Moss et al.’s (2007) observation, Kylie’s lesson was noticeably fast-
paced and although this may have been her practice regardless of whether the IWB was 
used or not, the IWB did appear to facilitate the pace to some extent.  
 All of the teachers indicated that the observed lesson involved fairly typical IWB use 
and all expressed a desire to use the IWB more, and more effectively. For Steve this 
meant going beyond just using it to start lessons and for early finishers, whereas Kylie 
was keen to explore how students could be more involved in using the IWB and Claire 
was interested in finding out what a “really good lesson” with the IWB looked like. 
They agreed that the activities for which they used the IWB could have been done 
without it but that it was easier with the technology. For Tammy, access to an IWB was 
the major issue cited as preventing her from using it regularly and hence developing her 
skills. Claire taught all of her maths lessons in rooms with an IWB but described being 
hindered by a lack of technical expertise. For example, she said that it was necessary to 
check and often to recalibrate the board in the break before lessons, and that she had 
learned what she had by trial and error in the absence of any professional learning. 
Steve had also experienced difficulty in his lesson as a result of the IWB needing to be 
calibrated. In keeping with her desire to have students make more use of the board, 
Kylie believed that a second IWB in each classroom would be useful. 

Workshop 1 
Having been introduced to Beauchamp’s hierarchy all of the teachers considered 
themselves to be at the Apprentice stage except for Kylie who viewed herself as being 
at the Initiate level. These judgements were broadly consistent with the lesson 
observations although it was not possible, on the basis of a single lesson, to determine 
the extent to which students had choices with respect to the IWB tools that they used or 
the range of software and internet sites that were used. All of the teachers cited new 
ideas and web-based resources from the workshop that they saw as potentially useful. 

Teaching journal 
Louise, Claire, and Steve completed teaching journals. Louise’s journal included just 
four lessons over a 3-week period including one lesson in which the IWB was “not 
working!” In the remaining three she reported using the IWB in whole class contexts 
except for part of the third lesson, in which a small group used it. Explicit instruction 
characterised her IWB use in all three lessons and was accompanied by revision in the 
second lesson and the introduction of new concepts in the third. In the first lesson the 
IWB was used to display a text book exercise and was operated solely by Louise. In the 
second, Louise indicated that some IWB feature was used, in addition to using it to 
display information, and in the third lesson she described its use as entirely with the  
IWB. Internet resources were used in lessons 2 and 3 along with a text book exercise 
display in the third. In both the second and third lessons Louise reported some use of the 
IWB by students. 
 Steve reported on six mathematics lessons over a 10-day period, with the IWB used 
in the first four of these, and always in whole class contexts. It was used for explicit 
instruction in the first and second lessons and for revision in the remaining two. Steve 
reported using the IWB as an IWB only in the third lesson but as a data projector on the 
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other occasions. Resources used included internet sites in all four lessons, games in the 
first three, and as a text book in the first two. He reported approximately equal use by 
students and teacher in the first two lessons, student dominated use in the third and 
teacher dominated use in the fourth. 
 Claire reported on nine mathematics lessons in a 2-week period. Of these the IWB 
was used in seven. In each of these lessons small groups used the IWB, accompanied by 
whole class use in the first three lessons and individual use in the final three. Claire 
reported using the IWB for explicit instruction (3 lessons), revision (3 lessons) and 
introducing a new concept (2 lessons). All of the lessons made use of the IWB as an 
IWB with just one lesson (the third) in which it was also used as a whiteboard. Claire 
reported using internet sites in each of the first four lessons; virtual manipulatives in the 
first, third, and final three lessons; and games in the first two lessons and the final three. 
For the first three lessons Claire reported a balance of student and teacher use of the 
IWB, and student dominated use for the final four lessons. 
 The differing patterns of IWB use that were reported in the teachers’ journals is 
likely to be related to their differing roles in the school—Louise’s AP responsibilities 
meant that her teaching load was relatively light and frequently disrupted—and 
differing levels of commitment to the project and/or to changing their use of the IWB in 
their teaching. Nevertheless, there was some evidence of a willingness to experiment on 
the part of all three teachers. Overall the reported IWB use was consistent with the 
tendency reported in the literature (Hodge & Anderson, 2007; Muir, Callingham, & 
Beswick, 2011). 
 Claire’s teaching journal was unique in both the number of lessons documented and 
the progression in her IWB use that was evident. Specifically there was a trend toward 
to less whole class use, greater use of manipulatives, and greater student access to and 
use of the IWB. Although there is insufficient evidence to conclude that Claire 
progressed from the Apprentice level (Beauchamp, 2004), the changes evidenced were 
in the direction of more sophisticated use. 

Workshops 2 and 3 
As described already the second workshop provided the major professional learning 
component of the program focussing on features of the IWB and ways in which its use 
could be incorporated into existing mathematics teaching approaches. The third 
workshop was primarily a forum in which the teachers could share their learning. 
 In that workshop the Queensbridge High School teachers chose to make a group 
presentation lead by Claire and assisted by Tammy and Steve. They described how they 
had collaboratively planned and implemented a Grade 8 algebra unit that incorporated 
the use of hands-on tasks, interactive tasks using the IWB, and traditional tasks. The 
unit was divided into weeks each with a list of objectives and pathways for working 
through the activities. No whole class teaching was used, but the weekly overviews 
were supplied to students at the start of each week and they were expected to be self-
directed. Access to the IWB was rostered to ensure that all students had opportunities to 
complete the interactive tasks. An important feature of each lesson was a 10 minute 
reflection time at the end during which students wrote at least 50 words about what they 
had achieved that lesson. The teachers shared three reflections from each of two 
students, and two of these from one of the students are shown in Figure 1. The mention 
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of the “electronic whiteboard” in the Thursday reflection was the only reference to 
IWBs in the examples they presented. 
 The teachers explained that IWB resources were easy to find but that the availability 
of technical support on just one day per week meant that technical issues with the IWBs 
remained a frustration and necessitated always having a back-up plan. In addition, they 
had found that access to several PCs as well as an IWB was very useful when this was 
possible. Overall they believed that the approach taken in the unit had resulted in 
improved student engagement and a more rewarding teaching experience. 
 

 

Figure 1. Examples of student reflections. 

Although the teachers appeared to rely on pre-prepared materials there was no evidence 
of negative effects of this as suggested by Moss et al. (2007). Rather, they integrated the 
online resources with others in a purposeful way as part of their planning. In contrast to 
Hodge and Anderson’s (2007) warning, the use of the IWB, in the context of their 
overall revised approach, did not have the effect of increasing teachers’ reliance on 
whole class teaching but had, on the contrary, reduced it. This was also a change from 
the lesson observations made at the start of the project.  

Conclusion 
The short duration of the study meant that large changes in teachers IWB use or 
mathematics pedagogy were unlikely to be observed. Nevertheless, Beauchamp’s 
(2004) hierarchy was effective in facilitating teachers’ reflection on their IWB use and 
in setting goals for its development. Apart from Kylie, all placed themselves at the 
Apprentice level at the start of the project and all, including Kylie, were able to identify 
specific ways in which they wanted to develop their IWB use. 
 The teachers’ presentation at the final workshop showed evidence of development 
and suggests that one or more of the individuals involved in preparing the unit had 
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moved to the Initiate stage (Beauchamp, 2004). Compared with the lesson observations 
at the start of the project, where the IWB was used primarily as something of a novelty 
to engage students at the start of the lesson and to reward early finishers, its use in the 
Grade 8 algebra unit was integral to the achievement of the unit’s objectives. 
Importantly, these changes occurred without any change to the availability of the 
technology or technical assistance with its use. Improvements in these areas would 
undoubtedly be helpful and appreciated by the teachers but they did not present an 
insurmountable obstacle to teachers progressing their objectives in relation to IWB use. 
 Arguably the most positive aspects of their work were not directly related to IWB 
use. Rather, it appeared that planning collaboratively was a relatively new way of 
working, perhaps prompted by the need to “have something to share”. In addition, the 
teachers had not set out to use the IWB at every possible opportunity but had 
incorporated it purposefully into their overall plan as a part of varied menu of tasks for 
students to undertake. The incorporation of reflection time for students was a successful 
innovation to assist students to be aware of and to take responsibility for their own 
learning and also constituted a lesson ending that focussed students on what they had 
achieved. The student reflections that the teachers selected to share provided further 
evidence that they were not preoccupied with using the IWB as an end itself but in 
improving their teaching and using the IWB as one of range of tools to this end. 
 In terms of the research question that was the focus of this study, the data point to the 
potential of a challenge to incorporate IWB use to be a catalyst for more fundamental 
pedagogical change. Of course, the study was small and the intervention brief but it 
raises questions that warrant further exploration. For example, what role is played by 
teachers’ existing pedagogical repertoires in their uptake of new technologies and their 
ability to rethink their teaching approaches? What role might teachers’ pedagogical 
content knowledge play? How and to what extent might other specific innovations be 
used as catalysts for pedagogical change?  
 The results also support the inclusion in professional learning around new 
technologies of a pedagogical focus from the outset. The Queensbridge High School 
teachers were novice IWB users but were able to change their pedagogy at the same 
time as developing their technical skills. Indeed it could be that the pedagogical 
possibilities presented in relation to IWB use may have motivated them to engage with 
the technology. This is yet another avenue for future research. 
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Moving on from primary school provides many different challenges. This paper explores 
multiple perspectives about preparation for school transition in mathematics. As a 
qualitative case study it draws on student, teacher, and parent, voices through the use of 
questionnaires and interviews. Sixty seven students and six teachers from three different 
schools participated in the study. There were commonalities and differences in beliefs 
about mathematics learning and teaching that contribute towards successful transition. The 
results illustrated that facilitating successful transitions requires that attention be given to 
the perceptions and values of students, teachers, and parents. 

Introduction 
For all students, transition across educational sectors is an important event in their 
schooling lives, whether as an internal transfer (e.g., from junior school to senior 
school) or as an external transfer (e.g., from primary school to middle school). A body 
of literature (e.g., Anderson, Jacobs, Schramm, & Splittgerber, 2000; Demetriou, 
Goalen, & Rudduck, 2000; Galton, & Hargreaves, 2002) signals the many challenges 
which students may encounter at this important time. Broadly, these challenges include 
difficulties with continuities in learning mathematics, teaching styles, teacher 
expectations, friendships, and school systems. Recent New Zealand studies by the 
authors (Bicknell, 2009; Bicknell, Burgess, & Hunter, 2010; Bicknell & Hunter, 2009) 
explored different aspects of the transition process. The focus of these studies was on 
preparedness, support, and transitional success and failure across differing sectors for 
students in mathematics.  
 Preparedness includes academic preparedness, independence, and industriousness. 
Support may be provided by teachers, parents, and/or peers whilst transitional success 
or failure can be judged by grades and academic orientation. These were the three key 
elements for analysis provided by Anderson et al’s (2000) conceptual framework. This 
paper provides an opportunity for us to address in more detail the issue of preparedness 
and to hear multiple voices of students, teachers, and parents. We want to understand 
how these three stakeholders view preparedness in mathematics for successful transition 
from primary school. Our research question asked: How do students, teachers, and 
parents view preparedness for a successful transition in mathematics?  
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Review of the literature 
Successful transition is not only important for students’ social and learning trajectories 
(Noyes, 2006) but also to maintain their motivation to continue to engage with 
mathematics (Athanasiou, & Philippou, 2006). One reason Akos, Shoffner, and Ellis 
(2007) suggest students lose interest in mathematics is due to the increased focus placed 
on performance-oriented teaching and learning as students move up the schooling 
system. This performance orientation emphasises student demonstration of 
mathematical skills and increased competition at higher levels of the education sector 
and contrasts with the more task-orientated focus of primary school classrooms. Within 
a task-orientated focus, emphasis is placed on students working to improve their 
competencies (Zanobini & Usai, 2002). In recent times, certainly in New Zealand, 
primary mathematics classrooms have been strongly orientated towards task-focused 
teaching and learning through the New Zealand Numeracy Development Projects 
(NDP) (Ministry of Education (MoE), 2008). However, as students move into higher 
sectors in the New Zealand school system the focus shifts towards more assessment-
driven pedagogies.  
 Noyes (2004) describes this shifting emphasis in pedagogy as schools being 
responsive to political influences within “mathematics learning landscapes” (p. 28). 
While policy has a broad influence on what happens in mathematics classrooms, other 
more local factors impact on the transition process in individual schools and classrooms. 
The barriers and enablers to successful transitions vary depending on differing contexts 
and situations. They involve more than individual students. Teachers (Pietarinen, 2000), 
parents (Mizelle, 2005; Cox & Kennedy, 2008), and peers, (Wentzel & Caldwell, 1997) 
all play a key role in the transition process (Jindal-Snape & Foggie, 2008). 

It is widely accepted that fluency should be underpinned by the continuity and 
progression designed into the curriculum, by the efficient and purposeful transfer of 
information at the interface and by comprehensive liaison between the various parties 
involved: teachers, pupils and parents. (Nicholls & Gardner, 1999, pp. 1–2) 

Of particular interest for this study is how continuity in the mathematics learning 
landscapes is enacted across mathematics classrooms at each sector level; that is how 
the cultures of classrooms at primary level (as the students and their teachers perceive 
it) links to how the students, their teachers, and their parents perceive how this supports 
their preparedness to transition to middle school. Such continuity of learning has been 
identified by researchers as an area of action that will improve learning across 
transitions. 
 In this paper we take the culture of the classroom enacted by teachers as a key factor 
which shapes students’ relationships in and with mathematics. We explore how students 
view the culture of the mathematics classroom in preparedness for transition and 
acknowledge the influence of recent reforms in mathematics education (founded in 
constructivist learning theories in which students construct, explain, and justify their 
reasoning using multiple strategies). This led us to listen to student voices to see how 
they view their current classroom culture and how they see this as preparation for 
transitioning to middle school mathematics learning.  
 The theoretical perspective taken in this study adopts an ecological view suggested 
by Bronfenbrenner (1979). In this cultural frame the different social environments are 
recognised as directly impacting on students as they prepare to make an “ecological 
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transition” (p. 26) across school sectors and make adaptations on multiple levels to the 
perceived changes in roles and settings they will encounter.  

The study 
This paper reports on data extracted from a larger study that investigated the different 
transitions of groups of students within centres and school sectors across a three-year 
period. In a previous paper (see Bicknell & Hunter, 2009) we reported on the systemic 
transition in mathematics of students in the second phase of the study (primary school 
year six to intermediate school year seven). In this paper we return to the findings from 
the second phase to investigate how the mathematics learning environments (classroom 
cultures) are directly responsive to the New Zealand Numeracy Project (MoE, 2008). 
Further, we are interested to see how how year six students, their teachers, and their 
parents view preparedness for mathematics in the next sector.  
 The sample for this study included 67 students (65 returned complete questionnaires) 
and their teachers (n=6) from six different schools. The six primary schools were from a 
decile1 range of three to seven from two different geographical regions in New Zealand. 
The students completed a questionnaire that included both open-ended and likert scale 
questions. This was supplemented by group interviews. The teachers also completed an 
open-ended questionnaire and participated in semi-structured interviews. The parents 
(n=34) also completed a questionnaire. To determine the key themes and the 
commonalities and differences in perceptions about the transition process, responses 
were systematically coded initially based on Anderson and colleague’s (2000) 
conceptual framework. This was followed by a second level of coding. Tables were then 
created for some of the pattern codes to give a quantitative view of the data from the 
multiple sources (Cohen, Manion, & Morrison, 2007). 

Results  
The classroom contexts 
All teachers reported that they had recently participated in numeracy professional 
development provided for the New Zealand Numeracy Development Projects (MoE, 
2008) and placed an emphasis on numeracy in their mathematics programme (between 
60-100%). Key features of all of the teachers’ lessons (as reported and documented) 
included the use of streamed groups (based on strategy levels). Their lessons featured an 
introductory basic facts whole class activity followed by group rotations where students 
developed solution strategies for problems in small groups and talked about their 
strategies with the teacher in larger sharing sessions. Follow-up work included activities 
to reinforce previous learning through the use of numeracy resource materials. These 
lessons reflect the model promoted by the New Zealand Numeracy Development 
Projects. 

                                                        
1 Each school in New Zealand is assigned a decile ranking between 1 (low) and 10 (high) based on the latest census 
nformation about the education and income levels of the adults living in the households of students who attend that 
chool.  
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 The students concurred with their teachers and they almost uniformly described 
working in groups and working with the teacher as a key aspect of their mathematics 
lessons. The majority of the students noted that the learning of basic facts was 
consistently a focus of mathematical activity. Other activities the students listed as 
common practice in their mathematics lessons included working from textbooks and 
worksheets and explaining their strategy solutions. The least common occurring 
activities were writing their own word problems, participating in competitions, and 
convincing others about their mathematical thinking.  
 In the next section we present firstly the students’ perceptions of their preparation to 
transition to middle school in mathematics. This is followed by the teachers’ and 
parents’ perceptions. Then we provide a synthesis of the three voices in which we 
highlight commonalities and differences among the stakeholders.  

Student perceptions of their preparation for transition in mathematics 
The students presented their ideas initially in a written questionnaire. Table 1 below 
provides a summary of student responses to the question: How important do you think 
each of the following are in preparing you to do well in mathematics?  

Table 1. Student Responses to Question 4. 

 Extremely 
important 

Very 
important 

Somewhat 
important 

Not 
important 

Working in a group with other students 8 37 18 2 

Working alone 15 19 27 4 

Working with the teacher 31 20 11 3 

Sharing your ideas in a large group 23 26 13 3 

Working from a textbook 13 20 27 5 

Working from a worksheet 7 30 22 6 

Learning using games and activities 20 19 21 5 

Knowing your basic facts 47 12 4 6 

Being able to use a calculator 21 27 10 7 

Explaining your strategy solutions 30 25 5 5 

Convincing others about your mathematical 
thinking 

17 31 15 2 

Writing your own word problems 11 28 24 2 

Learning from your mistakes in mathematics 42 18 1 4 

Learning from the mistakes of others 20 27 12 6 

Being able to ask for help in mathematics 40 21 3 1 

Taking part in competitions 16 24 19 6 

 
Table 1 shows that the factors that related to students’ attitudes towards, and ways of 
participating in, mathematics drew the most positive responses. The strongest placed 
factor ranked by the students as either extremely important or very important was ‘being 
able to ask for help’ (94%). This was followed closely by ‘learning from your mistakes 
in mathematics’ (92%) and ‘knowing your basic facts’ (91%). The selection of these 
factors suggests that the students had a sense of responsibility and autonomy towards 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

127



BICKNELL & HUNTER 

themselves as mathematical learners. They also illustrate a task-focused orientation in 
which the students are doing what Zanobini and Usai (2002) describe as improving 
aspects of their mathematical competencies.  
 The second group of responses included: explaining your strategy solutions (85%); 
working with the teacher (78%); sharing your ideas in a large group (75%); convincing 
others about your mathematical thinking (74%); learning from the mistakes of others 
(72%); and working in a group with other students (69%). The selection of these factors 
by the students reflects a focus on them taking personal responsibility for their 
mathematical learning and at the same time illustrates the importance the students 
placed on ways of communicating about, and participating in, mathematics. However, 
only half of the students believed that working from a worksheet (51%), working alone 
(52%), and working from a text book (51%) were important in preparing them for 
mathematics in their next school setting. These three factors more closely represent 
mathematics learning within performance-orientated settings.  
 The findings in Table 1 were triangulated using additional data from an open-ended 
question in the questionnaire and focus group interviews. The open-ended question 
asked: What do you think are the most important things to do to be prepared for 
mathematics in year 7? The students’ responses provided further evidence that they 
believed that they needed to improve their mathematical competencies. They were also 
aware of an attribute Anderson and his colleagues (2000) describe as essential for 
preparedness, which is industriousness. This is exemplified by a student who noted:  

Work very hard when it’s getting
you should know in year 6 so you

A second student commented:  

 closer to the end of the year; learn all the basic things 
’re prepared for the next year. (Student D5) 

... make sure that I know my basic facts well, know how to do word problems and work 
well with new people. (Student C8) 

This student perceived the importance of group work as equipping him to continue to 
work with others including a new teacher when he transitioned to his new school. Other 
students also noted that they viewed the ability to work in groups, work with other 
students, show their ways of thinking (publicly), know how to use different methods 
and strategies, and learn from mistakes as important aspects of preparedness for 
transition. For example one student stated: 

I think I have to ask the teacher for help a lot. And always give ideas to the group that I’m 
working with and speak up. (Student E5) 

Other students illustrated that they recognised that their current ways of working would 
change in the next setting. These students identified that part of their preparation 
required that they worked independently, harder, and were prepared for challenge. For 
example one student recorded a need to:  

... be prepared for a challenge, new types of working and working with your new teachers 
and classmates. (Student F1) 

The students were asked how they thought their teachers were preparing them 
mathematically for transition to the next schooling sector. Across the sample they 
provided similar responses. Most often they stated that they were encouraged by their 
teachers to work alone. Many stated that their teachers now gave them worksheets and 
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had them working from text books as a preparatory step. Accepting greater challenge, 
taking personal responsibility, and increased homework was also mentioned. As one 
student stated:  

Our teacher challenges us and gives us different work nearly every day and we either get 
a maths book like a text book or just a sheet and we work off those and each time there 
are different levels and challenging levels for your group and like for homework it will be 
hard for us and so we do quite hard questions now. (Student M1) 

A large number of students also described how their teachers were focusing on teaching 
them more numeracy solution strategies (NDP mental strategies) in preparation for what 
the teachers perceived would be required in the new school. However, they themselves 
did not see the learning of multiple strategies as an important part of their preparation 
for transition. Similarly, the other factors which the students identified in this final 
section (textbooks, worksheets) are those which only 50% of the students thought were 
important to prepare them for the move to the next stage in their schooling. This 
however was the students’ perceptions of what were important aspects of their 
preparation and as the next section will show differed somewhat from that of their 
teachers. 

Teacher perceptions of preparing the students for transition in 
mathematics 
The majority of the teachers described the importance of the students holding strong 
knowledge of their basic facts. Like their students, the teachers took a task-orientated 
focus (Zanobini & Usai, 2002) and described an emphasis placed on improving aspects 
of their students’ competencies across mathematical skills and strands. For example, 
one teacher described a broad emphasis across the mathematics strands:  

Ensure that they have basic facts ‘down pat’. Lots of exposure to a variety of strategies 
and problem solving skills. Experience in all maths strands. Above [all] give them the 
confidence to take risks with their thinking. (Teacher F) 

Other teachers described a central focus on the teaching of numeracy strategies. They 
stated that they wanted to ensure that the students had a repertoire of strategies; a focus 
which fitted within the current politically focused NDP and connects to what Noyes 
(2004) suggests as the influence of wider policy. But, at the same time they outlined 
how they wanted the students to have had experience with the written standard 
algorithms for the four operations; a focus complicit with previous teaching methods 
prior to the introduction of the NDP. Other themes the teachers described included 
ensuring student knowledge of place value and developing a range of problem solving 
strategies. Some teachers also demonstrated that they were aware of a need to make 
mathematics relevant to their students’ lives, to developing student confidence to take 
risks with their thinking, and have the skills and confidence to use textbooks. One 
teacher specifically focussed on her goal to increase her students’ awareness of their 
own levels of achievement and weaknesses so they could take shared responsibility in 
identifying the next steps in their learning. She stated: 

My transition approach is the same with all areas [curriculum]. I ensure the child is aware 
of their level, what they can do, what their next steps are. Some children take this on 
board many don’t. (Teacher E) 
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Like their students, the general focus of the teachers’ preparatory steps was directed 
towards ensuring that gaps were filled for individual students within a task-orientated 
focus (Zanobini & Usai, 2002). However, they also addressed other aspects of 
preparedness that Anderson and his colleagues (2000) maintain are essential for 
successful transition. These focused on the need to develop independence, 
industriousness, and coping mechanisms.  

Parent perceptions of preparing the students for transition in mathematics 
Parents balanced their perceptions of what they wanted in preparedness for transition 
between wanting their children to be competent across mathematical dimensions and 
being able to perform competently at the next level. This included the mastery of basic 
facts which they saw as not only the responsibility of the school or teachers but also 
acknowledged their contribution towards their children’s rapid recall of basic facts. 
They also placed importance on coverage of the curriculum; they wanted there to be no 
gaps in their child’s mathematics education. They also wanted the mathematics lessons 
to be targeted at the student’s level with clear progressions.  
 The parents, like the teachers, recognised a need to develop a range of coping skills 
as well as a sense of independence and industriousness. These included helping the 
children to work in a variety of ways: to work from worksheets and textbooks; to work 
independently; and to work under pressure. One parent stated:  

I feel he will either ‘sink or swim’ depending on how he starts the year (Year 7). If he 
finds it too difficult at beginning he will lose interest in doing well. I am hopeful he will 
do well and am preparing him and myself to get stuck into the new year’s studies, as I 
think he might need help initially to settle into a work routine. (Parent C1)  

Other aspects raised by the parents included the need for their children to have a 
positive attitude, self confidence, and a willingness to ask for help in mathematics. They 
also identified the importance of listening to the teacher, asking questions, risk-taking, 
and good work habits including accepting and working towards an increasing workload 
including homework. 
 The majority of the parents believed that the responsibility for the preparation rested 
predominantly with the school and teacher, although acknowledged that their support 
and encouragement would help with the transition. When mathematics was valued at 
home and links made to real life contexts, they believed, their children’s preparedness 
for the transition was strengthened. However, not all parents felt that preparedness had 
been successful for their children; some had ‘no idea’ and one parent acknowledged 
concerns. Four parents stated that their children had not been prepared to succeed in 
mathematics in the following year but did not articulate reasons why.  
 Given that we received questionnaires from nearly 50% of the parents, we believe 
this could be viewed as reasonably strong parental interest in transition. It supports 
previous studies such as Mizelle’s (2005) that parents are interested in the transition 
process although the level of commitment and sense of responsibility for preparedness, 
in this sample, was variable. 

Conclusion and implications 
Clearly, there were commonalities and differences between the groups of stakeholders. 
However, a common theme of preparedness was the importance of learning and mastery 
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of basic facts. This theme extended beyond basic facts to include coverage of the 
mathematics curriculum and for all stakeholders preparedness also meant ensuring 
competency across all mathematics strands. Voices from the three stakeholders all 
described the importance of improving competency in a variety of different ways. As 
other researchers (Akos, et al., 2007; Zanobini & Usai, 2002) previously noted, a task-
orientated focus is consistent with students in lower levels of the education sector. 
Another theme common to the group, focused on the importance of preparedness to 
work from worksheets and textbooks within a more individualised setting. This focus 
could be linked to what Zanobini and Usai (2002) describe as the performance 
orientation of senior mathematics classrooms. We can infer that parent understandings 
of mathematics learning, most likely connects to their own most recent experiences in 
performance-orientated mathematics classrooms. Therefore, the parents’ and the 
students’ emphases on the importance of being able to work alone and to ask for help 
when needed can be understood, given the powerful influence Noyes (2004) suggests 
parents have on the attitudes of their children. At the same time, these factors and the 
value placed on homework by parents and students reflects notions of improving 
competencies (Zanobini & Usai, 2002) as well as ensuring what Anderson et al., (2000) 
describe as academic preparedness. The other factors Anderson and his colleagues drew 
our attention to in their research (independence, industriousness, and coping 
mechanisms) were also evident in what the teachers and parents considered important 
for preparedness for transition. The teachers and parents also placed an emphasis on 
student awareness of their own mathematical levels and learning needs, risk taking 
skills, and ability to cope with challenge including an increased workload. However, the 
parents were a lone voice in considering that a positive attitude to mathematics was 
essential for successful transition.  
 The influence of wider policy on the local classroom situation, described by Noyes 
(2004), is evident in the voices of the students and teachers. Only the teachers outlined a 
need to teach algorithms as important preparatory steps. We can surmise that this relates 
to previous policy and classroom practices which contrast with current policy 
introduced in the New Zealand Numeracy Development Project (MoE, 2008). Likewise, 
an emphasis placed by students and teachers on the development of a range of 
numeracy strategies links to current policy. This is a new construct and experience for 
many parents. Similarly, we can conclude that the prime importance the students placed 
on aspects of classroom practices and context (for example, working in groups, sharing 
reasoning, learning from mistakes, and convincing others) was shaped by broader and 
more recent policy. Moreover, we also need to recognise the discontinuities this poses 
for students. The culture of mathematics classrooms has changed in recent decades and 
if we are to ensure fluency in transition then we need to carefully consider how 
continuity of learning in mathematics is maintained. As Anderson and his colleagues 
(2000) caution, without paying attention to supporting a successful transition the 
transition becomes “the beginning of the end rather than a new beginning” (p. 336). 
 These findings suggest that there should be a shared understanding and recognition 
of the part that all stakeholders have in the process. We focused on student, teacher, and 
parent voices yet there are systemic factors that also need to be considered to support 
successful transitions. The mathematics curriculum needs to be presented and 
understood so the progressions across the sector are seen as seamless. Differing 
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pedagogical practices need to be respected and understood so that students can be 
prepared for any change in the learning landscape. Conversations and classroom 
observations across sectors could strengthen understanding and respect for the changed 
‘culture spaces’ to support smooth and positive transitions for all students. 
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In many mathematics courses at school and university—including in all South Australian 
Year 12 mathematics subjects—students are allowed to make a “cheat sheet” to take into 
their exams. However, despite their widespread use, there is little research on the effect of 
making and using cheat sheets—whether on the students’ performance, learning or learning 
experience. As a preliminary stage in researching this issue, students in several first-year 
statistics courses at the University of Adelaide were surveyed on their experiences of 
making and using cheat sheets. The results and implications of this survey are discussed in 
this paper. 

Introduction 
This paper describes the preliminary stages in an investigation into the effects of using 
cheat sheets in mathematical exams. A “cheat sheet” in this context is a page of notes 
that students are allowed to make and take with them into their exam (also known as 
“crib sheets” or “crib notes”.) It is important to highlight the fact that they are not 
actually used to cheat because they are explicitly allowed by the instructions given to 
students.  
 Cheat sheets are common practice in many exams today. In South Australia, cheat 
sheets are allowed in the exams for every Year 12 SACE mathematics subject; and at 
the University of Adelaide at first-year level, six mathematics and statistics courses and 
several science and humanities courses all allow their students to make cheat sheets. 
These examples alone amount to literally thousands of individual cheat sheets being 
made every year. 
 Considering how widespread their use is, there is comparatively little research into 
the effects that making and using cheat sheets have, whether on the students’ 
performance in the exam, on the quality of their learning, or on their experience of 
learning and assessment. Therefore, educators are making decisions about whether to 
allow cheat sheets mostly without the benefit of existing discussion on the topic; and 
they give advice to students on how to make and use cheat sheets without really 
knowing whether the advice is actually helpful. This research is the first stage in 
beginning to fill these gaps. 
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Background and aims of the research 
This research began when the lecturer for a first-year statistics course commented to us 
about the students’ use of cheat sheets. The lecturer felt that students were not making 
the best of the opportunity to have a cheat sheet. So, we began to prepare a presentation 
for the students on how to make and use a cheat sheet effectively.  
 While preparing this seminar, we quizzed individual students on their experiences of 
cheat sheets, knowing that most of them had used cheat sheets in their Year 12 exams. 
The response was always, “I made a cheat sheet, but I didn’t use it much in the exam. 
Still, I think making the cheat sheet helped me to revise, and reduced my exam stress.”  
 As further preparation, we looked for existing resources giving advice to students on 
cheat sheets, as well as the results of previous research. Both were surprisingly difficult 
to find. The advice available online for cheat sheets was not directed at helping students 
learn, and more often was advice on how to actually cheat. Moreover, the previous 
research did not seem to come to a conclusion about the usefulness of cheat sheets, 
other than perhaps as a way of reducing exam stress. It also did not consider the issue of 
what advice might be given to students to maximise the possible benefits of their cheat 
sheets. 
 So we finally decided to begin researching cheat sheets ourselves. Based on our 
experiences with students and the gaps in the research literature, we decided to focus on 
the following questions for this preliminary research: 
 How common is the experience expressed to us by students? That is: 

– How do students use their own cheat sheets? 
– How useful do students find their own cheat sheets?  
– Does making the cheat sheet help students revise and how?  
– Does the cheat sheet help reduce exam stress and how? 

The second question of exactly what advice should be given to students to help them 
use cheat sheets most effectively is a topic for future research. 

Literature review 
In the research literature there are several arguments both for and against the use of 
cheat sheets in exams. The first and most common argument in favour of cheat sheets is 
that they reduce exam stress. Davis (1993) and Erbe (2007) both advocate the cheat 
sheet for reducing exam stress, though do not put forward any new research of their 
own in support. Other authors have confirmed through interviews and questionnaires 
that having a cheat sheet reduces exam stress for the majority of their students 
(Trigwell, 1987; Drake, Freed & Hunter, 1998; Theophilides & Koustelini, 2000; 
Dickson & Miller, 2005). However, Dickson and Bauer (2008) do express the concern 
that students may study less comprehensively because they are less worried about their 
exam. 
 Another argument in favour of cheat sheets is that students, with their memory aided 
by the cheat sheet, will have more time and energy to focus on higher-order thinking 
skills such as understanding and interpretation (Erbe, 2007). Theophilides and 
Koustelini (2000) provided support for this argument when the students they surveyed 
reported study behaviours more consistent with a deep approach to learning when 
studying for an open-book exam. On the other hand, in a designed classroom 
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experiment, Dickson and Miller (2005) found that cheat sheets had no significant effect 
on performance in either lower-order or higher-order thinking items. If cheat sheets 
helped with memory and so allowed for more energy to focus on higher-order skills, 
one would expect them to affect performance on at least one type of question.  
 This leads to one of the arguments against cheat sheets, which is that they hinder the 
students by creating a dependency relationship, rather than helping them learn the 
course material before the exam. Dorsel and Cundiff (1979) and Dickson and Bauer 
(2008) have supported this argument by showing that students who prepare cheat sheets 
but are then not allowed to use them do not perform as well in the exam. Further 
evidence of this dependency is reported by Vessey and Woodbury (1992) who note that 
students tend to copy things straight from the cheat sheet even if it does not match the 
question. The hindrance may be worse for students already at risk: In an observational 
study on open-book exams, Boniface (1985) discovered that those students who 
continually need to refer to their notes during the exam are the ones who do not perform 
well.  
 The final argument presented is simply that performance improves when students use 
cheat sheets in exams, as reported by Francis (1982), by Skidmore and Aagaard (2004), 
by Stangl, Banks, House and Reiter (2006) and by Dickson and Bauer (2008). However 
other authors report no significant improvements (Dorsel & Cundiff, 1979; Trigwell, 
1987; Dickson & Miller, 2005). Moreover, it is not at all clear whether it is the cheat 
sheet, the exam itself, or some other factor that is causing the change. For example, in 
the study by Skidmore and Aagaard (2004), the exams were on different aspects of the 
course involved, and it may be that one was more focussed on memory than the other. 
 Taking the existing literature together, a strong conclusion cannot be made about the 
usefulness of cheat sheets for performance or for learning. There is a clear need for 
more research to separate the different variables involved. We also note that the existing 
research concerns students studying psychology, teaching, English literature, nursing, 
and research methods. There does not seem to be any research explicitly dealing with 
cheat sheets for mathematics exams, which may be quite different. Finally, none of the 
articles reviewed mentioned ways of counteracting the possible negative effects of cheat 
sheets by giving students appropriate advice.  

Research methodology 
We felt that it was essential to collect preliminary data in order to inform future research 
in this area. To this end, we sought to survey students from those first year mathematics 
courses at the University of Adelaide that allow cheat sheets. Three courses in Semester 
2 of 2010 were identified: one financial mathematics course, and two statistics courses 
offered by different schools within the university. All three courses are compulsory for 
students studying particular degrees. These courses will be called here FM, StatsA, and 
StatsB.  
 All three courses allowed students to bring a single A4 sheet with information on 
both sides, but each course had its own rules for the format. In StatsA, the cheat sheet 
had to be handwritten; in FM, students were allowed typed information as long as it was 
in 11pt font or larger; in StatsB, there were no restrictions on the format of the 
information. 
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It is important to mention that we agreed to give a seminar on how to prepare and use 
cheat sheets to the students in the course StatsA before beginning this research project, 
and feedback on the usefulness of the advice given was incorporated into the survey.  
 The questions in the survey contained both multiple choice questions and text 
response questions and asked students to comment on various experiences of making 
and using cheat sheets for their exam. Specific details of the actual questions are given 
in the results section below. 
 The online survey tool Survey Monkey was used to administer the anonymous 
survey. Students in the three courses were emailed a link to the survey on the day after 
each of their exams, with a reminder email was sent a week later. In total 1480 students 
were sent the link to the survey and 284 responded (a response rate of 19%).  
 The aim of this preliminary research is exploratory, and so the survey responses were 
analysed mainly using descriptive statistics. The themes from the text responses were 
noted, but no attempt was made at this stage to assess statistically the relationship 
between these themes and the other responses. 

Results and discussion 
Overall cheat sheet usage 
The survey began with questions asking what course the student was enrolled in, and 
whether they made and then used a cheat sheet. A total of 284 students began the 
survey, and among these only two said they did not make a cheat sheet. Only nine of 
those who said they made a cheat sheet said they did not use their cheat sheet. Since the 
survey was voluntary, we cannot glean from this how many students actually do use 
cheat sheets.  
 Twenty-one students only answered these general questions and did not respond to 
any more of the survey, so these students have not been included in the totals for the 
remaining analysis. 

The usefulness of cheat sheets 
The following graph displays the results to the question “How useful did you find your 
cheat sheet during the exam?” 

 

Figure 1. Responses concerning usefulness of cheat sheets. 
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The majority of students found their cheat sheet useful in the exam, which is the 
opposite of what students have said to us in the past. A possible explanation is that the 
majority of students surveyed were studying introductory statistics courses, which tend 
to have a greater need to remember specific formulas and procedures than other 
mathematics courses. 
 We also asked students to explain more about why the cheat sheet was useful in 
order to gain insight into what might cause the increase or reduction of stress. Those 
who said their cheat sheet was not useful at all felt that they had not prepared properly 
for the exam. Those who said the cheat sheet was a little useful mainly commented that 
the majority of what they had put on the cheat sheet was not necessary for their exam. 
Those who said the cheat sheet was moderately useful mainly said this was because 
they had formulas on the cheat sheet. Many of these students explained that it was not 
“very useful” because most of the information they included was irrelevant, because 
they were able to remember the information anyway without the cheat sheet, and 
because they left important information off the cheat sheet. Finally, those who said the 
cheat sheet was very useful said this was because it had formulas, definitions, 
procedures and examples. Many also commented that it was useful because it helped 
them to study.  
 Overall these comments indicate that students have different definitions of what 
usefulness is, and indeed, what a cheat sheet should be useful for. It seems many 
students believe that they should be referring to the cheat sheet constantly because the 
exam will require them to regurgitate a lot of information. This does seem to reflect a 
surface approach to learning as reported by Trigwell (1987), and also an interaction 
with the perceived usefulness of cheat sheets and the style of exam. Other students see it 
as merely an aid to the memory of specific details and so are pleased when it does 
exactly that.  

The effect of cheat sheets on stress 
The following graphs display the responses from the two questions, “How did having a 
cheat sheet affect your stress during the exam?” and “How did making a cheat sheet 
affect your stress while studying for the exam?”  
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Figure 2. Responses concerning the effect of cheat sheets on exam stress. 

According to these two sets of responses, most students do find that their cheat sheet 
reduces the stress associated with their exam, as described in the literature (Trigwell, 
1987; Drake, Freed & Hunter, 1998; Theophilides & Koustelini, 2000; Dickson & 
Miller, 2005; Dickson & Bauer, 2008). However, it is important not to discount the 9% 
of students who said that making a cheat sheet actually increased their stress while 
studying—students who might need extra support in order to succeed. 
 The students were also asked to comment on how the cheat sheet had this effect on 
their stress. By far the most common reasons given for reductions in stress both before 
and during the exam were that the cheat sheet increased the students’ confidence, or 
meant they did not have to worry about forgetting things. Almost as many students said 
the cheat sheet reduced stress before the exam because it encouraged them to study. 
Some elaborated further saying that the cheat sheet provided them with a way to 
organise their thoughts and figure out what they really needed to understand, showing 
that they were using it as an opportunity to take a deeper approach to learning, as 
reported by Theophilides and Koustelini (2008).  
 The students who said that the cheat sheet did not reduce their stress most often cited 
that they had trouble deciding what to put on the cheat sheet and were afraid of leaving 
something out. They also related how they panicked during the exam when something 
was not on their cheat sheet. These students appeared to believe the cheat sheet should 
tell them everything they needed to know, rather than merely support their memory of 
details. Some other students were overwhelmed by having to make a cheat sheet as well 
as study. This is particularly interesting when compared to the students who used the 
cheat sheet as tool to help them study, and may mean that coaching in study skills is 
necessary if cheat sheets are to be allowed.  

The different uses of cheat sheets 
A separate question on the survey asked students to describe how they used their cheat 
sheet. Almost every respondent said they used their cheat sheet for formulas, for lists of 
assumptions with hypothesis tests, for exact definitions, or for steps in specific 
procedures. This indicates that students are using the cheat sheet as an aid to memory of 
facts in order to help apply the concepts they had learned. A large number of students, 
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however, did comment that they had put fully worked examples on their cheat sheet, or 
even a whole past exam. They describe reading their exam and looking for similar 
questions in the examples on their cheat sheet, then copying the working with the new 
words and numbers. This indicates that these students are merely trying to pass the 
exam, rather than learn the concepts at all. That is, the students are again using a surface 
approach to learning. We wonder how many of these students merely copied something 
even if it did not match, as described by Vessey and Woodbury (1992).  
 Finally, many students also recounted referring to the cheat sheet for inspiration 
when they felt confused or stuck. Some commented that they were inspired by things 
that they put on the cheat sheet for a different purpose, but somehow it formed the 
connection in their mind. This may support the idea that the creation of the cheat sheet 
in fact does help students to draw connections between ideas in the course.  

Conclusion 
Using the results of our survey, we have explored the experience students have of using 
cheat sheets in mathematical exams. Some students used their cheat sheet as a catalyst 
for organising and understanding the concepts in their course, while others took a 
surface approach and used it as a way to avoid understanding. Most said it reduced their 
stress, but some were overwhelmed by it. Finally, most students found their cheat sheet 
useful, but each appeared to define differently what useful was, depending on their 
expectations of how cheat sheets could help them.  
 The respondents are a small subset of students from three particular courses at one 
university, and as such, the results may not generalise well to other students. However, 
we feel that one conclusion is clear: different students react differently to the 
opportunity to make and use a cheat sheet in an exam. Hence, it is unwise to generalise.  
 Further research is needed into how students go about creating and using cheat 
sheets, and the effects that these have on their learning and performance. The first stage 
of this will be to widen the range of mathematical disciplines that we survey in our 
exploration. After this, future research could include observation of students in actual 
exams, as well as designed experiments to separate various variables involved. We also 
feel that future research needs to focus on how those students with negative attitudes 
and habits can be encouraged to take a more positive approach to the opportunity of 
using cheat sheets. 
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The investigation of teachers’ knowledge that informs practice in the mathematics 
classroom is an important area for research. This issue is addressed in our larger research 
program which is aimed at characterising the complexity and multi-dimensionality of this 
knowledge. A report on an earlier phase of this program (Butterfield & Chinnappan, 2010) 
showed that pre-service teachers tended to activate more common content knowledge than 
content that is required for teaching. We build on this previous work by examining the 
kinds of knowledge that a cohort of pre-service teachers activated in the context of 
designing a learning task.  

Introduction 
Current reforms and debate about improving the quality of mathematical learning are 
increasingly concerned with the kind of learning experiences teachers can provide for 
the learners (Australian Curriculum, Assessment and Reporting Authority [ACARA], 
2010). The quality of these learning experiences in turn depends on teachers’ own 
knowledge and experiences (Ball, Hill & Bass, 2005). There has been a surge of interest 
in examining teacher knowledge that drives their actions in the classroom. This study is 
located within this increasing concern with knowledge that is necessary for the support 
of deep mathematical understanding. 

Context for the study 
The performance of teachers has come under increased focus as reflected by 
accreditation requirements of professional bodies. In order to be accredited by 
professional bodies such as the NSW Institute of Teachers (NSWIT) and the 
Queensland College of Teachers (QCT) prospective teachers need to demonstrate that 
they have achieved a set of minimum knowledge and skills. This development has 
brought a high degree of urgency among tertiary educators to ensure that their programs 
and teaching modules are aligned with standards identified by such professional bodies. 
All these clusters of standards have one thing in common, which is that teachers must 
develop strong content and pedagogical knowledge. This is the focus of the study. 
 While the Australian National Curriculum is in various states of implementation a 
common teaching requirement is the consideration of performance against national 
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standards (ACARA, 2010). This development again has brought the microscope on 
teaching and teaching knowledge. 
 Ball, Hill, and Bass (2005) have identified four dimensions of knowledge that are 
important for teachers to function effectively in a classroom: Common Content 
Knowledge; Specialised Content Knowledge; Knowledge of Content and Students; and 
Knowledge of Content and Teaching. These dimensions provide direction for the 
assessment of teacher knowledge for teaching. The elucidation of this knowledge is 
somewhat complicated due to the fact that this knowledge is internal. In order to gain 
insight into this knowledge, it is necessary to externalise the knowledge by providing a 
range of contexts to elicit this knowledge. It would seem that the richer the context in 
which the teachers are embedded, the better the quality of teacher knowledge that can 
be accessed. This logic led us to design a research study in which a cohort of pre-service 
teachers was asked to develop a complex problem that can be used in Upper Primary 
classrooms. 
 Our long term aim is to map the growth of this knowledge during the Graduate 
Diploma of Education (GDE) program. This study is a follow up of a previous study 
(Butterfield & Chinnappan, 2010) that was set against the above background concerning 
teacher knowledge that informs teaching. The results of this study showed that our GDE 
Pre-Service Teachers (PSTs) tended to access a higher proportion of Common Content 
Knowledge (CCK) than components of teacher knowledge that are more relevant to 
their work in the class. Specifically, we found that their knowledge of Specialised 
Content Knowledge (SCK), Knowledge of Content and Students (KCS) and Knowledge 
of Content and Teaching (KCT) were weak. This is not unexpected, as the participants 
were commencing their studies. 
 This study is aimed at boosting and assessing the growth of PSTs’ knowledge of 
SCK, KCS and KCT. As described below our lectures and tutorials were modified in 
order to bring about changes in the above knowledge. This strategy involved guiding 
the PSTs to construct learning activities that were investigative in nature. 

Related literature 
Teacher knowledge 
Research (Shulman, 1987) on teacher knowledge has spawned a number of studies 
concerning teacher knowledge and practice (Ma, 1999; Schoenfeld, 2010). In the past 
decade these studies have attempted to capture the complexity of teacher knowledge 
under various conditions including that which is played out in the classroom. This body 
of research has led to a convergence of view that such knowledge is complex and 
multifaceted. For example, the studies conducted by Ma (1999) showed that teachers 
need to transform their content knowledge to teach effectively. Concurrent 
developments in the United States have generated new directions in the way we could 
conceptualise and study teacher knowledge. Research in the United States has been led 
by Ball and her associates, which resulted in the development of more refined 
dimensions of teacher knowledge (Figure 1). The spirit of this research theme has been 
embraced by others by examining teacher knowledge in a variety of contexts 
(Mewborn, 2001). 
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Teaching as problem solving 
A major problem for teachers is to design and implement effective learning experiences 
leading to sound learning outcomes. The problem, defined in this manner, is rather 
nebulous as there are multiple paths to the solution. If one conceives teaching as a 
problem solving activity one is open to a range of opportunities for teachers to exhibit 
and exploit their knowledge. Problem-solving activities involve searching for a solution 
within a problem space (Newell & Simon, 1972). The nature of problem space and 
quality of search is a function of the elements in the space. A corollary of this action is 
that in an open-ended problem such as teaching, the problem space can be expected to 
be populated by not only more elements but also the search will be supported by the 
activation of multiple knowledge sources. Thus, it would seem that the kind of 
knowledge identified by Ball et al. (2005) are better studied in the context of teachers 
designing problem-solving activities that can be subsequently used to engage learners. 
In the present study we adopt this approach. 

Conceptual framework 
Data analysis and interpretations were guided by the following schematic representation 
of teacher knowledge for teaching mathematics (MKT) (Figure 1) (Hill, Ball & 
Schilling, 2008, p. 174).  

 

Figure 1. Schematic representation of teacher knowledge for teaching mathematics (MKT).  

 Four dimensions are defined: 
• Common Content Knowledge (CCK): Mathematical knowledge and skill 

possessed by a well educated adult. 
• Specialised Content Knowledge (SCK): Knowledge of how to: use alternatives to 

solve a problem; articulate mathematical explanations; demonstrate 
representations. 

• Knowledge of Content and Students (KCS): Knowledge that combines knowing 
about mathematics and knowing about students. Knowledge of how to: anticipate 
what students are likely to think; relate mathematical ideas to developmentally 
appropriate language used by children. 
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• Knowledge of Content and Teaching (KCT): Knowledge that combines knowing 
about mathematics and knowing about teaching. Knowledge of how to: sequence 
content for instruction; determine instructional advantages of different 
representations; pause for clarification and when to ask questions; analyse errors; 
observe and listen to a child’s responses; prompt, pose questions and probe with 
questions; select appropriate tasks. 

Focus questions 
The aim of the study was to examine the quality of SCK, KCS and KCT that was 
activated by a cohort of Pre-service Teachers (PSTs) in the course of designing a 
problem.  
 The above aim is reflected in the research questions, seeking  
1. evidence of PSTs activating SCK in the context of designing a problem; 
2. evidence of PSTs activating KCS in the context of designing a problem; 
3. evidence of PSTs activating KCT in the context of designing a problem; and 
4. a correlation between the quality of the problem representation and activation of 

SCK, KCS and KCT. 

Methodology 
Participants 
A cohort of 26 Graduate Diploma of Education students in the final semester of their 
one-year degree participated in the study. The cohort had completed a numeracy course 
prior to this mathematics subject, and had also completed professional experience in 
schools. 
Task 
Pre-service teachers were required to work in pairs to design a mathematical problem 
suitable for Upper Primary school children. In designing the task the PSTs were 
instructed to develop a problem that is isomorphic to the Truss Bridge Problem 
(Butterfield & Chinnappan, 2010).  

Procedures  
PSTs were provided with a range of prompts and supports in both the lectures and 
tutorials before they designed their own problem. The Truss Bridge Problem (TBP) 
(Butterfield & Chinnappan, 2010) was utilised in a number of tutorials and lectures. 
This involved discussions about the different problem representations of TBP and how 
such representations could permit or hinder transfer to other problems by learner. The 
TBP also highlighted the role and the development of a child’s knowledge and skills in 
Number, Patterns and Algebra, and Space. In addition, we examined the use of 
appropriate materials and methods (including technology) to solve problems of this type 
and likely difficulties children could encounter. The TBP, therefore, provided PSTs 
with a stimulus for hands on activities and reflection on the knowledge components 
required in subject matter and pedagogy. The PSTs were also given multiple 
opportunities to explore and solve the TBP. Thus in designing their own new problems 
we are comfortable in assuming that the PSTs are cognisant of the multiple solution 
paths and associated representations of the problems.  
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Representations of TBP and Coding 
The TBP (Figure 2) that was developed in the previous study (Butterfield & 
Chinnappan, 2010) has a certain structure reflecting a hierarchy in the way that it can be 
represented. The hierarchy is as follows:  
1. Concrete – uses concrete materials or physical means to provide a solution  
2. Sequential – uses a table to provide a sequential, linear set of solutions  
3. Generalisation – describes the pattern that can be used to provide a solution to any 

given number 
4. Transferability – describes how the pattern can be used to solve similar problems  

 

Figure 2. Truss bridge problem. 

The hierarchical structure in the Truss Bridge Problem guided us in developing 
instructions for problems with similar structures. This structure also provided a coding 
scheme to rate the quality of task developed by the students.  

Sources of data 
There are two sources of data for the study. The first source involved examining the 
quality of the problem designed by the students. The coding system is based on the 
hierarchy of the TBP. 
 The second source of data involved determining instances of activation of three 
categories of knowledge (SCK, KCS, KCT). In order to generate this data we analysed 
PSTs’ reflective reports, digital presentations and their responses to questions about the 
likely difficulties and useful ways to develop children’s understanding. The researchers 
independently coded these instances in order to establish inter-coder agreement. 

Results 
Participants provided a range of problems that could foster algebraic thinking. The 
problems designed by student pairs are outlined in Table 1. All problems lend 
themselves to an analysis of problem representations along the dimensions of TBP. 
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Table 1. Description of problems. 

Problem Description 
Tricky Trapezium Tables Number of children seated at a row of trapezium-shaped tables 
Multistorey Car Park Number of beams to construct the front of a multistorey car park 
Stair Number of rail posts for a flight of stairs 
Stadium Number of seats in a stadium 
Pig Pen Number of fence panels in a row of pig pens with shared walls 
Jack – In – The - Box Number of exposed body parts with each wind 
Dragon Number of triangular scales per each body part 
Terrace Houses Number of windows in a row of terrace houses 
Fence Posts Number of fence posts in a rectangular paddock 
Path Pavers Number of pavers in patterned path 
Angle Sums The sum of angles in regular shapes 
Hay Stack Number of cylindrical bales in hay stacks 
Mosaic Frame Number of tiles in a frame with coloured corners 

 

Hierarchy of representations for selected problems 
Problem Sample 1 

An example of a problem coded 2 for problem representation is the Pig Pen problem 
(see Figure 3). In this problem PSTs did not identify the potential to generalise the 
pattern to any number of fence panels. 
 

 
How many fence panels are needed to construct these pig pens? 

Figure 3. Pig pen problem. 

The PSTs stated that the children should complete the provided table (see Table 2) and 
that as teachers they would like their students to communicate, “I saw that the numbers 
on the bottom line are going up by three”. Here the PSTs were able to identify only the 
sequential patterns. 

Table 2. Pig pen problem worksheet sample. 

No of pens 1 2 3 4 5 
No of panels 4 7 10   

Problem sample 2 

An example of a problem coded 4 for problem representation is the Tricky Trapezium 
Tables (see Figure 4). The problem enables students to generalise and transfer that 
pattern to a new problem context. The PSTs stated that “generalisations enable students 
to recognise that similar problems have a common algebraic basis”. To support this 
statement the PSTs wrote that: 

147



BUTTERFIELD & CHINNAPAN 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

when a child sees the Truss Bridge Problem (see Figure 2) they would say this could be 
solved by two times the number of triangles plus one, which is the same way to solve the 
number of people sitting at different shaped tables. For example, the number of people 
seated around trapezium-shaped table could be determined by counting the number of 
trapeziums multiplied by three plus two (Number of people = 3n +2). This reasoning can 
be applied to squares. 

This type of thinking that resulted in generalisation has been argued to lie at the 
foundation of algebraic thinking (Bobis, Mulligan, Lowrie, & Taplin, 2004). 
 

 

Figure 4. Tricky trapezium tables problem. 

In order to generate data that are relevant to research questions 1-3, we analysed the 
frequency of instances. The mean and standard deviations of this analysis for the four 
problem representations are given in Table 3. 

Table 3. Problem representation and teacher knowledge. 

Problem Representation SCK KCS KCT 

Mean 12.80 7.80 .60 1 

Std. Deviation 6.22 4.02 .54 

Mean 14.50 10.50 1.50 2 

Std. Deviation 2.12 .70 2.12 

Mean 18.00 17.50 2.50 3 

Std. Deviation 11.31 9.19 2.12 

Mean 31.75 25.50 5.00 4 

Std. Deviation 2.75 4.04 1.41 

Mean 19.69 15.15 2.39 Total 

Std. Deviation 9.95 8.90 2.25 

 
We note the accessing of a higher proportion of SCK followed by KCS and KCT. This 
pattern is also evident within each representation. There is a significant difference 
between the number of instances of KCT and the other two categories of knowledge 
across all four categories of problem representations. 
 Table 4 shows results of correlation analysis among the four variables. While all 
three knowledge components are highly positively correlated with Problem 
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Representations, we note KCS and KCT have higher indices. Thus, there was support 
for our contention that a qualitatively superior problem representation will involve a 
higher degree of activation of SCK, KCS and KCT (Research question 4). 

Table 4. Correlation analysis. 

 SCK KCS KCT 
Problem Representation 0.81** 0.88** 0.84** 

** Correlation is significant at the 0.01 level (2-tailed). 

Discussion and implications 
The previous study showed that student teachers both individually and as a group 
tended to activate more CCK component of their subject-matter knowledge of 
mathematics than SCK. The results were consistent with our expectation that as 
beginning teachers their content knowledge of mathematics, robust though this might 
be, would not be translated into forms that were more akin to teaching mathematics to 
children.  
 The thrust of this study was to map developments in PSTs’ teacher knowledge as a 
consequence of exposing them to a teaching approach that focused on the design of 
problems. These teachers had also completed two sessions of their professional 
experience in the school setting. Thus, our expectation was that the classroom 
experiences and our guidance in designing problems for deep mathematical learning 
would assist them to reveal a higher incidence of activation of not only SCK but also 
understanding of student learning and the demands of teaching via an enhanced body of 
KCS and KCT.  
 The results do support our contention that having PSTs design rich learning activities 
would increase their knowledge and activation of SCK, KCS and KCT. Designing 
problems that will be used to support children’s learning requires a level of 
sophistication in teachers’ conceptualisation of the problem environment as shown by 
the range of problems in Table 1. The corollary here is that teachers have to understand 
the mathematics that underpins that activity and insights into how children will grasp 
the problem. We contend that the complexity of the problems teachers have been asked 
to design have provided multiple points at which teachers could connect with and 
activate knowledge relevant to the three categories of knowledge. 
 While all three knowledge categories were positively correlated with the quality of 
problem representation, the highest correlation was evidenced with KCS which 
involved teachers understanding learners. It would seem that problem posing activities 
could be used to enhance the development of KCS, a point that was alluded to by 
Chinnappan and Lawson (2005). 
 Results indicated that (Table 3), a significant number of the participants tended to 
design problems that from a representational viewpoint were somewhat weak. This 
group either constructed the physical model of the problem or merely provided a table 
with numbers indicative of growing dimensions. For example, in Figure 4, student 
teachers could indicate the growth in number of panels per pen for a small number of 
pens (1-5). That is, the only pattern they could identify is numbers increasing in threes 
without being able to extract the general pattern that shows the relations between pens 
and panels. This limitation in the quality of representation, we argue, is the consequence 
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of over reliance on the accessing of procedural knowledge. This outcome is consistent 
with that reported by Capraro, Capraro, Parker, Kulm, and Raulerson (2005). 
 A limitation of the present study is that we did not give prominence to KCT as we 
assume that this is more accessible in real-life teaching contexts. Future studies should 
focus on this issue. Also, we acknowledge that it is difficult to generate a complete 
picture of pre-service teachers’ pedagogical content knowledge within the confines of 
one assessment task that was completed for a university subject. Further studies with a 
greater variety of such tasks might provide more opportunities to examine this 
knowledge. 
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An oft-heard comment from adolescents is that “maths is boring”. Such disinterested 
students are less likely to engage in mathematics related learning tasks than their interested 
peers and this lack of engagement can result in lower levels of achievement. This study 
seeks to explore the relationship between interest and achievement in a middle school 
statistical literacy context. Based on the results of 218 students, a linear regression model 
indicated that the relationship between interest and achievement is complex and mediated 
by other factors that include students’ self-competency beliefs. Moreover, the model 
predicted that interest has a very minor influence on achievement and that factors related to 
the classroom teacher have much stronger influence.  

Introduction 
If recommendations by Masters, Rowley, Ainley, and Khoo (2008) are adopted, league 
tables comparing middle schools in Australia are likely to be based on longitudinal 
rather than cross-sectional data. Improvements in students’ results in national 
mathematics tests between Years 7 and 9 will contribute to these comparisons. Schools 
vying for position on these tables may need to consider their students’ interest, as this 
period of early adolescence is characterised by declining levels of interest for learning 
in general (Dotterer, McHale, & Crouter, 2009) and for mathematics in particular (Watt, 
2008). Further, interest is known to have an association with achievement in 
mathematics (Schiefele, Krapp, & Winteler, 1992), some of which is causal, in that 
interested students are more likely to engage in deeper learning (Schiefele, 1991) and 
this can contribute to higher outcomes in properly validated attainment tests (Chamorro-
Premuzic & Furnham, 2008).  
 Interest is regarded as an affect with both state and trait properties. Pen and paper 
measures of interest, as used in this study, assess interest at the trait level where it is 
defined as “a person’s relatively enduring predisposition to re-engage particular content 
over time” (Hidi & Renninger, 2006, p. 113). It is believed that students who regularly 
experience the state of interest during their learning of a subject, such as mathematics, 
will in time develop a trait-like interest for the subject (Hidi & Renninger, 2006). 
Although interest is known to be associated with achievement, this association is 
influenced by a number of other factors. Schiefele et al. (1992), for example, reported 
that the interest/achievement association was stronger for boys than for girls and argued 
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that the latter are more inclined to conform and thus work hard in subjects that they do 
not find interesting. Students’ self-competency beliefs in mathematics are also known to 
influence the relationship between their achievement and interest, in that students who 
believe that they are good in maths are also likely to have an interest for the subject 
(Trautwein, Ludtke, Köller, Marsh, & Baumert, 2006). As noted, age also has an 
influence on interest, with declines evident during adolescence.  
 Although the relationship between students’ interest and achievement has been 
explored in mathematics, it has not been explored in a statistical literacy context. Such 
literacy is regarded as an ability to interpret and critically evaluate messages that 
contain statistical elements (Gal, 2003). In Australia, the underlying concepts for this 
literacy will be introduced in the Statistics and Probability strand of the proposed 
National Mathematics Syllabus (Australian Curriculum Assessment and Reporting 
Authority, 2010). This syllabus supports an “across-the-school commitment” (p. 6) to 
numeracy and students should develop their statistical literacy in other curriculum areas 
such as the physical and social sciences. For this reason, students’ interest and 
achievement in statistical literacy may differ from their interest and achievement in 
mathematics. In fact Carmichael (2010) reported that students tended to find the 
statistical contexts encountered outside mathematics classrooms to be of more interest. 
Given the distinctive nature of statistical literacy, the aim of the paper is to explore the 
extent to which middle school students’ interest in statistical literacy influences their 
achievement in statistical literacy.  

Method 
The study reported in this paper is quantitative in nature. Details regarding the sample 
of students involved, the data collected, and the analyses undertaken, are reported in the 
following section.  

Background to the study 
The student results reported in the study come from the intersection of two larger 
studies in the middle school statistical literacy context. Purposive cluster sampling was 
employed in both studies to provide representative samples of the Australian middle 
school population. Teachers within targeted schools were invited to participate in the 
studies. These teachers, in turn, nominated classes of students who were then invited to 
participate. 
 The first study, described in Carmichael, Callingham, Hay, and Watson (2010a), 
focussed on the influence of affect in the acquisition of statistical literacy. Measures of 
students’ interest, self-efficacy, and prior mathematics achievement were available from 
this study, which involved a sample of 791 middle school students from four Australian 
states.  These students were asked to respond on a five-point Likert scale to items 
comprising the “Statistical Literacy Interest Measure (SLIM)” (Carmichael, 
Callingham, Hay, & Watson, 2010b) and the “Self-efficacy for Statistical Literacy 
(SESL) scale” (Carmichael & Hay, 2009). The former contains 16 self-descriptions, 
such as “I’m interested in getting a job involving statistics” and the latter contains 9 
self-descriptions such as “I’m confident that I am able to explain to a friend how 
probability (or chance) is calculated.” Scoring and scaling of student responses to both 
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measures was achieved through the application of the Rasch rating scale model 
(Andrich, 1978) using the software package Winsteps (Linacre, 2006). 
 Measures of students’ prior achievement in statistics were not available and 
consequently their prior achievement in mathematics was used instead. Teacher ratings 
of this achievement were used, with such ratings known to be strongly predictive of 
actual achievement (Egan & Archer, 1985). More specifically, the teachers rated their 
students’ mathematics achievement on a five-point scale ranging from A, the highest 
category of achievement, though to E, the lowest category. Such a scale reflects the 
current reporting scale used in Australia.  
 The second study, titled “StatSmart” (Callingham & Watson, 2007), focussed on 
teacher professional development in statistics. It was a large longitudinal study 
involving more than 50 teachers from 17 schools across three Australian States. A 
measure of statistical literacy achievement (SLA) was obtained from students of 
teachers involved in StatSmart on three occasions. Students new to the study did a pre-
test, others who had been involved in the study for more than six months took a post-
test, and still others who had been involved in the study for longer than 12 months took 
a longitudinal test. Specific details about the arrangement of these tests are reported in 
Callingham and Watson (2007), and details on the items and their scoring can be found 
in Callingham and Watson (2005). Scoring and scaling of 1151 students’ responses to 
the SLA tests was achieved through application of the Rasch partial credit model 
(Anderson, 1997) using Winsteps. 

Student sample 
Although 483 students in the interest study attended schools participating in StatSmart, 
many did not complete the SLA tests and consequently SLA data were available for 
only 218 of these students. Of these 218 students, 53% were male. The ages of students 
in the sample ranged from 11 to 17 yrs with a mean of 13.9 yrs. They were in school 
year levels ranging from Year 6 through to Year 10, with approximately one quarter in 
Year 7 and one quarter in Year 8. Two thirds of the students attended schools in 
Tasmania and the remainder attended schools in Victoria. Almost 60% of them attended 
non-government schools.  

Data collected 
Interest measures were available for 204 of the students in this sample, as a number of 
younger students failed to complete the questionnaire. The SLIM scores for these 204 
students, measured in logits, ranged from -5.1 to 2.4 with a mean of -0.3. Measures of 
students’ self-efficacy were available for all 218 students and these ranged from -5.0 to 
5.1 logits with a mean of 0.0 logits. The SLA measures for the 218 students in the study 
ranged from -5.5 to 1.7 logits, with a mean of -0.4 logits.  
 In regards to prior mathematics achievement, data were available for only 215 of the 
218 students. Of these students, 64 gained an A rating, 89 a B rating, 47 a C rating, and 
the remaining 15 students a D or E rating. In order to control for the influence of the 
classroom on achievement, a relative mathematics grade was also considered. More 
specifically, students’ grades relative to the median grade of their class were 
determined. Of these 215 students, 52 had ratings below the class median, 105 had 
ratings equivalent to the median, and the remainder had ratings above the class median. 
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Analyses undertaken 
Simple linear regression was used to assess the influence of interest on achievement and 
was applied using the statistical software package R (R Development Core Team, 
2009). In order to model possible dependence between students in schools and 
classrooms, a mixed-effects regression model was also applied to the data as described 
in Faraway (2006). The variables used in the regression models included: students’ 
interest in statistical literacy (SLIM), their self-efficacy in statistical literacy (SE), their 
statistical literacy achievement (SLA), their mathematics grade (Mgrade), their 
mathematics grade relative to the class median (RelMgrade), their age (Age), the type of 
SLA test they did (Test), and their gender (Sex). Of the 218 students in this study, only 
204 had values for all of these variables.  

Results  
A series of linear models was tested with SLA as the response variable. Given the aim of 
the study was to investigate the influence of interest on achievement, only models with 
SLIM as one of the predictor variables were considered. The modelling process 
indicated that in the presence of the variable SE, SLIM ceased to predict SLA. In 
addition to this, the influence of SLIM on SLA was only significant when Age was 
included in the model. The variable Sex was not a significant predictor of SLA in any of 
the models and the variable Test was a significant predictor of SLA in all models. When 
the variable Mgrade was included in the model, SLIM ceased to be a significant 
predictor of SLA. When Mgrade was replaced with RelMgrade, however, SLIM was a 
significant predictor of SLA. After the removal of one student deemed to be an outlier, 
the resulting model explained 46% of the variance in SLA. All predictors in the model, 
shown as Equation 1, were significant at the 1% level.  

Equation 1. 

SLA = -4.96 + 0.12 SLIM + 0.29 Age + 0.36 Median Grade 
 + 0.54 Above Median Grade + 0.80 Post-test + 0.66 Longitudinal-test + ε [1] 
 
Model assumptions appear to have been met. The top plot in Figure 1 shows the sample 
quantiles against theoretical quantiles and its near linear form supports the normality 
assumption. The bottom plot in Figure 1 shows the model residuals against the 
predicted values and its random scatter supports the assumption of homogeneity in the 
data.  
 As is seen from the model the relative influence of SLIM on SLA is minor, with all 
other predictor variables having a greater influence. Prior achievement in mathematics 
had a relatively strong influence on SLA. With all other factors constant, students with a 
median grade achievement in mathematics are predicted to score 0.36 logits higher on 
the SLA tests than those with below median grades, while students with an above 
median grade in mathematics are predicted to score 0.54 logits higher. The type of test 
that the students did also had a relatively strong influence on their SLA test result. With 
all other factors constant, students who completed the post-test are predicted to score 
0.80 logits higher on the SLA tests than those who did the pre-test, while students who 
completed the longitudinal test are predicted to score 0.66 logits higher. It should be 
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noted that the scheduling of these tests was independent of the teaching of relevant 
statistics units. 
 The linear model reported above was also tested for teacher and school random 
effects. In this instance, only the inclusion of random teacher effects in the intercept 
term contributed significantly to model fit. When this term was included in the model, 
however, SLIM ceased to become a significant predictor of SLA and consequently the 
model is not reported. Nevertheless, the result indicates that in the presence of teacher 
factors individual interest plays a minor role in students’ achievement. 

-3 -2 -1 0 1 2 3

-2
.0

-1
.0

0.
0

1.
0

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

-1.5 -1.0 -0.5 0.0 0.5

-2
.0

-1
.0

0.
0

1.
0

Predicted SLA score

R
es

id
ua

l

 

Figure 1. Diagnostic plots for linear model reported in Equation 1. 

Discussion 
The modelling process confirmed results reported by Trautwein et al. (2006) that 
student self-competency beliefs, in this instance their self-efficacy, have a strong 
influence on the interest/achievement relation. Self-efficacious students are likely to be 
motivated to engage in tasks related to statistical literacy, with such engagement 
producing higher levels of interest and achievement. The modelling process also 
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revealed that it was only in the presence of relative rather than absolute prior 
achievement measures that interest significantly predicted achievement. This could be 
due to the reported association between such relative measures and interest (Trautwein 
et al., 2006), with high achieving students in classes of even higher achieving students 
reporting lower levels of interest than low achieving students in classes of even lower 
achieving students. The lack of a gender effect on statistical literacy achievement was 
surprising and may indicate changes in educational practices that have minimised earlier 
reported differences. 
 A significant result of this study is the relative importance of teacher related factors. 
When the variance associated with the teacher was modelled, interest ceased to have a 
significant influence on achievement. Further, the model indicated that even accounting 
for individual factors such as age, interest and prior achievement; the type of test that 
students undertook had a significant influence on their achievement. This test was a 
measure of the length of time that students were taught by teachers associated with the 
professional-development program and the result provides some evidence for the effect 
of teacher professional-development on student achievement outcomes.  

Conclusion 
The results reported in the paper suggest that interest in statistical literacy has a very 
minor role in predicting students’ achievement. It is possible that many of these students 
focused on achievement outcomes, with interest in the domain an optional extra. 
Interest, however, appears to be a stronger predictor of re-engagement than of 
achievement (Wigfield, Tonks, & Eccles, 2004) with high achieving students not 
participating in senior mathematics courses because of their lack of interest in the 
subject (McPhan, Morony, Pegg, Cooksey, & Lynch, 2008). Further interest based 
research in the statistical literacy domain should analyse the influence of interest on 
participation rates in courses related to statistical literacy rather than in levels of 
achievement.  
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We studied how three secondary mathematics teachers who had no prior experience 
teaching with technology used an online mathematics learning system. The teachers 
received minimal instruction on how to use the system before we observed them over four 
school terms as they taught with it. We used the Pedagogical Technology Knowledge 
framework (Thomas & Hong, 2005) to document changes in the teachers’ practice. Results 
show teachers advanced toward using the technology in more sophisticated ways but the 
improvements were not uniform. We suggest some reasons to explain the variation.  

Introduction 
Teachers can learn to make more effective classroom use of technology through 
participation in professional development and training (Bennett & Lockyer, 1999; 
Bennison & Goos, 2010; Lawless & Pellegrino, 2007). To be effective, professional 
development should be intensive (Darling-Hammond, 1998), sustained over time 
(Guskey, 2003), and do more than enhance teachers’ technical skills (Watson, 2001). 
However, creating sustainable, on-going professional development programs which 
operate effectively across a number of schools can be a challenge (Goos, Dole, & 
Makar, 2007). As a result, professional development activities are often short-term and 
sporadic, with an emphasis on learning to operate the technology at the expense of 
providing guidance on how technology can be used to improve learning and teaching 
(Fitzallen, 2005). 
 We report on an investigation into whether the inbuilt structure of an online 
mathematics learning system can assist teachers who are inexperienced users of ICT 
develop their ability to teach mathematics with technology in new and different ways 
that constructively engage students in their learning. Online systems typically 
incorporate several of the following student learning activities: 

 Lesson notes (text material) linked to a particular curriculum; 
 Worksheets (activities such as puzzles and games linked to each lesson); 
 Lesson Questions (multiple choice and short answer questions, usually graded for 

different ability levels); 
 Timed drill and practice questions (sometimes called a Basic Scorcher); 
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 Lesson Scorchers (like the Basic Scorcher, but with questions focused on specific 
lesson topics); 

 Walkthroughs (similar to school textbook examples that students complete online 
while receiving step-by-step explanations and feedback); and 

 Widgets (interactive animations linked to a particular topic). 
Students can access these features for individual practice and exploration at the 
computer, or teachers can display them via a data projector for whole class 
demonstrations and investigations. We based our research on Cambridge HOTmaths 
(http://www.hotmaths.com.au), an online system incorporating all the activities listed 
above as well as a student messaging and reporting facility. Our research seeks answers 
to the following questions: 

 What happens in a classroom situation where the online mathematics learning 
system is implemented with minimal professional development by teachers who 
have limited experience with technology? 

 Do teachers become more confident users of the technology?  
 Do teachers shift towards more student-centred teaching approaches?  

The research is significant because it shows how teachers who lack technology 
experience and training begin to use technology in the classroom. 

Theoretical framework 
Goos, Galbraith, Renshaw and Geiger (2000) conducted a three-year longitudinal study 
in five secondary mathematics classrooms to investigate the role of graphics calculators 
in assisting students to conduct mathematical investigations and promote discussion. 
Goos et al. suggest four roles to describe interactions between the teacher and the 
graphics calculator: technology as master, where teachers’ limited knowledge of how to 
operate the technology means they are subordinate to the technology; technology as 
servant, where technology supports the teacher’s preferred pedagogy; technology as 
partner, where familiarity with the class and the technology allow teachers to use the 
technology more creatively in ways that encourage collaboration in the classroom; and 
technology as extension of self, which features the most powerful, creative and 
sophisticated uses of technology.   
 Thomas and Hong (2005) developed the construct of Pedagogical Technology 
Knowledge (PTK) or “knowing how to teach mathematics with the technology” (p. 
258). PTK encompasses teachers’ recognition of the role of technology in learning and 
teaching and includes how teachers decide to use technology to assist students learn 
mathematical concepts and processes. PTK also includes techniques and approaches 
used to teach mathematics in qualitatively different ways through technology. Teachers 
who have an advanced PTK will therefore be most likely build on the affordances 
provided by technology to transform learning and teaching in ways that are not possible 
without technology (Garofalo, Drier, Harper, Timmerman, & Shockey, 2000).  

Method 
Data described in this paper are drawn from a larger study of 14 secondary mathematics 
teachers at 3 schools as they used the online learning system with Years 7 and 8. We 
deliberately chose schools where the levels of technology use in mathematics lessons 
prior to the commencement of the study were low.  
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An experienced teacher from the company that developed the selected learning system 
presented a half-day professional development session for the teachers at the start of the 
project. The presenter showed some of the main features of the system and how to 
navigate around them. She also demonstrated three Widgets, but there was little 
discussion about how to use them in the classroom. 
 We studied classroom use of the system in five Year 7 classes. For four weeks at the 
end of Term 2, two weeks in the middle of Term 3, and four weeks at the start of Term 
4. In the following year, we followed three of the Year 7 classes into Year 8 and 
observed lessons for four weeks at the start of Term 2. Throughout the project, a 
research assistant [RA] visited each classroom to observe between one and three 
mathematics lessons per week. We developed a schedule to record teacher and student 
actions during lessons, and the RA made detailed field notes in an observation log. 
Following most observed lessons, the RA interviewed the teacher. The teacher 
interviews were designed to gather data about each teacher’s thoughts on how they had 
used the system rather than mentor them or influence their practice. All interviews were 
audio-recorded and transcribed for analysis. 
 At the end of the observation period, the RA submitted her classroom observation 
notes and teacher interviews for all 14 teachers to the authors. We compiled a profile for 
each teacher to outline changes in their classroom practices and made an initial 
comparison between them. We then selected three teachers at Hope Springs who best 
illustrated the range of variation. We examined their profiles in more detail, re-visiting 
the original notes and recordings to ensure that our descriptions were accurate and 
selecting excerpts that best exemplified their behaviour at different times. These profiles 
allowed us to identify up to three broad stages in the development of teachers’ PTK. We 
also noted some similarities to the technology roles theorised by Goos et al. (2000). 
Finally, we sought possible explanations for the changes we had documented and 
formulated some implications for professional development. 

Results 
Teacher HA 
Teacher HA had taught mathematics for over 25 years, including the last seven years at 
Hope Springs. HA’s teaching emphasised student note-taking from the textbook and he 
was insistent that students kept a neat exercise book. Prior to the study, HA had briefly 
used the system at home with his own children, but he had not previously used 
computers for teaching.  
 HA initially used the system in the computer laboratory where he permitted students 
to work on anything related to the mathematics topic they were learning. This pattern 
continued well into the fourth term. Observations of HA demonstrated his lack of 
awareness about how to support student learning with technology. For example, he did 
not show students the different levels available in the Lesson Questions or demonstrate 
how to navigate the system. He continued to use the system exclusively in the computer 
laboratory, with students working on their own at activities of their own choosing, even 
when this approach was unproductive.  
 In an interview near the end of Term 4, HA mentioned using the system in the 
normal classroom by projecting activities onto the whiteboard so students could work 
together on a task he chose for them. At the start of Year 8, HA began to teach with the 
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system in the classroom by having students answer Scorcher questions. He displayed 
the questions one at a time on the whiteboard but sat with his back to the class while 
operating his laptop. He allowed students to shout out their answers without providing 
their reasoning. There was much noise as students competed for scores which made it 
difficult to hear their responses.   
 HA later commented that the wide range of ability levels in his classes made it 
difficult for him to keep all students working together when using the system for whole-
class discussion, especially because students who could not keep pace with the lesson 
were prone to become disruptive. He concluded that he would revert to computer 
laboratory lessons “where they can work on their own at their own pace and those who 
are off task do not disrupt others or interfere with their learning.”  

Teacher HB 
Teacher HB had a postgraduate research qualification and was the most proficient and 
confident user of technology. She had been teaching for 12 years, including seven years 
at Hope Springs. She had explored the system at home and had prepared a lesson with 
it, although technical problems with the school computers prevented her from giving the 
lesson as planned.  
 Observations of her initial use of the system showed a more varied approach than the 
other teachers in the study. HB used many of the system features in her lessons, 
although she continued to adopt a very teacher-centred approach. When teaching Year 7 
in the computer laboratory, she soon realised that students needed her support to 
maximise their learning with the system. She spoke in an interview at the end of Term 2 
about how students would often go straight to the Lesson Questions without first 
reading through the accompanying lesson notes and this meant that they could not 
answer the questions. So HB spent time teaching the concepts before the students were 
allowed to attempt the related system topic on the computers.  
 HB was the first to teach with the system away from the computer laboratory. In 
Term 3, she gave a lesson to Year 7 about surface area using the interactive whiteboard. 
Her lesson was based on a Widget called “Observing surface areas”, which she used in 
quite a sophisticated manner by combining it with her own explanations to highlight 
various aspects of the solids she displayed. But she explained everything to the students 
and her explanations were given too quickly so it was clear that students found them 
difficult to follow. The RA noted that most students were not paying attention and the 
activity was not very successful in helping them learn about surface areas. 
 HB took up a teaching position at another school at the end of the first year of the 
study and so did not take part in the second phase of the project. 

Teacher HC 
Teacher HC had first trained as a primary school teacher and had taught for 30 years 
before moving to Hope Springs and had been at the school for eight years. HC had a 
good rapport with students and was an excellent classroom manager. She had previously 
used computers to prepare worksheets and tests for her classes, but had not used 
technology in the classroom. Based on lesson observations, the RA characterised HC’s 
style as teacher-centred and traditional. 
 HC’s initial use of the system also involved classes in the computer laboratory. But, 
unlike HA and HB, she prescribed activities for students to complete: Widgets, then the 
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Walkthrough, the Lesson Questions, and finally the Scorcher. HC said she liked to start 
with the Widgets because students found them engaging, but it was observed that 
students often had difficulty identifying what the Widgets were about if they had not 
been given any prior instruction. Significantly, HC quickly realised the difficulties some 
students encountered. After just two weeks she started to split the lesson time between 
the classroom (where she introduced a mathematical concept) and the computer 
laboratory (where the students used the system to consolidate it).  
 Her split-lesson method was proving successful and HC saw “some definite 
advantages in integrating the system with the normal classroom lessons.” But she 
commented in Term 4 that it was difficult to monitor student behaviour in the computer 
laboratory and students would visit other websites unless closely supervised. By the 
following year, HC no longer took her classes to the laboratory and used the system 
exclusively in the classroom. A Year 8 lesson on fractions demonstrated her more 
sophisticated approach. She began with an assortment of her own revision questions 
written on the board. While students attempted these, she set up the data projector. The 
system was then used to teach fractions, beginning with a Widget on “Representing 
fractions”. The lesson notes were read aloud by a student but HC interrupted three times 
to give a further example or explanation on the whiteboard. She also circled or 
underlined parts of the text to emphasise key ideas. Students then copied HC’s own 
definitions of the different types of fractions into their exercise books.  

Discussion 
Our research allowed us insight into how teachers’ PTK develops. We identified three 
sequential stages to describe the changing roles we observed. We call these roles 
technology bystander, technology adopter, and technology adaptor. We also conjecture 
a fourth role of technology innovator. As teachers move from one stage to the next, their 
technology use becomes increasingly more varied and sophisticated. Our four stages 
resemble the metaphors of technology as master, servant, partner, and extension of self, 
proposed by Goos et al. (2000). But whereas Goos’s terms refer to the roles of 
technology, we focus on teachers’ roles as they use technology to support student 
learning.    

Technology bystanders 
All three teachers began teaching with the system in the computer laboratory where 
students worked individually at their own pace; HA and HB allowed students to work 
on any aspect of the system they wished, while HC mandated specific tasks for students 
to complete. Observations in the first weeks of the project showed that teacher-student 
interactions were minimal, focussing mainly on managing student behaviour or sorting 
out students’ difficulties in operating the system.  There was little actual teaching and 
the teachers’ PTK did not advance beyond developing an initial familiarisation with the 
features of the system.  
 We describe the teachers’ role in these early lessons as technology bystanders, 
because they essentially allowed students to work on their own. We see the initial 
computer laboratory lessons as an essential first step in developing the teachers’ 
confidence in their ability to use the system. These lessons allowed teachers to become 
familiar with the system’s features and to learn how to navigate around them. They also 
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provided opportunities for learning how to deal with relatively prosaic issues such as 
assisting students who had forgotten their passwords or could not login to the system.  

Technology adopters 
All three teachers eventually began to deploy the system in conjunction with their usual 
teaching practices, so that the technology was essentially used to support already 
established pedagogies. However, the success of the teachers’ classroom use of the 
system was heavily dependent on their general pedagogical skills. HA was the last to 
begin employing the system away from the computer laboratory and the least successful 
in doing so.  His PTK showed negligible development throughout the project and was 
characterised by an emphasis on trying to keep students busy regardless of how much 
they were learning. HB’s PTK began to shift from an exclusive focus on helping 
students operate the system efficiently to a point where she began considering how the 
system could be used to help student learning. HC supplemented the system activities 
with her own examples and explanations, reasoning that this would be easier to achieve 
in the classroom where she could establish a stronger presence at the front of the room.  
 HB and HC changed their use of the online learning system much more than HA. 
Not only did they both modify their use of the system in the computer lab, but they also 
grafted the system onto their preferred classroom teaching method with the intention of 
making it more effective. Because these two teachers took the system fully into their 
repertoire of teaching actions, without making significant changes to those actions, we 
describe them at this stage of their PTK development as technology adopters. By 
contrast, HA essentially remained a technology bystander. 

Technology adaptors 
HC was the only one of the three teachers who progressed beyond the technology 
adopter stage. HC’s lessons increased in variety and creativity as she became more 
practised in setting up and using the data projector. Her more sophisticated practice in 
the second year of the study reflects the early stages of what we call a technology 
adaptor role characterised by a more student-centred approach that teaches through 
rather than with technology to promote students’ mathematical sense-making and 
reasoning. HC gradually learned how to integrate the system more successfully into her 
teaching, as evidenced by the increased number of transitions between the online system 
and other activities during her lessons. HC’s interview comments about how well her 
students responded to visual images such as Widgets show that she had changed her 
focus from teaching with the system to consider how the system could assist student 
learning. Her PTK advanced from an emphasis on the technology to one where using 
the system to help students learn new mathematical concepts was more prominent in her 
thinking. The system was becoming an integral part of her teaching rather than an add-
on to the lesson.    

Technology innovators 
A learning system can be used in more creative ways than any we observed in this 
study. For example, there are many opportunities for setting individual or group work. 
Students can follow ideas discussed in class to varying levels of complexity, depending 
on their interests and ability. They can even be set to explore concepts informally before 
they are discussed in class. We conjecture that some technology adaptors will 
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eventually recognise the affordances of the system and promote a greater focus on 
problem solving and student-centered learning. We call this role, in which teachers use 
technology to encourage and support students’ mathematical development in novel 
ways to promote student-generated knowledge, inquiry and reflection, a technology 
innovator. 

Implications and conclusions 
Our results show that teachers can learn to use an online mathematics learning system to 
advantage, even after minimal professional development. We conjecture that this may 
be due to the structure of the system, which appeared to scaffold teachers’ technology 
learning and support their PTK development. The changes we observed in teachers’ 
roles—from bystanders who were subservient to the technology to taking ever greater 
control over how students used it—were more evolutionary than revolutionary. This 
allowed the teachers to gradually build up their confidence in using technology in their 
lessons.   
 Our research indicates the kinds of knowledge required by teachers who wish to use 
online learning systems (and other digital technologies) as tools for learning and 
teaching. Teachers require a basic familiarity with the structure of the learning system 
and its various features so they can find activities suitable for different stages in a 
lesson. Training in these aspects need only be minimal because once teachers become 
acquainted with the basic operation of the system, the most effective way for them to 
learn about it is to begin using it themselves.  
 A far more important role for professional development activities is to assist teachers 
develop their pedagogical skills in using the systemtheir PTK. Our results show that 
online learning systems have the potential to change the dynamics of the teacher-student 
relationship in the classroom and make learning more student-centred—but only if 
teachers learn how to use the system in ways that involve students more actively in 
lessons. But not even a discussion of the potential uses of an online learning system in 
the mathematics classroom is likely to cause teachers to use it in the most effective way 
possible. Professional development activities that attempt to demonstrate how 
technology can transform traditional classroom roles may not be successful unless 
teachers are already familiar with the particular tool and confident that they can operate 
it efficiently in the classroom. Instead, training is likely to be most effective after 
teachers have had time to progress from technology bystanders to technology adopters, 
since only then will they be in a position to become technology adaptors and innovators.  
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Over the years there has been a lack of conceptual clarity and explicit definition of the 
construct mathematics anxiety. This paper describes a process of building, refining, and 
validating a construct model of mathematics anxiety using a Rasch Rating Scale. 

 

Background 
The purpose for the research project was the growing need to understand in better and 
clearer ways the construct mathematics anxiety. This need was identified from the meta-
analysis undertaken by Ma and Kishor (1997) where they noted the confusion caused 
for many people from the fact that researchers rarely offered explicit definitions of their 
construct or borrowed instruments from other disciplines, such as psychology without 
adapting them specifically for use in mathematics education. A further motivation for 
the project was to understand the manifestation of mathematics anxiety in different 
situations, at different times, and for different people. Such an understanding is 
important for people concerned with mathematics education in all its forms. 
 Early work on mathematics anxiety is associated with Richardson and Suinn (1972) 
and their development of the Mathematics Anxiety Rating Scale (MARS). They also 
offered a straightforward definition for mathematics anxiety stating that it involved 
“feelings of tension and anxiety that interfere with the manipulation of numbers and the 
solving of mathematical problems in a wide variety of ordinary life and academic 
situations” (p. 551). Over the years further scales have been devised, for example, the 
Revised Mathematical Anxiety Rating Scale noted by Baloglu and Kocak (2006). The 
apparent simplicity of the original 1972 definition is questioned as mathematics anxiety 
has been shown by some researchers to involve multiple dimensions (Kazelskis, 1998) 
whereas others have confirmed it as having a uni-dimensional structure (Beasley, Long 
& Natali, 2001). These uncertainties and contradictions on how mathematics anxiety is 
conceptualised have resulted in no commonly accepted construct model and the need to 
refine measures. 
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Experiencing mathematics anxiety 
Mathematics anxiety is experienced for many people in a range of ways. Psychological 
indicators of mathematics anxiety include such things as feelings of tension, fear and 
apprehension, low self confidence, a negative mind set towards mathematics learning, 
feeling threatened, failing to reach potential, and a temporary reduction in working 
memory (Ashcraft & Kirk, 2001; D’Ailly & Bergering, 1992; Jain & Dowson, 2009; 
Perry, 2004; Richardson & Suinn, 1972; Zohar, 1998.) It is physiologically exhibited by 
sweaty palms, a feeling of nausea, difficulty with breathing, and for some people heart 
palpitations (Malinski, Ross, Pannells & McJunkin, 2006; Perry, 2004). Additionally, it 
interferes with calculating and the solving of mathematical problems in academic, 
private and social environments (Richardson & Suinn, 1972; Suinn, Taylor & Edwards, 
1988). Within a classroom or school environment it is most often associated with 
children undertaking learning in mathematics, however it is not restricted to children. 
Some teachers have reported nervousness and lack of confidence when confronted with 
teaching aspects of mathematics (Malinsky, Ross, Pannells, & McJunkin, 2006). As 
noted earlier it is a common occurrence in work and everyday life. Often it is seen 
where people avoid situations and even careers that require the use of even basic 
mathematical skills (Hopko, 2003).  
 Many research projects have investigated and tried to understand the causes of 
mathematical anxiety with the intention of being able to improve attitudinal and 
cognitive aspects of mathematics learning (Jain & Dowson, 2009; Perry, 2004). The 
sources of mathematics anxiety are varied, interrelated, and also inconsistent in their 
effects, for example some studies have noted an influence of gender while others have 
failed to substantiate this influence (Baloglu & Kocak, 2006). Others, (Furner & 
Berman, 2003; Jackson & Leffingwell, 1999) have reported that age is also a factor in 
school student perceptions of mathematical anxiety. One such possible cause of 
mathematics anxiety, that of teacher behaviour, differed between elementary and high 
school levels. However, causes of mathematical anxiety may be broadly categorised as 
attributes of the children, the family, the teacher and instruction, and the nature of 
mathematics itself. 

The construct of mathematics anxiety 
While it may be possible and useful to describe the factors influencing mathematics 
anxiety and also how it is manifested in everyday life, this is insufficient for defining 
precisely a psychological construct or latent trait. A construct model is normally used to 
specify the crucial aspects of a latent trait. Wolfe and Smith (2007) noted the following 
functions of a construct model. It can describe: 

• The internal structure of the construct; 
• Its relationship to other constructs; 
• The incumbent developmental assumptions—levels of proficiency; and 
• The incumbent cognitive processing assumptions—cognitive activities and states. 

In the following sections these four functions of a construct model will be used as a 
theoretical framework to review the literature on mathematics anxiety with a view to 
clarify the construct. 
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The internal structure of the mathematics anxiety construct 

This aspect of construct definition rests on two issues, namely differentiating between 
mathematics anxiety and test anxiety, and the dimensionality of mathematics anxiety. 
The data from measures of mathematics anxiety and the measures of test anxiety are 
often correlated to suggest a similarity between the two anxieties. Others (Kazelskis, et. 
al. 2000) interpreted mathematics anxiety as a component of test anxiety. However, the 
extent of correlation between the data is low and often dependent on the measure used. 
Analysis of data from different anxiety measures provides evidence to suggest that 
mathematics anxiety is at times multi-dimensional (Baloglu & Zelhart, 2007) while at 
others it is uni-dimensional (Beasley, Long & Natali, 2001). All the multi-dimensional 
measures of mathematics anxiety include a ‘test anxiety’ dimension. There is also little 
evidence to suggest a single higher order mathematics anxiety construct. 
Relationship of mathematics anxiety to other constructs 

Measures of mathematics anxiety negatively correlate with measures of mathematical 
ability, particularly when this is assessed in test situations. D’Ailly and Beregering 
(1992) noted the small yet significant correlations of mathematics anxiety and 
mathematics avoidance. Jain and Dowson (2009) used a Motivated Strategies for 
Learning Questionnaire and noted a direct relationship for self-regulation and self-
efficacy with an inverse relationship between self-efficacy and mathematics anxiety. 
Earlier work by Wigfield and Meece (1988) identified correlations between 
mathematics anxiety and measures of mathematical ability perceptions, mathematics 
task demands, mathematics interest, and mathematics performance. These positive and 
negative associations substantiate theorised similarities and differences between 
mathematics anxiety and related constructs. These will provide external reference points 
for the construct model. 

Developmental assumptions 

It is recognised that latent traits such as cognitive abilities have a developmental aspect. 
This aspect often has an assumption of a hierarchical development to acknowledge 
changes and growth over time. The literature on mathematics anxiety is limited in 
examples of a developmental feature. Prieto and Delgado (2007), however, developed 
such a model for mathematics anxiety with ‘experiencing nausea’ indicating a higher 
level of anxiety than ‘my mind goes blank’. Any model that attempts to map the 
development of anxiety over time must collect data on the same qualities rather than on 
different qualities. 
Cognitive processing assumptions 

Cognitive processes and cognitive states govern psychological manifestations of a latent 
trait, such as mathematics anxiety. While these aspects of the construct are not directly 
observable, assumptions can be made in the model to note confirmatory evidence that 
will come forward.  

The objective measurement of mathematics anxiety 
The following section will explore the idea of applying Modern Measurement Theory in 
the form of the Rasch model with its potential to resolve some of the difficulty in 
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explaining and operationally defining and building an objective measure of the 
construct mathematics anxiety.  

A construct model of mathematics anxiety 
In the following model the horizontal dimension shows three types of anxiety derived 
from the literature on mathematics anxiety—anxiety when being taught mathematics, 
anxiety when mathematics knowledge is being assessed, and anxiety when mathematics 
is required to be applied in situations beyond the classroom. The order of presentation in 
the model is arbitrary and it is acknowledged that there may be relations between the 
three. The model suggests eight potential areas of anxiety. 
 The vertical dimension illustrates levels of anxiety. Extreme anxiety is indicated by 
somatic (physical and body) factors such as heart palpitations. Cognitive (mental 
processes) factors indicate high anxiety; such factors here are confusion, and one’s mind 
going blank. Low anxiety factors are generally attitudinal, shown by lack of confidence. 
It is also suggested that the indicators are cumulative, that is a person showing extreme 
anxiety will also exhibit those of low anxiety. These lower indicators could be less 
obvious due to the over-shadowing of the extreme indicator. 

Table 1. Situational model of mathematics anxiety. 

Situational types of mathematics anxiety 
 

Instruction Assessment Application 
Domains 

 
Level 

Independent 
work  

Group 
work 

Working 
in a class 
group 

Formal - 
examinations 
and tests 

Informal - 
quizzes and 
worksheets 

Other 
subjects 

Home Work 

Extreme 
anxiety 

Somatic 
indicators 

        

          
 Cognitive 

indicators 
        

          
Low 
anxiety 

Attitudinal 
indicators 

        

 

Testing the model 
A small study was planned to test the assumptions present in the Situational model of 
mathematics anxiety (Table 1). Specifically, it considered three issues: 

1. Can a linear scale of mathematics anxiety be constructed? 
2. Are the distributions of scores for different types of mathematics anxiety 

different?  
3. Is the theorised order of the anxiety indicators consistent with the ordering of the 

anxiety scores? 

Research methods 
Two forms of questionnaire were designed. One sought information on anxiety when 
working on mathematics in a class (Form A), and the other on anxiety on completing a 
test on mathematics (Form B). Both forms comprised the same items in the same order. 
The items were grouped under three sub-headings of attitudinal (6 items), cognitive (9 
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items), and somatic (6 items). The larger number of cognitive indicators was included to 
make the scale more sensitive to students with ‘average’ anxiety. 

Table 2. Questionnaire items. 

Item label Item number Item 
Som 1 14 I feel uncomfortable 
Som 2 18 I shake or tremble 
Som 3 17 I have sweaty palms 
Som 4 16 I have difficulty breathing 
Som 5 19 My heart beats more quickly 
Som 6 21 My mouth becomes dry 
Cog 1 7 I am worried about others thinking I am stupid 
Cog 2 13 I feel threatened 
Cog 3 1 I am aware of previous failures 
Cog 4 9 I can’t think clearly 
Cog 5 15 I forget things I normally know 
Cog 6 3 I am frustrated 
Cog 7 2 I am not in control 
Cog 8 5 I am confused 
Cog 9 20 My mind goes blank 
Att 1 8 I am worried about what I am expected to do 
Att 2 12 I feel like running away 
Att 3 10 I don’t want to be doing this 
Att 4 11 I expect to have difficulty doing what is required 
Att 5 4 I am not confident I can do what is required 
Att 6 6 I am scared about what I have to do 

 
A scoring model describes how qualitatively different observed responses are translated 
into numerical codes. The scoring model selected for this study used four response 
categories on a Likert-type scale using 1 for strongly agree to 4 for strongly disagree. 
Scores were reversed for data entry and missing data were scored 9. Data were then 
placed into a scaling model so that “… ordinal codes [could be] combined and mapped 
onto a continuum that represents measurable quantities of the target construct” (Wolfe 
& Smith, 2007, p.108). The Rasch Rating Scale Model and the computer program 
RUMM2020 were used for this purpose (Andrich, Sheridan, Lyne & Luo, 2007). 
 Participants in the study were 50 (27 female and 23 male) children from seven Perth 
metropolitan primary schools. The children were in Years 5 to 7. They completed both 
forms of the questionnaire. 

Table 3. Sample details. 

School 1 2 3 4 5 6 7 Total 
Females 10 4 2 3 1 4 3 27 
Males 6 2 4 2 3 4 2 23 
Total 16 6 6 5 4 8 5 50 
 

170



CAVANAGH & SPARROW 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

Results 
Data from the 100 questionnaires were entered into RUMM2020 and a variety of 
analyses were undertaken. First, the use of the response categories was examined by 
estimating the thresholds between adjacent response categories. A threshold is a student 
anxiety score for which there is an equal probability of selecting either of the adjacent 
categories. Items Att 2 and Cog 5 elicited data with disordered thresholds and these data 
were removed prior to subsequent analyses. 
 Next, data fit was examined. When data fit the Rasch model, the observed scores for 
an item should be similar to the score predicted by the model for persons of similar 
ability. It was noted that students with low anxiety scores responded more affirmatively 
than expected while those with high anxiety scores responded less affirmatively than 
expected. The residual, the difference between the observed score for an item and the 
score predicted by the model, was high (3.25) for item Att 6. 
 A Chi Square is estimated to show the interaction between an item and the trait. A 
low Chi Square probability value is due to poor item trait interaction. Six items were 
identified with high residual (>2.5) and/or low Chi Square probability values after the 
Bonferroni adjustment. Data from these items were removed prior to the final analysis. 
 The data from the remaining 13 items fitted the Rasch Rating Scale model well so it 
was possible to compare student mathematics anxiety scores and item difficulty. 
Plotting item difficulty locations and student anxiety scores on the same scale showed 
students tended to be reluctant in their affirmation of the anxiety indicators. A Principal 
Components Analysis of residuals after the Rasch measure was extracted provided 
evidence of multidimensionality. 
 Data for test anxiety and for classroom anxiety were compared with mean scores and 
standard deviations were similar, suggesting minimal sample-wide differences between 
student reports of mathematics anxiety in the two situations. However, when the pairing 
of scores for individual students was compared, students reporting low test anxiety 
generally reported comparatively high classroom anxiety. The converse was also 
apparent. Anxiety experiences in relation to the test and classroom contexts, it is 
suggested, depend on the individual student. 
 The difficulty the students experienced in affirming the respective items were 
estimated as item difficulty logits. From the three categories of indicators it was noted 
that one group were not more difficult to affirm than the others. It was also noted from 
analysis of the data on the separate forms that the item location sequences were similar. 

Discussion 
A model that builds on the original model (Table 1) developed from the literature search 
and pays attention to findings from the application of Modern Measurement Theory in 
the pilot study is illustrated in Table 4 (over). 
 Data from both forms of the instrument (test and classroom) fitted the Rasch model 
to provide evidence of a trait that is manifest in both situations. They are likely to be 
manifestations of the same construct and can be defined by the same indicators. In the 
original construct model there was an assumption of a cumulative relationship between 
the general indicators, that is some were seen as more difficult than others. This, it is 
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suggested, is not the case and that high anxiety, as well as low anxiety, is indicated by a 
combination of attitudinal, cognitive, and somatic indicators. 

Table 4. Model of mathematics anxiety. 

Dominant trait model of mathematics anxiety 
Level of 
anxiety 

Indicators Attitudinal Cognitive Somatic 

High 
anxiety 

 Scared about what s/he has 
to do 

Worried about others 
thinking s/he is stupid 

Having difficulty 
breathing 

Moderate 
anxiety 

 Not wanting to be doing 
what has to be done 

Mind going blank Heart beats more 
quickly 

Low  
anxiety 

 Expecting to have difficulty 
doing what is required 

Being confused Feeling 
uncomfortable 

Potential 
applications 

In-class instruction: Independent work, group work, or whole class 
In-class assessment: Formal exam or tests, informal quizzes  
Out-of-class applications: Other subjects, at home, at work or socially 

 
The model also acknowledges that mathematics anxiety can arise in any situation in 
which mathematical skills and knowledge are required. The indicators of mathematical 
anxiety are common to all situations and the relative ‘severity’ of the indicators is also 
assumed not to vary across situations. Implicit in this model is the notion that this 
construct will vary in degree between individuals in different situations. 
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In this paper, we discuss the use of a framework of “growth points” in early mathematics 
learning and a related, task-based, one-to-one interview in assessing children’s 
understanding of the measurement of mass. Data are presented from a sample of 1806 
children in the first three years of school. An example of a child’s responses is given to 
illustrate the kinds of thinking revealed by interviewing young children about their 
developing concepts of mass. 

Background 
The data discussed are from the Early Numeracy Research Project1 (ENRP), where 
teachers and university researchers were seeking to find the most effective approaches 
to the teaching of mathematics in the first three years of school. At the beginning of the 
project, the research team identified the need for development of a comprehensive and 
appropriate learning and assessment framework for early mathematics, and a tool for 
assessing young children’s mathematical thinking. The inappropriateness of pen and 
paper assessment at these grade levels (Clements & Ellerton, 1995) led to the 
development of a task-based, one-to-one interview schedule. The project team studied 
available research on the development of young children’s mathematics learning in the 
mathematical domains of Counting, Place value, Addition and subtraction, and 
Multiplication and division (in Number), Time, Length, and Mass (in Measurement), 
and Properties of shape and Visualisation and orientation (in Geometry). In this paper, 
the focus is on the Measurement domain of Mass. 
 While much has been published about children’s concept development in the 
measurement of Length (e.g., Clements & Sarama, 2009; Lehrer, Jenkins, & Osana, 
1998) and Area (e.g., Outhred & Mitchelmore, 1992), little is published about Mass. 
However, research has provided some insights. For example, in researching the 
transitive nature of young children’s ordinal ability, Brainerd (1974), found that 5 year-
olds could arrange three balls of clay according to their mass and could arrange sticks 
according to their length.  

                                                        
1 The Early Numeracy Research Project was supported by grants from the Victorian Department of Employment, Education and 
Training, the Catholic Education Office (Melbourne), and the Association of Independent Schools Victoria. We are grateful to our 
co-researchers in ENRP trial for insights that are reflected in this paper.  
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Brown, Blondel, Simon, and Black (1995) interviewed 48 Grade 2, 4, 6, and 8 children 
on four occasions on their understandings of Length and Weight measurement. Their 
work focused on what they termed underlying general concepts of measurement. 
Results suggested that “some aspects of competence seemed to progress more smoothly 
by age than did others” (p. 167) and showed variation in individual performances. The 
researchers believed that their data supported “a common model of progression in the 
form of a curriculum and assessment framework” (p. 168). They acknowledged that the 
results were indicative and tentative and their contention that the data led to a 
framework was seen as bold and exaggerated (van den Berg, 1995), owing in part to the 
small sample and idiosyncratic responses by the children.  
 Spinillo and Batista (2009) conducted a study with 40 children focused on 6 and 8 
year olds’ understandings of measurement, and found that children of both ages had an 
understanding of the relationship between the size of a unit and the number of units 
needed to measure an object, including for measurement of Mass. They found also that, 
while Distance and Volume were difficult for children to understand in terms of the 
relation between units of measure and objects being measured, Mass did not cause such 
problems. The researchers posited that this outcome was linked to children’s 
experiences of weighing objects at home from an early age.  
 The general paucity of research on Mass is reflected in a recent publication on 
learning and teaching early mathematics (Clements & Sarama, 2009) where, in 325 
pages, neither the word “mass” nor the word “weight” appear. Likewise, in the National 
Council of Teachers of Mathematics yearbook devoted to the learning and teaching of 
measurement, the place of Mass and Weight was clearly that of “other measurement 
domains” (Clarke, Cheeseman, McDonough, & Clarke, 2003, p. 75). Reference is 
sometimes made to Mass when giving an example of a measurement goal (e.g., 
Clements, Sarama, Spitler, Lange, & Wolfe, 2011) or describing a measurement 
investigation (e.g., Lehrer, Jaslow & Curtis, 2003), but with no further discussion of 
specifics related to the concept.  
 With the limited research on children’s understandings of Mass, the research 
reported in this paper makes an important contribution to our understanding of this 
element of measurement. The framework developed for the attribute of Mass followed 
the same generic form used for each of the measurement domains (see Figure 1). 
 
1. Awareness of the attribute and use of descriptive language 
The child shows awareness of the attribute and its descriptive language. 
2. Comparing, ordering, and matching with the attribute  
The child compares, orders, and matches objects by the attribute. 
3. Quantifying accurately, using units and attending to measurement principles 
The child uses uniform units appropriately, assigning number and unit to the measure. 
4. Choosing and using formal units for estimating and measuring, with accuracy 
The child chooses and uses formal units for estimating and measuring, with accuracy. 
5. Applying knowledge, skills and concepts 
The child can solve a range of problems involving key concepts and skills. 

Figure 1. ENRP Generic growth points for measurement. 
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The purposes of developing the framework for the learning of Mass as it applies to this 
paper included: to allow the description of the mathematical knowledge and 
understanding of individuals and groups; to provide a basis for task construction for 
interviews, and the recording and coding process that would follow; and to allow the 
identification and description of students’ thinking. 

Methodology: The interview 
Assessment tasks were created to match the framework. The interview was very “hands-
on”, with considerable use of manipulative materials. Although the full text of the 
interview involved around 60 tasks in the various mathematical domains listed earlier, 
no child moved through all of these. The interview was of the form “choose your own 
adventure”, in that given a child’s success with the task, the interviewer continued with 
the next task in the given mathematical domain as far as the child can go with success; 
but given difficulty with the task, the interviewer abandons that section of the interview. 
The interview provided information about the growth points achieved by a child in each 
of the nine domains. It is important to stress that the growth points are “big 
mathematical concepts and skills”, with many possible “interim” growth points between 
them. As a result, a child may have learned several important ideas or skills necessary 
for moving to the next growth point, but perhaps not of themselves sufficient to move 
there (Clarke et al., 2002; Sullivan et al, 2000).  
 Of course, decisions on assigning particular growth points to children are based on a 
single interview on a single day, and a teacher’s knowledge of a child’s learning is 
informed by a wider range of information, including observations during everyday 
interactions in classrooms (Clarke, 2001). 

Interview tasks for Mass measurement 
In each case, the instructions to the teacher are given in italics. The equipment needed 
for the interview questions is listed. The growth point(s) that the interview task 
addresses has been detailed before each task. 
Equipment: tub of at least 20 teddies, 20 gram weight (2 x 20c pieces stuck together 
with masking tape), a collection of seven objects (a piece of foam, a rock, two plastic 
containers [short & fat and long & thin], a ball of string, a 1 kg mass or an object which 
weighs 1 kg [labelled 1 kg], and a tin of tomatoes in a shoe box), a set of balance scales, 
small film canister filled with water, at least eight ten-gram weights, a set of Salters’ 
Slimmers kitchen scales, 120 g object, 1 kg of brown rice, small scoop. 
The first interview task, What Do You Notice? was designed to investigate whether a 
child has an awareness of the attribute of mass, some of the descriptive language 
associated with weighing objects (growth point 1), and is able to compare masses by 
hefting and using the balance (growth point 2). 

What do you notice? 
Please take these things out of the box, and put them on the table. 
a) What do you notice about them? 
b) Which things are heavy and which things are light? 
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Push all items aside, except for the two yoghurt containers. 
c) Take these two plastic containers (place one plastic 
container in each hand for the child to feel). 
Which do you think is heavier? 
d) How could you check? 
e) Do you know about balances? (allow some time for the child 
to become familiar with the balance)  
Use the balance to see which container is 
f) Were you right? How did you know? 

heavier. 

 

 

 

The second interview task, Teddies and Coins was designed to investigate whether a 
child could quantify mass accurately, using uniform units appropriately, assigning 
number and unit to the measure (growth point 3). 

Teddies and coins 
Place the balance and the tub of teddies in front of the child. 
Show the two 20 cent coins wrapped together, and place in the child’s hand. 
How many teddies weigh the same as this? 
(If the child estimates without using the balance, ask “Please use the balance to find out 
how many teddies weigh the same as this”) 
What did you find out? 

The third interview task, One Kilogram was designed to investigate whether a child 
could use formal units for estimating (growth point 4). 

One kilogram 
Here is a 1 kilogram weight. I am going to put it in your hand. (Please do so). Here is a 
tin of tomatoes for your other hand. (Place the object in the child’s other hand.)  
a) Do you think the tin of tomatoes is more than 1 kilogram or less than 1 kilogram 
weight? 
b) Can you check? … What did you find? 

The fourth interview task, Using Standard Units was designed to investigate whether a 
child could choose and use formal units for estimating and measuring, with accuracy 
(growth point 4). 

Using standard units 
Here is a container. Here are some 10 gram weights. Measure the weight of this 
container with these 10 g weights. 
 What did you find? (To be judged as correct answer including units, the child must say 
“40 grams” as part of their response. If they say “4” ask “four what?”, but even “four 
10 gram weights” is not sufficient. We are looking for “40 grams”.) 

The final mass interview task, Using Kitchen Scales was designed to investigate 
whether a child could apply their formal knowledge and skills of measurement of mass 
in context (growth point 5). 
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Using kitchen scales 
Place the kitchen scales and the 120 g object on the table. 
Have you seen scales like these before? 
a) Please use the scales to weigh this object. What did you find? 
If the child gives a number only (without units), ask, e.g.,   
“120 what?” 
b) Please use the scales and the scoop to measure out 135 grams 
of rice. 
c) How do you know it is 135 grams?  
d) How many more grams of rice would you need to have one 
kilogram? (865 g) 
An example of a child’s responses will be used here to illustrate the kinds of thinking 
revealed by interviewing young children about their developing concepts of mass. 

The story of Jack 

Jack was interviewed at the beginning of Grade 2. He hefted the plastic containers and 
could judge which was heavier, and appropriately used the terms heavier and lighter. 
However, he struggled to think of a way to check his estimate. When given a balance 
scale he showed interest and, although he said he had never used one, he promptly put a 
container in each pan and was convinced that his original estimate was correct, that is, 
that the shorter squat container weighed more. He appeared to interpret the balance 
tipping to the heavier side correctly. It could be said that Jack had an awareness of the 
attribute of mass, some of the descriptive language associated with weighing objects 
(growth point 1), and was able to compare masses by hefting and using the balance 
(growth point 2). The interviewer continued with the Teddies and Coins task. It was 
soon apparent that Jack was simply adding teddies to one pan of the scales and he did 
not have the concept of creating equal masses on the balance and using informal units. 
The Mass interview was concluded there and Jack was considered to have demonstrated 
growth point 2 in Mass. 
 Having described the framework and development of the interview protocol, and 
given an illustrative example of one child’s responses, we will now examine the results 
of an entire cohort of children. 

Results 
In the domain of Mass, children were interviewed individually by teachers and 
proceeded through the interview as long as they continued to have success with tasks. 
Each child’s response was recorded on a record sheet for later examination and analysis. 
Codes were assigned to the responses to reflect the growth point demonstrated by the 
child on that particular task.  

Indicators of growth in Mass 
To examine the way the growth points portray the nature of the increasing 
sophistication of the students’ strategies, Table 1 presents a profile of students’ 
achievement over three grade levels.  
 A random process for choosing students for whom to ask Mass interview questions 
was provided by the research team and used to provide a “snapshot” of the children’s 
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responses to the interview tasks. The data in Table 1 are from a single year of the 
project, using data from the start and end of the first year of formal schooling (called 
Prep in Victoria), and the end of Grades 1 and 2.  
 

Table 1. Percentage of students achieving mass growth points over time. 

 Prep 
Mar 2001 
(n = 533) 

Prep 
Nov 2001 
(n = 538) 

Grade 1  
Nov 2001 
(n = 479) 

Grade 2 
Nov 2001 
(n = 256) 

Not apparent 17 3 1 0 

Awareness of attribute 15 7 2 0 

Comparing masses 47 30 17 6 

Quantifying masses 21 60 69 50 

Using standard units 0 0 10 38 

Applying 0 0 1 6 
 

By the end of the Prep year, most students were able to compare masses, and three-
fifths were able to use an informal unit to quantify a mass. By the end of Grade 1, 
virtually all students were able to compare masses, and 69% were able to quantify 
masses and were ready to move towards using standard units. By the end of Grade 2, 
over 40% were using standard units successfully, and the rest were ready to move 
towards that goal. No further growth points seem to be needed to describe growth at this 
level adequately. 
 It is noted that with 60% of Prep children being able to quantify masses at the end of 
the year, it might be expected that a greater number of Grade 1 children would be able 
to quantify masses or go beyond by this time. We suggest that this might have been due 
to insufficient experience with use of standard Mass units at the Grade 1 level. Perhaps 
some children were not being exposed to experiences for which they were ready. This 
becomes even more apparent when shown in visual form as in Figure 2. 
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Figure 2. Students (%) achieving Mass growth points over time. 

To give a sense of the progress of the students, the percentages of students at each Mass 
growth point over the four sets of data are shown in Figure 2. To assist with interpreting 
this representation of the data, it is worth moving the eye in two directions. First, by 
selecting a year level (Grade 1, Nov 2001), the reader can look vertically from that 
label, to ascertain the percentage of students achieving each growth point at that time. 
Second, by moving from the bottom left to the top right, we can see the relative time 
which students overall spend typically at a particular growth point. 
 As with Length (Clarke et al., 2002; McDonough & Sullivan, in press), students 
progress readily through the growth point, Awareness of the attribute. However, two 
transitions seem to take time: moving from comparing to quantifying; and moving from 
quantifying to using standard units. It is possible that quantifying Mass is dependent on 
particular experiences that are beyond the intended curriculum at this stage. The same 
may well be true for using standard units. 

Curriculum expectations 
It is interesting to compare the data reported here with the Mass outcomes and 
indicators in the relevant curriculum (Board of Studies, 2000) of the time. At the end of 
Prep, the outcomes referred to the attribute of mass, and estimating, measuring and 
comparing using informal methods. At the end of Grade 2, the outcomes referred to 
choosing an appropriate attribute, using everyday language, making comparisons, using 
informal units to estimate, comparing and ordering masses of objects, and measuring by 
comparing to formal and standard units. 
 Lately there has been a move towards a national curriculum which is written in 
broader terms. There are explicit curriculum statements about Mass in the Measurement 
and Geometry strand of the Australian Curriculum (Australian Curriculum Assessment 
and Reporting Authority, 2010) at Grades 2 to 6 (see Fig. 3). 

Grade 2  
level 

Measure and compare length and capacity using uniform informal and familiar 
metric units and measure mass using balance scales with familiar metric units (p. 9) 

Grade 3  
level 

Use direct and indirect comparison to order and compare objects by length and 
develop ‘real life’ benchmarks for familiar metric units of length, mass, and 
capacity including centimetre, metre, kilogram and litre (p.10). 

Grade 4  
level 

Use metric units to estimate, measure, and compare the length, mass and capacity 
of familiar objects reading scales to the nearest graduation (p. 11). 

Grade 5  
level 

Read and interpret scales using whole numbers of metric units for length, capacity, 
mass, and temperature (p.12). 

Grade 6  
level 

Work fluently with the metric system to convert between metric units of length, 
capacity and mass, using whole numbers and commonly used decimals (p. 15) 

Figure 3. National Curriculum statements concerning measurement of mass. 

Clearly there are assumptions about prior learning and mathematical experiences 
underlying these statements. We hope that the reporting of the “snapshot” of young 
children’s developing thinking about the measurement of Mass will serve to support 
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teachers and mathematics educators as they consider what these prior learning 
opportunities might comprise. 

Identifying targets for teaching Mass 
Based on the data reported in this paper, teachers of children in the first year of formal 
schooling can reasonably aim that nearly all students be able to compare the mass of 
two objects with use of appropriate language (90%), and begin to move towards 
quantifying masses by the end of the school year. 
 Teachers of Grade 1 children could emphasise activities that move the thinking of all 
students toward the use of informal units to quantify masses, noting that four fifths are 
either at or moving towards using standard units. 
 Teachers of Grade 2 children could emphasise activities that stimulate and interest 
children in using standard units, as 44% were able to use standard units of kilograms 
and grams successfully. As in other domains, it seems that appropriately chosen 
activities and experiences can assist students in their development.  

In conclusion 
In telling the story of Jack, it was noted that his correct use of the balance beam for 
comparing masses, assuming his statement that he had not used such an instrument 
previously was correct, may have been learnt during the interview. This finding concurs 
with that of Brown et al. (1995) who found that  

It was apparent during the interviews themselves that the requirement for pupils to tackle 
practical problems that they had probably not met before was stimulating learning, since 
there were many cases where pupils refined their strategies as a result of being asked to 
explain that they were doing. (p. 165) 

These findings point to the value of children having hands on experiences with Mass 
measurement situations. Indeed, in relation to measurement generally, Cross, Woods 
and Schweingruber (2009) wrote: 

Even preschoolers can be guided to learn important concepts if provided appropriate 
measurement experiences. They naturally encounter and discuss quantities (Seo and 
Ginsburg, 1994). They initially learn to use the words that represent quantity or 
magnitude of a certain attribute. Then they compare two objects directly and recognize 
equality or inequality (Boulton-Lewis, Wilss, and Mutch, 1996). At age 4-5, most 
children can learn to overcome perceptual cues and make progress in reasoning about and 
measuring quantities. They are ready to learn to measure, connecting number to the 
quantity, yet the average child in the United States, with limited measurement experience, 
exhibits limited understanding of measurement until the end of primary grades. (p.197) 

From the Mass data reported in this paper, we argue that rich experiences involving 
measuring Mass are needed, particularly at the Grade 1 level where little progress 
appears to have been made. The Mass data from the Early Numeracy Research Project 
also suggest the importance of teachers assessing children’s understandings of Mass 
measurement and structuring learning opportunities to build on and extend those 
understandings.  
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Understanding the relationships among fractions, decimals, and percentages is a critical 
goal of the middle years of schooling. There are many approaches that teachers might take 
to help students develop this understanding; some capture general principles whereas others 
only illustrate specific equivalences. In this study teachers were asked to suggest three ways 
of convincing students that three-eighths is the same as 37.5%. The data reveal a wide 
range of strategies and show that different approaches may exemplify different features of 
the fraction-percentage relationship. The explanatory power of the examples is also 
considered.  

Background 
The development of thinking about fractional quantities is one of the notorious 
mountains in school mathematics (e.g., Behr, Harel, Post, & Lesh, 1992; Litwiller & 
Bright, 2002). Even before worrying about computation with fractional quantities, 
students need to understand the meaning of these quantities as numbers (Kilpatrick, 
Swafford, & Findell, p. 235). It is well known that students have difficulty identifying 
the whole, coordinating the values of the numerator and denominator, and being able to 
treat the fraction as a single number that can then be related to other quantities. The 
work of Clarke and Roche (2009) highlighted the difficulties that students have with 
fraction comparisons, associated with the problems identified above, and pointed out the 
effectiveness of having knowledge of benchmark fractions such as 1/2 as a point of 
reference.  
 Added to these challenges is the fact that fractional quantities can be represented in 
at least four distinctive ways: as rational numbers in fraction form, as ratios, as 
decimals, and as percents. Although the last two are closely linked—to the extent that 
the digits are identical in their representations—it is not always easy for students to 
appreciate what the % symbol signifies, and that what appears to be a whole number 
(or, at least, a number greater than 1), is actually a fractional part of 1. What is more, 
there are many different concrete illustrations of these representations. Students may 
encounter fractions being illustrated using area models, fraction strips (or fraction 
walls), number lines, and set models, with each model perhaps highlighting certain 
aspects of fractions. Sowder (1988) observed that many children are “model poor”, 
having only a circular model to represent fractional quantities. This limited 
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representation restricts access to some of the relationships that are important to 
establish, not least of which is the connection to decimals and percents. The idea of 
epistemic fidelity is useful here (see, e.g., Stacey, Helme, Archer, & Condon, 2001), 
since it highlights the need for models and representations to accurately capture the 
mathematical features of the concept they are trying to represent.  
 Knowing about and using suitable representations in teaching has long been 
recognised as a significant component of pedagogical content knowledge (PCK). In his 
seminal paper, Shulman (1986) wrote: 

[Pedagogical content knowledge includes knowledge of] the most useful form of 
representations of those ideas, the most powerful analogies, illustrations, examples, 
explanations, and demonstrations—in a word, the ways of representing and formulating 
the subject that make it comprehensible to others. … The teacher must have at hand a 
veritable armamentarium of alternative forms of representation … . (p. 9) 

Thompson and Thompson (1996) also highlighted that teachers need conceptual 
schemes that incorporate a clear picture of the materials, activities, and explanations 
that will facilitate the development of mathematical understanding in students. Other 
researchers (e.g., Askew, Brown, Rhodes, Johnson, & Wiliam, 1997; Ma, 1999) have 
pointed to the significance of teachers being able to make connections among and 
within topics in order to improve students’ learning outcomes.  
 While brief, the discussion above highlights that fraction teaching has the potential to 
incorporate a wide range of models or representations, although Sowder (1988) suggests 
that students use few of them. Through these representations it may be possible to help 
students develop connected understanding of fractions, decimals, and percents. As 
Askew et al. (1997) suggest, however, this will depend on the way teachers use the 
representation or model, and what connections they can make explicit with it. The 
purpose of the present study, therefore, was to examine what representations teachers 
draw on when talking about fractions and percentages, and what strategies they have for 
helping students to develop appropriate connections.  

Method 
Participants 
Four cohorts of teachers—pre-service and practising—provided data for this study. 
These cohorts are described below, but when referring to all the participants as a single 
group the term “teachers” will be used, irrespective of whether or not they were 
employed in that role. Note that the data from the pre-service teachers were initially 
analysed in Chick (2003), but have been reanalysed for this paper. 

Pre-service teachers 

DipEd cohort  
Participants from the DipEd cohort (N=16) were preparing to become secondary 
mathematics teachers. They had studied tertiary-level mathematics to at least sub-major 
level, prior to undertaking a one-year Diploma of Education. The mathematics method 
unit that they were doing at the time of the study focused on the teaching of secondary 
level mathematics topics.  
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BEd cohort  
Those in the BEd cohort (N=21) were in the final year of a four-year Bachelor of 
Education degree preparing to become primary teachers, and prior to this had completed 
mathematics to at least Year 11. The mathematics units in the BEd program covered 
elementary mathematics content and pedagogy simultaneously, and at the time of the 
study the cohort had completed nearly six semesters of such units. The content was 
mainly concerned with primary school level mathematics, and had included fractions 
and decimals. The timing of the study, and the fact that participation was voluntary, 
makes it likely that these pre-service teachers were the more mathematically confident 
of all the BEd students that year, and so the results for the BEd cohort may be inflated.  

Practising teachers 

Secondary cohort 
Participants from the secondary cohort (N=40) came from three Victorian metropolitan 
government secondary schools. They comprised all those members of staff in the 
schools involved in teaching one or more classes of mathematics. As a result the 
secondary cohort included specialist mathematics teachers, mathematics and science 
teachers, and some teachers teaching outside their area of formal qualification. Their 
teaching experience ranged from being in their first year through to more than 20 years 
in the classroom.  

Primary cohort  
The practising primary teachers (N=15) were Grade 5 or 6 teachers from a variety of 
government, Catholic, and independent schools around Victoria. Their paths to their 
teacher qualification were diverse: some had a four-year education degree, others had a 
degree in another discipline followed by a one-year education diploma. The range of the 
number of years of teaching was as diverse as the secondary cohort. These teachers 
were volunteer participants in a study on PCK in mathematics, and may have a greater 
degree of mathematics teaching confidence than primary school teachers in general. 

The task 
All cohorts responded to a written questionnaire addressing a wide range of topics 
associated with pedagogical content knowledge for mathematics. The questionnaires 
varied for the different cohorts, but the following item was common to all of them: 
“Write down three ways of convincing someone that 3/8 is the same as 37.5%”. This 
item is the focus of the present study. Space was provided on the questionnaire for three 
written suggestions. The practising teachers were also interviewed about their responses 
to the questionnaire items, but for the purposes of this paper only the written responses 
were analysed. There was one exception, a teacher who provided interview data only. 

Analysis 
As the data were analysed and entered into a spreadsheet, each different method used in 
a response was given a code to indicate the way in which the relationship between 3/8 
and 37.5% was demonstrated (e.g., by doing a division algorithm with 3÷8, by using an 
area model, by using a dual number line, and so on). Additional annotations were made 
to record any variations from the standard response types. A total of 32 different 
methods were observed, although some of these were similar and so the data could, 
perhaps, have been condensed into fewer categories. In the case where one of the 
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methods suggested by a teacher was essentially equivalent to one of his/her earlier 
suggestions this was noted as a “repeat” in order to identify distinct strategies.  
 In addition to having the nature of the method recorded, each method was rated 
“good”, “okay”, or “incorrect/inadequate”, depending on its adequacy as a “way of 
showing someone that 3/8 is the same as 37.5%”. Although it could be argued that 
applying the algorithm 3/8 x 100/1 is not a convincing demonstration of equivalence, it 
is a standard approach to determining the relationship between a fraction and its 
corresponding percentage value, and so was rated as “good”. Indeed, it is the only 
strategy that is readily applicable in some circumstances, such as with awkward 
fractions. “Use a calculator” was also rated as “good”, on the grounds that, provided the 
operations chosen are deemed appropriate, the calculator has a sort of computational 
authority. Other explanations or demonstrations that were clear and had the power to 
convince were also rated “good”. Methods that rated “okay” were those that were 
partially correct/convincing, incomplete, or difficult to implement. Examples include 
asserting 3/8 = 0.375 without justification, trying to show 37.5% by dividing a “pie 
chart” into 100 wedges, or writing “turn 37.5% into a fraction” without discussing how. 
Finally, the rating of “incorrect/inadequate” was given to responses which were not 
clear or which were erroneous or lacking key details (such as “guess and estimate”).  
 The data for the present study were initially coded and rated by the second author, 
and then checked by the first author.  

Results and discussion 
The results are presented in two parts. First, an overall picture of the number and quality 
of the suggestions made by the teachers will be provided. This will give an indication of 
the number and appropriateness of the representations and explanations that teachers 
had at their disposal for dealing with fractions and percentages. The second subsection 
reports more specifically on the different kinds of techniques that were proposed, and 
examines the “explanatory power” of some of the methods.  

Number and quality of responses 
The number and quality of the responses, for each of the four cohorts, is shown in 
Table 1, which gives a detailed breakdown of the distribution of “good”, “okay” and 
“incorrect/inadequate” responses. Overall, 82% of the teachers (DipEd 81%, BEd 71%, 
Secondary 83%, Primary 93%) were able to come up with at least one “good” response, 
although this may simply have been to apply the fraction-to-decimal computation or to 
“use a calculator”. In contrast, only 38% were able to come up with three distinct 
“good” or “okay” methods (DipEd 44%, BEd 14%, Secondary 50%, Primary 40%), and 
fewer than 20% could provide three distinct “good” methods (see line 1 of Table 1). All 
of the practising teachers were able to suggest at least one “okay” method or better.  
 Looking at the cohorts together, nearly one-third could not provide what the 
participant adjudged to be three suitable methods (regardless of whether they were rated 
by the researchers as suitable or not, or a repeat). The pre-service teachers, in particular, 
struggled in this area, with over half of them failing to find three methods, and a handful 
failing to propose any methods. This suggests that experience and professional 
development do provide opportunities for growth in expertise. Having said this, 
however, it is of concern that a quarter of all the teachers—with this proportion 
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applying to the practising teachers as well—made at least one suggestion that was 
wrong or seriously inadequate.  

Table 1. Percentage of teachers and the number of appropriate methods proposed. 

Number of methods provided and their value* DipEd 
(N=16) 

BEd 
(N=21) 

Secondary 
(N=40) 

Primary 
(N=15) 

Provided 3 or more distinct “good” methods 25% 14% 18% 20% 

Provided 2 “good” and 1 “okay” distinct methods 13% 0% 28% 7% 

Provided 2 “good” and 0 “okay” distinct methods 13% 14% 20% 20% 

Provided 1 “good” and 2 or more “okay” distinct methods 6% 0% 3% 13% 

Provided 1 “good” and 1 “okay” distinct methods 13% 33% 10% 33% 

Provided 1 “good” and 0 “okay” distinct methods 13% 10% 5% 0% 

Provided 0 “good” and at least one “okay” distinct methods 6% 10% 18% 7% 

Provided no “good” or “okay” suggestions 13% 19% 0% 0% 

Unable to get 3 methods (regardless of correctness or 
repetition) 44% 57% 18% 27% 

Did not provide any suggestions 6% 14% 0% 0% 

Provided at least one “incorrect/inadequate” suggestion 13% 38% 25% 27% 

Provided 4 “good” or “okay” distinct suggestions 0% 0% 8% 0% 

Provided a 4th suggestion (may not have been “okay”, and 
nor may the earlier ones have been) 6% 0% 8% 7% 

Number of repeated/equivalent suggestions 6% 5% 13% 20% 

Methods for showing the equivalence of 3/8 and 37.5% 
In all, the 92 teachers provided 236 methods that they felt were appropriate for showing 
the equivalence of 3/8 and 37.5%. As mentioned earlier, 32 codes were used to identify 
the different methods or strategies, but there were some commonalities that allow the 
methods to be grouped loosely. These categories are described below, and their 
distributions are indicated in Table 2. In some cases the strategies suggested by the 
teachers were not described completely with necessary connections made explicit (so 
that a reader could not be certain that the explanation would be implemented 
successfully), but if the underlying principle was evident it was grouped into the 
appropriate category even if it had been rated as “incorrect/inadequate”.  

Computational approaches 

As can be seen in Table 2, the most common approaches were computational (42% of 
all suggestions), with the prevalent strategy among these to compute 3/8 x 100/1 
(suggested in 17% of the responses overall), which the teachers usually did by hand. 
This approach, like most of those placed in this category, has little explanatory power: 
the person to be convinced about the relationship has to accept that the computation 
does, indeed, convert a fraction to a percentage. Other strategies included in this 
category were using a calculator (proposed in 11% of the suggestions, usually without 
explaining what operations were necessary), applying a division algorithm to 3÷8 or 
300÷8, and converting both 3/8 and 37.5% to decimals. To be placed in this category 
there had to be a sense of the formulaic application of an algorithm or calculating 
without deep attention to relationships. This is not meant to devalue the approach, but to 
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highlight what may or may not be conveyed by it. As noted earlier, there are some 
fraction to percentage conversions that will only be possible by such a method, since 
some of the strategies in the remaining categories below will not work so readily for 
things like “convert 7/9 to a percentage”. 

Numerical relationships 

Many of the explanations took advantage of the numerical relationships among the 
quantities, and used these relationships to establish the result. One of the most common 
of these approaches was to establish a sequence of fractions equivalent to 3/8, from 
which 37.5% could be obtained (for example, 3/8 = 75/200 = 37.5/100). An alternative 
was to start from 37.5% and establish the result via 37.5/100 = 375/1000 and then 
cancel common factors. About 11% of all responses used one or other of these 
strategies. Still others wrote that “3/8 = something/100” and then used algebra or 
equivalent fractions to establish the value of “something”. The numerical relationships 
in all of the above methods were, in general, readily established by mental computation. 
As was the case for the algorithmic/computational approaches, in most cases there were 
implicit assumptions about the meaning of percentage: the equivalence of 37.5% and 
37.5/100 was assumed without explanation. The other family of responses grouped with 
this category of “Numerical relationships” used benchmark values to establish 
equivalences, such as working from 50%=1/2 (assumed to be well-known) to establish 
25%=1/4 and 12.5%=1/8, and thus 3/8=37.5%. About 5% of all the responses used this 
benchmark approach.  

Diagrammatic representations 

About 18% of the responses proposed some diagrammatic or visual representation to 
establish the relationship. Most of these involved area models but of the 14% of 
responses that attempted such a representation fewer than half were convincing. Most of 
the successful ones established eighths in a region (often a circle), and obtained the 
relationship of 1/8=12.5% from the assumed to be well-known relationship between 
50% and 1/2 (see also the discussion about numerical relationships above). One unusual 
successful example involved a 10x10 grid, in which every eight squares were identified 
and three of these coloured in. The teacher’s description successfully dealt with the four 
squares remaining at the end. The more problematic examples included (a) attempting 
to represent 37.5% in a “pie cut into 100” without considering whether this could be 
done in practice, let alone showing how this is actually the same as 3/8 of the same 
circle, (b) showing 3/8 of a circle and asserting its equivalence with a square 10x10 grid 
shaded to show 37.5%, and (b) suggesting “cutting cake” with no further detail. Other 
diagrammatic approaches used the circumference of a circle rather than the area (not 
done successfully), or used number lines, with only two teachers proposing an 
appropriate dual number line. One particularly nice representation used a 1 m measuring 
tape and folded it into eighths, and then measured the length of 3/8. 

Asserted results 

In a number of responses (7% overall) the teachers had an appropriate explanation or 
sequence of computational steps, with the exception of an unexplained jump from 3/8 to 
0.375 (or, as was done by some of the teachers, from 1/8 to 0.125). Responses were put 
in this category if this equality was asserted without explanation. It may be that the 
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teachers envisaged demonstrating the equality on a calculator or by some other means; 
or it may have been a known fact for them but they may not have realised that they were 
also assuming that it was known to the recipient of their explanation. Establishing this 
equality seems to be part of the requirement of the explanation, along with developing 
the more general connection between a fraction and its associated percentage. 

Use of meanings 

A small number of responses (3%) made explicit use of the meaning of division in 
trying to establish the equivalence of 3/8 and 37.5%. For example, two teachers 
suggested taking 100 objects, sharing them among 8 groups, and seeing how many 
objects are in 3 groups. The other interesting approach interpreted both the fraction and 
the percentage as operators and suggested calculating both 3/8 of some number and 
0.375 of the same number.  

Unclear or tautology 

This category was reserved for those strategies in which it was not clear what the 
teacher intended to do or how, or where the teacher made a tautological assertion. As 
examples of the former, teachers wrote “Estimation” (secondary), “Compare with a 
fraction like 4/8 = 1/2” (secondary), “Measuring volume of water” (primary), “Make 
them divide to two decimal points [sic]” (DipEd), and “Using a protractor” (BEd). As 
examples of tautological assertions, one teacher wrote “30/80 = 3/8 = 37.5/100” 
(secondary), with no indication of how these relationships—notably the final one—were 
established, whereas another wrote  

If you completed a test that was out of 100 and if you received a grade [of] 37.5 which is 
the same as 37.5%. What if the test was out of 8 instead of 100. 37.5 out of 100 is the 
same as 3 out of 8. (Primary) 

Three of the teachers wrote that the 3/8 = 37.5% relationship holds “because it is” or 
suggested, “tell them [students] to trust you because you are the teacher”.  

Table 2. Percentage of methods by type. 

Method type DipEd 
(N=36*) 

BEd 
(N=43*) 

Secondary 
(N=115*) 

Primary 
(N=42*) 

Computational (limited “demonstrative” power) 47% 42% 42% 41% 

Uses numerical relationships 33% 12% 22% 21% 

Diagrammatic representations (model or illustration) 8% 21% 19% 19% 

Asserted a non-obvious result without explanation 6% 5% 9% 5% 

Uses meaning of 3/8 or 37.5 0% 5% 3% 5% 

Unclear or “it is” 6% 16% 6% 10% 

* Here N is the total number of methods proposed by the cohort. 

Conclusions 
Examining the results across the cohorts, it appears that the pre-service BEd students 
did not have as many successful strategies at their disposal as their practising and 
secondary-oriented counterparts. Nevertheless, they suggested appropriate 
diagrammatic strategies in the same proportion as the practising teachers, and better 
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than the DipEd cohort, perhaps because the latter cohort had reliable personal 
computational skills at the same time as having had limited opportunities to develop or 
learn other strategies for assisting students. 
Although a wide range of strategies was presented, the prevalence of routine 
computation was striking. The frequent use of circle models for area reinforces 
Sowder’s 1988 finding of their abundant use, and so perhaps we now know why 
Sowder’s students used circle models almost exclusively: they learned from their 
teachers.  
 Finally, some further thought needs to be given to what each of the different methods 
make transparent and what is obscured. The computational approach works for every 
possible fraction yet it appears to hide the fundamental relationship between a fraction 
and its decimal value in a computation that it is possible to conduct—and teach about—
almost mindlessly. On the other hand, the use of “nice” relationships and convenient 
benchmarks to determine the equivalence of 3/8 and 37.5% would only be generalisable 
to a few special cases. At the same time, however, such methods build facility with 
mental computation, allow work with benchmarks, and are perhaps better able to 
indicate the underlying connections between fractions and percentages. Furthermore, 
these “special” cases may be useful for motivating and justifying the more algorithmic 
approaches, and for highlighting why they are necessary. The significance of the 
teaching opportunities that become available because of access to multiple 
representations cannot be understated.  
 There are clear implications for teacher preparation and professional learning. Not 
only is it important that teachers have access to multiple representations that give 
students alternative models for concepts, but teachers need to realise that some models 
are better than others for highlighting particular mathematical features. What one model 
makes obvious may be obscured or difficult to see in another model. Teachers also need 
to be aware about the generalisability of a representation and of the importance of 
special cases that can be used to illustrate more general connections that might be 
difficult to make clear using more arbitrary examples. 
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This paper addresses three key distinctions central to educational research: (i) the 
distinction between convergent and critical synthesis; (ii) between data source and data; and 
(iii) between the compatibility of different theories and the compatibility of the interpretive 
accounts generated by different theories applied to a common data source. Our capacity to 
learn from research is precisely our capacity to synthesise the findings of research to inform 
our actions in particular educational situations. The realisation of such a goal requires a 
reconceptualisation of research synthesis as partial, purposeful, situated and critical. 
Mathematics classroom research provides the context for this discussion. 

Reconceptualising synthesis 
By what processes does the education community integrate research into its communal 
knowing? That is: How do we learn from research? The process of research synthesis is 
fundamentally concerned with the challenge of engaging purposefully, strategically and 
selectively with the body of existing research. Different forms of research synthesis 
construct communal learning in different ways (c.f. Lather, 1999). 
 Since a key motivation for educational research is to understand and inform 
educational practice, strategies are required for the synthesis of the findings of different 
research studies. Attempts at synthesising research findings have largely focused on a 
well-defined educational question or issue (for example, the instructional value and 
optimised use of different types of student group work) disconnected from other aspects 
of educational settings, and debate has focused on the methodological criteria by which 
contributory findings might be selected for inclusion in the synthesis process and on the 
techniques by which the synthesis is conducted. The process itself is most frequently 
conceived as convergent and either aggregative (meta-analysis) or integrative (best 
evidence synthesis). The argument being framed in this paper is that it is “critical 
synthesis” that is most likely to advance our understanding and our advocacy in relation 
to the mathematics classroom. Suri and Clarke (2009) have already advocated 
methodologically inclusive research synthesis and elaborated the criteria by which such 
synthesis might be undertaken. There is a comparable need for theoretically inclusive 
research synthesis. 
 We can distinguish quite different approaches to research synthesis; approaches that 
connect particular methods to distinct purposes: 
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Meta-analysis has been with us for some time—because of the quite stringent statistical 
conditions on its use, and its metric orientation, we might characterise it as aggregative 
synthesis. The product of a meta-analysis is a decision in relation to a stated research 
question, most frequently involving an explicit comparison. 
Best evidence synthesis adopts a much more assimilative or consensus approach—we 
characterise this as integrative. The product of a best evidence synthesis is likely to be 
the differentiated portrayal of a situation or an issue. 
Critical synthesis would exploit, rather than minimise, differences between the reports; 
juxtaposing features and findings to reveal elements of context and process that are 
foregrounded or ignored in each report—such a synthesis is interrogative. The product 
of such a synthesis would be a critique. 
 In moving from aggregation to interrogation, we move from the requirement of 
similarity to the exploitation of difference, from standardisation to differentiation. 
 Critical synthesis is less familiar and warrants elaboration. Critical synthesis can: 
highlight the inherently ideological nature of all research (Lather, 1986); “signify 
reformulated historical narratives, social meanings and problematics, interpellative 
obligations, analytics and assignments for educational inquiry” (Livingston, 1999, p. 
15); illuminate the “ambiguities, tensions and compromises that arise among 
stakeholders” (Windschitl, 2002, p. 131); explicitly “identify and criticize disjunctions, 
incongruities and contradictions in people’s life experience” (Candy, 1989, p. 7); inform 
policy by recognizing and fostering overlooked quality published work; reveal “the 
structures, powers, generative mechanisms and tendencies” within discussions of 
policy, practice and research in a field (Clegg, 2005, p. 421); and disrupt conventional 
thinking to construct spaces for new ways of talking about practice (Segall, 2001). 

Researching classrooms: Data source and data 
Mathematics classrooms offer a rich educational environment, providing recordable 
instances of language use, a variety of classroom organizational groupings, varied 
instructional practices (demonstration, lecture, whole class discussion, and collaborative 
group work), the utilization of a variety of artefacts (both physical and conceptual), the 
potential for ontological, epistemological, ethical and moral tensions to emerge, and, 
arguably, a highly diverse range of learning outcomes. It is this richness and complexity 
that offers the opportunity for the interrogation of current theory and that also poses the 
greatest methodological challenges. 
 Multi-camera on-site video technology and post-lesson video stimulated interviews 
were used in a purposefully inclusive research design to generate a complex data source 
amenable to parallel analyses from several complementary theoretical perspectives. 
Data has been generated and analysed from this data source using a variety of theories. 
While each analysis is demonstrably valuable in itself, in combination, these results 
demonstrate the inadequacy of any single theory or theoretically-driven analysis to 
capture the complexity of the mathematics classroom and the corresponding need for 
inclusive multi-theoretic research designs. 
 The focus of the analyses was a data source containing video records of classroom 
and interview interactions, supplemented by digitised student and teacher materials. A 
three-camera approach was employed (Teacher camera, Student camera, Whole Class 
camera), including onsite mixing of camera images into split-screen video records used 
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to stimulate participant reconstructive accounts of classroom events in post-lesson 
student and teacher interviews (Clarke, 2006). 
 The multiple, synchronised recordings of classroom interaction maximize the 
sensitivity of the anticipated parallel analyses to a wide range of classroom actions and 
learning outcomes, and facilitate a form of reciprocal interrogation, where the theories 
are employed to generate and analyse the data and the comparison of the parallel 
analyses facilitates the reflexive interrogation of the theories. 
 The point has been made in various earlier publications, that if early researchers had 
access to the same tools for data collection and analysis as are available today, the 
general view of classroom interactions would be quite different (Clarke, Mitchell & 
Bowman, 2009). The most striking of these differences concerns the role of students in 
classrooms. Single-camera and single-microphone approaches, with a focus on the 
teacher, embody a view of the passive, silent student at odds with contemporary 
learning theory and classroom experience. Research done with technologically more 
sophisticated approaches has described a quite different classroom, where different 
students are active in different ways, exercising purposeful agency in the classroom, and 
contributing significantly to their own learning.  
 We have an obligation as researchers to accept responsibility for the constructed 
nature of our data—and to document the process of data generation, identifying the 
points at which decisions were made regarding inclusion and exclusion. This is not 
always easy—particularly when the acts of exclusion are made for us by the technology, 
the method, or a theoretical frame that attends to some aspects of the setting and ignores 
others. 
 Theory is embedded in research from the inception of any project. The choice of 
setting, of content domain, of participants, of targeted data types and the means by 
which these will be generated are all a consequence of the researchers’ theoretical 
position (explicit or implicit). Consider video: Every decision to zoom in for a closer 
shot or to pull back for a wide angle view represents a purposeful act by the researchers 
to selectively construct a data source optimally amenable to the types of analyses 
anticipated and maximally aligned with the particular research questions of interest to 
the researchers. As the discourse of the classroom acts to position participants in ways 
that afford and constrain certain practices, so the discourse of educational research acts 
to position participants in ways that afford and constrain certain interpretations. 

Parallel analyses within the Learner’s Perspective Study 
In the Learner’s Perspective Study, the aim is to employ a variety of theoretical and 
analytical approaches to explore data generated from a common data source. This 
approach was intended to realize two very specific aims:  

• Understand the setting/s: To maximize the sensitivity of the combined analyses to 
a wide range of classroom actions and learning outcomes, and  

• Understand the theory/ies: Through the combination of theoretical perspectives, to 
identify what is attended to by each and what is excluded, and to consider the 
extent to which the interpretive accounts generated by use of the various theories 
are complementary, mutually informing, or, perhaps, incompatible. 
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Compare the following four parallel analyses undertaken as part of the Learner’s 
Perspective Study: 

Variation theory (Häggström & Emanuelsson, 2010) 
This study is guided by an interest in teachers’ opportunities to make distinctions in 
relation to what students understand in the mathematics classroom. The analysis is made 
of “question episodes” in grade eight mathematics classrooms from four countries in the 
LPS video dataset. A question episode is a section of interaction that typically starts 
with the teacher asking a question and ends when the topic of discussion is changed. 
Variation theory and the concept of Responsiveness are combined to capture two 
different aspects of classroom instruction—the pattern of variation and the pattern of 
interaction—which are analyzed and compared in relation to teachers’ opportunities to 
learn about the students’ conceptions. The findings suggest that both the character of the 
tasks used, as well as the ways in which teachers ask questions, and perhaps even more 
importantly how follow-up questions are phrased and aligned to student responses, 
influence how the students’ knowledge becomes visible in interaction. Our analysis 
suggests that cultural differences between mathematics education in “the East” and “the 
West” are complex and far from clear-cut. 

Cognitive reductionism in interactional analysis (Ohtani, 2010) 
Recent research has a common and persuasive vision of classrooms as a site for 
discursive practice. This study investigates how Japanese linguistic conventions are 
performed in classrooms in ways that may privilege certain participation structures in 
classroom practice. Japanese value implicit communication, requiring speaker and 
listener to supply the context without explicit utterances and cues. In Japanese 
discourse, agency or action are often hidden and left ambiguous. This tendency is 
typically found in leaving sentences unfinished. Such culturally specific linguistic traits 
are different from English. In English, when introducing a definition, the teacher might 
employ a do-verb: “We define”. In Japanese classrooms, the teacher often introduces a 
definition in the intransitive sense as if it is beyond one’s concern. Such differences in 
the location of agency, embedded in language use, constitute a different participation 
structure in classroom practice. Analytical tools of ethnomethodological conversational 
turn allocation in the classroom may need to be reexamined in light of Japanese 
culturally-grounded linguistic traits. The reflexive relationship between discourse 
structure and participation structure is evident from analysis of the data generated using 
the LPS research design. 

Conversation analysis: Epistemic stance (Sahlström & Melander, 2010) 
This analysis contributes to the growing body of work within Conversation Analysis 
(CA) on learning, knowing and remembering, by investigating the ways in which 
participants display their epistemic stance, i.e. their ways and claims of knowing, by 
investigating how the epistemic stances change within and across situations and by 
investigating whether there are differences between classrooms in different cultures. A 
comparative analysis was conducted of 15 lessons and post-lesson interviews in eighth-
grade mathematics classrooms in Sweden, USA, and Australia. The results show an 
abundance of epistemic stance markers (such as “think”, “know”, “say”) in both teacher 
and student talk. In more precise analyses, epistemic stance changes were studied in 
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relation to the same content, both within and across situations. The results show that 
there are substantial possibilities in this approach. We can study changes in 
“participation” in a systematic, practical and concrete way, pursuing the analysis of 
learning in interaction on the basis of the evidence participants themselves offer as 
evidence for their ways of knowing. The further development of this approach requires 
expansion of current notions of epistemic stance beyond the verbal and word-oriented 
work done so far. 

Discursive practice and learning (Clarke & Xu, 2010) 
Mathematics learning can be conceptualised in terms of participation in forms of social 
practice, where discourses form key components of that practice. Language plays a 
central role in mediating and constituting this participation, which is performed as 
classroom discourse. Adopting this perspective promotes mathematical discourse from 
the role of a mere instructional means to that of the object of learning. Traditionally 
regarded as only auxiliary to thinking, active mathematical communication is 
nevertheless believed to enhance mathematical learning. It is a useful exercise, however, 
to conceptualize mathematics as a special form of communication. Indeed, from this 
perspective, the term “learning mathematics” becomes tantamount to developing 
mathematical discourse. The classroom settings (and practices) analysed in this study 
(in Shanghai, Seoul, Hong Kong, Tokyo, Singapore, Berlin, San Diego and Melbourne) 
suggest that discursive practices are culturally-situated to a profound extent and that 
differences in these practices can be associated with distinctive learning outcomes. 
 Each of the above researchers applied their own analytical perspective to select 
elements within the data source, thereby generating a distinct data set for each of the 
intended analyses. Each data set, so constructed, was then analysed using the same 
theoretical framework that guided the construction of the data set. In this respect, each 
analysis resembles any mono-theoretic research design in that the constructs privileged 
by the chosen theory were matched to data types and a research design constructed that 
employed methods suitable to the generation of the targeted data. Each independent 
analysis is vulnerable to the same accusation of circularity or pre-determination that can 
be levelled at any mono-theoretic research design. Once available, however, the results 
of the parallel analyses can serve several purposes:  

• By addressing different facets of the setting/s and providing a richer, more 
complex, more multi-perspectival portrayal of actors and actions, situations and 
settings; 

• By offering differently-predicated explanations for documented phenomena and 
differently-situated answers to common research questions; 

• By increasing the authority of claims (and instructional advocacy), where findings 
in relation to the same question or the same phenomenon were coincident; 

• By qualifying the nature of claims, where findings of the parallel analyses in 
relation to the same question or phenomenon were inconsistent or contradictory; 
and 

• By providing a critical perspective on the capacity of each particular theory to 
accommodate and/or explain particular phenomena, in comparison with other 
theories employed to conduct analyses related to the same events in the same 
setting. 
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The derivation of all findings from the same data source and the application of all 
analytical approaches (and therefore all findings) to the same setting/s (the mathematics 
classroom) greatly strengthens the project’s capacity to realise these five purposes. 
 In relation to the first of the two stated goals of multi-theoretic research design 
(above), all four analyses relate to the one data source generated through 
implementation in the classrooms of many different countries of a common research 
design, but they address different aspects of that data source. The question to be 
addressed is “How might these analyses of the same data source and pertaining to the 
same educational setting (the mathematics classroom) be synthesized?” 

The pragmatism of theoretical inclusivity and the challenge of 
synthesis 
Specifically, for the purposes of this paper, I am interested in establishing under what 
conditions we can synthesise across different parallel analyses of data generated from 
the same data source if those analyses are grounded in different theories. 
 In 2001, the book Perspectives on Practice and Meaning in Mathematics and 
Science Classrooms (Clarke, 2001) reported ten parallel analyses, undertaken from 
different theoretical perspectives, of a common body of classroom data drawn from 
eight mathematics and science lessons. Since that time, an emergent pragmatism within 
the education research community has seen a growing acceptance of multi-theoretic 
inclusive designs, at least in principle (Cobb, 2007). The interdependence of theory and 
research findings has been explored in several recent studies. For example, the work by 
Even and Schwarz (2003) compared the two theoretical perspectives: Cognitivist theory 
and Activity theory in their investigation of a mathematics lesson. Their study 
demonstrated that the two approaches suggested different interpretations of the situation 
and different origins for the learning difficulties identified. While cognitivist theory 
pointed to student difficulties in integrating information from different representations, 
the analysis using Activity theory suggested that the teacher and the students 
participated in the same lesson but in different activities guided by different motives, 
goals, beliefs, and norms. Even and Schwarz concluded their paper with a note of 
caution regarding any attempt to harmonise and integrate different theoretical 
approaches towards the development of a new radical theory.   
 Each theory brings with it a vocabulary that privileges certain constructs and 
downplays or ignores others. It is not the compatibility of the two theories that should 
be considered, but of the interpretive accounts generated by their application to a 
common representational record of the same classroom events. So, the relevant question 
is “Under what conditions are the interpretive accounts compatible?” This contingent 
compatibility focuses our attention on the use of theories as interpretive tools. 

Some principles in the use of theory in classroom research 
• No one type of analysis can provide the definitive account of classroom practice. 
• Each theory privileges certain aspects (and outcomes) of the mathematics classroom 

and discards other aspects (and outcomes).  
• Each mono-theoretical account contributes a particular and potentially valuable 

perspective. 
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• It is the critical synthesis of these accounts that should optimally inform our 
understanding of the classroom. 

• Inclusive designs optimise the validity of such critical syntheses. 
• No single synthesis can provide the definitive account of classroom practice. 
It is not necessary to aspire to a single all-inclusive theory. If theories are seen as tools 
with descriptive and explanatory capacities, then the essential critierion for the 
application of a particular theory in research is “Does it address the question or 
phenomenon of interest in a way that accommodates the salient features of the setting, 
including living and non-living participant elements and the mechanisms by which they 
contribute to the setting, and the embracing cultural, historical or political contexts, as 
these are realised performatively as affordances or constraints of the setting?” Which is 
no more than to say, “Does the theory resonate with our values and research interests?” 
Assuming the answer to both questions is “Yes,” the insights made tangible by such a 
theory will still be partial with respect to the setting. And this is inevitable. 
 Theoretically inclusive critical research synthesis attempts to reduce this partiality, 
by the juxtaposition of theoretically-situated descriptions and explanations. Through 
this juxtaposition, theoretically inclusive research synthesis highlights discrepancy and 
agreement, voice and silence, inclusion and omission, and helps us to set the bounds on 
our aspirations in using theory. 
 In conducting such critical syntheses, our goal is not completeness but relevance. 
Our critique is not of the compatibility of the theories but of the accounts that they 
produce of events or relationships in that particular research setting. It may be that the 
ontologies or epistemologies underlying the various analyses are fundamentally 
different, and where this is the case, the warrants for any findings will be differently 
drawn. This may lead to the useful juxtaposition of both the finding and the warrant. It 
is conceivable that two sets of findings cannot simultaneously be true, because the 
warrants to which they appeal are grounded in incompatible ontologies. We then find 
ourselves in the fortunate position of being able to interrogate not the setting but the 
theories, since the findings derive from and relate to similar settings drawn from the 
same data source. 

Summative remarks 
The deliberate and strategic use of parallel analyses informed by complementary but 
distinct theoretical frameworks offers a form of safeguard against the possibility that 
commitment to a single analytical framework might render our research insensitive to 
potentially salient considerations and significantly reduce its explanatory potential. 
 It is essential that we broaden our conception of research synthesis, both in relation 
to its methods and its goals. As we become more methodologically inclusive in our 
primary research, so we must extend this inclusivity to our attempts to learn from our 
research and the research of others. This process of knowledge construction from 
multiple research studies can rightly be called “synthesis.” But a commitment to 
inclusivity is not a commitment to consensus or to convergence. Inclusivity also 
requires the recognition and even the celebration of difference. In the context of 
research synthesis, this brings with it the acceptance of a bounded pragmatism in our 
attempts to learn from educational research. 
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To re-state the point made earlier: It is not the compatibility of any two theories that is 
being considered, but of the interpretive accounts generated by their application to a 
common representational record of the same classroom events. So, the relevant question 
is “Under what conditions are the interpretive accounts compatible?” This compatibility 
is contingent on particular conditions governing the application of the theories in a 
particular setting for a particular purpose, and focuses our attention on the identification 
of these contingencies for compatibility. Theoretically inclusive research designs and 
critical synthesis may help us to understand both setting and theory, and thereby 
facilitate the reflexive refinement of both. 
 

Acknowledgements 
This paper could not have been written without the insights provided by conversations 
with Paola Valero, Li Hua Xu, and Harsh Suri. 

References 
Candy, P. C. (1989). Alternative paradigms in educational research. Australian Educational Researcher, 

16(3), 1–11. 
Clarke, D. J. (Ed.) (2001). Perspectives on practice and meaning in mathematics and science classrooms. 

Kluwer Academic Press: Dordrecht, Netherlands. 
Clarke, D. J. (2006). The LPS Research Design. Chapter 2 in D. J. Clarke, C. Keitel, & Y. Shimizu 

(Eds.), Mathematics classrooms in twelve countries: The insider’s perspective (pp. 15–37). 
Rotterdam: Sense Publishers. 

Clarke, D. J., Mitchell, C. & Bowman, P. (2009). Optimising the use of available technology to support 
international collaborative research in mathematics classrooms. In T. Janik & T. Seidel (Eds.) The 
power of video studies in investigating teaching and learning in the classroom (pp. pp. 39–60). New 
York: Waxmann. 

Clarke, D. J. & Xu, L. H. (2010, August). The cultural specificity of the instructional use of student 
spoken mathematics and some implications for learning. Paper presented at the European Conference 
on Educational Research, Helsinki, Finland. 

Clegg, S. (2005). Evidence-based practice in educational research: A critical realist critique of systematic 
review. British Journal of Sociology of Education, 26(3), 415–428. 

Cobb, P. (2007). Putting Philosophy to work. Coping with multiple theoretical perspectives. In F. K. 
Lester (Ed.), Second handbook for research on mathematics teaching and learning (pp. 1293–1312). 
Reston, VA: NCTM. 

Even, R., & Schwarz, B. B. (2003). Implications of Competing Interpretations of Practice for Research 
and Theory in Mathematics Education. Educational Studies in Mathematics, 54(2), 283–313. 

Häggström, J. & Emanuelsson, J. (2010, August). Question episodes: Teachers’ opportunities to learn. 
Paper presented at the European Conference on Educational Research, Helsinki, Finland. 

Lather, P. (1986). Issues of validity in openly ideological research: Between a rock and a soft place. 
Interchange, 17(4), 63–84. 

Lather, P. (1999). To be of use: The work of reviewing. Review of Educational Research, 69(1), 2–7. 
Livingston, G. (1999). Beyond watching over established ways: A review as recasting the literature, 

recasting the lived. Review of Educational Research, 69(1), 9–19. 
Ohtani, M. (2010, August). Reflexive constitution of discourse structure and participant structure: High 

context and hidden agency in Japanese linguistic trait. Paper presented at the European Conference 
on Educational Research, Helsinki, Finland. 

Sahlström, F. & Melander, H. (2010, August). ―Getting‖, ―knowing‖, ―understanding‖ mathematics— 
A comparative analysis of epistemic positioning in classrooms in Sweden, Australia and the USA. 
Paper presented at the European Conference on Educational Research, Helsinki, Finland. 

Segall, A. (2001). Critical ethnography and the invocation of voice: From the field/in the field: Single 
exposure, double standard? Qualitative Studies in Education, 14(4), 579–592. 

199



CLARKE 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

Suri, H. & Clarke, D. J. (2009). Advancements in research synthesis methods: From a methodologically 
inclusive perspective. Review of Educational Research, 79(1), 395–430. 

Windschitl, M. (2002). Framing constructivism in practice as the negotiation of dilemmas: An analysis of 
the conceptual, pedagogical, cultural, and political challenges facing teachers. Review of Educational 
Research, 72(2), 131–175. 

200



MATHEMATICS: TRADITIONS AND [NEW] PRACTICES • © AAMT & MERGA 2011 
 

MASTERING BASIC FACTS? I DON’T NEED TO LEARN 
THEM BECAUSE I CAN WORK THEM OUT! 

SIMON CLARKE 
Balmacewen Intermediate School 

Dunedin 
sclarke@balmacewen.school.nz 

MARILYN HOLMES 
University of Otago College of 

Education 
marilyn.holmes@otago.ac.nz 

 
Knowing basic facts is critical for expediency in computational mathematics. By the 
time students reach the age of eleven some teachers are finding that groups of 
students are still counting with their fingers or resorting to the use of calculators, 
tricks with fingers, charts, or asking someone the answers to times tables. The 
question to be answered is why, after all the years at school, that students cannot 
remember 55 simple facts? An intermediate school in New Zealand has been 
investigating ways to motivate the students‘ learning of basic facts. This paper 
explores the improvement of student achievement through an action research plan. 

Introduction 
Carr and Kemmis‘ action research model (1986) is well known in education 
communities and there is a plethora of papers to confirm its use. Often individual 
teachers will be involved with an outside researcher in a project that encompasses action 
research but less frequently they are involved in their own school collaborative action 
research process. Carr and Kemmis define action research as:  

… simply a form of self-reflective enquiry undertaken by participants in social situations 
in order to improve the rationality and justice of their own practices, their understanding 
of these practices, and the situations in which the practices are carried out (p. 162). 

It is essentially a spiral model involving four steps: planning, acting, observing, and 
reflecting. As a process to improve teachers‘ practice, it has many benefits but most 
importantly it happens in the classroom. This paper focuses on the work of teachers of a 
school in Dunedin, New Zealand and follows their journey as they ascertain a problem 
common to all, plan, implement, make observations, and reflect on their outcomes. 
Within this context it must be clear that this is not the result of an outside researcher‘s 
work. The story is the school‘s one although they are referred to as ‗they‘, ‗the staff‘, or 
‗the school‘. 

Background 
Educational settings for students aged 5 to 13 in urban New Zealand are generally 
primary and intermediate schools. The intermediate school concerned in this paper has 
15 teachers and 485 students aged from 11–13 years who vary in academic, 
behavioural, and social backgrounds. Previously, classes were streamed for 
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mathematics according to students‘ ability. However, the school has undertaken 
significant changes in their mathematics programme due to the New Zealand Numeracy 
Development Project (NDP). A mathematics extension programme caters for a small 
number of students who are working at Level 5 in the New Zealand Curriculum but, in 
the main, students are no longer streamed and individual differences and needs are 
catered for within the students‘ own classes. Since the completion of the numeracy 
project they have continued to sustain and enhance the changes they have made. 
 Today visitors can walk through classes in the school and see an environment for 
mathematics learning. Of note is the mathematics discourse: teachers‘ questioning that 
extends students‘ thinking and shared ideas about problems solved; modelling books 
that record students‘ responses; and the use of equipment by students to demonstrate 
understanding. These are some of the aspects that less than a decade ago would not have 
been seen in an intermediate school. Teachers within the school are well supported by 
their principal and deputy principal with school-wide data discussed, targets set, and 
further development in understanding of the New Zealand Curriculum and the New 
Zealand Framework (Ministry of Education of New Zealand, 2007).  
 A major part of the professional development in which teachers participated was to 
focus on how students develop strategies. As numeracy facilitators focused their 
energies on improving the teaching of strategies it seemed less importance was placed 
on the teaching of number knowledge and basic facts (found in NDP, Book 1). The 
school responded to this in 2008 by revising its mathematics programme and explicitly 
stating that the interdependence of number knowledge and the teaching of strategies 
should go hand in hand. Strategies create new knowledge through use and knowledge 
provides the foundation for strategies.  
 Since then Johnston, Thomas, and Ward (2010) have provided evidence that points 
to the importance of strategy development but acquiesce that the importance of 
knowledge should not be underestimated because strategies require knowledge as a pre-
requisite for their effective use. This position sat comfortably with the school as staff 
had explicitly stated they needed to ensure students‘ knowledge as a prerequisite to 
introducing new strategy teaching. For example, it did not make sense to offer problems 
that involved partitioning fractions if the students had little or no knowledge of place 
value or fractions.  
 Research has shown that the transition from primary to the intermediate school can 
show a dip in achievement (Young-Loveridge, 2007). It could be argued that it is 
perfectly understandable when about 485 pre-adolescent students are feeling, some for 
the first time, anxious about their learning. Teachers in Intermediate Schools have to 
work extremely hard to create a positive learning environment for pupils who will be 
with them for only two years. In an endeavour to create a more harmonious and 
cohesive teaching unit within their school, the staff turned to action research with the 
intention of informing and changing aspects of their practice for the improvement of 
children‘s achievements.  
 Previous to 2009 some of the staff had been involved independently in an action 
research model. However, it was felt that raising achievement of all students demanded 
a coherent, collaborative process from the whole school staff. Whilst many problematic 
issues were raised, written up on a board for a couple of weeks and discussed at length, 
it was decided it would be best to start with a simple question. Observations by teachers 
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in classrooms identified a common problem in lack of multiplication facts when solving 
multiplication or division problems. Looking for an issue that was common to all was 
easy to identify: basic facts. 

What are basic facts? 
In the previous Mathematics in New Zealand Curriculum published in 1992, basic facts 
had been defined as addition and subtraction facts to 10 and times tables to 10 x 10. 
However, with the advent of NDP in New Zealand between 2000 and 2009, basic facts 
have been redefined to include other useful facts such as 4 x 25 = 100 and compatible 
numbers such as 52 + 48 = 100. Further information about basic facts can be found in 
The Numeracy Development Book 1 under the Knowledge Framework (Ministry of 
Education of New Zealand, 2007). 

Refining the problem by reflecting where we are now 
School wide data, compared with the global stages in the New Zealand Framework 
indicated the majority of the students at the school ranged from Stages 5–7 (an additive 
stage to a multiplicative stage) with a few students experiencing learning difficulties at 
Stage 4 (counting 1 by 1 from a set held). In the knowledge framework, students at 
stage 5 are expected to know their 2s, 5s, and 10s multiplication facts and at Stage 6 to 
know all multiplication basic facts up to the 10 times tables.  
 When discussed further the problem was not how to teach the basic facts but how to 
motivate the students to be able to recall them instantly. The issue was that students had 
mastered the strategies of how to work out the answers to problems involving single 
digits but had not mastered the knowledge of instant recall. For example, to work out 6 
× 7 they would use a known fact such as 5 × 7 = 35 and then add on another 7 to reach 
42.  
 Van de Walle (2004) advocates the mastery of basic facts as ―the development of 
fluency with ideas that have already been learned‖ (p. 156). Many of the 485 students 
had efficient strategies but were not facile. In fact when some students were asked why 
they didn‘t learn their tables the response was frequently ―I don‘t need to ‘cause I can 
work them out‖.  

Fluency with basic facts allows for ease of computation, especially mental computations, 
and, therefore aids in the ability to reason numerically in every number related area. 
Although calculators and tedious counting are available for students who do not have 
command of the facts reliance on these methods for simple number combinations is a 
serious handicap to mathematical growth. (van de Walle, 2004, p. 156) 

The ‗traditional‘ way of rote learning multiplication basic facts has long been a popular 
and somewhat successful process, and there has been resurgence in the popularity of 
teaching the basic facts in this manner in recent times. Steel and Funnell (2001) have 
suggested, in a study of students between the ages of 7–12, that they will memorise the 
multiplication facts quicker using rote learning, but they did place a caveat by saying 
that it was important that they do understand what they are and how they function.  
 Van de Walle (2004) also supports the idea of drill when students have learned 
through a good basic facts programme: ―teach for understanding, consolidate through 
practice and apply through investigations‖ (p. 157). The idea is to focus on drill when 
automaticity is a desired outcome. With the students already showing very good 
understanding about multiplication and how to derive facts from what they knew, the 

203



CLARKE 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

staff felt without this immediate recall of their times tables their students would not 
reach their full potential in their multiplicative strategies. That was the defining 
moment: the decision to concentrate on the fluency of recalling multiplication tables.  

The research question for this study is ―How can the staff, through a whole school 
approach and home school partnerships, raise an awareness of the importance of 
learning multiplication facts and increase the multiplication tables knowledge of the 
students?‖

Process 

Planning 
The process up to this stage took three weeks but once the problem was identified 
planning came relatively quickly. There were some aspects that staff felt they needed to 
concur with before they could move forward. If they did not all hold common 
aspirations, there was a chance their expectations would not be met. Everyone agreed: 

 that knowing basic facts is critical to success in solving multiplication and 
division problems in mathematics, science and technology; 

 to improving student achievement in basic facts across the whole school; 
 to raising the fluency in recall of basic facts, with regular checks, and quality 

teaching; 
 to fostering closer home school partnerships; and 
 to be committed to working towards the expected outcomes: (a) that students will 

become fluent with their knowledge of their times tables, and (b) the whole school 
average will be in the mid-80th percentile. 

With shared beliefs and the question identified the staff deliberated on how best to plan 
for optimum success. To begin with, they prepared themselves by becoming familiar 
with literature that was written around the teaching of multiplication tables. Most 
readings dealt with how to teach for understanding but very few dealt with influencing 
children to want to learn the facts. Van de Walle‘s (2004) work on mastering basic facts 
resonated with their philosophy. It was easy to read and couch this in practical terms.  
 The next matter was how to gather data so that the school-wide trends could be 
identified from the subsequent analysis. School-wide testing as an issue was debated 
fiercely, but because teachers saw a common good they felt some testing was 
appropriate. From their readings, staff had realised that constant drill and testing could 
be detrimental to some children‘s self-efficacy. Whatever they did they had to be 
sensitive to students‘ needs. Sessions were to be as enjoyable as possible with 
challenges and successes for all. Practice and drill had to be meaningful for each 
student. However, baseline data needed to be accumulated particularly as Year 7 
students came from several schools with various assessment profiles.  
 The following step was to plan what was going to happen in their classrooms. How 
were they going to go about it? It was decided that they would aim for a period of four 
weeks and then reflect on what had happened after analysing school wide data. Each 
class was committed to as much time of the mathematics hour as they needed, five days 
a week.  
 The school resources were checked and teachers undertook to search for new 
websites, games and ideas that may help motivate the students. The task was not just 
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about finding some engaging websites; it was ultimately about selling the idea that ‗it is 
worthwhile having instant recall of multiplication tables‘. Until the students could see 
that it was plausible and rewarding for them, they would not buy into it. One 
straightforward idea was to put the students into pairs with one asking a set of ten timed 
easy multiplication tables (2s, 5s, or 10s) and then the other using a calculator to work 
out the same questions, also timed. Students quickly saw how much faster it was by 
recall than using the calculator. 
 It was realised that students spend a large amount of time with their families and that 
the school needed supportive links with each family in order to affect the maximum 
outcomes. Bull, Brooking, and Campbell (2008) found that ―parental involvement 
makes a significant difference to educational achievement‖ (p. 1). In their best evidence 
synthesis Anthony and Walshaw (2007) also confirmed what many educators and 
researchers believe: if parents are involved in their students‘ education there will be 
positive outcomes. Information sheets with suggested activities went home to parents. 
Individual check sheets were developed to foster a home/school partnership, including 
the student‘s progress and ‗tough‘ facts that needed to be learnt. Surveys on whether or 
not their parents had helped them at home, time spent on their tasks, as well as the 
students‘ feedback on the month, were to be given to all children. Incentives were to be 
held at a school-wide level in terms of a school swim, and often at class levels in terms 
of free time or shared lunch.  
 Finally there was just one more thing to do: decide on a name—the hardest part. 

Acting 
Mega Maths Month, as it was named, started with a baseline test during Mathematics 
period. Every student had three minutes to complete the questions, thus ensuring 
knowledge rather than strategisation of solutions. The baseline test was set for a Friday 
at 8.55 a.m., to make certain all students did the test. From their results, students 
identified five of the tables they got wrong or struggled to remember and recorded those 
on their check sheet. They were the facts they practised during the next week. The class 
results were sent to the Deputy Principal to enter and find the baseline average for the 
school. They repeated these steps for the following three weeks. During the four weeks, 
teachers spent time each day with various activities to encourage the students to become 
more proficient with the multiplication basic facts they each had according to their 
ability. At home, the students were expected to devote more time to remembering their 
multiplication facts, and parents were encouraged to support them. 

Observation 
The whole school results after one week quickly jumped from 68% to 87% in 2009, and 
from 72–86% in 2010. A pleasing outcome was that the year 8 children (in 2010) held 
their knowledge from 2009. Results showed that in week 3 of 2009 students showed an 
average improvement of only 1%, with five classes actually going backwards between 
one and four percent. In 2010 student results increased by 4% between weeks 1 and 2. 
In both years the students collectively moved more than 15 percentile points but were 
never able to get into the 90th percentile.  
 That may have been due to the inability of students to learn the hardest facts of the 
multiplication tables. LeFevre and Liu (1997) report correlations of error rates with 
product size. While problems with products greater than 40 comprised 17% of the 
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problems in their study, they accounted for 45% of the errors. Salvo (2006) found 
similar results on a pre-test that she administered. ―Nine of the 10 most missed 
problems had products greater than 40 and both factors greater than 5. The nine 
problems, in order from the most missed, were 8 × 7, 8 × 6, 7 × 9, 6 × 9, 6 × 7, 7 × 7, 
9 × 8, 8 × 8, and 9 × 9‖ (p. 583). They comprised 25% of her test items, accounted for 
only 12% of the correct responses but 40% of the errors and omissions. They were also 
the problems students at their school consistently identified as their ―hard ones‖.  
 According to the teachers, incentives appeared to be motivating. However, the 
students surveyed held different opinions. They felt incentives made little difference to 
their motivation. Some had even forgotten that there were incentives in place. 
 Once results from students were compared to their surveys it was found that when 
parents helped their children they improved the most. It was nearly a 50/50 split of 
parent support from the whole sample but it was very clear that home support was 
greatest for students who improved by 30 or more percentage points. 
 The classrooms which had the greatest success often discussed class and individual 
targets. One class found the use of a spreadsheet to show the classroom average at a 
point in time and what it would be if students set and reached an improved score they 
thought they could attain. That demonstrated to them clearly that if everyone made 
small improvements it would work towards achieving their overall goal of an improved 
class average. 

Reflection 
It is hard to identify the one key thing that brings success to a student. The school‘s 
process indicated that the best results come from a combination of ensuring students‘
understanding of what multiplication tables are, practice, and family support.  
 No teacher interviewed for this action research project felt they had found a defining 
tool. Flash cards, basic rote learning, computer games, and testing each other were all 
common practice tools. Students themselves identified personal flash cards and games 
as valuable tools for learning their multiplication tables.  
 The teachers felt they started out a little disjointed but along the way valued the 
individual input and team commitment to the process, which gave them a sense of 
ownership. It has made them look at the activities they have used and question ‗Why 
that one?‘ They have differentiated some of the tasks they have used for students of 
differing ability. They have collaborated with colleagues, shared their successes, and 
talked about improvement. Most importantly they have been the drivers of their own 
critical reflection. 
 Questions that have arisen from the process are: 

 Is there a need to spend more than one month a year on Mega Maths Month? 
 What aspects can we make an integral part of our practice? 
 Should gender/ethnicity results be looked at more closely? 
 How can relationships with the parents who are ‗invisible‘ be improved?

Success in 2011 could come through looking at one of three options: 
1.  A differentiated programme where some children continue with Mega Maths 

Month and the others who know all their tables become the mentors/partners for 
the children who are experiencing more difficulty than usual; 
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2.  A ‗Maths Matters‘ programme which focuses on the multiplication strategies 
being taught, drill (especially on the identified harder multiplication facts), and 
either an intrinsic (family/peer expectations to do well) or an extrinsic (reward) 
incentive for automaticity of multiplication facts, which is still under debate; and 

3. Students identifying their own style of learning and planning their own 
programme to help them learn their multiplication tables.  

Conclusion 
The school has made considerable changes to their teaching and learning of 
mathematics through discussion, debate, and professional development. Since 2009 the 
staff has worked hard to find aspects that, as a school, they could focus on in a 
collaborative way. What was significant was just how much difference they could make 
when teachers, parents and students all worked together. It was their first process as a 
whole staff and it is that story that makes it worth telling. 
 It was not a huge undertaking but it was manageable and therefore did not seem too 
onerous a task. It is hoped that by sharing their journey other schools will be tempted to 
find a problem that they can tackle through the simple action research process. The new 
knowledge, improvement in practice, communication, and the relationship building with 
teachers, children, and parents that transpires through the process cannot help but make 
it a worthwhile endeavour. 
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It is now acknowledged that children start school with a wealth of mathematical knowledge 
and experiences (e.g. Aubrey, 1993; Perry & Dockett, 2004; Young-Loveridge, 1989), and 
that recognition of this rich resource by the new entrant teacher may facilitate the smooth 
transition of the child into school (Perry & Dockett, 2004). Positive transitions directly 
impact on children. This paper investigates how the mathematics content, understanding 
and practices of the new entrant classroom align with the learning children experience 
within early childhood settings. In particular it reports on the supportive practices provided 
by two schools for young children‟s mathematical learning as they begin school. Results 
from the study show tenuous links in mathematical practices between these sectors. 

Background 
As a direct result of recent research interest in areas of early mathematical learning 
there has been a surge of interest in the development of mathematics in early childhood. 
Researchers now recognise the „mathematical power‟ young children possess on entry 
to formal schooling (Clements & Sarama, 2007; Perry and Dockett, 2005). Furthermore, 
understanding that the child‟s competence in mathematics at the end of the first year of 
schooling is a strong predictor of later success in mathematics has contributed to a focus 
on early mathematics. We questioned how schools support young children‟s 
mathematical development and how that support connects with the support provided 
within the early childhood settings? 
 Transition from early childhood to school can pose difficulties for new entrant (NE) 
children (Eyers & Young-Loveridge, 2005; Perry & Dockett, 2004) and has a long-term 
impact on school achievement (Timperley, McNaughton, Howie, & Robinson, 2003). 
Kagan and Neuman (1998) suggest there are high costs when there is a lack of 
continuity between sectors; this results in lower success rate at school, difficulties in 
making friends and vulnerability to adjustment problems. It has been argued that for 
successful transition the differences and discontinuities between the sectors need to be 
addressed, as “starting school is not a simple process” (Margetts, 2007, p. 106). 
 Transition to school calls for the development of “higher mental functions” 
(Broström, 2007, p. 61) if a successful move from a play focus to a more formal school 
learning system is to be achieved. Furthermore, it is suggested that the differences 
between the requirements of early childhood and school settings may invite problems 

208



DAVIES 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

related to adjustment (Kienig, 2002). Broström (2002) has noted that these requirements 
are a consequence of different social and academic goals between the school and those 
of the pre-school setting. Tensions arise as a result of change from a learning 
environment based on socio-cultural and co-constructivist ideas of learning 
(Bronfenbrenner, 1979) to more structured activities and formal instruction (Pratt, 
1985), and in which there are very different expectations by teachers within early 
childhood education (ECE) and the primary school sector (Timperley et al., 2003). 
 Arguably, barriers to smooth transitions vary depending on the individual contexts, 
and in particular on relationships that have developed among ECE services, schools and 
parent/caregivers. Successful transition to the school setting has been described as an 
ecological transition between two “microsystems” (Bronfenbrenner, 1979). A 
comprehensive framework for understanding the complexity of child development has 
been provided by Bronfenbrenner (Margetts, 2007) and adapted as a “Levels of 
Learning” framework by the New Zealand early childhood curriculum Te Whāriki 
(Ministry of Education, 1996. p. 19). Here the learner and his or her engagement within 
their immediate environment (or microsystem) are situated as the first level of learning 
(Peters, 2003). The second level (or mesosystem) extends to the relationships between 
the immediate learning environments. In the context of early childhood this relates to 
the home and family, the early childhood setting and the people within these contexts. 
Level three (exosystem) encompasses the influence of the adult‟s environment on their 
capacity to care and educate. Wider social beliefs about the value of early childcare and 
education form the final level (macrosystem). Te Whāriki is mainly concerned with 
these first two levels whilst acknowledging the influences of the other two. In Margetts‟ 
(2007) view it is this combination of the child‟s personal characteristics, their 
experiences, and the interconnections between home, prior to school settings and school 
that ultimately determines how the child adjusts to school. 
 At the early childhood level teaching involves “reciprocal and responsive interaction 
with others”, building on the “child‟s current needs, strengths, and interests by allowing 
children choices and by encouraging them to take responsibility for their learning” 
(Ministry of Education, 1996, p. 20). The child is viewed as a competent learner and 
communicator and „dispositions to learning‟ is included as an important outcome. 
“Dispositions are a very different kind of learning from skills and knowledge. They can 
be thought of as habits of the mind, tendencies to respond to situations in certain ways” 
(Katz, 1988, p. 30). The child‟s dispositions towards learning are reflected in the nature 
of assessment undertaken in early childhood settings. Narratives of incidences of a 
child‟s/children‟s learning are often in the form of a „learning story‟ (Carr, 2001); they 
focus on dispositions such as curiosity, trust, perseverance, confidence and 
responsibility rather than specific content areas and achievement objectives. 
 A strong influence on mathematics teaching and learning in New Zealand schools is 
the Numeracy Development Project (Ministry of Education, 2001). A key focus of the 
project is on developing teacher‟s pedagogical knowledge and mathematics content 
knowledge, and improving the performance of all students. The Number Framework 
(Ministry of Education, 2001) provides a framework for the development of number 
knowledge and mental strategies. Professional development for teachers promote 
effective mathematics pedagogy together with the provision of teaching booklets, 
activities and resources, and on-going professional support.  
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The latest curriculum reform for schools, The New Zealand Curriculum (Ministry of 
Education, 2007) acknowledges and celebrates the development of dispositions in the 
form of „key competencies‟ (p. 12) that “young people need for growing, working, and 
participating in their communities and society” (p. 38). An underlying theme within this 
curriculum is a stronger cohesion between the two sectors through a focus on key 
competencies (Young-Loveridge & Peters, 2005). Although in its infancy, the 
implementation of this document heralds within a „formal curriculum‟ a focus on 
children‟s competencies in developing capabilities for living and life-long learning. 
Competencies are viewed as “not separate or stand alone” and are “the key to learning 
in every learning area” (Ministry of Education, 2007, p. 12). The alignment of 
dispositions and key competencies may also develop a continuity of the learning 
environments across the sectors (Carr, 2006). The ways in which the practices of the 
new entrant classrooms align with the practices of the ECE services is the focus of this 
paper.  

Methodology 
The research was a two year study which investigated the existing transition practices, 
in a small town in New Zealand, between four early childhood education (ECE) 
services and two primary schools with regard to mathematics learning and teaching. The 
research was centred on one key question: What ECE and new entrant practices 
facilitate positive transitions in mathematics between early childhood settings and 
primary schools? A case study approach allowed the researchers to focus on interactions 
between specific instances or situations and to study in depth the transition practices in 
mathematics within focussed time frames. Evidence was systematically collected 
enabling the relationships between variables to be studied over time. Our data collection 
method involved observations in both sectors, teacher interviews, documentation 
including a range of artefacts, teacher planning, policies relevant to teaching 
programmes and transition, copies of newsletters, copies of assessments, and 
photographs of children involved in mathematical experiences. All documentation was 
analysed and categorised by major themes related to transition and teacher practice 
using the theoretical framework of Bronfenbrenner‟s (1979) analogy of the child‟s 
learning environment as „interconnected systems‟. In the study the five key themes 
analysed within this framework were: structural provisions for mathematics, the 
assessments that are made with regard to children‟s mathematical understanding, how 
information is conveyed between sectors, process and provisions for transition, and 
parental perceptions and expectations.  
 Findings from Phase 1 explored practice in four ECE services and findings (see 
Davies & Walker, 2008) provided a baseline of practices for comparison with the 
school sector. We were interested in investigating how “this new stage in children‟s 
learning builds upon and makes connections with early childhood learning and 
experiences” (Ministry of Education, 2007, p. 41) This paper reports on the second 
phase where transition practices were investigated to determine the extent to which 
“schools can design their curriculum so that students find the transitions positive and 
have a clear sense of continuity and direction” (Ministry of Education, 2007, p. 41).  
 The second year of the research was undertaken in two primary schools (Nikau and 
Punga) to which many of the children from the four ECE involved in Phase 1 had 
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transitioned. Both are large primary schools. School Nikau is a decile1 4 school with 480 
pupils from new entrant (NE, or reception class) to Year 10, across 20 teaching 
classrooms. School Punga is a decile 3 school with 440 pupils enrolled, consisting of 
NE to Year 8, across 16 teaching classrooms. In New Zealand children can generally 
start school on the first school day after their fifth birthday, which results in a continual 
arrival of children in the NE classroom. School Nikau had two NE classes continually 
filling whereas School Punga had one NE class already full (25 children) from the 
beginning of year, and a second NE class filling. All four teachers and classes were 
involved in the research project. 
 This paper focuses on two key themes of the research: structural provisions for 
mathematics, and the assessments that are made with regard to children‟s mathematical 
understanding in school settings (for full report see Davies, 2009). The examples are 
chosen to illustrate the range of transition practices and are representative of findings 
within this case study. Results of this study are relevant to these project sites and may 
not be able to be generalised. 

Results and discussion 
Structural provisions 
One key theme of the study was the differences and discontinuities in the structural 
provisions (i.e. the approach to teaching and learning, and use of resources) between the 
early childhood settings and the schools. The approach to learning in ECE is holistic in 
nature based on Bronfenbrenner‟s (1979) idea of the child engaging with the learning 
environment. Children are immersed in rich learning experiences across a range of 
subject curriculum areas with a strong focus on the child‟s interest often embedded in 
play. The approach to learning in a school setting may be viewed as a change in focus 
from personal, social and emotional development of the ECE to the formal beginning of 
specific subjects and content prescribed in the form of „achievement objectives‟ from 
the national curriculum (Stephenson & Parsons, 2007). In Bronfenbrenner‟s framework 
the move is towards the second level of learning. The children were being affected by 
what happens outside their own „microsystem‟.  
 Lessons contrasted greatly from the children‟s socio-cultural experiences promoted 
in the early childhood settings. While teachers expressed a belief in the importance of 
learning through play, they did not reflect this in practice (Sherley, Clarke, & Higgins, 
2008). Authentic social contexts for learning which the new entrant previously 
experienced were not provided through whole class learning and through the activities 
provided in the resource materials (Belcher, 2006). There was a strong belief in both 
schools that games or activities from the Numeracy Project replicated the children‟s 
earlier experience of learning through play.  

I suppose that helps them transition. I suppose we just expect them to start participating in 
the games (Nikau Teacher, 1). 
 

                                                        
1 The decile rating of a school is based on a Government assessment of the school in terms of the nature of the school 
community, particularly regarding the predominant socio-economic make up of that community, with 10 being the 
highest.  
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I think there is an expectation of when they come [pause] well how they behave when 
they are at school and numeracy time is a set time … So we cater to those children by 
doing games (Nikau Teacher, 2). 

It has been demonstrated that children in classes where teachers have used more 
developmentally appropriate practices exhibit less stressed behaviours (Margetts, 2007). 
Stephenson and Parsons (2007) emphasise that play should continue to have an 
important part in developing children as learners in the first few years of schooling. 

Yes they are allowed to have free choice not so much in maths time because I do prefer 
them to use more appropriate activities that tie in with what they have been learning 
(Punga Teacher, 1). 

Although it has been suggested that school teachers should be responsive and reflective 
to the diversity of backgrounds in the early weeks of schooling (Margetts, 2007), little 
evidence was found of this. Concerns have been raised that children become impassive 
and disempowered with more formal approaches to teaching which may lead to anxiety 
and low self-esteem (Stephenson & Parsons, 2007). It was commonplace, in all four 
classrooms visited, for children to be placed in ability groups from their first day at 
school. Formal whole class teaching followed by group rotations using a range of 
teacher selected independent activities was widespread. Children in the non-contact 
group, although having some control over their learning through their choice of 
resource, had little opportunity to interact with the teacher. Similar to the findings of 
Belcher (2006) the teacher was unable to scaffold or respond interactively to children‟s 
initiations because they were predominately engaged in instruction or classroom 
management.  

We have ability groups. We have two rotations. One rotation they see me and two they do 
an independent activity. That goes for four days a week and on the fifth day we have a 
maths circuit (Nikau Teacher, 2). 
 
They [non contact groups] will either be activities to reinforce previous learning or to 
help with current learning or a sheet [photo copied work sheet]. More formal type activity 
for counting. Something where they have got to record (Punga Teacher, 1). 

However, one classroom teacher provided practical experiences and opportunities for 
structured play with opportunities for children to experience confidence and success and 
to maintain their perception of themselves as effective learners. 

Because I try to make an easy transition from pre-school to school. So you are not from 
day one sitting down and doing this, this, this. You‟ve got to have free time and activities 
where the children can unwind and relax. Because they can‟t stay full on all day (Punga 
Teacher, 2). 
 
It is a bit of both really. That is where I have developmental type activities - so they have 
a little bit of structure on the mat. Then they have freedom of other activities at the same 
time they are learning that rotation process (Punga Teacher, 2). 

Mathematics learning in primary classrooms was teacher initiated with predetermined 
learning intentions. The four teachers had similar fixed ideas as to the particular needs 
of new entrant children and planned and directed the children‟s learning according to 
their predetermined intentions. As in a study by Sherley, Clark, and Higgins (2008) 
teachers were in control of the learning environment providing activities to „plug the 
gaps‟.  
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Well, we see were the gaps [in children‟s knowledge] are taken out of the numeracy 
project book and we just follow that (Nikau Teacher, 1). 
 
I just stick them in a bottom group for a start to see what they can do and normally you 
can recognise straight away if they can recognise numbers or count (Nikau Teacher, 2). 
 
I guess you are really quite restricted but you have your planning and guidelines for 
numeracy project so usually that really controls most of what you do (Punga Teacher, 1). 

Our findings confirmed earlier views that the professional development project does not 
allow teachers to develop a comprehensive understanding of the pedagogy appropriate 
for transitioning children. Belcher (2006) suggested that the children‟s experiences in 
numeracy were largely influenced by the teacher‟s belief and understanding of the 
numeracy project. This may be attributed to a lack of confidence and knowledge of 
teachers on how to teach numeracy through play (Stephenson & Parsons, 2007).  

Assessment 
The second theme of the research in this report was the assessment made with regard to 
children‟s mathematical understanding in school settings. Narrative assessments were 
the most common form of documentation in all the ECE. These tended to document, in 
written and photographic form, the dispositions exhibited by the child rather than 
acknowledging the development of content knowledge. Very different assessment 
practices from those at ECE were undertaken at the school. Similar to a study by 
Sherley, Clark, and Higgins (2008) the teachers did not attend to the knowledge and 
skills the children already had on entry to school. All teachers had limited 
understanding of mathematics teaching and learning in ECE. 

A huge jump for children who didn‟t know anything when they started. I think early 
childhood provides for all the opportunities it is just that if the children don‟t choose to 
take those up then when those children then come to school with nothing and then you 
already have a gap (Nikau Teacher, 1). 
  
I think there is a lot of maths going on in all the different areas but very much depends 
upon the teacher being there at the moment to facilitate it. … I think they might do a lot 
of rote counting, that sort of thing. But when they come to us I see always a gap in 
number recognition and sometimes 1 to 1 counting (Nikau Teacher, 2).  

New Entrant teachers indicated their use of either the „I can …‟ checklists (Ministry of 
Education, 2005) or the „Numeracy Project Assessment‟ tool [NumPA] (Ministry of 
Education, 2006) to assess children early in their schooling.  

We do observation assessment for the first six weeks and then in the sixth week we do the 
NumPA Form A … and after that we carry on with a tick chart, one from the numeracy 
project stage that they are at (Nikau Teacher, 1). 

These checklists provide a guide for teachers with their planning. However they provide 
little attention to the situated nature of learning experienced by children prior to school. 
Concerns have been made regarding the use of such tools with its focus on narrowly 
defined goals and checklists (Peters, 2004) at a NE level. The resulting categories and 
classifications fail to recognise the richness of children‟s mathematics learning resulting 
from holistic experiences prior to starting school. The new entrant teachers referred to 
filling the gaps in children‟s knowledge and tended to overlook the competencies earlier 
documented within the ECE narratives.  
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We get the same thing playing games and you get an idea of stage and what group 
children would fit into. I guess the NumPA just confirms … and also it finds the gaps that 
maybe you don‟t always find in games (Nikau Teacher, 2). 
 
So they come out at 0 [Stage 0 of Number framework] so they don‟t know any of the 
things (Nikau Teacher, 1). 

Conclusion 
The richness of mathematical learning experiences that children bring with them to 
school has been well researched (Aubrey, 1993; Perry & Dockett, 2004; Young-
Loveridge, 1989). Perry and Dockett (2005) analysed the many mathematical 
experiences children have in prior-to-school settings demonstrating “immense 
knowledge … including mathematics” (p. 36) and the mathematical power of young 
children‟s skills in mathematising, making connections and argumentation. There was 
limited recognition of this mathematical power among NE teachers, and little attempt to 
nurture it by providing learning experiences that made connections to their existing 
mathematical understanding by the primary school teachers. 
 Involvement in the numeracy project dominated the teaching of mathematics in the 
new entrant classes. Children experienced structured numeracy lessons involving whole 
class mat-time followed by ability group rotations. The use of numeracy project 
activities and games varied between classes for non-teacher contact groups. Structured 
mathematics games were believed to replicate the learning approach of the ECE. 
 Narrative assessments in ECE were very holistic in nature focussing on dispositions 
to learning. On the other hand the Numeracy Project assessment tool and “I can …” 
checklists were the main methods of school assessment and these failed to assess the 
richness of children‟s previous mathematics learning. There was a failure to recognise 
the rich holistic experiences of children‟s mathematics learning prior to starting school. 
The new entrant teachers referred to the filling the gaps in children‟s knowledge and 
tended to overlook the competencies earlier documented within the ECE narratives.  
 It was evident that connections between the mathematical practices and experiences 
within early childhood setting and the new entrant classroom were tenuous. Little 
flexibility was shown in the extent to which the new entrant teachers were prepared to 
adapt teaching approaches for transitioning children. The NE teacher directed learning 
rather than being responsive to children‟s previous ECE experiences. Activities were 
structured with a specific learning focus. However, this limited the opportunity for 
children to engage in exploration and play. Assessment practices were narrow in focus 
and did not connect with the „mathematical power‟ demonstrated by the children in 
ECE settings.  
 Further effort is needed in order that “this new stage [the transition from ECE to 
school] in children‟s learning [that] builds upon and makes connections with early 
childhood learning and experiences” (Ministry of Education, 2007, p. 41) becomes a 
reality. Findings from this study indicate that a reform of transition practices is needed 
to ensure that “schools can design their curriculum so that students find the transitions 
positive and have a clear sense of continuity and direction” (Ministry of Education, 
2007, p. 41). Only when that occurs will children‟s mathematical experiences be 
optimised as they transition from early childhood to school. 
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Indigenous language speaking students in remote Northern Territory schools are expected 
to learn mathematics in English and are assessed in English. Most teachers in these schools 
have little knowledge of the mathematical concepts with which their students start school. 
This paper reports on the initial findings of a project which is investigating spatial concepts 
in Iwaidja, an Indigenous language spoken in the NT. Examples of spatial frame of 
reference preferences in Iwaidja and related languages are compared with those taken for 
granted by English speakers. Implications for mathematics teaching are explored in the 
context of an Australian Curriculum. 

Introduction 
In a country such as Australian with a mobile population and a nation-wide assessment 
program, a national curriculum makes sense. For smaller jurisdictions, such as the 
Northern Territory, it will enable more access to teaching resources with explicit links 
to the curriculum, something that is difficult to generate for a small population. 
However, one danger of a national approach is that the specific needs of special groups 
may be overlooked. The focus of this paper is on particular needs of Indigenous 
Language Speaking (ILS) students in remote areas of the Northern Territory. These 
students make up a substantial proportion of the students in the Northern Territory and 
are widely represented as underachieving in numeracy. 
 Indigenous education strategies and policies now focus on “Closing the gap” 
between Indigenous and non-Indigenous numeracy outcomes (Ministerial Council on 
Education Employment Training and Youth Affairs [MEETYA], 2010). This study is 
part of an attempt to bridge another gap: teachers’ understanding of the distance (Berry, 
1985) between their mathematical language in English and in the Indigenous languages 
of their students.  
 First this paper will contextualise the study in terms of expectations and requirements 
for teaching mathematics in English that apply in a remote community such as 
Minjilang, the site of the study. Then it will describe spatial frame of reference from a 
cross-linguistic perspective and why it is relevant to the Early Years mathematics 
curriculum. It will describe some of the findings from the investigation of spatial frame 
of reference in Iwaidja, one of the languages spoken at Minjilang. It will then analyse 
the terminology and sequencing in the location area of the Northern Territory 
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Curriculum Framework and the Australian Curriculum from the perspective of spatial 
frame of reference. 

Teaching and learning in English in a remote school 
New teachers arriving at remote schools in the Northern Territory are faced with many 
challenges. Many of them have no formal English as a second language (ESL)1 training 
and have never heard a living Indigenous Australian language spoken. Entering a 
classroom of ILS students, they are entering an environment of vastly different cultural 
expectations and traditions than their own.  
 At the same time, pressures on teachers in these communities have never been 
greater, educationally speaking. While some of the trappings of “remoteness” have 
decreased with improved infrastructure and electronic communication, teachers in 
remote Indigenous schools such as this are under increasing expectation to assist their 
students to achieve benchmark levels in the National Assessment Program: Literacy and 
Numeracy (NAPLAN). NAPLAN results of Indigenous and non-Indigenous students 
are frequently compared both in the media and in official reports (e.g., MEETYA, 
2008). All components of NAPLAN, including numeracy assessment, are conducted in 
English. 
 Numeracy, “the capacity, confidence and disposition to use mathematics” (National 
Curriculum Board, 2009, p. 5), could arguably be achieved in any language, subject to 
the development of a mathematics register (Roberts, 1998). However there is a powerful 
perception that it needs to be achieved in English (Commonwealth of Australia, 2000). 
To this end, the Northern Territory Government’s contentious Compulsory teaching in 
English for the first four hours of each school day policy (2009), was explicitly directed 
towards Indigenous students, banning bilingual education.  
 The research is being conducted at Minjilang community, on Croker Island in North 
West Arnhem Land. It arose out of firsthand teaching experience in the school. 
Traditionally a multilingual region, the main languages spoken in the community are 
Iwaidja, Mawng, and Kunwinjku, as well as several dialects of English (Standard 
Australian and Aboriginal). The language of the school is Standard Australian English, 
although local Indigenous assistant teachers speak to the students in local languages. 
The main mathematics program followed is Count Me in Too. There are ESL support 
materials for the teaching of literacy, but a lack of targeted curriculum support for 
teaching mathematics to ILS students from an ESL perspective.  

Spatial language 
The goal of the project is to investigate some aspects of mathematical language in one 
of the languages of the community and to make links between that and the mathematics 
curriculum in the Early Years. The spatial area was chosen as a focus for several 
reasons. Spatial thinking is a perceived strength amongst Indigenous students (Harris, 
1991). Also, spatial language and thinking underpins many numerical and logical 

                                                        
1 Although most of the students in these remote communities could be more properly classified as English as an 
Additional Dialect or Language learners (EAD/L), I use ESL here as it is the more widely used term for a range of 
teaching strategies. 
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processes. Finally, there is a body of cross-cultural cognitive linguistic research into 
spatial language that allows comparison with other languages. 
 It was not feasible for this project to investigate all the languages spoken at 
Minjilang, so Iwaidja was chosen for a number of reasons, some of which were political 
and logistical rather than purely educational. Iwaidja is considered by the inhabitants to 
be the language of Croker Island, whereas Mawng and Kunwinjku have their homes 
elsewhere. Iwaidja is not the most frequently spoken language in the school although 
there are some similarities between the spatial language of Iwaidja, Mawng and 
Kunwinjku, as we will see. 
 In order to understand the role of language in mathematical learning when the 
language of instruction is different from the student’s preferred language, Berry (1985) 
describes two types of difficulties. The first, most obvious, type has to do with level of 
fluency in the language of instruction. The second type of problem can be more subtle, 
and arises when there is a mismatch between the student’s cognitive structure and that 
taken for granted by the teacher. 
 An example of the first type of problem can be drawn from the 2010 NAPLAN test 
for Years 3 and 5. One question showed a diagram of a bedroom and asked, “What is 
between the bed and the toy box?”  Understanding the concept of ‘between’, which may 
exist in the students’ home languages—in Iwaidja it is balarra—is different from 
knowing this word in English. Thus “this item is as much a test of English as it is of 
mapping skills” (The Australian Council of TESOL Associations [ACTA], the Applied 
Linguistics Association of Australia [ALAA] and the Australian Linguistic Society 
[ALS], 2010, p. 19). It is this type of difficulty that the First Four Hours in English 
policy was intended to address. 

Frame of reference 
The main focus of this project is on the second type of problem, the cognitive mismatch 
between the teacher and student. Spatial thinking has often been assumed to be based on 
a natural, innate perception of the world (e.g., Piaget & Inhelder, 1956). But the cross-
linguistic research of the Cognitive Anthropology Research Group at the Max Planck 
Institute for Psycholinguistics [CARG] revealed unexpected differences in the ways that 
people talk and think about space and location. In particular this involved what is 
termed “spatial frame of reference”—the manner of talking about where one thing is 
located in relation to another in a horizontal plane. A typology was developed that 
described three main frames of reference: intrinsic, absolute, and relative (Pederson, 
Danziger, Wilkins, Levinson, Kita & Senft, 1998). Some languages, such as English, 
have all three frames of reference. One can variously say “the man is in front of the 
car”—intrinsic, using the front of the car as a reference, “the man is to the north of the 
car”—absolute, using a fixed system that is larger and external to the described 
scenario, and “the man is to the left of the car”—relative, using our own body as the 
reference. But although English has all these frames of reference, there are patterns of 
use linked to context. In small-scale space, the speakers of European languages such as 
English prefer the relative over the absolute and over the intrinsic (Barton, 2009; 
Levinson, 2003). The absolute is generally only used in large-scale spatial description, 
such as reading maps.   
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 The pattern of acquisition of spatial language for English speakers reflects these 
preferences. Children learn first the intrinsic frame of reference such as ‘in front’ and 
‘behind’, then left and right, with north, south, east and west regarded as somewhat 
specialised and not part of everyday speech. Mathematics curricula also reflect this. 
This will be discussed in more detail below, but generally early years mathematics 
curricula have a strong focus on the acquisition of left and right well in advance of the 
cardinal points.  
 It has long been known that in many Indigenous languages of Australia the terms for 
left and right can be used only about a person’s body and not projected onto a scene or 
non-human object (Harris, 1991). It has also been known that some languages such as 
Warlpiri not only use cardinal directions frequently in small-scale space but that this use 
is compulsory in spatial description (Laughren, 1978). Some of the implications of this 
for mathematics teaching in schools have been previously recognised (Harris, 1991). 
What the CARG researchers did was move from these observations to a general 
typology of spatial language. They also demonstrated links between preferred frame of 
reference and spatial memory (Pederson et al., 1998). 
 This study contends that children who use different frames of reference to those 
preferred in English might benefit from a different sequence of mathematics teaching 
that more closely reflects these preferences.  

Man and tree game 
The ongoing project combines a cognitive linguistic approach to investigating spatial 
frame of reference in Iwaidja with teacher interviews, ethnographic observation, and an 
action research approach to improving mathematics teaching in the early years 
classroom. 
 To elicit verbal frame of reference, the “Man and Tree” game (CARG, 2003) was 
used, a barrier task for two participants involving photo matching. The photos show a 
toy man and tree that differ in spatial location and orientation. The aim of the game is 
for one person to choose a card and describe it and the other person to find the identical 
card. Gesture is not permitted. Since the cards show exactly the same objects, spatial 
description is necessary to distinguish them. The “Anne Senghas” set of 16 cards was 
used, in which the man could be in one of four orientations to the tree and one of four 
standing positions in relation to the tree. The cards are named Rxy, where x refers to the 
facing direction of the man and y to where he stands with relation to the tree. The game 
was conducted with four pairs of speakers. 

Findings  
Iwaidja 
The data revealed use of all three frames of reference, with variation between speakers.  

Absolute 

There was extensive use of absolute terms, with common terms including abalkbang 
manyij ‘east (sunrise)’ and wurrying manyij ‘west (sunset)’.  

Warrkbi wakaldakan abalkbang manyij.  [1] 
“The man is on the east side.” (dvR_100512 25:29 AB) R43 
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Ruka warrkbi ari yawukan wurrying manyij.   [2] 
 “This man is standing looking over west.” (dvR_100513 03:34 RN)  R34 

Some local landmarks are also used as absolute terms, such as mayinmul ‘headland’ 
which refers to the headland at the north of Croker Island, and which is used as a term 
for north.  

Relative 

Unusually for Indigenous Australian languages, speakers of Iwaidja do sometimes use 
the terms ‘left’ and ‘right’ beyond the scope of their own bodies. 

Baraka arlirr ari maruj.   [3] 
 “The tree is standing on the left.” (dvR_100512 00:26 AB) R12 
 
Warrkbi rayan nurlinurli or maruj?   [4] 
 “Is the man looking right or left?” (dvR_100512 43:05 DG) R11 

However, this was not a popular strategy and did not often lead to the correct card being 
found. It was remedied with absolute or intrinsic information being added. Body parts 
were also used to describe the orientation of the man with respect to the speakers.  

Riki arrumbukung rtamburryak.   [5] 
 “This one, he gave us his chest (He’s facing us).”  (dvR_101115_2 13:30 CM) R12 

Intrinsic 

Body part descriptions were also used to describe the orientation of the man with 
respect to the tree, such as rukung kirrwarda ‘he gave it his back’. More frequent was 
the use of the terms wurdaka ‘in front’ and warrwak ‘behind, after’. 

Kabanayan baraka warrkbi ari wurdaka lda arlirr warrwak?   [6] 
 “Can you see the one where the man is standing in front and the tree is behind?” 
(dvR_100522 17:16 JW) R24 

These terms are of particular interest and a more detailed analysis will appear in 
Edmonds-Wathen (2011). As with their English equivalents, these terms can have both 
intrinsic and relative applications. They can describe a situation where the man is in 
front of the tree with respect to the viewer or they can describe a situation where the 
man is in front of the tree by virtue of having his back to it. One of the interesting 
features of Iwaidja is that these terms are frequently used when from the speaker’s 
perspective the man is to the left or right. In example (6) above, card R24 shows the 
man on the left side of the card with his back to the tree, which is on the right.  

Other languages of Minjilang 
Mawng 

Mawng is another language from the Iwaidjan family. It shares some vocabulary and 
grammatical structures with Iwaidja, with possibly up to 70 percent coming from a 
shared origin (Teo, 2007). Speakers of Mawng also use a mixture of strategies in small 
scale spatial descriptions. Common absolute terms include kinymalkpa muwarn ‘east 
(sunrise)’ and kinyuryi muwarn ‘west (sunset)’ as well as landmark terms such as 
matanti ‘mainland’ and wungijalk ‘deep ocean’. Matanti is used for south, and 
wungijalk for north. Inyjaku ‘left’ and wurulwurul ‘right’ are also used (Ruth Singer, 
personal communication, 18 November, 2010).  
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Kunwinjku 

Kunwinjku is widely spoken in the community and appears to be a language gaining 
strength and speakers. It is one of a chain closely related, mutually intelligible dialects 
known variously as Bininj Kun-Wok, Mayali, or Kunwinjku. It is only distantly related 
to the Iwaidjan languages. In Kunwinjku, the cardinal directions are also used 
frequently. For example, a story in the Manyallaluk Mayali dialect about hunting 
freshwater crocodile describes hunters hidden in the water in a waterhole and other 
people hitting the water to stir up the crocodiles. When they see a crocodile, the people 
call out to the hunters: 

 “Gumeke! Walem!” gareh “gakbi!” o “goyek! Ngale gareh garri!”   [7] 
 “ ‘Over there! To the south!’ or maybe ‘North!’ or ‘East! Maybe to the west!’ “ (Evans  
p. 676) 

In a similar context English speakers would be more likely to call out the relative 
directions “To your left!” or “Behind you!” 

Child language 
The next stage of the project is to further investigate children’s use of frame of 
reference. Three pilot versions of the “Man and Tree” game have been conducted with 
adult-child pairs, with the children aged from seven to nine years old. There was a 
strong emphasis in each of these trials on which way the man was looking. One parent 
frequently used the absolute terms abalkbang manyij ‘east (sunrise)’ and wurrying 
manyij ‘west (sunset)’. Another favoured wurdaka ‘in front’ and warrwak ‘behind, 
after’. Some of the parents also used maruj ‘left’ and/or nurlinurli ‘right’. There is not 
enough data yet to draw conclusions. 

Cognitive effects—Animals in a Row 
A non-verbal task was conducted with some of the speakers. The “Animals in a Row” 
task was developed by CARG to demonstrate the effect on cognition—specifically on 
memory—of spatial frame of reference preference (Pederson et al., 1998). It was 
designed to demonstrate differences between absolute and relative thinking. Participants 
were shown a row of three animals all facing in one direction, either to the participant’s 
left or right. They were instructed to remember the animals. They were rotated 180 
degrees and taken to another table with identical animals lying on it and instructed to 
“make it the same”. If the stimulus showed the animals facing relative left/south, a 
relative response would be to lay them out facing left (which would now be facing north 
due to the rotation. An absolute response would be to lay them out facing south (which 
would now be facing right). 
 For the Iwaidja speakers, however, the task appeared to demonstrate a preference for 
intrinsic thinking. Most of the participants placed the animals facing all the same way in 
four or five of the five tests. That is, each time, they placed them facing south/relative 
left, regardless of whether the stimulus has been placed north/relative left or 
south/relative right. One speaker placed the animals in a row facing away from his 
body, at a right angle to how he had viewed the stimulus. This was definitely an 
intrinsic response. 
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Location in the early years curriculum  
Northern Territory Curriculum Framework 
The Northern Territory Curriculum Framework (NTCF) is an outcomes based 
document. These outcomes are brief. For example, the Key Growth Point 2 (school 
entry level) outcome for location is “describe the position of nominated everyday 
objects in familiar locations” (Northern Territory Department of Education and 
Training, 2009, p. 3).  
 The 2009 NTCF introduced a section of key vocabulary. This begins at Key Growth 
Point 2 with topographic and intrinsic concepts such as ‘in’, ‘on top’ ‘beneath’ and 
‘behind’, ‘in front’. The relative words ‘left’ and ‘right’ are introduced at Band 1 and 
compass points ‘north’, ‘south’, ‘east’, and ‘west’ at Band 2. This sequencing correlates 
to how English speakers are taught, acquire and use the language of location. It does not 
correlate to how speakers of many Australian Indigenous languages may acquire and 
use spatial language. 
 Another drawback of this type of curriculum is its size. Location is a small area of 
the mathematics curriculum but in this document at Key Growth Point 2 alone there are 
12 separate indicators. These were not intended to be a checklist, but in practice 
teachers often feel that they should all be attempted and achieved. 

The Australian Curriculum 
The Australian Curriculum is far more concise. The location outcome at Foundation 
level is “Describe position and movement” (Australian Curriculum, Assessment and 
Reporting Authority [ACARA], 2010, p. 15). There are only two elaborations. Far 
fewer examples and specific terms are given than in the NTCF. ‘Left’, ‘right’, and the 
compass points are not specified at any stage. This is potentially more inclusive of ILS 
students. One of the elaborations, though, uses the phrase “everyday language of 
location and direction” (ACARA, 2010, p. 15). It is precisely at the Foundation level 
that the teacher needs to know more about the everyday language of their students if it 
differs from that of the teacher (Edmonds-Wathen, 2010). 
 Interestingly though, ‘clockwise’ and ‘anticlockwise’ are specifically identified as 
important in the Year 1 elaborations. Understanding these requires an understanding of 
‘left’ and ‘right’. It would be possible to “give and follow directions to familiar 
locations” (ACARA, 2010, p. 17) using absolute phrases such as “turn towards the sun” 
rather than “turn clockwise”. The argument is not that ILS students should not learn 
‘clockwise’ and ‘anticlockwise’, rather that it may be better to focus on achieving the 
early years outcomes in the frames of reference they are more familiar with, especially 
while they are learning basic English, and move onto those terms later. 

Northern Territory Diagnostic Net 
There is also the danger that the curriculum elaborations will be used in a prescriptive 
rather than illustrative manner. The Northern Territory Diagnostic Net is an attempt to 
define minimum standards for each year level that students must achieve to progress at 
school. For Year 1 minimum standards, it specifies that all students must “know the 
meaning of ‘anticlockwise’ and ‘clockwise’” (NTDET, 2010, p. 47). This has been 
lifted straight out of the Australian Curriculum. 
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Conclusion 
In the area of location, the Australian Curriculum as it stands may be more suitable than 
the Northern Territory Curriculum Framework for Indigenous Language Speaking 
students who have different frame of reference preferences. By specifying less of how 
teachers are to achieve outcomes, it may enable more scope for teachers to target their 
teaching programme to the specific needs of their students. Nevertheless, the new 
curriculum still makes assumptions about the sequencing of spatial learning that has 
been drawn primarily from the language acquisition and concept development of 
children from European language backgrounds. Children who are learning Indigenous 
languages such as Iwaidja, Mawng, and Kunwinjku are acquiring spatial language and 
concepts with different foci. The study of spatial frame of reference and its uses is a 
field that aptly demonstrates some of these differences. Further investigation is required 
into the actual acquisition of spatial frames of reference by the children of Minjilang 
community.  

References 
Australian Council of TESOL Associations (ACTA), Applied Linguistics Association of Australia 

(ALAA) and Australian Linguistic Society (ALS) (2010). Submission to the Senate Education, 
Employment and Workplace Relations Committee Inquiry into the administration and reporting of 
NAPLAN testing. Retrieved September 20, 2010, from http://www.tesol.org.au/files/files/ 
145_ACTA_ALAA_ALS_submission_NAPLAN.pdf 

Australian Curriculum, Assessment and Reporting Authority (2011). The Australian Curriculum: 
Mathematics. Retrieved December 21, 2010, from http://www.australiancurriculum.edu.au/ 
Mathematics/Curriculum/F-10 

Barton, B. (2009). The language of mathematics: Telling mathematical tales. New York: Springer. 
Berry, J. W. (1985). Learning mathematics in a second language: Some cross-cultural issues. For the 

Learning of Mathematics, 5(2), 18–23. 
Cognitive Anthropology Research Group at the Max Planck Institute for Psycholinguistics (2003). Field 

Manual for the Space Stimuli Kit 1.2 June 2003. Nijmegen: Max Planck Institute. Used with 
permission. 

Commonwealth of Australia (2000). The national Indigenous English Literacy and Numeracy Strategy 
2000–2004. Canberra: Commonwealth of Australia. 

Edmonds-Wathen, C. (2010). The everyday language of mathematics: investigating spatial frames of 
reference in Iwaidja. In M. Pinto & T. Kawasaki (Eds.), Proceedings of the 34th Conference of the 
International Group for the Psychology of Mathematics Education (Vol. 2, pp. 321–327), Belo 
Horizonte, Brazil: PME. 

Edmonds-Wathen, C. (forthcoming). What comes before? Understanding spatial reference in Iwaidja. In 
Proceedings of the 21st ICMI Study Conference, “Mathematics Education and Language Diversity”, 
São Paolo, Brazil, 16–20 September, 2011. 

Evans, N. (2003). Bininj gun-wok: A pan-dialectal grammar of Mayali, Kunwinjku and Kune (Vols. 1–2). 
Canberra: Pacific Linguistics, Research School of Pacific and Asian Studies, Australian National 
University. 

Harris, P. J. (1991). Mathematics in a cultural context: Aboriginal perspectives on space, time and 
money. Geelong: Deakin University. 

Laughren, M. N. (1978). Directional terminology in Warlpiri (a Central Australian language). Working 
papers in language and linguistics, 8. Launceston, Tas: Tasmanian College of Advanced Education. 

Levinson, S. C. (2003). Space in language and cognition: Explorations in cognitive diversity. Cambridge: 
Cambridge University Press. 

Ministerial Council on Education Employment Training and Youth Affairs (2008). National Assessment 
Program, Literacy and Numeracy: Achievement in Reading, Writing, Language Conventions and 
Numeracy. Retrieved June 18, 2009, from http://www.mceecdya.edu.au/mceecdya/ 
naplan_2008_report,25841.html 

Ministerial Council on Education Employment Training and Youth Affairs (2010). Indigenous Education 
Action Plan draft 2010–2014. Retrieved April 4, 2010, from http://www.mceetya.edu.au/verve/ 
_resources/IEAP_Stage_Two_Consultation_Draft_%282%29.pdf  

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

224



EDMONDS-WATHEN 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

National Curriculum Board (2009). Shape of the Australian Curriculum: Mathematics. Retrieved June 18, 
2009, from http://www.acara.edu.au/key_milestonesevents_in_curriculum_development.html 

Northern Territory Department of Education and Training (2009). Northern Territory curriculum 
framework: Mathematics learning area. Retrieved October 26, 2009, from http://www.det.nt.gov.au 
/teachers-educators/curriculum-ntbos/ntcf 

Northern Territory Department of Education and Training (2010). Prioritising Literacy and Numeracy: 
Diagnostic net for Transition to Year 9. Retrieved October 1, 2010, from http://www.det.nt.gov.au 
/teachers-educators/literacy-numeracy/literacy-and-numeracy-strategy  

Northern Territory Government (2009). Compulsory teaching in English for the first four hours of each 
school day policy. Retrieved April 8, 2009, from http://www.det.nt.gov.au/__data/assets/pdf_file/ 
0016/628/CompulsoryEnglishFourHoursEachDay.pdf 

Pederson, E., Danziger, E., Wilkins, D., Levinson, S., Kita, S., & Senft, G. (1998). Semantic typology and 
spatial conceptualization. Language 74(3), 557–589. 

Piaget, J., & Inhelder, B. (1948/1956). The child’s conception of space (F. J. Langdon & J. L. Lunzer, 
Trans.). London: Routledge & Kegan Paul. 

Roberts, T. (1998). Mathematical registers in Aboriginal languages. For the Learning of Mathematics, 
18(1), 10–16. 

Teo, A. (2007). Breaking up is hard to do: Teasing apart morphological complexity in Iwaidja and 
Maung. Unpublished Bachelor of Arts (Honours) thesis, University of Melbourne, Melbourne. 

225



DATA MODELLING IN THE BEGINNING SCHOOL 
YEARS 

LYN ENGLISH 
Queensland University of Technology 

l.english@qut.edu.au 

 
This paper argues for a renewed focus on statistical reasoning in the beginning school 
years, with opportunities for children to engage in data modelling. Some of the core 
components of data modelling are addressed. A selection of results from the first data 
modelling activity implemented during the second year (2010; second grade) of a current 
longitudinal study are reported. Data modelling involves investigations of meaningful 
phenomena, deciding what is worthy of attention (identifying complex attributes), and then 
progressing to organising, structuring, visualising, and representing data. Reported here are 
children’s abilities to identify diverse and complex attributes, sort and classify data in 
different ways, and create and interpret models to represent their data. 

Introduction 
The need to understand and apply statistical reasoning is paramount across all walks of 
life. One only has to peruse the daily newspapers to see the variety of graphs, tables, 
diagrams, and other data representations that need to be interpreted. With unprecedented 
access to a vast array of numerical information, we can engage increasingly in 
democratic discourse and public decision making—that is, provided we have an 
appropriate understanding of statistics and statistical reasoning. 
 Young children are immersed in our data-driven society, with early access to 
computer technology and daily exposure to the mass media. With the rate of data 
proliferation has come increased calls for advancing children’s statistical reasoning 
abilities, commencing with the earliest years of schooling (e.g., Franklin & Garfield, 
2006; Langrall, Mooney, Nisbet, & Jones, 2008; Lehrer & Schauble, 2005; National 
Council of Teachers of Mathematics [NCTM], 2006; Shaughnessy, 2010).  
 We need to rethink the nature of young children’s statistical experiences and 
consider how we can best develop the important mathematical and scientific ideas and 
processes that underlie statistical reasoning (Franklin & Garfield, 2006; Langrall et al., 
2008; Leavy, 2007; Watson, 2006). There has been limited research, however, on 
developing young children’s statistical reasoning. One approach in the beginning school 
years is through data modelling (English, 2010; Lehrer & Romberg, 1996; Lehrer & 
Schauble, 2007; Lehrer & Schauble, 2000).  
 In this paper, I first argue for the need to review young children’s statistical 
experiences, with a focus on data modelling. I then address some findings from a data 
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modelling activity implemented in second-grade classrooms during the second year of a 
three-year longitudinal study. In reporting some findings, I consider children’s:  
1. Recognition of diverse and complex attributes; 
2. Identification of ways to sort and classify their data; 
3. Models created in representing their data and their interpretations of their models. 

Modelling 
Data modelling is a developmental process, beginning with young children’s inquiries 
and investigations of meaningful phenomena, progressing to identifying various 
attributes of the phenomena, and then moving towards organising, structuring, 
visualising, and representing data (Lehrer & Lesh, 2003). As one of the major thematic 
“big ideas” in mathematics and science (Lehrer & Schauble, 2000, 2005), data 
modelling should be a fundamental component of early childhood curricula. Limited 
research exists, however, on such modelling and how it can be fostered in the early 
school years. Indeed, the majority of the research on mathematical modelling has been 
confined to the secondary and tertiary levels, with the assumption that primary school 
children are not able to develop their own models and sense-making systems for dealing 
with complex situations (Greer, Verschaffel, & Mukhopadhyay, 2007). 

Generating and selecting attributes 
Early experiences with data modelling involve selecting attributes and classifying items 
according to these attributes (Lehrer & Schauble, 2000). As Lehrer and Schauble (2007) 
noted, it is not a simple matter to identify key attributes for addressing a question of 
interest—the selection of attributes necessitates “seeing things in a particular way, as a 
collection of qualities, rather than intact objects” (p. 154). Moreover, children have to 
decide what is worthy of attention (Hanner, James, & Rohlfing, 2002). Some aspects 
need to be selected and others ignored, the latter of which could be salient perceptually 
or in some other way. Frequently, however, young children are not given experiences in 
which they need to consider attributes in this way. 
 Classification activities presented in the early school years usually involve items 
with clearly defined and discernable features, such as green square shapes, blue 
triangular shapes etc. (Hanner et al., 2002). It is thus rather easy for children to classify 
items of this nature. In contrast, problems involving the consideration of more complex 
and varied attributes, which could define more than one classification group, present a 
greater challenge to young children. 

Structuring and displaying data 
Models are typically conveyed as systems of representation, where structuring and 
displaying data are fundamental—”Structure is constructed, not inherent” (Lehrer & 
Schauble, 2007, p. 157). However, as Lehrer and Schauble indicated, children 
frequently have difficulties in imposing structure consistently and often overlook 
important information that needs to be included in their displays or alternatively, they 
include redundant information. Providing opportunities for young children to structure 
and display data in ways they choose, and to analyse and assess their representations is 
important in addressing these early difficulties. 
 Constructing and displaying their data models involves children in creating their own 
forms of inscription. By the first grade, children have already developed a wide range of 
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inscriptions, including common drawings, letters, numerical symbols, and other 
referents. As children create and use their own inscriptions they also develop an 
“emerging meta-knowledge about inscriptions” (Lehrer & Lesh, 2003), which diSessa, 
Hammer, Sherin, and Kolpakowski (1991) termed, metarepresentational knowledge. 
These developing inscriptional capacities provide a basis for children’s mathematical 
activity. Indeed, inscriptions are mediators of mathematical learning and reasoning; they 
not only communicate children’s mathematical thinking but they also shape it (Lehrer & 
Lesh, 2003; Olson, 1994). Developing a repertoire of inscriptions, appreciating and 
assessing their qualities and use, and using their inscriptions to explain or persuade 
others, are essential for data modelling. Yet children are often taught traditional 
representational systems as isolated topics at a specified point in the curriculum, without 
really understanding when and why these systems are used. 

Role of context 
The nature of task design is a key feature of data modelling activities. Stillman, Brown, 
and Galbraith’s (2008) notion of “modelling as vehicle” (p. 143) is applicable here. 
Such modelling involves choosing contexts in which stimuli for the desired 
mathematics learning are embedded. Genuine problem situations are used as vehicles 
for students to construct significant mathematical ideas and processes rather than simply 
apply previously taught procedures. Furthermore, the mathematics that students engage 
with in solving such modelling problems usually differs from what they are taught 
traditionally in the curriculum for their grade level (English, 2003a; 2008; Lesh & 
Zawojewski, 2007). 
 When solving data modelling problems children need to appreciate that data are 
numbers in context (Langrall, Nisbet, Mooney, & Jansem, 2011; Moore, 1990), while at 
the same time abstract the data from the context (Konold & Higgins, 2003). Research 
has shown that both the data presentation and the context of a task itself have a bearing 
on the ways students approach problem solution—presentation and context can create 
both obstacles and supports in developing students’ statistical reasoning, emphasising 
the need to consider carefully task design (e.g., Cooper & Dunne, 2000). 

Methodology 
The participants were from an inner-city Australian school. In the first year of the study, 
three classes of first-grade children (2009, mean age of 6 years 8 months) and their 
teachers participated. The classes continued into the second year of the study, the focus 
of this paper (2010, mean age of 7 years 10 months, n=68). 
 A teaching experiment involving multilevel collaboration (English, 2003b; Lesh & 
Kelly, 2000) was adopted here. This approach focuses on the developing knowledge of 
participants at different levels of learning (student, teacher, researcher) and is concerned 
with the design and implementation of experiences that maximise learning at each level. 
The teachers’ involvement in the research was vital; hence regular professional 
development meetings were conducted. This paper addresses aspects of the student 
level. 
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Activity: Baxter Brown’s Shop 
The initial activity implemented in the second year of the longitudinal study continued 
the story context (purposely created) from the first year of activities. The context 
involved the adventures of Baxter Brown (a “westipoo”—West Highlander X toy 
poodle). The children requested more stories about Baxter Brown in the second year of 
the study; hence the Baxter Brown’s Shop was created. The Baxter Brown stories, 
presented as picture books, were read to the children in a whole class setting. 
 The Baxter Brown’s Shop story told of the mischievous supermarket expeditions 
Baxter took with his owners, Mr and Mrs Brown. The dog created various forms of 
mayhem as he raced down the supermarket aisles. Following the story, the children 
were shown a simple table of data indicating the different types of mayhem he had 
created. As a whole class, the children were to determine whether Baxter Brown was 
becoming more mischievous as his week in the supermarket progressed. In the second 
component of the activity, the focus here, it was explained that Baxter Brown was 
subsequently banned from the supermarket and thus ended up creating his very own 
shop in his bedroom. The children were given an A3 chart comprising illustrations of 16 
supermarket items that displayed diverse attributes (the items were a carton of milk, a 
frozen pizza, apples, coco pops, pasta, a tin of sliced pineapple, fresh carrots, a packet 
of cheese, a packet of bread rolls, a packet of biscuits, a container of apple juice, a 
carton of eggs, a tin of dog food, a packet of fish, packaged chicken, and a packet of 
Cheezels). Working in groups, the children responded to a number of written questions, 
including: (a) What are some things you notice about the shopping items? Make a list of 
these. (b) There are lots of things you have noticed. To help Baxter Brown here, what 
are some ways in which you might sort and classify your data? (c) Which way do you 
like best? (d) To make it easier for Baxter Brown, how might you represent your data? 
What are some different ways? (e) Which way do you like best? Why? (f) Now 
represent your data on your sheet of paper, and (g) What are some things that your 
representation tells Baxter Brown? On completion of the activity, the groups presented 
class reports. Children’s responses to questions (a), (b), (f), and (g) are reported here. 

Data collection and analysis 
In each of the second-grade classrooms, two focus groups (of mixed achievement levels 
and chosen by the teachers) were videotaped and audiotaped. There were 17 groups of 
children, five in one class and six in each of the remaining classes. The range of data 
collected was analysed using iterative refinement cycles for analysis of children’s 
learning (Lesh & Lehrer, 2000), together with constant comparative strategies (Strauss 
& Corbin, 1990), where data were coded and examined for patterns and trends. For 
questions (a), (b), and (g), some groups gave more responses than others. For question 
(f), one group created two models while all other groups created just one model. The 
analysis of data addressed the total number of responses for each question across all 
groups. 
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Selection of findings 
Children’s identification of attributes 
The children’s responses to question (a), asking for things that they noticed about the 
given items, were analysed iteratively with two main categories of responses identified, 
namely, attributes that were primarily qualitative in nature and those that comprised a 
quantitative element. Qualitative attributes were favoured over quantitative ones. Of the 
41 group responses to this question, 28 were of the former type and 13 of the latter. 
Examples of the qualitative attributes included “dinner foods, brekky foods, dessert,” 
“foods to cook, foods not to cook,” “healthy/non-healthy food,” and “cans, bottle, 
plastic, bags, boxes.” Quantitative attributes included, “Only one dog food,” “all items 
are under $10 apart from the chicken,” “there are only two tins,” and “there are more 
foods than drinks.” 

Children’s identification of ways to sort and classify data 
Half of the 24 responses to question (b) (“What are some of the ways you might sort 
and classify your data?”) referred to complementary categories such as “drinks and 
food,” healthy and not healthy,” “cereals and not cereals,” and “fruit and non-fruit.” 
Two groups offered three or more categories, such as “Dinner, snack, lunch, and 
breakfast.” A further two groups suggested putting like items together such as “drinks 
together, cans together, things that are in boxes together.” One other group 
recommended sorting by cost (“highest price to lowest,”) and another suggested sorting 
by shape and size (“big food, small food;” “thickest and thinnest”). 

Children’s model creations 
Three main models were evident in the children’s recorded representations of their 
sorting and classifying of data. These were models that comprised (a) lists of items in 
labelled columns, (b) sets of items enclosed in a curve, and (c) items grouped in two 
divisions (horizontal or vertical) on the A3 sheet provided. 

Items in columns 

Five of the 17 groups developed models that displayed two to five labelled columns, 
with the names of the items recorded one under the other in the respective columns. One 
of these models used the shop context to define the categories, namely, “fridge” and 
“cupboard,” while another model listed healthy and unhealthy items with prices 
attached. The model that listed items in three columns displayed interesting categories, 
namely, “dry,” “wet,” and “dry and wet.” In their class report, one group member 
explained, “I said how about things that are dry and things that are wet so we decided to 
put that down, and then I thought about pasta and I said if pasta, if you just had pasta by 
itself it would be dry but if you cooked it, then it would be wet, so then it would be 
both, so it depends on if you cooked it or if you kept it raw.” Another interesting model 
that comprised five columns displayed items listed under the categories of shapes, 
namely, “rectangular prism,” “sphere,” “cone,” “cylinder,” and “pyramid.” The children 
explained that there were no items that were a pyramid shape and so that column was 
left blank. 
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Items enclosed in a curve 

Four groups created a model with item names enclosed within a curve. One of these 
models comprised a large oval, divided into four, with the divisions labelled “healthy,” 
“not healthy,” “both,” and “dog food.” 

Horizontal/vertical division 

The most common models were those that comprised either a vertical or horizontal 
division of the A3 sheet of paper (either with or without actual dividing lines) and 
displayed item names or illustrations or both. Nine groups developed models of this 
nature, with one of the groups creating two models, the other being labelled items 
within a curve. Interesting classifications were evident in these models, such as 
“combination [of foods]” and “things that taste good by itself.” The influence of task 
context was also visible in these models, such as in the last group who drew two tables 
(one at the top of the paper and the other at the bottom) with illustrations of items lined 
up across the tables and prices attached. Another group used a shop context of “fridge” 
and “cupboard.” Their model displayed a drawing of a fridge (labelled “fridge” on the 
top left-hand corner) with illustrations of cold items stacked on shelves and a cupboard 
(labelled “cupboard” on the top right-hand corner) with non-cold items illustrated on 
shelves. Another group incorporated a food pyramid within their model. 

Children’s interpretation of their models 
Due mainly to lack of time, not all groups provided responses for question (g), where 
the children were asked what their representation tells Baxter Brown. Of the 18 
responses, 13 focused primarily on a contextual interpretation (with a common focus on 
healthy eating) and a literal reading of their model, that is, there was limited 
interpretation of the data (cf. Curcio, 2010, first level of graph comprehension). 
Examples of such responses included, “There’s a healthy aisle and an unhealthy aisle,” 
“there’s dry food and wet food and both,” and “It tells him what to put in the fridge and 
what to put in the cupboard; if he doesn’t put it in the right place he might get sick.” 
Only five responses referred to any relational observations (cf. Curcio’s second level of 
graph comprehension [“reading between the data”]). Such responses included: “There 
are more healthy things than unhealthy things, “there is more food than drinks and less 
drinks than food,” and “Our grid tells Baxter Brown what aisles the shape foods are in. 
It tells him there are no pyramid shape items like the camera stands-tripods. He would 
have to go to another shop.” 

Discussion and concluding points 
This paper has addressed the need for a renewed focus on statistical reasoning in the 
beginning school years, with a focus on data modelling. In such activities, children 
interpret and investigate meaningful phenomena involving the identification of diverse 
and complex attributes, in contrast to the standard attributes they usually experience in 
early mathematics curricula. Building their data models engages children in organising, 
structuring, visualising, and representing their data in ways that they, themselves, 
choose. 
 Evident in the children’s responses was the influence of task context, which appeared 
to present both support and obstacles in the children’s reasoning. For example, the 
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children’s familiarity with the task context appeared to enable them to identify a diverse 
range of attributes, some quite unexpected, such as a consideration of food 
combinations, items for different meal times, and items that were identified as “dry,” 
“wet,’ and “dry and wet.” On the other hand, the children were very aware of healthy 
and non-healthy foods (from their health lessons) and this could have overshadowed a 
possible broader range of attributes being identified. The shop context also influenced 
some of the groups’ model creations where fridges, cupboards, and tables were used to 
represent data. The impact of task context was also evident in the children’s 
interpretations of their models, where there was a focus on shop aisles and also food 
storage. 
 The nature of the task items appeared to have a further impact on the children’s 
identification of attributes and ways to sort and classify the data. Qualitative rather than 
quantitative features were considered. Nevertheless, the children did identify a wide 
range of qualitative features despite not making many numerical comparisons. The 
children’s models were not as varied as those created in the first year of the study, (e.g., 
English, 2010), where the story context focused on Baxter Brown cleaning up his very 
messy room. Children were given various sets of multiple cut-out items to work with 
and generated a range of representational models including graphical formats. Perhaps 
the use of multiple manipulative items might have broadened the children’s responses in 
the present activity. Nevertheless, the children did display an awareness of 
representational structure in developing their models, with their use of inscriptions 
enabling clear interpretation and communication of their models. The role of task 
context in young children’s mathematical learning has been highlighted over the years 
(e.g., Watson, 2006) but this study suggests that further consideration is needed. 
 Young children need rich opportunities to develop their statistical reasoning abilities; 
data modelling activities provide such opportunities. However, despite the increased 
calls for renewed attention to statistical learning in the early school years, research 
examining young children’s statistical developments remains in its infancy. 
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This paper explores what two cohorts of middle school mathematics pre-service teachers 
(PSTs) report they learned after interviewing two middle school English Language 
Learners (ELLs) using four measurement tasks. The written responses of the PSTs to the 
question about what they learned from the experience were coded and classified into three 
overarching themes—accommodations, conceptions about ELLs, and the role of language 
in mathematics. Implications of these themes in future teacher preparation are also 
discussed.  

Introduction 
The school population of English Language Learners (ELLs) has seen rapid growth in 
the US. Between 1979 and 2008, the number of 5–17 year olds who speak a language 
other than English at home increased from 9% to 21% in the US (NCES, 2010). ELLs 
require teachers who are familiar with the unique challenges that these students face as 
they try to learn new content in a language they are still learning. With the increasing 
number of ELLs in the US, there is a great need for better trained teachers as more 
mainstream teachers work with ELLs in their classrooms. Of the 41% of teachers 
working with ELLs in their classroom, only 13% are adequately prepared (National 
Center for Education Statistics [NCES], 2002). The underperformance of ELLs in the 
National Assessment for Educational Progress (NAEP) (Martiniello, 2008), known as 
the ―nations report card‖, is indicative of the critical need for all teachers to be trained to 
work with ELLs.  
 In this article I report on initial results from an exploratory project that I conducted, 
for two semesters, in mathematics content courses for middle school pre-service 
teachers (PSTs). The goal of the project was to foster an understanding, among the 
PSTs, of the challenges faced by ELLs as they learn mathematics in English. The PSTs 
engaged in a semester long project in which they interviewed two ELL students on four 
measurement problems and wrote a structured report on each occasion. In this paper, I 
will focus on one of the guiding research questions from this project: What do PSTs 
report about learning from mathematics task-based interviews with ELLs?  
 Most of the PSTs in my classes were monolingual English speakers and reported 
having minimal to no interaction with ELLs. I conjectured that engaging these PSTs in 
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task-based interviews would provide the needed platform for them to rethink some of 
the preconceptions that they may have about ELLs.  

Literature review 
The educational needs of ELL students are complex as they are learning content in a 
language in which they are still developing proficiency (Lucas, Villegas, & Freedson-
Gonzalez, 2008). Cummins (2000) differentiated between the informal conversational 
language used in everyday interactions and the more formal academic language that is 
usually used in content areas like mathematics. Conversational language is acquired 
through interactions with others in different settings, requires limited vocabulary and 
meaning making is assisted through the use of contextual cues. Academic language, on 
the other hand, refers to the special language of a content area that is usually acquired in 
school, employs special vocabulary and discourse features and is devoid of context. 
Conversational language fluency is acquired in one to two years whereas five to seven 
years are needed for development of academic language.  
 Part of learning the academic language requires that students become proficient in 
the ―mathematics register‖ (Halliday, 1978) which refers to the special vocabulary and 
linguistic structures that are used to express and discuss mathematics. Spanos, Rhodes, 
Dale, and Crandall (1988) further elaborated the syntactic, semantic, and pragmatic 
features of the mathematics register that could pose a challenge to all students, but 
especially ELLs. Syntactic features included comparisons of size (X is greater than Y) 
or conditional relationships (if X, then Y). Other syntactic features of the mathematics 
register include the use of passive voice (e.g. When 15 is added to a number, the result 
is 21. What is the number?), which is known to be challenging for ELL students (Abedi 
& Lord, 2001). ELLs need to master the semantic features of the mathematics register 
which include the use of special words like coefficient and denominator or the use of 
everyday terms like square and rational, which have a special meaning in a 
mathematical context. The last category of pragmatics referred to the use of language in 
particular contexts where students would need to know culturally specific meanings to 
understand and solve a problem (e.g. Campbell, Adams, & Davis (2007) discuss a 
problem where the student would need to understand the word Laundromat). 
 Future teachers have to understand the challenges that ELLs face learning the 
academic language if they are to assist these students in learning mathematics (Lucas et 
al., 2008). However, in most cases, PSTs are usually white and monolingual, and they 
may not have experienced the same linguistic challenges that ELLs face in English only 
classrooms; hence it is hard for them to empathize with these students. In the absence of 
formal experiences with ELLs, the PSTs’ views about ELL students are most likely 
shaped by media or the public leading to the creation of stereotypes (Walker, Shafer, & 
Liams, 2004). For example, PSTs may assume that an ELL student possesses a 
disability if they are proficient in conversation but struggle with the mathematics 
content. Currently, there is an over representation of Latinos, who constitute 85% of 
ELLs, in special education (Gandara & Contreras, 2009). Providing PSTs with the 
proper experiences during their preparation is important so that they have opportunities 
to re-examine prior conceptions and acquire views that are more aligned with research 
(Sleeter, 1995).  
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In multicultural education, experiences with diverse populations like living in 
communities that are culturally different to one’s own or tutoring such students have 
shown promise in challenging PSTs existing beliefs about such diverse students 
(Sleeter, 2001). In particular, Griego-Jones (2002) found that PSTs who had tutored or 
worked with ELLs had beliefs that aligned most closely to those in the research 
literature about second language acquisition. Youngs and Youngs (2001) also found that 
increased exposure of PSTs to ELLs promoted positive attitudes towards these students. 
Mathematical field-experiences, like tutoring students, have also shown promise in 
changing PSTs initial beliefs about mathematics teaching (Ambrose, 2004; Vacc & 
Bright, 1999). A note of caution about field-experiences is that they can reinforce 
preconceived notions that PSTs have about diverse students (Grant, 1991; Grant, 
Hiebert, & Wearne, 1998). So it is imperative that the experiences are followed up with 
guided reflection from the instructor for them to impact the PSTs (Cabello & Burstein, 
1995; Mewborn, 1999). Teacher reflection is also tied to what they notice and attend to 
in the experience (Mason, 2002). In interviews with ELLs it is possible that the PSTs 
attend to mathematical aspects of the student’s thinking and not pay attention to the 
influence that language may have on the mathematical thinking. Mason (2002) outlines 
techniques that can be used to foster noticing, the key being recording incidents of 
interest and probing them. Mason refers to the descriptions of the incidents as providing 
―Accounts-of‖ which ―describe as objectively as possible by minimising emotive terms, 
evaluation, judgements and explanations‖ (p. 40). By holding off judgement, there is 
potential to get a fresh look at the incident of interest. On the other hand, ―Accounts-
for‖ ―introduces explanation, theorising and perhaps judgement and evaluation‖ (p. 40). 
By providing ―Accounts-of‖ and ―Accounts-for‖, there is potential for a person to notice 
things that they might not otherwise pay attention to. Overall, field-experiences, like 
task-based interviews, in conjunction with structured reflection, guided by noticing, has 
the potential to foster an awareness of the unique challenges ELLs face as they learn 
mathematics content in English.  

Methods 
The study was conducted in my data analysis and probability course in spring 2010 and 
in a geometry course that I taught in fall 2010. As part of the courses, I engaged the 17 
PSTs (spring 2010) and 32 PSTs (fall 2010) in two task-based interviews with fifth- and 
sixth-grade ELL students at a local school. The PSTs worked in pairs, with one 
interviewing the student and the other taking notes. They switched roles for the second 
interview. The interviews in fall 2010 were also videotaped. Four measurement tasks 
from the NAEP were selected by me based on my own experience interviewing ELL 
students with them.   
 In the second week of class the tasks were presented to the PSTs who solved them on 
their own. Two video clips from a prior study were used to illustrate the questioning 
process and highlight aspects of the language that could challenge ELL students. After 
watching the clips, the PSTs brainstormed in their groups and developed an interview 
script for each of the four problems. The PSTs were instructed to first allow the ELL 
student time to solve the problem independently and then engage them in a discussion 
about their solution. If they could not start the problem or sought help, the PSTs were 
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asked to intervene appropriately. The PSTs were advised to allow the ELL student to do 
most of the thinking for the task without explicit hints.  
 After the interviews were conducted, the PSTs were required to write a detailed 
report about the process. In spring 2010, the pair of PSTs that interviewed the ELL 
student submitted a joint report (there was one group of three PSTs). However, in fall 
2010, each PST submitted an individual report. Guiding questions, based on Mason’s 
(2002) notions of ―Accounts-of‖ and ―Accounts-for‖, were provided to assist the PSTs 
notice features that went beyond the superficial. The questions encouraged the PSTs to 
describe the interview in detail and then analyse specific aspects like the student’s 
challenges, resources they used to solve the problem, their oral communication, writing, 
and their mathematical thinking.  
 The PSTs turned in the reports which were graded and in most instances I provided 
feedback and asked them to produce a revised version. Later in the semester, the above 
process was repeated with another ELL student. The data for this article consist of the 
PSTs’ responses to the question that asked them to list at least three things they learned 
from the task-based interview experience.  
 For data analysis, all the PSTs’ responses to the question about what they had 
learned were compiled into four documents (two from each semester) using NVivo 9, a 
qualitative analysis software. I printed and read all the documents multiple times and 
did content analysis to first outline broad themes that captured what the PSTs were 
saying about their learning (Patton, 2002). I kept refining these themes to arrive at a 
final list of codes. I used this list to code the four documents in NVivo which allowed 
me to observe the number of instances a certain code occurred and I dropped the less 
frequent ones (less than five) from my analysis. I looked at the final set of codes and 
determined subsets of them that could be related under an overarching theme.  

Results  
Based on the above analysis, the PSTs’ reports about what they learned from the task-
based interviews could be captured in three overarching themes—accommodations, 
conceptions about ELLs, and the role of language in mathematics. I discuss each of 
these below.  

Accommodations 
After interacting with the ELLs, most of the PSTs observed that they would have to 
make an extra effort to ensure that the ELLs understood the content. Some of the 
accommodations discussed included: spending one-on-one time with the students, 
relating the concepts to the ELL students’ experiences, breaking down the question, 
slower speech, assistance with the mathematical vocabulary, and accepting different 
ways of demonstrating understanding that went beyond the traditional written format. 
For example, one PST mentioned that ELLs will need extra support and slower paced 
instruction as they try to negotiate the language and the content.  

In order for an ELL student to excel in math, they need additional support and 
explanation. Also, a teacher may need to slow instruction for students who are English 
language learners. These students need more time to process information than those 
whose native language is English. (Keith, Interview 2, Fall)  
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Another PST reported the need to incorporate aspects of language like reading and 
writing in the mathematics class to support the development of ELL students in the 
class.  

I also learned that it is very important to make sure that reading, writing and math are all 
covered in class. It is important for a student to be able to solve the math, write out the 
answers and explain themselves and be able to read and interpret what is being asked. All 
three of these things should be focused on when teaching lessons on different topics. 
Also, many opportunities should be given to each student with all three of these elements 
so they can improve or master each. (Sandra, Interview 1, Fall)  

Most of the PSTs see these accommodations as necessary if the ELLs are to develop an 
understanding of the content and keep pace with the other students in the class. One 
group of PSTs observed that it was easy for the ELL students to remain quiet or for their 
conversational fluency to mask understanding of the content. They recommended a 
proactive role for the teacher when working with ELLs. 

For our classrooms, we now see that we will need to take extra steps such as one on one 
time to make sure that all students clearly understand, particularly ELL students. We 
learned that they can easily coast through the class just by being quiet or proficient in the 
English language. It would be the greatest failure as a teacher to have a student come 
through the classroom and go through the entire school year being years behind in 
mathematics. (Clair, Janet, and Karen, Interview 1, Spring) 

A majority of PSTs espoused the benefits of using visuals and concrete materials to 
assist ELLs with understanding and also as a means for students to explain their 
solutions. These recommendations could be traced back to the materials that were part 
of the Area Comparison problem and the String problem. The Area Comparison 
problem provided cut-outs and involved comparison of the areas of a right-triangle and 
square where the side of the square was equal to the height of the right-triangle and the 
base was twice the height. Two cut-outs each of the square and the right-triangle were 
provided for the students. The String problem asked the students to describe how they 
would instruct another student to divide a length of string into four equal pieces. For 
this problem, the PSTs provided a piece of string to the student after they worked on the 
problem independently. Based on their experience with the String problem, a PST 
reports, 

I also learned that manipulatives can be helpful to an ELL student when learning math. 
He was able to solve the third question easily after he had the string [String problem] in 
his hand… the manipulative helped him understand the problem. I think that 
manipulatives are good for any student, but it may be even more helpful for a student 
who does not quite understand what all the words in the question mean. (Betty, Interview 
2, Fall) 

The PST observes that manipulatives could play an important role for all students, but 
especially ELLs. Another PST reports on the usefulness of the cut-outs [Area 
Comparison problem] and string to assist the student with their explanation.  

I can’t stress enough how helpful the string and the cutouts were…. Not only did they 
help her solve it, but they were a big factor in her communicating how she did it. The 
same would be said with the string problem. Where her writing was a little confusing, she 
was able to demonstrate using the string very clearly…. I think the availability of 
concrete materials to aid in understanding and communicating are vital for these students 
and should be used extensively in the classroom. (Tess, Interview 2, Fall) 
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Other accommodations that the PSTs reported included making the directions of the 
problem clear. The PSTs related the confusion that the ELL students were having 
solving a problem to the wording of the question. One PST pointed to the lack of 
clarity—―It is very important when teaching not only ELL students, but all students in 
mathematics, that the questions are worded very clearly and simply to ensure they are 
not confused by what is being asked of them‖ (Mills, Interview 2, Fall). Another PST 
went further to recommend that teachers should pay attention to the language of the 
questions they plan to ask and think of ways the question could be misunderstood by 
ELLs, and modify them accordingly.  

Conceptions about ELLs 
The interactions with the ELLs helped the PSTs rethink some of the conceptions that 
they may have had about ELLs. One conception involved associating ELLs with having 
a disability in mathematics.  

We also learned that just because a student is classified as ELL does not mean that they 
will have problems in school. A lot of people tend to see ELL as a ―disability‖ while in 
many cases it can be a sign of a high intellectual ability. Not many people are bilingual 
and these students can read, write, speak, and comprehend in two languages. (Karen and 
Janet, Interview 2, Spring) 

Another PST reports, 
If anything we learned that you cannot be stereotypical about a student and think that they 
are instantly going to have a problem with mathematics because they are learning English 
as a second language. (Elisa, Interview 1, Fall) 

A majority of the PSTs understood that the language ability of the ELLs could interfere 
with their mathematical performance. One PST reports,  

First I learned that ELL students sometimes just need a little guidance to get to the  
solution. Often, they understand how to solve the problem once they comprehend what 
the problem is asking. This may be a huge indicator that these students are struggling 
with the language and wording rather than the math. (Clair, Interview 1, Fall) 

In some cases, the PSTs observed that the ELLs tended to interpret the problem 
differently and this could lead them on a different solution path. For example, the String 
problem stated ―Brett needs to cut a piece of string …‖ which some ELL students 
thought referred to a part of the string rather than the whole string. The PSTs observed 
that the ELLs could understand the requisite mathematics but struggled with 
deciphering the question due to their still evolving language skills. 
 Another conception that some PSTs seemed to have was that ELLs would have 
difficulty speaking in English.  

Overall, I learned a lot more about ELL students after this interview. I learned that not all 
students are the same, including ELL students. Teachers should not assume that if the 
student is ELL that they will not be able to understand English. This student was 
classified as an ELL student, but was able to read and understand all the questions. 
(Betty, Interview 2, Fall) 

Given the limited exposure that these PSTs had to ELLs it is understandable that they 
might assume that ELLs were a homogenous group who did not speak English. In other 
cases, there were some PSTs who assumed that conversational fluency displayed 
automatically implied academic fluency and considered the ELLs to be no different than 
non-ELLs.  
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First of all, I don’t know if you could really call these kids ELL students because it seems 
like they already know the language fluently. So to me, these kids seem just like all other 
American school children. So for ELL kids that are so American and not even that ELL, 
so to speak, I can’t say I have learned anything about teaching children who are learning 
English. (Richard, Interview 2, Fall) 

Role of language in mathematics 
The experiences with the ELL students helped the PSTs see the possible role that 
language played in the mathematical performance of these students. One PST notes,  

I learned that ELL students’ difficulty with language does affect their math…. The 
student I worked with had difficulty understanding the language of the question which 
made it almost impossible for her to answer the question correctly. But, once the student 
understood the question she was able to mathematically think correctly and figure out the 
answer to the question. (Betty, Interview 1, Fall) 

The PSTs also understood that their role as future teachers of ELL students should 
extend to assisting the students with the language in addition to the mathematics 
content.  

I also learned that language is an issue when working with ELL students and as teachers 
we need to be able to bridge language and math so that the student is able to learn and 
comprehend. We as teachers also need to make sure the language we use is effective and 
understood by the student. (Linda, Interview 2, Fall) 

In contrast, there were some PSTs who believed that mathematics was a universal 
language and their knowledge of English should not pose a major barrier to learning 
mathematical concepts in English.  

…regardless of how you say the words, Math is a very structured subject. By this I mean 
that two plus two is four no matter what language or dialect you speak, how long you’ve 
been in the US or where you come from. Two pesos plus two pesos is still four pesos just 
like two quarters plus two quarters is four quarters. You don’t have to worry so much 
about the subjectivity of the translation. (Mark, Interview 2, Fall)  

This PST assumes that language plays a minimal role in the mathematics education of 
ELLs. Here the PST discounts the language used by the teacher and the students in the 
classroom interactions and how that impacts student learning.  

Discussion 
The PSTs responses to the question about their learning from the experience can be 
classified into three overarching themes—accommodations, conceptions about ELLs 
and role of language in mathematics. The PSTs in this study observe the importance of 
incorporating language goals like vocabulary, reading and writing into mathematics 
lessons. They also understand that as future teachers they will have to take the extra step 
to teach ELLs. Their notions of accommodations agree with the literature on the best 
practices of teaching ELLs, which calls for instruction to be scaffolded for such students 
with an emphasis on both the language and the content (Gibbons, 2002).The PSTs see 
the role of concrete materials as making the abstract math ideas more accessible to the 
ELLs, which is also an idea elaborated by Cummins (2000). The role of the cut-outs as 
part of the Area Comparison problem helped in this respect. The PSTs emphasis on 
clarity in language is also discussed by Abedi and Lord (2001) who found that 
modifying the language in test questions allowed ELL students to improve their 
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performance. Interactions with the ELLs helped the PSTs rethink some of the past 
conceptions they had about these students, such as associating ELLs with a disability or 
not being able to speak English. Gandara and Contreras (2009) pointed out that such 
conceptions about Latino students (85% of the ELL population) have led to lower 
expectations for these students and as a result they are over represented in special 
education classes. Finally, most of the PSTs saw that language played a role in the 
mathematics learning of ELLs, but there were some who still viewed mathematics as 
universal. The latter group was more likely to associate ELL’s mathematical difficulties 
to the ability of the student.  
 Overall, task-based interviews are beneficial for PSTs learning about ELLs. 
However, they are not enough, and PSTs need exposure to the research about ELLs to 
complement this experience. Further, getting the PSTs to reflect on the interview is 
crucial to the learning process. In this regard, Mason’s (2002) techniques of ―Accounts-
of‖ and ―Accounts-for‖ are key in building a capacity for PSTs to notice aspects of 
language and how this impacts the mathematical performance of ELLs.  
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In a study of Year 2 students, performance on a novel open-ended Make 10 task was one of 
two strongest predictors of students diagnosed at risk of mathematical learning difficulties 
(MD) on the Queensland Year 2 Diagnostic Net (Finnane, 2007). Students who performed 
poorly on this task produced few combinations, gave counting sequences or  figurative 
responses featuring physical embellishments of the numeral 10, compared to a range of 
flexible responses by normally achieving students. This paper demonstrates the application 
of the Make 10 task to facilitating the conceptual and skill development of a Year 4 student 
with high functioning autism who was facing significant mathematics anxiety and 
pervasive mathematical leaning difficulties. 

Introduction 
In a special issue on mathematics in the Journal of Learning Disabililities, authors of a 
research review on early identification and interventions for students with mathematical 
learning difficulties described the field as ―in its infancy‖ (Gersten, Jordan, & Flojo, 
2005). Gersten et al. stressed the importance of identifying the best predictors of early 
difficulties in mathematics as a guide to designing effective interventions for struggling 
students. Mazzocco (2005) further drew attention to the need to fully understand the 
nature of the mathematics learning difficulties of students with other significant 
cognitive and processing difficulties. 
 One group of students whose mathematics learning needs may prove challenging to 
teachers are students with high functioning autism. While a proportion of students with 
high-functioning autism (HFA) may have outstanding mathematical abilities, research 
suggests that up to half of students with HFA may face significant difficulties in 
learning mathematics (Chiang & Lin, 2007; Mayes & Calhoun, 2006; Reitzel & 
Szatmari, 2003). Chiang & Lin (2007) raised the need for assessments which can 
adequately measure the strengths and weaknesses of students with HFA. The cognitive 
profiles of students with HFA suggest that they may have difficulty in detecting patterns 
and distinguishing relevant details, and may find it difficult to conceptualise numbers as 
abstract concepts of comparative quantities. In addition, students with HFA are prone to 
anxiety (Attwood, 2007), which may further disrupt their ability to make mathematical 
connections. On the other hand, students with high functioning autism may be expected 
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to show strengths in sustained attention and ability to master facts (Sansoti, Powell-
Smith, & Cowan, 2010).  
 There is little available research to guide effective interventions for students with 
HFA and mathematics difficulties. Research on assisting academically low achieving 
students in mathematics focuses on the importance of developing number sense and rich 
mathematical concepts (Dole, 2003; Gersten & Chard, 1999; Gersten et al., 2005; 
Woodward, 2006). There is a danger that promoting rote learning by students with high 
functioning autism might inhibit the development of a meaningful understanding of 
mathematical concepts.  
 Australian researchers have identified important developmental frameworks and 
constructs which are helpful in establishing priorities for intervention for students with 
mathematics learning difficulties. Wright, Martland, and Stafford (2000) highlighted the 
critical role of mastery of forwards and backwards counting and fluent numerical 
identification skills in developing essential concepts of numbers as composite units and 
efficient strategies for solving basic additions and subtractions.      
 Mulligan, Mitchelmore, English, and Robertson (2010) have further demonstrated 
that progress in students’ mathematical understanding depends on an understanding of 
underlying mathematical structure. Using the construct of Awareness of Mathematical 
Pattern and Structure (AMPS), Mulligan, Mitchelmore, and Prescott (2005) have shown 
that low achieving students have more difficulty in perceiving and representing visual 
patterns and mathematical structure and, most importantly, that these problems may be 
associated with weaknesses in multiple counting, partitioning, equal grouping and equal 
units of measure.    
 The present paper aims to contribute to the continuing growth of the field of early 
identification and interventions for mathematics learning difficulties by: 
1. Presenting the results of a research project on early predictors of mathematical 

learning difficulties.   
2. Applying the research findings to an intervention to support the mathematical 

development of a Year 4 student with high functioning autism, anxiety problems, 
and pervasive mathematics difficulties. 

Method 
The paper is presented in two parts: Part 1 identifies early predictors of mathematical 
learning difficulties, while Part 2 reports a case study of an intervention with a Year 4 
student. 

Part 1. Early predictors of mathematical learning difficulties 
As part of a large study exploring early indicators of mathematics learning difficulties, a  
comprehensive set of mathematical, memory and processing tasks was administered to 
68 students (mean age 7.1 years) in three Year 2 classes in metropolitan Brisbane, 
Queensland (Finnane, 2007). The mathematical tasks included forwards and backwards 
counting, numeral identification and strategy use for solving basic additions and 
subtractions, as assessed on the Learning Framework in Number (Wright et al., 2000). 
On the Make 10 task that is the focus of this paper, students were asked: ―How many 
different ways can you make the number 10?‖ The task was administered after the 
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author had modelled making a variety of number combinations for the numbers 7 and 9 
using smaller numbers.  
 A subset of students (n = 17) was identified at risk of mathematical learning 
difficulties, determined by an independently administered state-based assessment 
process—the Queensland Year 2 Diagnostic Net (Education Queensland, 2007). The 
author has previously presented the results of t-test comparisons which showed 
significant differences in verbal memory capacity between students identified in the Net 
and normally achieving students (Finnane, 2008). Regression analyses were used to 
determine which of the measures were the best predictors of students who would be 
assessed at risk of mathematical learning difficulties on the Year 2 Net, with a view 
both to identification and intervention. 

Results 
Make 10 was one of two strongest predictors of the 17 students who were caught in the 
Queensland Year 2 Diagnostic Net as at risk of mathematical learning difficulties 
(Finnane, 2007). The other best predictor was the stage of early arithmetic learning 
(SEAL) as assessed on the Learning Framework in Number (Wright et al., 2000). 
Student responses on Make 10 depicted different levels of number understanding, which 
were consistent with their stage of arithmetic learning. Net students tended to provide a 
number sequence 1, 2, 3, …, 10 or to focus on figural features of numerals only. Figure 
1 shows the response of a student caught in the Year 2 Net, who depicted 10 as the 
initial two numerals of 4-digit numbers, with differing physical embellishments. 
Similarly, at a figural level, this student said you could ―make 9‖ by painting a 9, or you 
could ―make 7‖ by two people lying down, one horizontally to form the top –– and the 
other diagonally to form /. This student was assessed at SEAL 2 (Figurative stage) on 
the Learning Framework in Number, where he was using his fingers and a count-all 
strategy to solve basic additions with sums less than ten, but did not know how to solve 
combinations (e.g. 9 + 6) with sums greater than ten.  

Figure 1. Make 10 Figural level response of a Year 2 Net student.

Normally achieving students showed a range of responses involving partitioning skills 
(see Figure 2) or a flexible use of operations (Figure 3), indicating a more advanced 
concept of numbers as composite units (Fuson, 1988). The responses of these students 
were consistent with their further progression to more fluent counting, numeral 
identification and advanced strategy use on the Learning Framework in Number. 
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Figure 2. Make 10 response of a normally achieving Year 2 student showing partitioning skills. 

Figure 3. Make 10 response of a normally achieving Year 2 student showing flexible use of operations.

Part 2. Case study intervention 
Assessment.  
A Year 4 student aged 9.8 years with diagnoses of high-functioning autism, anxiety and 
learning difficulties was referred to the author by his Paediatrician for a mathematics 
assessment. The student will be referred to as Will, a pseudonym. Will was showing 
signs of significant stress during mathematics lessons within the classroom. His mother 
reported that he showed particular distress in relation to problem solving, did not seem 
to understand the concepts needed, and would cry on the way home from school in 
anticipation of his mathematics homework. The student was assessed using the 
mathematics subtests of the Wechsler Individual Achievement Test - Second Edition 
(WIAT-II), the Learning Framework in Number (Wright et al., 2000), and the Make 10 
task (Finnane, 2007).  
 Will performed in the Well Below Average range for his age on both the 
Mathematics Reasoning (1st percentile) and Numerical Operations (8th percentile) 
subtests of the WIAT-II. In Year 4, he was still unable to solve 2-digit additions and 
subtractions with regrouping and expressed a very high level of anxiety in relation to 
written number questions. Will showed persisting confusions between teen and -ty 
numbers (e.g., 13/30) in both oral sequence counting on the Learning Framework in 
Number and in written algorithms. Will’s responses showed that he had developed only 
an initial concept of 10, where he focussed on the individual items that make up ten 
rather than ten as a unit. He was unable to match a quantity meaning to 2-digit 
algorithms, or to interpret and solve word problems.  
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Intervention 

An intervention was designed for Will to address his mathematics anxiety, and to build 
his number sense, place value understanding, addition and subtraction concepts and 
problem solving skills. Will attended sessions on a weekly or fortnightly basis, with 
activities to complete between sessions. Will’s parents were very supportive, providing 
assistance as needed. During the course of the intervention, Will’s class teacher reduced 
the level of his set word problems from Grade 4 to Grade 2 level. This paper reports 
only one aspect of the follow-up intervention with Will, involving the Make 10 task 
described above, and related number tasks (e.g. Make 20, Make 100, Make 120). Make 
10 was chosen as an integral part of the intervention, as it was observed in the 
assessment that Will enjoyed this task and he showed an initial level of familiarity with 
the Ten facts as components of 10. 
 The Make 10 task was used on a repeated basis during the intervention to encourage 
Will to explore number composition and base-10 structure. After providing Ten Facts 
and multiplicative solutions to Make 10 as he had done before, Will was excited when 
he thought of a subtractive solution 11–1 = 10. Figure 4 shows how Will maintained his 
attention on the pattern of subtracting the Ones from the teen numbers in order up to 19-
9, and then expended considerable effort to subtract Tens up to 100. 

Figure 4. Will’s response on the Make 10 task when he first discovered a subtractive solution.

This was an important session for Will. By using order to produce his responses in 
sequence, he gained a better understanding of the tens/ones composition of 2-digit 
numbers. Will was later able to generalise this ordering strategy for constructing ten to 
enable him to construct 3-digit numbers.
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Figure 5. Will’s initial response when asked to Make 120.

Figure 5 shows that, initially, Will found it very difficult when he was asked to Make 
120. He became stuck and needed prompting to explore the composition of the missing 
quantity, after adding one 10 to 100 to make 110. Will understood this was not a 
sufficient response, but he could not work out what was missing. When I suggested he 
could use pens to find the missing amount, Will explored the component parts of 10 by 
dividing the pens into 5 groups of two, and then 2 groups of five. This partitioning 
enabled him to realise 10 was the missing part or addend of 120 he needed (Figure 5). 
 In the following session one week later, Will used order to produce several 
combinations to Make 120, after first taking 1 away from 120 to give the parts of 119 
and 1 (Figure 6). He had started to see the inverse relationship between addition and 
subtraction more clearly. By sustaining his attention on the whole (120), Will was able 
to shift his attention to producing the different component parts, and he enjoyed 
depicting the decrementing and incrementing relationships. To finish, Will reproduced 
the combination 110 + 10 that he had initially struggled with in the previous session. 

Figure 6. Will’s second response when asked to Make 120.
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An example from the next session (see Figure 7) illustrates Will’s increasing flexibility 
in deconstructing and constructing numbers. Given a 2-digit number Make 20, he is no 
longer reliant on order to increase and decrease his responses in a unitary manner.  

Figure 7. Will’s flexible solutions when asked to Make 20.

Will’s part-part-whole number concept development is further illustrated in Figure 8. 
Here he was able to use mental computation successfully to decompose numbers in 
multiple steps to perform a variety of subtractions. On the first item, Will explained that 
he broke up 800 into 700 and 100 and subtracted 80 from 100 to give 20, then added 
back the 700. By this stage, Will had developed the conceptual understanding of 
numbers as composite units which enabled him to carry out this mental computation 
confidently, and also to manage regrouping in subtraction up to 4-digits. By mid-year 5, 
after 20 intervention sessions, Will was in a mainstream mathematics class 90% of the 
time and achieving at Year 5 level. His teacher reported that ―his whole mathematics 
has changed‖.
 

Figure 8. Will’s responses to a subtraction task where he used partitioning and mental computation.
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Discussion  
The research described in this paper confirms the validity of counting stage on the 
Learning Framework in Number (Wright et al., 2000) as a predictor of performance on 
the Queensland Year 2 Net, and describes another discriminating task Make 10 
(Finnane, 2007) which has significance for interventions with students facing significant 
mathematics learning difficulties. 
 The paper illustrates how an open-ended assessment task (Make 10) assisted a Year 4 
student with high functioning autism to explore mathematical structure and part-part-
whole relationships in a way he had previously been unable to do. The opportunity to 
make the number 10 in as many ways possible on multiple occasions allowed the 
student to gradually discover and apply his understanding of addition and subtraction as 
inverse relationships. This understanding enabled him to develop a schema he could 
apply successfully to additive and subtractive problem solving (Xin & Jitendra, 2006). 
The intervention also had a marked impact on reducing the student’s anxiety and in 
significantly reducing familial stress associated with mathematics homework. It is 
argued that the open-ended nature of the task together with a specific limited instruction 
was empowering for the student in accessing his existing knowledge and allowing him 
to make new connections to this knowledge. 
 While students with high-functioning autism might be able to learn facts by rote, 
particular attention should be paid to their level of conceptual understanding of number. 
The Make 10 task can provide a useful intervention tool for facilitating students’ 
development from a unitary concept of number to a flexible understanding of part-part-
whole number structure. Future research can determine whether the open-ended nature 
of Make 10 provides a useful tool for lowering anxiety in relation to a range of written 
mathematics topics in highly anxious students. 
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Although the creation of graphs to display data has been part of the school curriculum for 
some time, the call in the new Australian Curriculum for “numeracy across the curriculum” 
provides both the opportunity and challenge to link the skills of graph creating with the 
understanding of context in order to produce meaningful interpretation of the messages held 
in graphs. This paper reports on classroom experiences of and follow-up interviews with 12 
grade 5/6 students who were introduced to the software TinkerPlots to assist in graph 
creation. The focus is on their success at graph creation and interpretation in contexts that 
provide potential links to other subjects in the school curriculum. Implications for the 
curriculum and teaching are drawn from the students’ experiences. 

Introduction 
As statistics continues to occupy a place in the Australian Curriculum—Mathematics 
(ACARA, 2010), the justification for this place is often built upon its application “in 
context” (Mooney, 2010). In fact, many years ago Rao (1975) claimed, “Statistics 
ceases to have a meaning if it is not related to any practical problem” (p. 152). These 
statements suggest that the cross-curriculum opportunities of statistics should make it a 
major component of numeracy across the curriculum, as set out for the Australian 
Curriculum by the National Curriculum Board (NCB, 2009). The question for those 
developing the pedagogy for statistics is, “How do teachers link the development of 
skills with the provision of motivating context?” In turn, the question for the assessment 
of student learning is “What mix of skills and understanding of context is expected of 
students when they are drawing informal statistical inferences?” These questions may 
be further complicated by the stipulation by the NCB (2009) that technology be 
employed across the curriculum as appropriate. The Australian Curriculum–
Mathematics (ACARA, 2010) carefully avoids mention of specific technology, and in 
particular of statistical software packages. Acknowledging the importance of software 
to enhance the teaching and learning of statistics, this study employed the software for 
middle school, TinkerPlots (Konold & Miller, 2005), to explore the issues raised in 
these questions. Twelve students’ experiences with TinkerPlots and data sets are 
explored in two settings: four teacher-led classroom sessions and a one-to-one 
assessment interview with researchers. 
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Underlying model 
The model used for the analysis of the data in the study was developed by Watson and 
Fitzallen (2010) in a research report commissioned by the NSW Department of 
Education and Training. The model posits three cycles of development of graph 
understanding for the purpose of drawing informal inferences while employing 
graphical representations of data sets. The model is based broadly on the work of Biggs 
and Collis (1982, 1991) in cognitive psychology. Although acknowledging other factors 
that influence learning, this model is based on the combining of basic cognitive content 
elements to construct the understanding required to be successful in each of the three 
cycles. The elements involved for each cycle are derived from the research in the field 
and are combined in various ways to produce the understanding necessary to create 
meaningful graphs.  
 The first cycle consists of building up the Concept of Graph from the elements of 
Attribute, Data, Variation, and Scale. Because of the several types of complexity 
associated with the data that are represented in graphs, there are two parallel second 
cycles in the overall model. One cycle considers multiple attributes and the other, large 
data sets. For the purpose of this study, only the cycle related to multiple attributes is 
employed in the data analysis. The Concept of Graph for Multiple Attributes is based on 
the following elements: Concept of Graph (from the first cycle), Types of Attributes 
(e.g., categorical and numerical), Two-dimensional Scaling, and the Relationship of 
Two Attributes to a Single Case. The aim of this study is to explore the creation of 
graphs representing two or three attributes. The third cycle, Graph Interpretation is 
based on the elements: Concept of Graph (from cycle 1 or cycle 2), Concept of 
Variation, Concept of Average, Context, and Critical Questioning Attitude.  
 In this study variation and average were not explicitly taught in the classroom but the 
introduction of hat plots, where the crown covers the middle 50% of the data and the 
brims extend to the extremities, was intended to develop intuitions about these concepts. 
Context played an important role in motivating the students in both the classroom and 
interview settings and students were encouraged to make hypotheses and be critical of 
what was represented in the graphs.  

Research questions 
With reference to the questions asked at the beginning of this paper and the underlying 
model, the data for the 12 students were analysed to answer the following research 
questions. 
1. Within a grade 5/6 classroom teaching setting, what skills for Graph Creation for 

Multiple Attributes leading to the use of contextual understanding for Graph 
Interpretation are developed? 

2. Within a one-to-one computer-based interview setting employing software, what 
skills for Graph Creation for Multiple Attributes leading to the use of contextual 
understanding for Graph Interpretation are transferred and applied? 

Methodology 
The subjects in the study were 12 students from a grade 5/6 class at a rural primary 
school (K–6) in Tasmania, Australia. The 12 were members of a class of 26 who 
participated in four lessons with the first author using TinkerPlots to analyse the class’ 
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resting and active heart rates. Throughout the experience, the students were introduced 
to bins, stacked dot plots, reference lines, hats, scaling, and scatterplots. Students were 
asked to save the graphs they produced and the text boxes in which they wrote their 
interpretations and conclusions from their graphs.  
 A month later the students were videotaped as they were interviewed by the second 
author or another researcher in a study to explore the effectiveness of paper-and-pencil 
versus on-line assessment of students’ statistical understanding (Watson & Donne, 
2009); these students were among the 24 on-line subjects using TinkerPlots as the 
software in that study. Transcripts of the videotapes of the students’ interviews and 
TinkerPlots files were used as the data for this study. Earlier analyses of related data 
from these students are found in Fitzallen and Watson (2010). 

Student data 
In the classroom, students had access to their own heart rate data both before and after a 
jump-rope activity. They could hence identify the data cards and icons with their fellow 
students or themselves. The other attribute in the classroom was gender. For the 
interview the data set consisted of data for 16 students, named (but unknown), along 
with their age, eye colour, weight, favourite activity, and number of fast food meals 
eaten per week (data found in Chick & Watson, 2001). 

Analysis 
All students in this study satisfied the criteria for the first cycle of the model of Watson 
and Fitzallen (2010), understanding the Concept of Graph, a basic element of the second 
cycle, creating a Graph for Multiple Attributes. The other elements of the second cycle 
all contribute to the forms of graphs that were created by the students. The types of 
attributes, categorical or numerical, determined the types of plots that could be created 
in TinkerPlots, either with “bins” or “scaled” axes. Bins are used for categorical data 
(such as gender) or for numerical data that are grouped together (such as age ranges of 
7–13 years and 14–20 years). A scaled axis can only be used with numerical data.  
 In considering two attributes, it was hence possible depending on the type, to create 
six different plots in TinkerPlots. These are shown in Figure 1 on the following page. 
Students’ skills in graph creation and interpretation are displayed as they create these 
different plots with the software and discuss what they mean.  
 For the third cycle of Graph Interpretation the most significant element beyond using 
the second cycle of creating Graphs for Multiple Attributes for this study is the element 
of Context. In relation to the tasks provided to the students during the classroom 
sessions and interviews, there were three aspects of student introduction of context. In 
the first case either the individual icons on the plot, or the data cards themselves, were 
used to provide context for the individual people represented in the data set. In the 
second case, the graph was used to provide a contextual description about trends 
observable in the graph (not individuals). In the third case, students went beyond the 
information in the graph to create stories about the people in the data set, to speculate 
about why relationships were seen, or to give advice about how to mitigate a trend seen 
in the graph. 
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A: Bins (2 categorical attributes)  B: Bins (categorical X numerical) 

 
 

 
C: Bins (2 numerical attributes) D: Bin (numerical) X 

Scaled (numerical) 

  
 

E: Bin (categorical) X Scaled (numerical) F: Scatterplot (scaled) 

 
 

 

Figure 1. Six different types of graphs for two attributes in TinkerPlots. 

The two groupings for skills of Graph Creation and use of context for Graph 
Interpretation were used to categorise the responses of students in the two situations: 
first the work created by the students as part of their four classroom lessons and second 
as part of their follow-up interviews. 

Results 
In the classroom (Research Question 1) 
The students created four of the types shown in Figure 1 (B, C, E, and F) as well as 
using bins or stacked dot plots for single attributes. It was not possible to create bins for 
two categorical attributes (A) because only gender was available and because of their 
concurrent experience with scaled stacked dot plots, it would not be expected that 
students would combine bins with scaled axes for the numerical attributes (D). The text 
boxes saved in the files provided the material to assess the extent to which context was 
used in the interpretation of the graphs created.  
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Although there is no doubt that to some extent the files represented interaction with the 
teacher and perhaps other students, they present a picture of the students’ beginning 
appreciation and understanding of the data handling task and its purpose relating to 
heart rates under different conditions. Even graphs of the same type had different 
appearances in different students’ files because of the flexibility of plot creation in 
TinkerPlots. 
 Except for one student who forgot to save his file, the other 11 students created 
between 3 and 6 graphs, for a total of 48. Fifteen graphs were based on a single 
attribute, with two displaying categorical attributes (name or gender), three displaying 
the numerical attributes in bins (hence showing ranges), and 10 stacked dot plots of one 
or other of the heart rate data sets (with scaled axis). Thirty-three of the graphs 
produced showed the relationship between two attributes. Four graphs used bins for 
gender and one of the heart rate sets (B), 2 used bins for numerical data on both axes 
(C), 16 used bins for gender and scaled the heart rate data (E), and 11 were variations of 
scatterplots (F).  
 The students’ interpretations of the graphs recorded in the text boxes in TinkerPlots 
were placed in three categories. From their graphs, three students reported individual 
values for interesting participants; e.g., the highest or lowest rate, or the rates for their 
teachers. Ten of the students wrote more generally about what the graph portrayed 
about the data set, e.g., there is a larger range for the boys, and 50% (or most) of the 
people are between 80 and 110. These comments were based specifically on reading 
trends or clusters in the graph. Going further than the graphs, using their personal 
knowledge, six students added other interpretations to the data. Some created 
explanatory text, such as the heart pumps more blood for the active rate, and “less 
average” for the girls so girls are more healthy. In contrast to this declaratory text, some 
students speculated on causes, e.g., the difference might be due to boys being into video 
games or Mrs. M. might be skinnier than everyone. Some of the students made more 
than one type of comment for a graph. 

From classroom to interview (Research Question 2) 
In the interviews, the six attributes (three categorical and three numerical) provided the 
opportunity for students to choose up to six types of plots. No suggestions of graph 
types were made by the interviewers, so all were “spontaneous” from the students. The 
12 students each produced between 2 and 5 plots for a total of 42 graphs. Only one 
student plotted two categorical attributes in bins whereas 10 used bins to consider one 
attribute of each type (e.g., favourite activity and weight) (a total of 16). Six students 
produced 8 plots with bins using two numerical attributes. Seven students also created 8 
plots with a categorical attribute and a scaled numerical attribute. Four students 
produced a mix of bins and scaled plots for two numerical attributes (a total of 5) but 
only one went on to produce a scatterplot. Two other students produced scatterplots 
having elsewhere created a scaled numerical and categorical plot (a total of 3). 
 In the interview, 10 students provided context from the individual data values, such 
as the highest and lowest values for an attribute. One student clicked on icons in a 
scatterplot to discuss values for a third attribute found on the data card. Nine of the 
twelve students made more general comments about the data set specifically from the 
relationships portrayed in the graphs they produced. These included trends such as more 
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sport means less weight, younger are more active, and those who weigh more eat more 
fast food. Six students went on to add more to their explanations from their life 
experience. Some created stories to match what they observed, such as those who watch 
TV see junk food, and those who watch TV are lazy. Others speculated on reasons for 
the trends, rather than making declarative statements, such as maybe they are lazing 
around and watching TV and not getting up and doing anything. Two students gave 
advice to students in the data set, e.g., they need to go out more and they should cut 
down on fast foods and eat vitamins.  
 The performance of the students in the interviews where they encountered twice as 
many attributes as in the classroom indicated that they had internalised many of the 
graphing skills presented there. They showed flexibility by creating plot types that they 
had not used in the classroom. At times students were content to use a graph with bins 
rather than scaled axes for numerical attributes (type C in Figure 1) to interpret the data 
because the particular trend could be seen easily there. Although perhaps more 
experienced graph creators might always use scaled axes for numerical attributes, these 
students showed that such conventions are not always needed. 
 The students’ use of their contextual knowledge was more varied in the interviews. 
They made more comments on individual cases than in the text boxes created in the 
classroom. This was most likely because (i) there would have been initial oral 
discussion of classroom data among students as they were entered; and (ii) the data in 
the interview were all new and hence it was interesting to check out the characteristics 
of the people represented. The greater number of attributes in the interview data may 
have contributed to more extensive discussions and the students may have also found it 
easier to articulate their thinking verbally than in text boxes.  

Implications for the curriculum and teaching 
This study shows that students in grade 5/6 are able to pick up graphing skills and 
application of contextual understanding in meaningful ways. Of particular interest is the 
ability to deal with two attributes in relationships, with bins or scatterplots, when 
scatterplots are not specifically mentioned in the Australian Curriculum – Mathematics 
until Year 10 (ACARA, 2010, p. 46). This seems to be an oversight. The first mention 
of considering two attributes, by creating side-by-side column graphs in Year 6, appears 
to be mentioned later and be more basic than is necessary. From the results of this 
study, it is seen that students can deal with two attributes and create and interpret 
relatively sophisticated representations by this time. The mention of considering two 
attributes in the curriculum is often done with no suggestion of the types of graphs that 
should be employed (e.g., in Year 7, where “investigating issues” has elaborations about 
two attributes but with no specific graph types suitable for the level).  
 The fact that the curriculum mentions creating graphs with (and without) digital 
technology from Year 3 is appropriate and encouraging. After the initial classroom 
introduction, the students in this study required virtually no assistance in working with 
TinkerPlots to create graphs. 
 The first specific mention of context in relation to Statistics and Probability in the 
Australian Curriculum – Mathematics is in Year 5, with reference to interpreting 
different graphs (ACARA, 2010, p. 29).  
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Context is implicit, however, in all grades in the elaborations, often from Year 4 in 
relation to examples presented from the media. The evidence from this study supports 
this recommendation—but teachers need to be aware that discussion of context needs to 
be developed from two standpoints: that of interpreting contextual information 
specifically available within the graph itself (e.g., trends observed) and that of the extra 
real-world understanding brought to the data set by the students’ life experiences. Both 
aspects of context are essential for students to become critical statistical thinkers 
(Mooney, 2010). The link to other areas of the curriculum is crucial to provide the 
background for students to be able to go beyond the information provided in a graph 
and perhaps ask further questions. 
 The students in this study are typical of students from working class and rural 
schools in Australia. They hence challenge the writers of the Australian Curriculum—
Mathematics to acknowledge that with creative software, it is possible to progress 
rapidly to meaningful representations of two attributes and make sense of these in real-
world contexts. 
 Particularly at the primary school level, the opportunities to introduce cross-
curricular contexts that link to the statistics component of the Australian Curriculum—
Mathematics abound, especially if constructivist software is available for students to 
use. After developing the basic concept of graph, software can assist in the rapid 
consideration of various representations of data sets, in order for students to choose the 
one that best suits the story they wish to tell. By the time students reach secondary 
school, they should have a repertoire of graph types that can be used in various subject 
areas, and the ability to use them. It is then up to teachers across the curriculum to 
collaborate so that all teachers, not just teachers of mathematics, are aware of the 
possibilities that can be further developed with their students. 
 The Australian Curriculum—Mathematics mentions the use of media extracts in 
several places to motivate critical thinking in statistics. These opportunities not only 
may be based on unusual or inappropriate use of statistics but also may lead to in-depth 
cross-curriculum collaboration involving current real-world contexts. This will happen 
most effectively if all teachers are aware of the possibilities, including the application of 
“digital technologies.” 
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In this research we explore pre-service teacher knowledge for teaching mathematics by 
focusing on the development of the conceptual and procedural knowledge of a cohort of 
pre-service teachers. In the first phase of this study, we found that a previous cohort of pre-
service teachers utilised procedural rather than conceptual knowledge when completing 
fraction operations. We aimed to address this imbalance by targeting the development of 
conceptual knowledge through modelling. This paper reports the results of this approach 
with a subsequent cohort of pre-service teachers, where our expectation of greater 
conceptual knowledge was achieved and procedural knowledge was maintained.  

Introduction 
The role of teacher knowledge has been acknowledged as vital in teachers doing their 
jobs. This issue has been a central concern of the mathematics teaching community both 
in Australia and elsewhere. We take up this issue in the present study. 

Teacher knowledge for teaching mathematics 
Shulman’s (1986) seminal work on teacher knowledge identified a range of different 
types of knowledge necessary for teachers to teach effectively. While he acknowledged 
the essential role of pedagogical knowledge, he highlighted the importance of content 
knowledge, which he categorised into subject matter knowledge, pedagogical content 
knowledge and curricular knowledge. 
 Teachers’ mathematical content knowledge affects the quality and nature of their 
teaching (Schoenfeld, 2000) and has been found to positively predict student 
achievement (Hill, Rowan, & Ball, 2005). There is little disagreement that teachers need 
to acquire and understand mathematics in order to teach it effectively.  
 In acknowledging the multidimensional character of teacher content knowledge, Ball 
and associates (Ball, Hill, & Bass, 2005; Hill et al., 2005) refined and developed four 
dimensions of this knowledge: Common Content Knowledge, Specialised Content 
Knowledge (SCK), Knowledge of Content and Students, and Knowledge of Content 
and Teaching.  
 SCK refers to the particular way teachers of mathematics have to understand their 
content. This involves, among other things, a ‘repackaging’ of their formal 
mathematical knowledge. The current study is aimed at better understanding the SCK of 
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prospective teachers. Specifically, we focus on two subsidiary components of SCK, 
namely, procedural and conceptual knowledge within the domain of fractions. We refer 
to these strands of knowledge as constituting two avatars (Sanskrit word for 
manifestation) of teacher knowledge in the sense that each of the components are 
incarnates or embodiments of one key knowledge form, namely, SCK which is the 
focus on the present study. 

Procedural versus conceptual knowledge 
Broadly speaking, procedural knowledge involves understanding the rules and routines 
of mathematics while conceptual knowledge involves an understanding of mathematical 
relationships. The relationship between procedural and conceptual knowledge, and the 
dependency of one on the other, continues to be a legitimate concern for mathematics 
teachers and researchers alike. Schneider and Stern (2010), in examining potential 
interconnections between the two, suggest that teaching and learning research needs to 
examine their parallel developments. Within the context of primary mathematics, and in 
particular fractions, Mack (2001) suggests that children’s use of strategies for 
representing and solving fraction problems are based on both these knowledge strands.  
 The relationships amongst and the relative role of these two main dimensions of 
knowledge that is relevant to decoding and solving fractions problems needs further 
clarification if we are to better inform teachers and knowledge underlying teaching. The 
debate on this issue appears to proceed along three lines. One view is that children learn 
conceptual knowledge of fractions before procedural knowledge (Groth & Bergner, 
2006). A second view is that children learn procedural knowledge before conceptual 
knowledge (Baroody, Feil & Johnson, 2007). Finally, it would seem that children’s 
conceptual knowledge and procedural knowledge grow in tandem with one building on 
the other (Schneider & Stern, 2010). While this debate is continuing, recent research by 
Hallett, Nunes and Bryant (2010) suggest that a) some children rely on procedural 
knowledge to inform conceptual knowledge and b) those who rely on conceptual 
knowledge of fractions tend to have an advantage over those who rely on procedural 
knowledge. Taken together, these findings suggest that teachers need to have a sound 
understanding of both these knowledge categories that involve fractions. That is, despite 
a growing call from some quarters to underplay the role of procedural knowledge in 
favour of conceptual knowledge (Rittle-Johnson, Siegler, & Alibali, 2001), teachers 
need to develop a repertoire of both these streams of knowledge as these are legitimate 
and necessary parts of the corpus of knowledge used by learners that teachers need to 
know. In this sense conceptual and procedural knowledge are important components of 
teachers’ SCK, and the investigation of this knowledge is a major aim of this study. 

Theoretical and Conceptual framework 
The aim and analyses of data in the present study are guided by two broad theoretical 
constructs. In the first instance, we draw on Ball et al.’s (2005) dimensions of teacher 
knowledge that inform mathematics teaching. Secondly, we examine the interplay 
between conceptual and procedural knowledge within the Representational-Reasoning 
(RR) model of mathematical understanding provided by Barmby, Harries, Higgins and 
Suggate (2009). According to this model, the quality of mathematical understanding can 
be captured by a) the type of representations that learners construct; and b) the 
robustness of reasoning that is used in establishing or justifying relations among the 
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representations. We see the RR model as somewhat unbiased in the interpretation of the 
relative roles of conceptual and procedural knowledge, as both components can be 
foregrounded in the representations and reasoning. 

Issues and aim 
The review of literature on teacher knowledge and teachers’ performance in relation to 
children’s numeracy levels has highlighted the need to research and monitor the 
developing knowledge of mathematics teachers who are in practice and those who are in 
training. Initially we investigated this issue by analysing the procedural and conceptual 
knowledge of fraction operations of a cohort of pre-service teachers (Forrester & 
Chinnappan, 2010). The results of this analysis demonstrated clearly the dominance of 
procedural knowledge over conceptual knowledge in this group, with almost four times 
the number of pre-service teachers activating procedural knowledge in comparison to 
those that demonstrated conceptual knowledge in their solution attempts. About one 
fifth of responses evidenced neither procedural nor conceptual knowledge.  
 While both knowledge categories are important, the dominance of one over the other 
would seem to be unhealthy for classroom practice, as teachers will have to support the 
development of both procedural and conceptual knowledge in their students across all 
strands of primary mathematics including fractions. This line of reasoning motivated us 
to modify our teaching strategies with the view to enhancing the conceptual component 
of our pre-service teachers’ knowledge of fractions. 

The aim of this study was, therefore, to ascertain the impact of a model based 
teaching (MBT) approach on the development of procedural and conceptual knowledge 
in the domain of fractions. This guided us in the development of the following research 
questions: 
1. Does a model-based teaching approach have an impact on the development of pre-

service primary teachers’ procedural knowledge of fractions? 
2. Does a model-based teaching approach have an impact on the development of pre-

service primary teachers’ conceptual knowledge of fractions? 

Methodology 
Participants 
Two hundred and twenty-four students (37 males and 187 females) participated in the 
present study. They were enrolled in a first year compulsory subject, which is generally 
completed in the second semester of a four-year Bachelor of Primary Education degree. 
Prior to entry into the program, the participants had a range of mathematical 
backgrounds. 

Procedure 
Model-based teaching 

Subsequent to the analysis of the 2009 cohort of pre-service teachers’ conceptual and 
procedural knowledge of fraction operations discussed earlier (Forrester & Chinnappan, 
2010) changes were made to the delivery of the subject in 2010. Utilising Barmby et 
al.’s (2009) notion that robust mathematical understanding is demonstrated when 
learners can construct and utilise multiple representations of mathematical ideas and can 
justify the relationships among representations, we focused on enabling our students to 
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develop models of fraction operations and appropriate explanations of these models 
(MBT approach).  

Tasks  

The following tasks were two parts of one question in a fifteen-question examination. 
They were selected from a pool of thirty-five questions given to students in their subject 
outlines at the beginning of the semester. These particular tasks were chosen to examine 
students’ mathematics content knowledge in terms of their conceptual and procedural 
knowledge of fractions and fraction algorithms. While the fractions were different from 
those given in the subject outline, the format of the questions was identical and students 
had been able to engage with similar questions throughout the session to consolidate 
their procedural and conceptual understandings. 
Task 1: Division problem involving a mixed number and fractions with different denominators 

1 1

2

1

4

 Two algorithms could be used to complete this task. Firstly students could: change 
the mixed number into an improper fraction; invert the divisor; multiply the numerators 
and denominators; check if the answer can be simplified. Alternately students could: 
change the mixed number into an improper fraction; identify a common denominator of 
the dividend and divisor; change the dividend and divisor to equivalent fractions; divide 
the numerators and denominators; check if the answer can be simplified. 
 One conceptual understanding of this task involves the notion that 1 1

2

1

4
 involves 

finding how many 1

4
s are in1 1

2
. Partitioning 1 1

2
into quarters and counting the number 

of quarters will achieve an answer of 6.  
Task 2: Addition problem involving a mixed number and fractions with different denominators 

1 5

6

2

3

Again, two algorithms could be used to complete this task, both involve most or all of 
these procedures: changing the mixed number to an improper fraction; identifying a 
common denominator of the addends; changing the addends to equivalent fractions; 
performing the addition; checking if the answer can be simplified. A conceptual 
knowledge of this task involves these elements: when the addends are modelled visually 
the wholes to which they relate are the same size; equivalent fractions e.g., 1 5

6
 is the 

same size as 11

6
, 2

3
is the same size as 4

6
, 15

6
 is the same size as 2 3

6
 which is the same size 

as 2 1

2
; addition involves joining two or more quantities together. 

 In undertaking the tasks, students were asked to complete the calculations and 
provide models and explanations of their models. They needed to use an appropriate 
algorithm for carrying out the required operation with fractions. The successful use of 
an appropriate algorithm would indicate that students have a procedural understanding 
and concomitant use of procedural knowledge. Conceptual understanding of these tasks 
involves demonstrating the nature of fractions (equal parts of a whole object or group) 
including the meaning of the common fraction symbol—as opposed to the 
misconception common among children that the numerator and denominator are simply 
two whole numbers (NSW Department of Education and Training, 2003). Additionally, 
a conceptual understanding of the tasks involves grasping what happens when dividing 
and adding fractions, including the relationship between the fractions involved. 
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Coding scheme 
Students’ responses to each of the two problems were analysed in terms of their 
demonstration of conceptual and procedural knowledge, and coded using a ten code 
scale (see Table 1). This coding scheme is a refinement of the one used to analyse the 
data collected and analysed previously (Forrester & Chinnappan, 2010) which was 
developed using the theoretical framework of Barmby et al. (2009) and Goldin’s (2008) 
analysis of problem representations. We wanted to modify our codes to allow for greater 
differentiation of responses, in terms of conceptual and procedural knowledge. This 
scale also includes a code for a category of responses that did not occur in the previous 
data (Code 8), where a correct solution was achieved through a conceptual model and 
no algorithm was utilised.  

Table 1 - Coding Scale. 

Code Algorithm Model/Explanation 

0 
None provided None provided 
Explanation: Where there is a response it is just an answer with no algorithm or 
model/explanation. 

1 
Inappropriate None or incorrect conceptual representations 
Explanation: An algorithm has been used but it is not appropriate for the problem. If a 
model/explanation has been provided it is incorrect conceptually. 

2 

Inappropriate with correct elements None or incorrect conceptual representations 
Explanation: While the algorithm used was inappropriate to the problem, important fraction 
processes were used e.g., making equivalent fractions, changing mixed numbers to improper 
fractions. If a model/explanation was provided it was incorrect conceptually. 

3 
Appropriate but errors made None or incorrect conceptual representations 
Explanation: The algorithm used was appropriate for the problem but an error occurred in 
its use. If a model/explanation was provided it was incorrect conceptually. 

4 
Appropriate, used correctly None or incorrect conceptual representations 
Explanation: The algorithm used was appropriate for the problem and achieved a correct 
answer. If a model/explanation was provided it was incorrect conceptually. 

5 
Appropriate but errors made Some level of conceptual representation 
Explanation: The algorithm used was appropriate for the problem but an error occurred in 
its use. The model/explanation utilises some level of conceptual representations. 

6 

Appropriate, used correctly Thorough procedural representation 
No conceptual representation 

Explanation: The algorithm used was appropriate for the problem and used to achieve a 
correct answer. The model/explanation was a detailed representation of the algorithm but 
did not demonstrate the concepts involved in fraction operations. 

7 
Appropriate, used correctly Some level of conceptual representation 
Explanation: The algorithm used was appropriate for the problem and used to achieve a 
correct answer. The model/explanation utilises some level of conceptual representation. 

8 
None provided Strong conceptual representations. 
Explanation: No algorithm was used. A correct answer was achieved using a conceptual 
model. 

9 
Appropriate, used correctly Strong conceptual representation 
Explanation: The algorithm used was appropriate for the problem and used to achieve a 
correct answer. The model/explanation was conceptually correct. 
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Inter-rater reliability analysis 
In order to determine the reliability of the coding scheme, we assessed the extent to 
which two coders agreed when they independently categorised students’ responses. The 
two researchers coded twenty-five students’ responses independently. The inter-coder 
reliability analysis, using the Kappa statistic, was performed to determine consistency. 
The inter-coder reliability was found to be Kappa = 0.77 (p < 0.001), 95% CI (0.504, 
0.848), indicating substantive agreement (Landis & Koch, 1977) in the way the 
students’ responses were coded by each researcher. Potential areas of disagreement 
were analysed which helped us to improve the distance between the codes, thereby 
reducing areas of ambiguity. 

Data and analysis 
Quantitative data analyses were conducted with the aid of SPSS version 18. Our 
analyses focused on the above ten categories of problem representation; the scale of our 
data was nominal. 
 In this paper we report the results of our analysis of student examination responses 
following a semester of lectures and tutorials that focused on developing conceptual and 
procedural knowledge through modelling and explanation (2010 cohort). We compare 
these results with those reported previously (2009 cohort) (Forrester & Chinnappan, 
2010). 
 The data were analysed in terms of the two research questions: 
1. Does a model-based teaching approach have an impact on the development of pre-service 

primary teachers’ procedural knowledge of fractions? 
The proportion of pre-service teachers who were able to find correct solutions to the 
fraction operation tasks using algorithms was not considerably different over the two 
years. Of the 2010 cohort, 74.6% (÷) and 76.4% (+) of participants were able to 
demonstrate the competent use of appropriate algorithms to achieve correct solutions in 
the division and addition tasks respectively (See Figures 1 and 2 - Codes of 4, 6, 7, 9). 
Within the 2009 cohort, 79.6% (x) and 72.6% (–) of participants were able to 
demonstrate the competent use of appropriate algorithms to achieve correct solutions in 
the multiplication and subtraction tasks respectively.  
 The proportion of pre-service teachers unable to achieve a correct answer using 
procedural or conceptual knowledge decreased slightly over the two years: Of the 2009 
cohort, 20.4% (x) and 27.4% (–) of participants did not achieve correct solutions in the 
multiplication and subtraction tasks respectively. Within the 2010 cohort, 17.9% (÷) and 
22.9% (+) of participants did not achieve correct solutions within the division and 
addition tasks respectively (See Figures 1 and 2 - Codes 0, 1, 2, 3, 5). 
 The impact of model-based teaching on pre-service teachers’ procedural knowledge 
is somewhat unclear because the data collected in 2009 and 2010 are not markedly 
different.  
2. Does a model-based teaching approach have an impact on the development of pre-service 

primary teachers’ conceptual knowledge of fractions? 
The majority of pre-service teachers in the 2010 cohort exhibited strong conceptual 
understanding, with 65.6% (÷) and 55.8% (+) (See Figures 1 and 2 - Codes of 8 and 9) 
being able to successfully model and explain the mathematical concepts involved in 
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division and addition operations. A further 1.8% (÷) and 4.9% (+) were able to 
demonstrate some level of conceptual understanding (See Figures 1 and 2 - Code of 7).  
 Interestingly, 7.6% of participants (17 students) were able to achieve a correct 
answer to the division task (÷) utilising a conceptual model without utilising an 
algorithm. Two participants (0.9%) achieved a correct solution to the addition task (+) 

utilising a conceptual model without using an algorithm (See Figures 1 and 2 - Code of 
8). Given that students were required to provide a calculation, any omission in 
providing evidence of procedural knowledge can be interpreted as not having this 
knowledge. 
 In comparing these results with those of the previous cohort (2009), it seems that a 
model-based approach to teaching has contributed to the substantial differences in our 
pre-service teachers’ demonstration of conceptual understanding of fraction operations 
over the period of this research. There are difficulties in making direct comparisons 
between these sets of data as we examined multiplication (x) and subtraction (–) in 2009 
and division (÷) and addition (+) in 2010. However, many of the concepts and 
procedures in finding a solution for these tasks are the same. In 2009, 11.8% of 
participants could demonstrate conceptual knowledge in multiplication (x) and 18.8% in 
subtraction (–). In the present study, 65.6% of participants evidenced conceptual 
knowledge in division (÷) (58% demonstrating both conceptual and procedural 
knowledge) while 55.8% could demonstrate conceptual knowledge in addition (+) 
(54.9% demonstrating both conceptual and procedural knowledge). We regard this as 
supporting our expectation of the positive impact of the model-based approach. 

  

Figure 1: Coding frequency for Division.  Figure 2: Coding frequency for Addition. 

Discussion and implications 
The study was grounded on the assumption that teachers’ Specialised Content 
Knowledge of Mathematics (Ball et al., 2005) needed to have both procedural and 
conceptual characteristics in the domain of fractions. While conceptual knowledge may 
subsume procedural knowledge and indeed contribute to a better understanding of 
related procedural knowledge, it is important to capture and support both strands of 
knowledge for future teachers of mathematics. 
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 The research questions were concerned with the impact a teaching approach that was 
based on modelling would have on the development of pre-service teachers’ procedural 
and conceptual knowledge of fractions. The results here suggest that, while there was no 
tangible effect on procedural knowledge, our teaching had a positive effect on pre-
service teachers’ conceptual knowledge. The design of the MBT was guided, in the first 
instance, by an analysis of the state of pre-service teachers’ knowledge within a narrow 
domain of context-free fraction problems. This analysis, it would seem, is critical for 
the design of MBT for fractions or similar approaches for other areas of primary 
mathematics. MBT was also framed around the notions of representations and reasons 
(Barmby et al., 2009) which aided us in visualising the role of conceptual and 
procedural knowledge in comprehending and making progress with the fraction 
problems. 
 The role of Barmby et al.’s (2009) framework in the development of MBT 
constitutes an important outcome of this research. We found the framework to be useful 
in drawing the distinction between procedural and conceptual knowledge, and how 
these two strands of knowledge interact and constrain the construction of 
representations. 
 The MBT approach was based on the assumption that pre-service teachers who had 
developed robust conceptual knowledge could be expected to exhibit strong procedural 
knowledge. This appears to be the case with most of our participants. However, there 
were a number of pre-service teachers who demonstrated conceptual knowledge but 
failed to activate the corresponding procedural knowledge. This raises a question about 
the character of conceptual knowledge in subsuming and supporting procedural 
knowledge. This issue needs further analysis and the subject of future investigations. 
 The results showed that pre-service teachers have developed strong conceptual 
understanding of division problems. However, the robustness of this understanding 
needs to be the subject of further research including the analysis of prospective 
teachers’ representations and solutions of division problems that are contextualised. The 
representation of division problems, both from a conceptual and procedural point of 
view, could inform us about pre-service teachers’ ability to discriminate measurement 
versus partitive interpretations which have been shown to be a problematic area for 
teachers and students (Flores, 2002; Siebert, 2002).  
 Is conceptual knowledge better than procedural knowledge for practice? We suggest 
that there has to be a balance and that teachers’ SCK ought to exhibit both these 
characteristics. Equally, teachers need to be facile in articulating their relationships. 
 Our previous study (Forrester & Chinnappan, 2010) provided the impetus for this 
project. In that study we examined procedural and conceptual knowledge in the context 
of subtraction and multiplication problems. The current study, however, involved the 
investigation of addition and division problems. This could be seen as a limitation. We 
contend that in both situations, there is a structural similarity (inverse relationships) 
among these operations, both algorithmically and conceptually. 
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Inquiry in mathematics is well suited to address authentic, ill-structured problems that are 
encountered in everyday life. However, available formative assessment tools are typically 
not designed for an inquiry approach. An exploratory study using Design Research aimed 
to understand and improve assessment practices of mathematical inquiry. Data collected 
from one classroom provided detailed examples of these assessment practices in action. 
Results from the initial stage and future directions of the project will be presented. 

 
Reform efforts have for several decades worked to improve the curriculum, pedagogy 
and assessment of mathematics in schools. An inquiry-based approach shows particular 
promise for improving student learning in mathematics. Duckworth (2006) contends 
that the most wonderful ideas and understandings of children are revealed when 
adequate time to explore is provided and learning activities are designed to allow 
conflict and reconsideration of ideas. There is a professional need to capture those 
learning moments and to use the evidence to enhance student understandings and extend 
their new and emerging ideas. Little is known about how assessable information from 
these activities can be better identified, stored and used to inform future teaching and 
learning experiences. In order for inquiry to be used more widely, there is a need to 
recognise ways to assess students that value multiple types of understandings, rather 
than focusing and reporting only on narrow content. One potential resource for 
addressing this problem is a framework from The Programme for International Student 
Assessment (PISA) (OECD, 2009). PISA identifies a reflective cluster of competencies 
to assess mathematical literacies that value processes used by students to solve open-
ended problems. These hold promise as a design framework for making assessable 
information from inquiry available to educators. 
 This paper will discuss results of a pilot PhD study from one teacher‟s experiences in 
trialling and implementing innovative assessment tools. The case study builds an initial 
foundation for supporting teachers in adopting new assessment tools. The study 
addresses an important gap in the field as little is known about the kinds of formative 
assessment tools that can support mathematical inquiry. Until the field is able to capture 
and record students‟ mathematical learning of inquiry processes, there is little hope of 
inquiry becoming a normative practice in school mathematics.  
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LITERATURE 
Inquiry 
Makar (2007) discusses the shift in paradigm in the teaching and learning of 
mathematics away from a primary emphasis on skills, facts, and procedures in isolation. 
An increased stress is on integrating these within the development of children‟s 
mathematical conceptions, and proficiency at applying mathematical tools to new 
situations, in particular, open-ended, complex and everyday problems. Her work 
describes cycles of statistical and mathematical inquiry as investigations that immerse 
learners in open-ended problems where phases of investigating and reporting are 
repeated to refine understandings through improved knowledge tools (e.g., statistical 
concepts, technology support). Ill-structured problems in mathematics inquiry, like real-
life problems, can generate discussion to identify characteristics of a phenomenon and 
how to capture its possible qualities (Makar & Fielding-Wells, in press). Learning 
contexts that provide such rich problems, such as in an inquiry classroom, have the 
potential to provide rich assessment opportunities that reveal students‟ level of 
mathematically literacy.  

Assessment 
An understanding of how assessment is used in a primary classroom will help readers to 
better understand that many assessment methods do not match teaching and learning 
experiences in an inquiry classroom. The Queensland Curriculum, Assessment and 
Reporting Framework (QCAR) (Queensland Studies Authority, 2009) includes 
assessment development as a process to support the planning of teaching and learning 
experiences and offers guidance on how and when to provide feedback. With such an 
importance placed on assessment, and with so many opportunities available in a math 
inquiry classroom, effective assessment tools should be fore-grounded and 
consideration given in how to capture these learning moments. 
 Assessment can inform in two ways, summatively and formatively. When evidence 
is used to adapt the teaching to meet student needs it becomes formative assessment. 
Wiliam (2007) highlights how formative assessment can support learning and even 
refers to this type of assessment as assessment for learning. Teachers must assess their 
students while learning is in progress in order to adapt instruction so that it is successful 
in helping students achieve learning goals (Black & Wiliam, 1998; Furtak & Ruiz-
Primo, 2008). Black and Wiliam (1998) point out that there is convincing evidence that 
formative assessment can raise standards of achievement, this being an important 
educational priority. 
 Challenges arise in a primary mathematics inquiry classroom when using formative 
assessment. Furtak and Ruiz-Primo (2008) analysed formative assessment prompts for 
their effectiveness in eliciting valuable assessment information. They categorised 
timeliness in how student responses were collected, and teacher-responses shared, to 
complete a successful feedback loop. Formal or informal prompts can be recorded 
through student writing, eliciting students‟ conceptions and offering an opportunity for 
students who are less sure of answers to share their ideas (Furtak & Ruiz-Primo, 2008). 
Yet in a classroom context, analysis of these reflections can result in a delayed teacher 
response. The PISA assessment framework may assist in faster analysis and turnaround 
time to ensure a successful feedback loop. 
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PISA Framework 
The PISA (OECD, 2009) mathematics framework is provided to describe and illustrate 
the PISA mathematics assessment. In PISA, mathematisation is used to describe the 
process students use to transform complex real-life problems into ones which can be 
solved with mathematics. In order to engage successfully in mathematisation, students 
need to possess a number of mathematical competencies. Eight of these have been 
identified and can be possessed at different levels of mastery. 
 The mathematical competencies are further organised according to three clusters 
reflecting conceptual categories of broadly increasing cognitive demand and 
complexity, summarised below in Figure 1. Categorising competencies into these three 
clusters offers a description of the cognitive activities students undertake when 
completing the mathematical problems. The reproduction cluster highlights those basic 
mathematical processes, knowledge and skills of common problem representations, 
commonly required on standardised assessments and classroom tests. Students can build 
on these skills and apply them to situations that are not routine as part of the 
connections cluster. Assessment items that require integrating, connecting, and an 
extension of practised material measure the connections cluster. In the reflection cluster, 
students reflect on the processes required and may have to plan solution strategies for 
unfamiliar problem settings. 
 

 

Figure 1. PISA Competency clusters to assess mathematical literacy (OECD, 2009, p. 115). 

METHOD 
Participants and context 
This pilot study uses a case study method (Merriam, 1998) to examine the learning 
environment, student artefacts, and observations from a primary, inquiry mathematics 
classroom. The pilot study involved a laptop class from a middle-class suburban 
primary school with 28 Year 6 students (age 10-11) taught by the author. The students 
were confident in using their own laptops while working in mathematics inquiries. The 
study aimed to improve, record, and reflect on the assessment practices during 
mathematical inquiry. In the data presented here, the students were engaged in a 
mathematical inquiry entitled How much is 1m³? (Figure 2) as part of the normal 
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activities and assessment practices within an inquiry-based classroom. In this inquiry, 
students had to demonstrate their understanding of a cubic metre and its relationship to 
1000 litres and to one tonne. The ambiguity of „How much?‟ lends itself to the open-
endedness of the question as students could choose multiple pathways to present this. 

How much is 1m³? 
You need to show:  
- The cubic metre you make, 
- How you made the cubic metre, 
- And how you worked out that it was a cubic metre. 
 

Figure 2: Inquiry question. 

Data collection 
Students were given many opportunities to reflect on their learning throughout the 
inquiry. Whichever stage of a mathematical inquiry students are working in, reflection 
can offer valuable insight. In this inquiry, students were encouraged to use a Quickwrite 
(Dodge, 2009) strategy to record their reflections in a timed two-minute written 
reflection that can take place at any time within the learning experience. These included 
thoughts, questions, and ideas about the topic, as well as reflections on what had been 
achieved in the lesson or a prediction of what the lesson might look like. The students 
individually recorded these Quickwrite-inspired ideas and conceptions using their 
laptops over time as an electronic learning journal.  
 The nature of the electronic learning journal made the information easy for students 
to access and manipulate. Students could delete, backspace, and insert thoughts and 
ideas without „rubbing‟ any work out. They could also use menu options such as 
Synonyms, Look up (Online dictionary), or Images (internet or clipart) to better 
understand relevant vocabulary or to improve their own explanations. Enthusiasm 
meant that students would eagerly format and edit their work with a purpose to reflect 
on their mathematical understandings. As the inquiry progressed, additions were made 
to their original thoughts and were dated to help show the audience progression and 
development of ideas. Different choices in fonts, text sizes, and colours also made the 
progression clearer. Students were adept at saving their work in a number of places to 
ensure access in any physical location.  
 As well as working individually on the computer, students worked in small groups of 
no more than three to solve the problem, How much is 1m³? Many of the ongoing ideas 
formulated in groups were recorded on A3 sheets of poster paper. These were a second 
set of important artefacts of group collaboration with a focus on communicating this 
information later to others.  
 Finally, a research journal was used by the teacher to record discussions with 
students and observations of their work. Teacher reflections were also created to record 
the context and circumstances at iterations within the inquiry. For the teacher as 
researcher, reflection on these experiences could provide evidence of categories that 
may require further investigation. This reflective tool assisted the teacher to inform and 
improve upon teaching and learning.  
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Analysis 
The electronic learning journal became important documentary evidence of students‟ 
learning yet how the teacher was to best interpret and use this information to inform 
teaching and learning was not initially clear. The PISA assessment framework was 
trialled as a way to analyse and assist in making teacher judgements of student work in 
the journals. This would highlight the mathematical language, modelling and problem-
solving skills used, as organised in terms of competency clusters. Processes or thinking 
skills particular to this inquiry were Thinking and Reasoning, Problem posing and 
Solving, Communication and Modelling. Although examples of other competencies 
could be found, they are not a focus for this paper. Examples of the processes or 
competencies were identified in the students‟ reflections and rated according to each 
competency cluster: Reproduction, Connections, or Reflection with a 1, 2, or 3 
respectively (Table 1). In the PISA assessment framework, there is considerable overlap 
in the processes or competencies students will use to work mathematically, as is 
common when working through mathematical inquiries in the classroom. Identifying 
which cluster students are working in can provide evidence of higher order thinking 
skills used, highlight gaps or topics that may need further explanation, and can inform 
teaching practice. 
 Peer analysis of the electronic learning journals occurred in the classroom also as 
students defended each stage or juncture in the inquiry. An interactive whiteboard 
allowed groups to display their reflections, calculations and ideas and to edit this work 
while on display. As ideas were shared, other students posed questions that critiqued the 
work. Also, other students analysed their own efforts and the effectiveness or 
appropriateness of their ideas.  

Table 1: Rubric comparing competencies and clusters. 

 
Evidence of students working collaboratively can be found in their journals, but also in 
the written work completed together. The A3 poster papers recorded the inquiry process 
throughout all iterations and were used to also communicate findings and 
generalisations with other groups. Using a rubric (see Table 1) comparing competencies 

 Cluster 

1 2 3 

Reproduction Connections Reflection 

Pr
oc

es
s/

D
es

cr
ip

tio
n 

1 Thinking and Reasoning    
2 Argumentation    
3 Communication    
4 Modelling    
5 Problem posing and solving    
6 Representation    
7 Using symbolic, formal and 

technical language and operations 
   

8 Use of aids and tools    
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with clusters, again using the PISA framework, analysis could capture evidence of 
mathematical processes used and when learning moments moved between clusters.  
 Teacher reflections of learning moments provided further explanation of the findings 
in the electronic journals and poster papers. Discussions between teachers and students, 
and students with other students, were analysed using the PISA framework to find 
further evidence of competencies that had been developed through mathematical 
inquiry, and opportunities for competencies to be further developed if gaps were 
identified.  

Results 
Electronic journals 
When the class began their mathematics inquiry unit on the cubic metre, it was clear 
some students were not confident in their understanding of volume and the relationship 
to mass. Students had previously completed a one-week planned unit of work exploring 
this concept and had experienced a range of activities that included manipulating and 
viewing materials and practise of routine operations in particular contexts. The kinds of 
answers or conceptions evident in the inquiry often did not match those in the previous 
unit of work, where both aimed to develop the same mathematical understanding of a 
cubic metre. The cognitive mathematical competency (PISA) of thinking and reasoning 
was identified in the reflections in the electronic learning journals where students 
demonstrated an ability to pose mathematical questions and have knowledge of the 
kinds of corresponding answers mathematics can offer. When asked to pose a question 
where the answer was 1m³ (a pre-assessment task), one student wanted to explore a 
problem about filling an area with grass and a flower bed. This conception of volume 
did not match the thinking and reasoning already hoped to have been developed in the 
previous unit of work. Thinking and reasoning and problem-solving skills used by the 
student were only based in the Reproduction Cluster, where the student was working 
with contexts familiar to them. They were still developing their understanding of 
practised routine procedures regarding area and were not yet making links to less 
familiar, real-world contexts. Nor were they solving problems using independent 
problem-solving approaches. Later in the inquiry, the same student changed their mind 
to explore how much cement would be needed to fill and build the slab under a shed; 
their understanding of volume was beginning to develop.  
 Identification of the thinking processes students use can be of interest when students 
who perform reasonably well in pencil and paper tests (in the previous unit of work) 
display low thinking and reasoning ability, generally in the Reproduction cluster, when 
applying the understanding to an inquiry context. For example, reflections in one 
student‟s electronic learning journal indicated an additive understanding of a cubic 
metre as opposed to a multiplicative understanding (1m x 1m x 1m = 1m³). A problem 
was posed by the teacher (see below) at the beginning of a lesson to orientate the 
students to the next phase of the mathematical inquiry. This student, “added all of the 
measurements together to check if it was over, under, or equal to 3m”. This student had 
earlier produced results that indicated a sound understanding of volume.  

A child‟s wading pool measures 1.3m wide, 1.5m long and 75cm deep. What is the 
volume of the pool? How much water is needed to fill it up? 
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A3 poster paper 
Aiming to present findings to the class, students used A3 sheets of poster paper to 
record mathematical conceptions and ideas collaboratively. Evidence of thinking and 
reasoning, modelling, and problem posing and solving as competencies were identified 
as being used in this process. The rubric (Table 1) was used to rate evidence of learning 
in each competency to gain an initial label of one through to eight. A rating of one to 
three was a second score earned which indicated in which cluster the students were 
working. Working in the Reproduction cluster received a score of one, whereas, 
evidence of working in the Reflection cluster received a score of three. Scores therefore 
indicated which process was evident, and the level of thinking e.g. a score of (1, 2) 
would indicate evidence of the first competency, thinking and reasoning, and that the 
student was working in the Connections cluster. 
 As students began to work on the inquiry topic, evidence of problem posing and 
solving was rated in the Reproductions cluster as students reproduced standard, closed 
problems, which could typically be solved in the one way. For example, one group had 
recorded on their poster the following question: “I had 6m³ and I had another 5m³ and 
subtracted them and got a result of 1m³.” This lower-order thinking was not challenging 
the students to think beyond the problems already practised in class. To push students 
beyond these questions, the teacher was then able to discuss with the class what types of 
questions display a mathematical understanding of the concept. A basic equation like  
1m x 1m x 1m = 1m3 would demonstrate some basic understanding of volume, but the 
equation was not highly creative nor did it demonstrate a good mathematical 
understanding of the concept. A new criterion was jointly constructed to guide students 
to think about how their responses might be more creative or reflect a good 
mathematical understanding of the concept. Solutions began to move away from the 
reproduction-style problems that practised standard problem solving. Assessing which 
cluster students are working in can highlight areas for improvement and can help 
students to use more rigorous mathematical processes. 

Researcher field journal 
Identifying where students are working can help teachers know where to go next. For 
students who do not like to write, posters did not reflect much thinking. It was useful to 
then look at the individual student‟s reflections in their electronic learning journal, 
where an enthusiasm for computers meant that more effort was made in recording their 
ideas. Many assessment opportunities are missed when students are working in groups 
and discussion is not recorded. In this inquiry, one group of students who generally did 
not like to record their reflections in writing became a focus for the teacher to record 
anecdotal evidence. This information was recorded in the teacher journal. Anecdotal 
observations of student work have long been an assessment method valued by teachers 
with notes being recorded in different ways and being stored in various locations for 
later use at report card time. Using the PISA assessment framework, the teacher in this 
instance was able to reflect on the teacher journal to identify clusters students were 
working in and areas to improve teaching and learning. One reflection noted how 
students moved between clusters when modelling their ideas. Initially, the group had 
sketched a box with the dimensions 0.5m x 0.5m x 0.5m with an assumption that this 
was half a cubic metre. Once the students were encouraged to use the cubic metre 
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model in the class to show this they were able to visualise that about eight of the boxes 
would be able to fit into one cubic metre! Students were interpreting back and forth 
between models and their results, and this communication was evidence of students now 
working in the Connections cluster. Knowing where these students were working using 
the PISA assessment framework provided the teacher with direction and focus. 

Discussion 
The student-centred nature of a mathematical inquiry unit of work can mean that the 
direction learning travels is not always as expected. Mathematical inquiry is complex 
and open-ended (Makar, 2007) and intended content areas are not always realised. This 
makes it a difficult task for teachers to foreground assessment. Often new and exciting 
mathematical topics need to be introduced to assist in answering students‟ questions. 
Using the PISA assessment framework to analyse student work made it possible for the 
teacher to quickly check the cognitive level the students were working in and provided 
some direction in how to push their reasoning beyond those experiences. A faster turn-
around of feedback on rich, written reflections ensures a more successful feedback loop 
(Furtak & Ruiz-Primo, 2008). It offers an alternative to earlier pencil-and-paper-style 
assessment with tasks that give a clearer indication of the level of a student‟s 
mathematical reasoning. In this inquiry, there were three levels of evidence to show 
how students were working: individually through the use of electronic learning journals, 
collaboratively by analysing poster sheets student groups worked on, and with a focus 
on differentiation as the teacher reflected and added anecdotal notes to their journal. 
 In analysing these three areas, the framework provided useful feedback and 
information to both students and teachers. In the electronic learning journals, the 
feedback was for the individual student as it identified which clusters the student was 
working in or developing. It allowed opportunities for teachers to formatively assess 
their own teaching practice and to offer feedback to students that was meaningful and 
could guide them further in their inquiry. For small groups, analysis highlighted which 
competencies students were working in. This information could be used formatively to 
provide feedback to the whole class, encouraging groups to use higher order thinking 
skills. Identifying the competencies and clusters in the teacher journal further informed 
teaching and learning pedagogy and could assist the teacher to make more informed 
judgements of the level of students‟ mathematical reasoning.  
 Although this case study was not a typical classroom, the results provide insight into 
ways to capture and analyse assessment opportunities in a primary classroom using 
mathematical inquiry. Using this information can inform teachers and students how to 
move away from lower-order thinking processes of posing and solving familiar and 
practised problems (Reproduction cluster). Teachers and students can aim to apply 
problem-solving processes, knowledge and skills to situations that are not routine 
(Connections cluster) or with an element of reflectiveness (Reflection cluster) with 
problems that contain many elements and may be more unfamiliar. 
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Given the variety existing within mathematical modelling enterprises, it is not surprising 
that different perspectives have found their way into educational practice and research. A 
variety of genres, (or variations within genres), has emerged within education communities, 
who use the term ‘mathematical modelling’ with different emphases, and in some cases 
with different meanings. This presentation will review the origins and purposes of several 
articulations of mathematical modelling. Tensions will be identified, and some 
inconsistencies and misplaced inferences illustrated. Different approaches will be linked to 
underlying purposes that are not always made explicit, and some specific issues will be 
highlighted. 

Introduction 
Mathematical Modelling, its practice, research, and curricular implications continue to 
engage members of the mathematical and mathematics education communities. In 
Australasia recent foci are found in the MERGA Review of Research (2004—2007), in 
the recent special issue of the Mathematics Education Research Journal (Stillman, 
Brown, & Galbraith, 2010), and through the ongoing published work of individuals.  
 Practitioners and researchers inhabit different sections of the respective communities, 
as well as the interface between the two. Hence it is not unexpected that different 
perspectives share similar terminology when talking and writing within the field—
resulting in a variety of genres, and variations within genres among those who use the 
term ‘mathematical modelling’. Confusion is generated when individuals lay a 
particular meaning over writings and other scholarly products that have been 
constructed within a different genre, while more fundamentally, value judgments 
concerning the purposes and features of application and modelling initiatives stand to be 
distorted by generalisations made on the basis of limited experience or understanding, 
or indeed selective referencing.   

Structure and purpose 
This paper first reviews the characteristics of several articulations of mathematical 
modelling and applications as found within the mathematics education community. Its 
lens focuses on mathematical modelling as it interacts with curricular purposes within 
mathematics education, rather than analysing particular variations viewed from within 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES • © AAMT & MERGA 2011 
 

279



GALBRAITH  

the modelling field—as in Kaiser & Sriraman (2006). Some criticisms of mathematical 
modelling will be illustrated, tensions identified, and inconsistencies and misplaced 
inferences illustrated. Different approaches will be linked to underlying purposes that 
are not always made explicit, and some specific issues highlighted. Finally reference is 
made to a stated aim of the proposed Australian Curriculum—Mathematics (Australian 
Curriculum, Assessment and Reporting Authority [ACARA], 2010): that “mathematics 
aims to ensure that students are confident, creative users and communicators of 
mathematics, able to investigate, represent and interpret situations in their personal and 
work lives and as active citizens”. 
 It will be argued that at most two contemporary approaches that use the term 
‘mathematical modelling’ can hope to contribute decisively to such an aim. 

Models of modelling  
 For present purposes the focus is on terms and meanings associated with ‘mathematical 
modelling’ that are recognised within the international community of practitioners and 
researchers in the field (Blum et al., 2007). Six approaches to the use of mathematics 
with connections to the real world are considered below.  

1. Using real problem situations as a preliminary basis for abstraction  
Two studies that used practical contexts to motivate and develop the linear relationship 
(y = mx + c) at respectively years 9 and 8 levels, are reviewed in (Bardini & Stacey, 
2006; Bardini, Pierce, & Stacey, 2004). Symbolic, numerical, and graphical 
representations of the relationship were introduced by considering the cost of hiring 
trades people, where the given conditions included a flat ‘call charge’, together with 
labour charges on a per-hour basis. With the year 8 above average ability students, 
graphical calculators were introduced to facilitate the learning. Axial intercepts, slopes, 
points of intersection, and intervals required interpretation in context, across a variety of 
problem settings. The students learned to write algebraic rules in conventional formats, 
were comfortable selecting symbols that made sense in terms of the problem settings, 
and showed understanding of the function property of expressing one variable quantity 
in terms of another. Problematic was the time factor—five weeks seems a very heavy 
investment for the achieved outcomes. Since the approach had to cater for a pre and 
post testing format, perceived clashes between research requirements, and authenticity 
of problem solving were resolved at the expense of the latter. For example students 
made decisions about contextualised problems on their own, where in reality a decision 
about which plumber to hire would usually be a collaborative (e.g. family) decision 
reached after some discussion of competing quotes. This is all about the team nature of 
aspects of a modelling process, whose goal is to obtain and justify the solution to a 
problem. Some useful outcomes were achieved in both studies—the time commitment 
was problematical, and expedient rather than authentic modelling practices were 
imposed at times.   

 2. Emergent modelling  
Emergent modelling (Gravemeijer, 2007; Doorman & Gravemeijer, 2009) is an 
instructional design heuristic, developed as a component of a domain-specific 
instruction theory generated within the Reality in Mathematics Education framework in 
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the Netherlands. ‘Emergent’ refers both to the nature of the process by which models 
emerge from students’ experience, and to the process by which these models support the 
emergence of formal mathematical ways of knowing - that are no longer dependent on 
the support of the original models. That is, there is emphasis on a search for models that 
can be developed into entities of their own, and subsequently into models for 
mathematical reasoning. Gravemeijer (2007) summarises the process as one of 
“abstraction-as-construction” in which mathematical knowledge is grounded in earlier 
experiences that are meaningful and applicable. In that they are familiarised with a 
mathematical take on everyday life situations in the process, students are incidentally 
prepared for more serious application and modelling adventures in the future - indeed 
Gravemeijer has referred to emergent modelling as a precursor to mathematical 
modelling. Emergent modelling can also be viewed as a more organised and theorised 
approach than that described in the previous section, which typified approaches aimed 
at using contextualised mathematics to motivate and attain proficiency with the form of 
a basic mathematical relationship.   

3. Modelling as curve fitting 
This approach has become increasingly significant with the availability of regression 
menus in software and graphical calculators. A model generated by this means can 
become a purely technical artefact whose parameters vary with the particular data set, 
and which can be generated in complete ignorance of the principles underlying the real 
situation—indeed undertaken without knowledge of where a table of data comes from. 
It raises a profound theoretical issue—the relative authority of data as such, versus the 
theoretical structure underpinning its generation In one example curves were fitted to 
population data by using successively the full suite of regression choices available on a 
graphical calculator—with no apparent realisation that data generated by births deaths 
and migration should have an underlying exponential pattern. Curve fitting remains an 
important activity within the modelling enterprise, but when used mindlessly it creates a 
dangerous aberration of the modelling concept. Riede (2003) demonstrates good 
modelling practice when relating weightlifting records to weights of athletes. An 
inverted parabola was postulated to model the data, on the grounds that weight lifted at 
first increases with body weight, but ultimately (beyond the super heavyweight class) 
begins to decrease as body weight impairs the ability to lift. The subsequent fit was 
excellent.  

4. Word problems  
Vershaffel (e.g. Greer & Vershaffel, 2007; Vershaffel &Van Dooren, 2010), has been 
writing and researching insightfully, for many years on the subject of student 
approaches to word problems. Studies in a variety of countries have consistently 
demonstrated the propensity of students to ignore contextual factors, and apply (often 
incorrect) actions based on perceptions of what school mathematics is about—such as 
being divorced from reality. His work with colleagues has included a focus on the 
suspension of sense making by students while working on word problems, so that 
aberrations are produced that the same students would never contemplate in their real 
lives outside the classroom. Various intervention studies to identify problems and 
stimulate improvement have been designed and implemented, with varied outcomes 
(see Vershaffel & Van Dooren (2010) for a summary of some of these). Attention is 
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drawn to the impact of classroom culture in seeking change, for not only are different 
types of problems needed, but improvement “would also imply a classroom culture 
radically different from that which typically exists in many mathematics classes.” The 
difficulty of producing change may well be compounded by the types of intervention 
materials proposed—more realistic word problems in text books do not address the 
cultural issues that learning from text books in this area themselves reinforce. If the 
medium remains the same a different message is difficult to promote. 

5. Modelling as a vehicle for teaching other mathematical material  
When used as a vehicle (Julie, 2002), modelling contexts are chosen so that the 
mathematics of interest is embedded in the associated examples. The principal driving 
force in defining the boundary of the activity is curriculum content, and genuineness of 
applications is made subservient when necessary (not always), to achieve this perceived 
need. This particular emphasis is most clearly expressed by Zbiek & Conner (2006).      

… we recognise that extensive student engagement in classroom modeling activities is 
essential in mathematics instruction only if modeling provides our students with 
significant opportunities to develop deeper and stronger understanding of curricular 
mathematics. (pp. 89–90) 

These authors describe the implementation of a problem involving the siting of a 
hospital to service three large (actual) cities in north western USA, so the data were real. 
The subjects (student teachers) were left to address the problem in their own way, and 
later interviewed to probe their use of assumptions, strategies, parameters, 
interpretations, and justifications. All these aspects are involved in real world 
modelling, except here it was the evocation of these separate mathematical and problem 
solving entities as such that was of central interest. In fact the authors’ did use a 
modelling process that was included in the paper but not shared with the students.  
 English (2010) also working within the vehicle mode, used environmental material as 
a stimulus for engendering data based modelling involving classification and display of 
attributes, with first grade children. We are reminded that, as has been pointed out many 
times, the capacity to learn from modelling examples is not a function of age or the 
amount of mathematics that is known—although the types of modelling activities that 
are suitable clearly are impacted by experience and knowledge.   
 While the approaches described within 1 and 2 (above) also use real contexts, this 
genre is much more thorough in using a modelling process to generate information of 
value, even if (as with Zbiek & Conner, 2006) the students are not made aware of this. 
Lesh and associates (e.g. Lesh & Doerr, 2003), use carefully constructed Model 
Eliciting Activities (MEAs) to elicit mathematical concepts for consolidation and 
enhancement. 

6. Modelling as real world problem solving 
 This perspective differs in some important respects from those discussed so far, firstly 
because its origins lie substantially with those who have used mathematics to model 
problems in professional fields outside education, and in their personal lives. Some, 
such as Pollak (telecommunications), Burkhardt (physics), and other early ICTMA 
progenitors, have taken their experience and insights specifically across into modelling 
initiatives in education, while others (e.g., Pedley, 2005) without specific intention to do 
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so, continue to provide external reference criteria for those working within the 
educational field. An essential goal is for students to develop and apply modelling skills 
to obtain mathematically productive outcomes for problems in their world with genuine 
real-world connections. Modelling in this vein has two concurrent purposes—to solve a 
particular problem at hand, but over time to develop modelling skills, that empower 
individuals to apply to problems in their world. That is, to become productive users of 
their curricular mathematical knowledge. Characteristic of this approach is a cyclical 
modelling process—containing elements such as the following drawn from the 
Presidential address to the Institute of Mathematics and its Applications, (Pedley, 2005). 
Note that Pedley was not addressing an audience of educators. 
 
 Understand the real problem situation.  

 Frame an appropriate mathematical question 

 Formulate a model, using simplifying assumptions etc 

 Analyse the model 

 Compare mathematical outcomes with reality 

 Modify and repeat until an adequate solution has been found. 

The arrows on the right indicate that iterative back tracking may occur between any 
phases of the modelling cycle when a need is identified. This diagrammatic translation 
of Pedley’s message is a compact version of the modelling chart that appears in various 
representations in many sources (e.g., Galbraith & Stillman, 2006). Such diagrams 
describe the modelling process, but also act as a scaffolding aid for individuals or 
groups as they develop modelling skills through successive applications. The labels do 
not represent vacuous generic properties, but attributes that find specific and different 
instantiations, depending on the context in which the modelling takes place. In this 
genre the solution to a problem must take seriously the context outside the mathematics 
classroom within which it is introduced, and its evaluation involves returning to that 
context. It cannot live entirely in a classroom.  
 It is argued that two substantive strands can be identified that contribute to this 
approach to modelling. One of these involves using MEAs (Lesh & Doerr, 2003) as 
‘modelling development tutors’ when used as orchestrated activities within a carefully 
planned sequence. When used thus, the identification of relevant mathematics with 
which to model becomes a central feature, an aspect that is reduced when MEAs are 
used in close proximity to a cognate topic to elicit or consolidate particular concepts—
where their purpose is more often in the vehicle mode. Note that this amounts to 
creating a strength out of the use of MEAs as ‘stand alone activities’, perceived as a 
weakness by Yoon et.al., 2010 when used in isolated and uncritical ways.   
 The other strand typifies the emphasis of the ICTMA group (e.g. Blum & Leiss, 
2007), in which a modelling chart is used as a scaffolding aid with dual purpose. One 
purpose is to assure that real world problem solving in education contains the 
procedures, and checks and balances that professional mathematical modellers endorse 
and apply. The second purpose is to provide a means for individuals to build and test 
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modelling expertise, including use of curricular mathematics, through engagement with 
a selection of appropriately chosen problems, including at times their own. The 
emphasis is on learning how to identify problems, and to formulate related 
mathematical questions that can be addressed with existing mathematical knowledge—
developing this ability is one of the most significant challenges new modellers face.     

 Critique of modelling  
This section selects and reflects on some criticisms made regarding mathematical 
modelling. Jablonka & Gellert (2007) argue that there is no straightforward way to 
move from a real problem context to a mathematical model, because it is virtually 
impossible to quantify non-mathematical characteristics, and relate them 
mathematically in one step. There is confusion here between a procedure (step) and a 
phase in the modelling process—the latter may contain several steps and will vary in 
complexity with the sophistication of the problem. They further argue that there can be 
no validation because a result is not put back into a ‘real’ real situation. We will return 
to this criticism in the concluding section.  
 Arleback (2009), when introducing modelling to upper secondary students, could 
find no evidence of the cyclic process widely described in modelling research: “the 
discrepancy with what actually happens is palpable”. This was a strange observation, as 
shortly before he had identified sub-processes that characterised the students’ work: 
reading; making a model (structuring and mathematising); calculating; validating; and 
writing. All these are essential elements of the modelling process, and validating cannot 
occur without reviewing a solution in terms of the original problem statement (reading). 
This alone completes a cycle, even without further cycles introduced through the 
checking and reviewing that inevitably takes a solver back through earlier phases in 
producing a defensible solution. This comment is enigmatic, as the paper in general is 
carefully constructed, and the description of the research is excellent.  
 Sfard (2008) claims that, the minute an ‘out of school’ problem is treated in school it 
is no longer an ‘out of school problem’, and hence the search for authentic real world 
problems is necessarily in vain. There are several examples in the literature where 
individual students have, on their own initiative, used mathematical modelling 
techniques learned in school, to address situations in their personal lives outside 
school—as authentic as one could wish. Again we will return to this point in the final 
section.  
 In a similar vein Barbosa (2006), argued that “since students and professional 
modellers share different conditions and interests, the practices conducted by them are 
different.” While there are differences of course, what both groups need for success are 
modelling competencies that can be applied effectively and sensitively, including the 
ability to work productively both as individuals and as team members. The following 
questions are relevant for both groups. Is it important to be able to: Define a problem 
from a real-world setting? Formulate and defend an appropriate mathematical model to 
address it? Solve the mathematics involved in the model? Interpret the mathematical 
results in terms of their real world meanings and implications? Evaluate and report the 
outcomes of the model both for mathematical validity, and in terms of their relevance to 
the original question? Revisit and challenge material produced within any part of the 
modelling process in the interests of improved outcomes? Can any of these ‘stages’ be 
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omitted from a seriously constructed modelling endeavour? Is the ordering of the stages 
arbitrary? If as we contend the answer to every question except the last two is “yes”, 
and to those two is “no”, we have a process that characterises essential modelling 
activity that is as relevant to school learners as it is to those doing modelling 
professionally or for personal reasons.  
 In a very recent paper Jablonka & Gellert (2011) begin with the assertion that 
“Modelling approaches are propagated to enhance the quality of the outcomes of 
mathematics education by providing students with generic competencies and thereby 
creating a flexible work force”. This is a sweeping and mistaken generalisation, as 
motivations are various, and include centrally that of student empowerment, as in: “… 
for students to spend years learning mathematics without any sense of how to apply it in 
the world around them, is inappropriate” (Stillman, Brown, & Galbraith, 2010). The 
paper is a mixture of observations, assertions, and arguments. It raises some important 
issues concerning equity, but a drawback is the dependency on selections chosen 
seemingly to support the ideology of the critique, rather than a representative spectrum 
from the field. For example, the authors allege that modelling conceptions do not see 
associated competencies as ‘culture bound and value driven.” Yet an introduction in 
Blum et al., (2007) points out that “the best route for a new freeway”, implies that 
“best” must be interpreted, and this implies not only considerations such as “most 
direct”, or “cheapest”, but also “least disruptive to communities”. Again the authors 
assert “…contextuality of all knowledge is (mis)interpreted in a way that leads to the 
contention that mathematical concepts can be meaningfully learned only within a ‘real 
life’ context”. Compare this with:  

… neither the content nor vehicle approach argues in some abstract sense that all 
mathematical curricular content must be justified in terms of relevance - mathematical 
modelling has a role to play in meeting certain important goals, but other significant 
mathematical skills and purposes are important as well. (Stillman et.al., 2008, p. 145) 

And reasoning that argues against the use of contextualised problems on the grounds 
that they may be initially more familiar to some students than others should also argue 
against teaching any new mathematics, because some students will be better prepared to 
benefit than others. What this paper and others provide, is the cautionary tale that there 
are many versions of modelling out there, that cover the full range of good, bad, and 
indifferent implementations. But it is imperative that the theory of mathematical 
modelling, its purposes and possibilities, are kept conceptually separate from poor 
implementations, and abuses. There is no question that the latter exist, but they must not 
be used to undermine arguments for what is possible when the best is undertaken.  

Concluding reflection 
So, to return to the question posed in the title! It is not reasonable to expect a single 
definitive answer because not all the ‘models’ considered have the same priorities. The 
use of contexts to introduce new mathematical relationships like y = mx + c need to be 
analysed in terms additional to those raised earlier in this paper. Wrestling with 
symbolic representations such as m and c, at the same time as embodiments meant to 
motivate their abstraction creates issues of cognitive load (Chinnappan, 2010) that need 
to be specifically considered. Emergent Modelling as a package is well constructed by 
its practitioners, who emphasise and explain what it does and does not set out to do. It is 
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important to realise the curricular implications of its ‘total package’ aspect. Curve 
fitting will have an increased presence as technology enhances the capacity to use 
messy real data. It remains a significant part of many modelling enterprises, but a 
challenge is to eliminate any separation between the search for a mathematical 
relationship, and the nature of the data involved. Word problems will continue their 
presence, and contain aspects of mathematics congruent with some components of the 
modelling process. Generally their simplicity and association with text book 
mathematics, limits their capacity to add decisively to modelling capability.  
 The last two ‘models of modelling’ share some common ground, and although 
different in purpose, are not antagonistic. While ‘modelling as a vehicle’ has the prime 
purpose of eliciting and consolidating new mathematical concepts, such entities then 
enlarge the field of problems that can be addressed. While ‘modelling as real world 
problem solving’ has the prime purpose of helping students to access and use their 
existing store of mathematical knowledge to address problems, the mathematics evoked 
is often used in novel ways, and as such contributes to enhanced conceptual 
understanding. Returning to the aim of the new Australian curriculum, emphasis is on 
the ability to use mathematics creatively in “personal and work lives and as active 
citizens”. This requires the ability to formulate mathematical problems out of 
contextualised settings, and to go through a systematic process of solving, testing, and 
evaluating. It is not an ability that is acquired by osmosis or transfer on the basis of 
‘seeing’—it requires direct structured experience. Formulation of a mathematical 
problem from a messy real context is arguably the most difficult aspect of learning to 
use mathematics, and only the two approaches illustrated in this last of the ‘models of 
modelling’ contain formulation as a major component. It is not surprising that they both 
resonate with those who apply mathematics outside education.  
 Finally some comments are needed in response to issues in the previous section 
raised by Barbosa, Jablonka & Gellert, and Sfard. What each is doing is privileging 
their conception of what school mathematics is about, and what mathematics teaching 
and classrooms are allowed to be—then requiring that modelling fit the stereotype and 
be subject to associated practices. By contrast,  what modelling properly conducted can 
do, is to challenge some of those norms, assumptions, and stereotypes—mathematical, 
situational, and pedagogical. In that modelling as real world problem solving involves 
intersections between the values and methods of more than one community of practice, 
it challenges the boundaries of the existing education industry.   
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Academic numeracy consists of three critical elements: competence, confidence, and 
critical awareness of students’ own mathematical knowledge and the mathematics used in 
students’ future professions. This definition is used to frame pre-test assessment in a first 
year nursing program. Competence and confidence were measured using a paper and pencil 
test. Critical awareness was measured via students’ reflections on their own performance, 
their relationship to mathematics, and their understanding of how mathematics relates to 
nursing. Results show issues related to professional numeracy practices including relatively 
low understanding of the connection between mathematics and nursing. 

Introduction 
The word “numeracy” was first coined in the 1959 in the UK from the Crowther report 
(1959) and redefined in the Cockcroft Report (1982) to reflect literacy. More recently it 
has been hijacked by the school lexicon, largely in Australia, to the extent it is often 
seen as a replacement for “mathematics”, particularly in primary schools. The term is 
also used in adult education, where it has taken on a context of basic skills in the 
workforce or everyday life. Academic numeracy, however, has attributes of both school 
numeracy and particular professional numeracies. Students need to situate mathematics 
learned in school to their imagined future context. This shift is hopefully aided by the 
courses students enrol in at university where they are exposed to contextualised 
mathematics. Students also need to situate the mathematics in the particular academic 
context. While the mathematics strongly reflects the professional context, it is not the 
same. The academic context has particular extra attributes, such as reading and 
critiquing journal articles, or investigating particular topics in depths students may 
never experience in their professional careers. These contexts may also need 
mathematically based skills. Academic numeracy is not the same as professional or 
school numeracy. 
 The term “academic numeracy”, modified from Yatsukawa and Johnston (1994), was 
used by Galligan and Taylor (2005) to clarify the skills necessary for success in the 
university context and defined as:  

… a critical awareness which allows the student to situate, interpret, critique, use and 
perhaps even create mathematics in context, in this case the academic context. It is more 
than being able to manipulate numbers or being able to succeed at mathematics. (p. 87)  
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However, academic numeracy needs to highlight two further attributes: confidence and 
competence (Coben, 2000). Thus, I propose academic numeracy has three elements: 

 mathematical competence in the particular context of the profession and the 
academic reflection of the profession at the time;  

 critical awareness of the mathematics in the context and in students’ own 
mathematical knowledge and involves both cognitive and metacognitive skills; 
and  

 confidence, highlighting its deeply affective nature. 
While mathematical competence testing is common, both at university and school, few 
incorporate a broader definition as proposed here. These three elements are needed to 
assess students’ numeracy in a particular professional path—whether it is in nursing, 
engineering, business, or education. This paper will outline an approach taken to test 
nursing students’ academic numeracy at the beginning of their degree. This research is 
part of a larger study that investigated the development of nursing students’ academic 
numeracy over their first semester of study. 

Method 
In 2008, 206 first year nursing students at USQ undertook a first semester course to 
build nursing attributes of mathematics and computing. Students attended one two-hour 
tutorial per week. One of these tutorials was taken by the researcher. Three instruments 
were used to assess academic numeracy in the first two weeks of the course. The first 
was an online discussion forum where students wrote about their mathematics 
experiences; second was a mathematics competence and confidence test, and the third 
was students’ reflections on the results of the questions in the test. 
 Online discussion forum: In the very first tutorial, students discussed their past 
experience with mathematics and were encouraged to reflect critically and honestly. 
The informal discussion in class and the time given to actually writing, prompted well 
thought out responses. In this first tutorial, a discussion was also held on the advantages 
and disadvantages of different scales in nursing, using a pain intensity scale (Figure 1a). 
Students were then asked to rate their relationship with mathematics on a five-point 
scale (Figure 1b). 
 

Figure 1. (a) Pain intensity scale (left) and (b) mathematics relationship scale (right). 
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They were also directed to articles on the relationship between mathematics and 
nursing. Using these two exercises as a basis they were asked to reply to the questions, 
“Describe your previous experiences with mathematics in a couple of sentences” and 
“How do you think mathematics…will be important for you as a nursing student, and 
later as a professional?” in an online forum, as part of a larger suite of questions about 
introductory academic studies. 
 Mathematics competence and confidence pre-test consisted of 32 (Table 1) items that 
was equivalent to tests undertaken previously by first year nursing students at USQ. 
Students were given a paper-based version of the test in tutorial classes. They then 
started the test in class and could finish it in their own time. Once they completed the 
test on paper they submitted their answers online via a Computer Managed Assessment 
system (CMA). The test also included a 5-point Likert style section on confidence 
levels.  
 Student reflections: The pre-test was then used as a stimulus for student reflection. 
When the test had been completed online, students were sent their results, question by 
question, in a table via automatic reply email. Students then copied and pasted this 
result into a word document and they then added two columns: a reflection on each 
question, and a strategic response about what to do next. Examples of the type of 
reflections and strategies were provided online, in the study book, and in class. Students 
then emailed these results and reflections to their tutor. While this was an assessment 
piece, marks were allocated on completion of the test and reflective comments and did 
not depend on how correctly they answered the questions. 

Results 
Replies on the discussion forum were classified into one of five categories. The 
categories: Hate, Dislike, Neutral, Like, Love were used as they reflected the sentiments 
in Figure 1b. The results are shown in Figure 2.  

 

Figure 2. Relationship of nursing students to mathematics (n = 206). 
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A sample of students comments coded from “Hate” to “Love” is provided:  

 I ended up changing from Maths B to A but not before developing a loathing for 
it!! (Hate) 

 Maths I do not like it. For me it’s like great mystery (Dislike) 
 Sometimes numbers just don’t make sense to me…I do blame the teachers and 

their inability to find why maths perplexed me so much, but in high school I do 
blame myself … now I find maths much better, I am no longer afraid of numbers 
and can grasp the theory and at least try to put it in practice—even if the answer 
is wrong. (Neutral) 

 Maths has always been an enjoyable experience for me. (Like) 
 I learned mathematics at school and really love mathematics … (Love) 

Students also described other relations with their mathematics. For example, 14 students 
explicitly commented on teachers’ influence on their mathematics, mainly negative, but 
there were some positive comments, for example: 

I dreaded mathematics at school. It was my worst subject but that was due to never 
having a constant teacher. It wasn’t till year 11 and 12 when I had the one teacher 
throughout that helped me a lot that I began to enjoy it a little. 
I dreaded to do maths because I found it boring and the teachers were not always that 
helpful. 

Pre-test results were generated from the CMA system and included both an overall 
percentage correct for each question and an individual student-by-student response. The 
pre-test results were analysed in four ways: competence, comparison with previous 
semesters, relationship between confidence and competence, and error.  
 Overall 192 students completed a pre-test. The pre-test had 32 questions. Table 1 
shows the questions, the percentage correct, and mean confidence levels per question. 
There were seven questions where fewer than 52% of the students were correct: 
question 6 on estimation (23% correct); question 10 on average (31% correct); question 
20 on conversion from hours to minutes (50% correct); question 22 on conversion from 
grams to milligrams (51% correct); question 25 on substitution into a formula (44% 
correct); question 26 on solving an equation with the unknown on the denominator 
(48% correct) and question 27 on reading a scale on a syringe (48% correct). The 
median mark of students was of 25 out of 32 and the middle 50% of students were in a 
range from 21 to 28. While the test showed the majority of students doing relatively 
well, and were comparable to previous years, nursing students are expected to be fully 
competent in various aspects of nursing that require numeracy and in particular drug 
calculations. During their nursing degree they will undertake a specific medical 
calculations course, and have multiple instances for testing their numeracy skills. 
Students ranked their confidence with each of the 32 questions (Table 1, next page) 
from 1 = no confidence, to 5 = very confident. Students particularly lacked confidence 
with three questions. 
 Question 26 (3.39 out of 5). The poor result is not surprising as students could not 
use an intuitive approach (e.g., doubling or dividing by a whole number) and in general 
research suggests students show an inability to scale by non integer (Steinthorsdottir & 
Sriraman, 2009). If using an algebraic approach, the unknown on the denominator is a 
more difficult question than one where the unknown is in the numerator (related to poor 
manipulation skills, Poon & Leung, 2009).  
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Table 1. Results of pre-test and confidence levels (1 = none; 5 = complete) S1 2008 (n = 192). 

Question % correct Confidence 

  mean Std dev 

1.    Write … in numerals: Twenty thousand two hundred and six 83 4.842 0.456 

2.    102 - 36 = 97 4.770 0.512 

3.    1 048 + 21 376 = 96 4.751 0.552 

4.    23  145 = 92 4.626 0.699 

5.    168  12 96 4.487 0.819 

6.    Estimate 512  174 23 4.011 0.976 

7.    Round 495 to the nearest 10 79 4.399 0.831 

8.    7 + 2  3 = 76 4.569 0.679 

9.   3/4 = 15/? 88 4.160 1.078 

10.   Find the average (mean)…: 21.3, 22,  24.7, 20.4, and 19 31 4.005 1.134 

11.  15.8 x 0.2 83 4.295 0.871 

12.  Express 3/4 as a decimal 94 4.513 0.905 

13.  Express 80/480 as a fraction in simplest form 78 4.166 1.145 

14.  7.42  100 84 4.293 0.950 

15.  Find 30% of 25 86 4.080 1.109 

16.  Express 0.5 as a fraction in simplest form 91 4.452 1.004 

17.  Calculate: 2 mL -1.34 mL 78 4.353 0.924 

18.  Calculate: √81 95 4.419 1.104 

19.  Express 7 hours 20 minutes in minutes 88 4.516 0.817 

20.  Express 1.2 hours in minutes 50 4.235 0.980 

21.  360 mL = ?L 73 4.208 0.955 

22.  1.23 g = ?mg 51 3.984 1.085 

23.  The chart … When was his temperature the highest? 88 4.652 0.606 

24   What was his temperature the last time it was taken? 66 4.436 0.671 

25.  If 
2

w
b

h
  find b if w = 2, and h = 4. Answer as a fraction. 44 3.810 1.229 

26. 10 8

4 x
 : x= 48 3.387 1.335 

27.  …... How much fluid is in the syringe? 

 

48 4.396 0.734 

28. Energy is measured in Kilojoules (kJ). Margarine contains 32.2 
kJ/gram. How much energy is in 500g tub of margarine? 

75 3.935 1.118 

29. Unit in qn 27? 86 4.060 1.159 

30 A clock gains 15 secs in a day. How long does it take to gain 2 mins? 85 4.307 0.946 

31 A Paediatric patient weighing 25 kg is ordered Augmentin 10mg/kg. 
If Augmentin is supplied as a syrup containing 125mg/mL, how much 
syrup is to be measured out? 

57 3.720 1.227 

32  Unit in question 31? 73 3.914 1.181 

 
Question 31, an in-context proportion word problem, had an average confidence level of 
3.72. It too had a relatively low pass rate (57%), reflecting school students’ difficulty in 
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this problem solving area (Stacey & MacGregor, 1993). Nursing students have 
expressed anxiety in undertaking word problems (Galligan & Pigozzo, 2002). This, 
combined with the unfamiliarity of the terms, as the test was undertaken at the 
beginning of the first semester of their degree, would account for the low confidence 
level.  
Question 25 (3.81). While only 44% of students were correct with this question, 70% 
had either 1/8 or 0.125 as an answer. This suggests that the algebraic symbols or the 
squaring on the denominator may have created the uncertainty. 
 Figure 3 shows the relationship between confidence levels and pre-test results. 
Overall, there was a positive correlation with about 38% of the variation of the pre-test 
results being accounted for by confidence level. While all the questions below the 
regression line could be identified as ‘overconfident’, question 6 (on estimation), 
question 10 (on average) and perhaps question 27 (on reading a syringe), in particular 
appear to be overconfident (circled points in Figure 3).  

 

Figure 3. Scatterplot of confidence levels and pre-test results. 

 An aim in the nursing numeracy course is to improve confidence and competence in 
numeracy ensuring students are neither confident and wrong, nor underconfident and 
right. The confident and wrong category is of particular concern, as they may not know 
they are wrong and may be less likely to check their calculations. There were 183 
students that had at least one question confident (4 or 5) and wrong. On average, these 
students got 5.01 question incorrect (sd 2.94), and 17 students had more than 10 
questions wrong in this category. Questions that were ‘overconfident’ in at least 50 
cases are shown in Table 2. These seven questions match the data points below the line 
of best fit in Figure 3. The other two questions below the line were question 1 on 
numerals (83% correct) and question 8 on order convention (76% correct). 

Table 2. Questions where there was significant overconfidence. 

Question Details Number confident & wrong  
(4 or 5 in the Likert scale) 

6 estimation 111 

10 average 86 
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20 hrs to minutes 68 

22 grams to milligrams 54 

23 reading graph—what temperature 58 

25 

2

w
b

h
  

50 

27 reading the syringe
 

82 

 

The test results and comments from the researcher’s class were collated into one 
spreadsheet that detailed students’ responses and reflections for each question. Sixteen 
of the students submitted comments and results. These were analysed for themes, 
question by question. One preliminary scan and two complete scans of the document 
produced seven themes. The themes were also coded positively or negatively and 
whether the student was correct or not, thus creating four alternatives for each question. 
From the 512 possible comments (16 students × 32 questions), 697 identifiable points 
were extracted. Themes and some samples can be seen in Table 4. 

Table 3. Themes from student reflections. 

Theme Example 

Students’ ability or understanding 
(30%) 

I never understood fractions (negative/ wrong); I found this easy 
however I got it wrong (positive/wrong). 

Confidence (20.6%) I have never been that confident with multiplication. Especially 
when it is with large numbers (negative/right); I feel confident with 
this type of question (positive/right) 

Complacency/checking (12%) Care needs to be taken to ensure answer received make sense 
(positive/right); That again is just terrible adding up and not taking 
the time to check. Check and re-check my answers 
(positive/wrong) 

Calculator (13.3%) Fairly confident No calculator (did not use/wrong) 

Knowledge/Remembering/ 
Thinking/Method (19.4%) 

Once I remembered what the symbol that was it was easy.. try to 
unlock my suppressed maths from my brain (Positive/right);. Don’t 
know what the sign over the 81 meant (negative/wrong). 

Affect (happiness/ 
enjoyment/relieved); 
Importance/life experience (3.9%) 

I didn’t read the syringe properly … dangerous I could of killed 
someone!! (positive/wrong). Percentages don’t seem to agree with 
me, I didn’t think I would get it right (negative/wrong) 

Silly error (1.2%) I didn’t read the question properly, silly mistake 

 

From the data of errors made in one class and an analysis of errors of the whole cohort, 
a profile of error was starting to emerge with some points to note: 

 Students sometimes had a variety of solutions that, in the context of nursing 
would probably be acceptable, so care needs to be taken to ensure the 
mathematics is marked appropriately or the question is worded realistically. 

 Students need to be aware of reading questions correctly. This can often be vital 
in nursing where prescriptions and directions from doctors are exact. While 
entering units in an answer when the question asked for no units may appear 
trivial, it does reflect a hidden issue of reading instructions in general. 

 There appears to be an underlying issue of understanding of some mathematics 
concepts mainly decimals and fractions and perhaps an awareness of estimation. 
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While students appear to be aware of their lack of understanding of fractions, 
there may be a limited awareness of the issue of decimals. This is particularly true 
when students are using their calculator. 

 The pre-test appeared to focus on mathematical skills with few of the questions 
having an explicit nursing context. However, there were very few reflective 
comments from students suggesting a problem with their mathematics related to a 
clinical setting. This is despite explicit articles students were directed to read in 
the first two weeks of semester.  

Conclusion 
The instruments used in this study aimed to identify students’ numeracy when they first 
started the course. Numeracy was framed in terms of competence, confidence, and a 
critical awareness of the mathematics in context and in students’ own mathematical 
knowledge.  

Confidence and critical awareness included an understanding of students feeling 
towards mathematics. Only about one quarter of students disliked or hated mathematics. 
Many students described changes in feelings towards mathematics, sometimes from 
liking in primary to disliking in high school; others were the other way around. When 
directed to reading specific articles on mathematics in nursing, most students could see 
the relationship between mathematics and nursing in general but were unable to 
articulate that in specific mathematical skills.  

In analysing students’ results from a test designed to investigate nursing students 
mathematics knowledge needed in nursing, students did fairly well. The percentage of 
students correct ranged from 23% correct for a question on estimation, to 97% for a 
question on subtraction. 

Students’ confidence in their answers varied from 3.38 (out of 5) for solving an 
algebraic problem, to 4.84 for writing a number in numerals. However, a successful 
nurse needs to be confident and competent with this level of mathematics, so something 
close to 100% would be the aim for these students in competence and 5 for confidence. 
In this first test there was a significant issue with both under-confidence (right but not 
confident) and over-confidence (wrong and confident) with their answers. 
 Since 2008 the implementation of tests have been refined to further engage students 
in being more critically aware of their own mathematical skills and the mathematics 
needed for their degree and to make the test easier to administer using a variation on 
Self-Test (Taylor, 1998). It is also planned to extend this approach to the final year of 
students’ degrees where they can again appraise their competence, confidence, and 
awareness of the mathematics needed in the career in which they are about to embark. 
Variations of this approach have also been used in other degree programs, in 
Economics, Engineering and Education where the focus is not just on competence at a 
particular moment in time, but with an aim to assess their academic numeracy. 
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This paper reports on a year long, state wide research project that aimed to assist primary 
and secondary teachers to improve their teaching and learning practices through 
engagement with a new model of numeracy. Data collection included sequence maps of 
participants’ development as teachers of numeracy as elements of the model became more 
prominent in their thinking and planning. Semi-structured interviews were also used to 
clarify and expand upon teachers’ perceptions of their own development. Findings include 
a propensity to begin with the dispositions element of the model but responses showed that 
in most cases all elements were eventually addressed by each teacher. 

Introduction 
The importance of developing numeracy capabilities, in addition to acquiring purely 
mathematical competence, has been acknowledged in national reports (Human Capital 
Working Group, Council of Australian Governments, 2008), pending national 
curriculum documents (Australian Curriculum Assessment and Reporting Authority, 
2009) and through the inclusion of contextualised mathematics problems in the 
assessment frameworks of international testing regimes (e.g., OEDD/PISA, 2003). 
Numeracy is increasingly seen as fundamental to developing students’ capacities to use 
mathematics to function as informed and reflective citizens, to contribute to society 
through paid work and in other aspects of community life (Steen, 2001).  
 While there is a substantial body of literature devoted to the nature of and importance 
of numeracy education and to effective approaches to professional development in 
mathematics teaching (Loucks-Horsley, Love, Stiles, Mundry &  Hewson, 2003), far 
less is known about how teachers learn about, appropriate and then create effective 
mathematics teaching practices. This paper reports on a year long research and 
development project that investigated approaches to assisting teachers to plan and 
implement numeracy strategies across the curriculum in the middle years of schooling 
(Years 6-9). The aim of this paper is to examine teachers’ perceptions of their own 
professional learning in relation to a rich model of numeracy and to map how these 
perceptions changed through the duration of the project. 
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Theoretical framework 
Numeracy, which is also known as quantitative or mathematical literacy in some 
international contexts, has been recognised internationally through the OECD’s 
Program for International Student Assessment (PISA). According to PISA’s definition, 
mathematical literacy is:  

an individual’s capacity to identify and understand the role mathematics plays in the 
world, to make well-founded judgments, and to use and engage with mathematics in ways 
that meet the needs of that individual’s life as a constructive, concerned and reflective 
citizen. (OECD, 2004, p. 15) 

Within Australia, increasing importance is also being placed on the need for individuals 
to have the capacity to use mathematics in the beyond school world.  This way of using 
mathematics is captured in the following definition, which has gained general 
acceptance in Australia, “To be numerate is to use mathematics effectively to meet the 
general demands of life at home, in paid work, and for participation in community and 
civic life” (Australian Association of Mathematics Teachers, 1997, p. 15).  
 While these definitions capture the broad thrust of the concept of numeracy, they 
lack the detail necessary for teachers to implement numeracy based approaches in 
practice. More recently, however, Goos (2007) has proposed a model of numeracy 
which encompasses four essential elements which are enacted within a perception of 
mathematics as knowledge-in-action. The model incorporates attention to real-life 
contexts, the deployment of mathematical knowledge, the use of physical and digital 
tools, and consideration of students’ dispositions towards the use of mathematics. These 
elements are embedded in a critical orientation to the use of mathematical skills and 
concepts which emphasises the evaluative and judgemental aspects of numeracy 
practice, for example, the capacity to evaluate quantitative, spatial or probabilistic 
information used to support claims made in the media or other contexts. The elements 
of the model and the critical orientation within which these elements interact are 
described in Table 1. 

Table 1: Descriptions of the elements and critical orientation of the numeracy model. 

mathematical knowledge Mathematical concepts and skills; problem solving strategies; 
estimation capacities. 

contexts Capacity to use mathematical knowledge in a range of contexts, both 
within schools and beyond school settings 

dispositions Confidence and willingness to use mathematical approaches to engage 
with life-related tasks; preparedness to make flexible and adaptive use 
of mathematical knowledge. 

tools Use of material (models, measuring instruments), representational 
(symbol systems, graphs, maps, diagrams, drawings, tables, ready 
reckoners) and digital (computers, software, calculators, internet) tools 
to mediate and shape thinking 

critical orientation Use of mathematical information to: make decisions and judgements; 
add support to arguments; challenge an argument or position. 

 
The elements of the model are represented as the net of a tetrahedron surrounded by and 
bound together by a critical orientation (Figure 1, below). 
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Figure 1: A model for numeracy in the 21st century (Goos, 2007). 

This model offers a broad interpretation of the role of mathematics in bridging the gap 
between school mathematics and the wider world and has been used as a framework to 
audit mathematics curriculum designs (Goos, Geiger & Dole, 2010) and for analysis of 
teachers attempts to design for the teaching of numeracy across the curriculum (Goos, 
Dole & Geiger, 2010). The numeracy model was also used to promote teacher 
professional learning and, in particular, to assist teachers to reflect upon their own 
practice. 

 Teacher professional learning in numeracy 
Ball and Bass (2003) and Ma (1999) have both identified the importance of personal 
and professional identities to reform in mathematics teaching. In supporting these 
identities and associated teacher self-efficacy issues, Millett, Brown and Askew (2004) 
emphasise the vital elements of time, talk, expertise and motivation. These elements 
were deemed as essential in promoting teachers’ sense of agency when attempting to 
make fundamental changes to their teaching practice. 
 In a synthesis of literature related to effective teaching in numeracy, Muir (2008) 
identified the following practices as being central: making connections; challenging all 
pupils; teaching for conceptual understanding; facilitating purposeful discussion; 
maintaining a focus on mathematics; and possessing and instilling positive attitudes 
towards mathematics. While it is helpful to identify such practices, Muir (2008) does 
not attempt to describe how teachers decide to change their current practice or how to 
support them in the process of change. In a study of teachers’ numeracy pedagogical 
practices in Tasmanian schools, Beswick, Swabey, and Andrews (2008) found that most 
teachers focused on the creation of supportive classroom environments but there was a 
disconnect between the aims of the mathematics curriculum and teachers’ actions in 
relation to numeracy specific pedagogical approaches.  
 These studies highlight the need for ongoing research into understanding how 
teachers come to identify and then appropriate new pedagogical practices specific to 
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numeracy, especially those practices which are different from those practices specific to 
the teaching of mathematical skills. 

Research design  
Participating teachers self-identified as volunteers in response to a request for 
expressions of interest in a cross-curricular, middle school (Years 6 to 9) numeracy 
project which was distributed to every government school within a single Australian 
state. Participants were selected in order to provide coverage across metropolitan, 
provincial and remote schools and to capture a mix of primary (K – Year 7), secondary 
(Years 8 – 12) and area schools in rural areas (Years 1 – 12). In addition, because the 
focus was on the teaching of numeracy across the curriculum, efforts were made to 
include teachers who had specialist mathematics knowledge and those who did not. This 
meant that participants included generalist primary teachers who taught across the 
curriculum and also secondary teachers with specialised subject knowledge (e.g., 
mathematics, science, English) Participating schools nominated two teachers in order 
that these teachers could collaborate on, and support each other with, their contributions 
to the project.  
 The project was conducted between January and November 2009 and included both 
teacher professional learning and research components. As action research is an 
appropriate methodology for supporting educational reform through collaborative 
partnerships between participating teachers and university researchers (Somekh & 
Zeichner, 2009), in this case, the embedding of numeracy throughout the school 
curriculum, this approach was adopted for this study. A series of project meetings and 
school visits were conducted to support teachers through two action research cycles of 
plan, act, observe, reflect in order to replan and continue through the next cycle. 
 Teacher professional learning activities included whole project teacher meetings 
(March, August and November) which were led by the project researchers. In these 
meetings, elements of the numeracy model were explored and examples of classroom 
activities which embodied these elements were demonstrated. After the initial meeting, 
whole project meetings were also used by teachers to showcase work in progress and to 
seek feedback on ideas they were preparing for implementation from other project 
teachers as well as the researchers. Between whole project meetings, members of the 
research team visited each participating school and provided feedback and advice on the 
introduction of numeracy based approaches to teaching in their specific school contexts. 
This included, for example, feedback on an observed lesson using the numeracy model 
as a guide or providing support in assisting teachers to understand aspects of the 
numeracy model they were struggling to comprehend. 
 The research component of the project was based on data gathered during whole 
project meetings and school visits. During whole project meetings teachers were asked 
to: outline their initial conceptions of numeracy; complete a survey on teachers’ 
confidence with numeracy teaching; and to map their personal progress in numeracy by 
using the numeracy model as a lens. Researchers’ visits to schools involved: recording 
field notes for lesson observation; pre- and post-lesson teacher interviews and post-
lesson interviews with students; collection of student work samples. An outline for both 
teacher professional learning activities and research data collection appears in Table 2. 
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Table 2: Outline of professional learning and research activities. 

Event Activity 

1st whole 
project meeting 

Professional Learning: Researcher led orientation to numeracy model, exemplar 
activities. 
Research: Teachers’ initial conceptions of numeracy; numeracy confidence survey. 

School visit 1 Professional Learning: Researcher feedback on teaching programs and lesson 
observations. 
Research: Field notes of lesson observations; student work samples; audio recorded 
pre- and post-lesson teacher interviews; audio recorded post-lesson student 
interviews. 

2nd whole 
project meeting 

Professional Learning: Evaluating implementation of the initial numeracy unit that 
the teachers had taught; setting goals and planning for the second action research 
cycle. 

School visit 2 Professional Learning: Researcher feedback on teaching programs and lesson 
observations. 
Research: Field notes of lesson observations; student work samples; audio recorded 
pre- and post-lesson teacher interviews; audio recorded post-lesson student 
interviews. 

3rd whole 
project meeting 

Professional Learning: Showcase of four different professional learning trajectories. 
Research: Learning trajectory mapping; repeat of conception of numeracy activity 
and numeracy confidence survey. 

 
As this paper is concerned with teachers’ perceptions of their own professional learning, 
the data examined here are drawn from the learning trajectory mapping activity 
conducted in the final whole project meeting and the final post-lesson teacher interview 
conducted during the second school visit. 

Teacher trajectories through the numeracy model 
The professional learning trajectory activity required teachers to indentify the element 
of the numeracy model which represented their initial focus at the beginning of the 
project and also to indicate those elements that assumed greater importance to them as 
the project progressed. Teachers were provided with a copy of the numeracy model and 
asked to annotate the model in a way that indicated their professional learning journey 
over the duration of the project. For example, Karen annotated her copy of the 
numeracy model in the following fashion (Figure 2). 
 This annotated copy indicates that Karen began with a focus on supporting students’ 
development of mathematical skills as she believed that, once acquired, these skills 
would be “naturally” adapted for use in out-of-school contexts. She comes to realise 
that it is the use of the skill in real-world contexts she wants to promote and not just the 
skill itself, which leads her to take account of the importance of the other elements of 
the model as time progresses. 
 Of the 20 teachers involved in the project, 18 completed the mapping task in the way 
we requested. Figure 3 shows these teachers’ starting points and the direction in which 
they indicated they had developed as the project progressed. Of the 18 valid responses, 
8 teachers indicated that they had entered the project with a concern for students’ 
dispositions. Their annotations suggested that they were uneasy with students’ negative 
feelings towards mathematics and wanted to devise numeracy learning experiences that 
would have a positive impact. Seven teachers indicated that their starting point had been 
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students’ mathematical knowledge and skills, and their annotations suggested that they 
believed that if students had appropriate mathematical knowledge and skills, they would 
be successful in applying these as required in context. Only 3 teachers indicated that 
they started the project with an emphasis on contexts, stating that this approach allowed 
students to apply their mathematical knowledge in meaningful situations. None of the 
teachers said they came to the project with a primary interest in tools or a critical 
orientation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Karen’s trajectory through the numeracy model. 
How did I get from A 
to B? 

A

B

Starting point. I 
initially thought if I 
could increase the 
skill level, everything 
else would just follow 
or come naturally. 

I now realise that I 
value having 
confidence in 
applying the skill 
rather than the 
skill itself and 
taking the risk to 
have a go. 

I’ve seen an 
increase in this in 
my students. 

I am aiming at 
increasing real 
world 
concepts. 

Has increased. Increased importance 
on real data on actual 
events. 

I had to first understand what being numerate was – it is not the 
same as being good at maths.

 

Figure 2: Karen’s trajectory through the numeracy model 

 Although varied, teachers’ trajectories through the model showed some patterns of 
similarity (see Figure 3). Knowledge to dispositions (K – D) and dispositions to 
knowledge (D – K) were common patterns, possibly indicating teachers’ beliefs about 
the connection between success in using mathematical knowledge and a positive 
disposition. 

Dispositions (D) Knowledge (K) Context (C) 

D – C K – D (2 teachers) C – K – CO  

D – C – T  K – D/C C – K – D – T  

D – C – K (2 teachers) K – D – T  C – All 

D – K/T/C K – T – D (2 teachers)   

D – K/T – C  K – C – D   

D – K/T – C/CO   

D – K/T/C – CO   

Figure 3: Starting points and trajectories in engaging with the numeracy model. 

 For the latter pathway, tools were linked often with knowledge. Only four teachers 
indicated that they considered the critical orientation aspect of the numeracy model, and 
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this was their end point. One teacher, indicated by C – All in Figure 3, put the starting 
point as contexts, but then annotated the model comprehensively to show how 
integrated and equally important all these elements were.  
 Although the teachers identified different starting points and trajectories through the 
numeracy model, at least half of the valid responses to the mapping task indicated they 
had attended to four of the model’s five components during the life of the project: 16 
teachers annotated knowledge, 16 dispositions, 13 contexts, and 9 tools.  
 It was interesting to observe that teachers’ most common starting point in engaging 
with the model was a concern for student dispositions. It appears that teachers may have 
initially paid most attention to components of the model representing student 
characteristics of concern to them, such as dispositions and mathematical knowledge, 
and then explored the use of contexts, tools, and, less commonly, a critical orientation 
as a means of enriching their numeracy teaching.  

Vignettes 
 Figure 3 indicates that teachers took different directions in developing their 
approaches to the teaching of numeracy. These directions varied in relation to both their 
starting points and also the order in which they developed an appreciation for the other 
elements of the numeracy model. Three different teacher learning trajectory cases are 
now presented to illustrate the types of reasoning teachers used to make decisions about 
the directions they chose for their own development.  

Catherine 
During her final interview, the researchers asked Catherine (a middle school teacher 
with an English specialisation) to reflect on her changing understanding of numeracy in 
terms of the model presented early in the project. She explained that her desire to 
improve students’ dispositions marked her entry point to the model, and she attempted 
to do this by exploring the numeracy demands of different curriculum and real world 
contexts. This necessitated a change in teaching practice towards a less directive and 
more inquiry-oriented approach, a “letting go” process that Catherine found difficult but 
more effective for enriching students’ mathematical knowledge and promoting a critical 
orientation to evaluating information and answers. Once she began to give students 
more responsibility for their learning, she became more willing to experiment with 
unfamiliar tools, such as spreadsheets, for problem solving. While her entry point into 
enhancing her students’ numeracy was through attempting to improve students’ 
dispositions, Catherine, over the duration of the project, addressed all aspects of the 
numeracy model and through this process changed her approach to teaching in a 
fundamental way. 

Maggie  
When Maggie (a secondary mathematics teacher) was asked what were the key factors 
in developing her new understanding of teaching numeracy, she said she began with a 
desire to improve her teaching by increasing her focus on embedding student learning in 
engaging contexts. She believed this was a vital precondition before she could convince 
students of the need to acquire relevant mathematical knowledge. Through the course of 
the project Maggie noticed her increased focus on developing activities that provided a 
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critical orientation towards the use of mathematics. Once this element was introduced, 
she realized the role dispositions played in encouraging students to try approaches to 
solving a problem for themselves rather than expecting Maggie, as the teacher, to 
simply provide solutions. Finally, Maggie had increased her use of tools, particularly 
digital tools, through the project as she could see there were advantages in using these 
tools in exploring and analysing authentic contexts she could bring into her classroom. 
Although she had taken a different pathway from other teachers in the project, Maggie 
addressed all aspects of the numeracy model, resulting in a deeper understanding of 
what it means to be numerate and in a more targeted approach to developing numeracy 
capacities in her students. 

Sarah  
Sarah (a generalist primary teacher) came to this project as an experienced and 
successful classroom teacher who incorporated literacy development in her teaching at 
every opportunity. She knew that numeracy should also be promoted across all learning 
areas, but believed that numeracy stemmed from proficiency in mathematics knowledge 
and skills – and this had been the predominant emphasis of her mathematics program. 
Indeed, at the beginning of the project she said that she looked at the elements of the 
numeracy model and saw them as a blur, in that she knew they were all important but 
felt that the model had little clarity to guide her planning for numeracy. Her journey 
started by using a context to extract mathematical knowledge, with the result being an 
artificial imposition of mathematics in unnatural and irrelevant contexts (e.g., what 
pattern makes up the floor of the War Memorial when the focus of the unit was on 
history, heroism and the horror of war). Through critical self-reflection, Sarah saw how 
the learning area provided the context, not the topic, and through the learning activities 
the numeracy elements of mathematical knowledge and tools could be developed. The 
context also enabled students to develop a critical orientation as they explored particular 
topics in depth. (e.g., How many young men died serving the war? What percent of the 
population was this?) By developing mathematics knowledge through such meaningful 
contexts, Sarah noted the growth in her students’ positive dispositions towards 
mathematics and confidence in their desire and ability to apply mathematics as required. 
Sarah claims she now sees the importance of all elements of the numeracy model that 
we presented at the start of the project, and is confident in developing units of work that 
integrate this vision of numeracy into her natural teaching style. 

Conclusion 
Even though teachers’ involvement in this project began with an introduction to a 
single, specific model of numeracy, their own development as teachers of numeracy 
varied considerably in relation to elements of the model they initially chose to 
emphasise and in the order they chose to adopt other elements. It would appear that, as 
their own understanding of the nature of numeracy developed, so did their appreciation 
for other elements of the model. This, in turn, led teachers to incorporate other elements 
of the model within the duration of the project. 
 Teachers also noted the inter-related nature of the elements and often reported how 
beginning with one element led to the incorporation of another in their teaching. This 
was the case with Sarah, who noted how the use of an authentic context led naturally to 
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the incorporation of a more critical approach to the use of mathematical skills as there 
was a need to use quantitative methods in order to resolve important questions which 
arose through her unit of work. 
 This study has provided insight into possible approaches to assisting teachers to find 
their own directions in developing effective numeracy pedagogies, but further research 
is required into how to best support teachers in finding directions and trajectories most 
suited to their own circumstances.  
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As part of the Bridging the Numeracy Gap Project, four Catholic schools in the Kimberley 
appointed Key Aboriginal Teaching Assistants in Numeracy who, along with a classroom 
teacher from the school, participated in a 6-day professional learning program aimed at 
developing their mathematics teaching and leadership. At the end of 2010, audio-taped 
conversations took place to gain insight about the impact of the Project on learning and 
teaching mathematics at the school. Analysis of these data demonstrated that Aboriginal 
Teaching Assistants had clear views about the positive impact of project and of how to 
improve Aboriginal students‟ opportunities to learn mathematics at school. 

Introduction 
Aboriginal people across Australia advocate strongly for children, and speak 
passionately about the important role that education plays in breaking the cycle of 
poverty experienced by many Aboriginal families. Sadly, Aboriginal and Torres Strait 
Islander students continue to have lower scores on national mathematics achievement 
tests than non-Indigenous Australians, and lower rates of secondary school completion.  
 One recent Federal Government initiative that aimed to reduce this education gap has 
been the Literacy and Numeracy Pilots (Department of Education, Employment and 
Workplace Relations [DEEWR], 2010). This paper reports on one of these pilot studies 
Bridging the Numeracy Gap in Low SES and Aboriginal Communities (Gervasoni et al., 
2010) that involved 42 school communities across Victoria and Western Australia, 
including four schools in the Kimberley.  
 The focus of this paper is an analysis of the views of three Aboriginal Teaching 
Assistants (ATAs) from a participating Catholic School in the Kimberley. Their 
perspectives are examined to provide insight about the challenges facing our country as 
we learn to bridge the numeracy gap. 

Bridging the numeracy gap 
Both at national and state level there is concern about the size of the „gap‟ between the 
results of non-Aboriginal and Aboriginal students on the national benchmark tests in 
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numeracy (Australian Association of Mathematics Teachers [AAMT], 2009; DEEWR, 
2009; Perso, 2002). Many researchers argue that that this is due to the difference 
between the mathematics of Aboriginal people and Western mathematics, and the ways 
in which Aboriginal children learn (e.g., Perso, 2002). Jorgenson (2010) explored an 
inclusive pedagogy model in Kimberley schools, based on successful practices in the 
United States, but noted that the pedagogies they aimed to develop had little effect or 
were inappropriate in this context. She concluded that the changes needed to Indigenous 
education are profound and urgent, but that such changes must be considered in light of 
the needs and cultures of the people with whom we, as researchers and educators, work. 
This finding suggests that drawing upon the views and expertise of Aboriginal people is 
critical. Indeed, Howard, Cooke, Lowe, and Perry (2011) argue that enhanced 
educational quality and equity for Aboriginal students can only occur through 
purposeful curriculum change, quality teaching, increased student participation, and the 
engagement of the Indigenous community. They also highlight that programs aiming to 
improve education outcomes for Aboriginal people need to consider the social, cultural 
and community contexts of the Indigenous learners and their families, as well as the 
mathematical characteristics of the material to be learned (Howard et al., 2011).  

Constructs for evaluating programs involving Aboriginal 
people 
Matthews, Howard, and Perry (2003) identify seven constructs that they argue are 
important for evaluating programs involving Aboriginal people: Social Justice; 
Empowerment; Engagement; Reconciliation; Self-determination; Connectedness; and 
Relevance. These constructs are used to analyse the transcript excerpts examined in this 
paper so need to be well understood. For this purpose, they are outlined below. 

Social justice is about treating all people with dignity and respect. It is about a 
community recognising and acknowledging injustices and the development of appropriate 
actions and processes to address these injustices for individuals or groups so that there is 
a degree of equality in the overall outcomes. It is about a freedom of choice. It is about 
living with your own rights and beliefs and not those imposed from others. It is about 
your right to be who you are.  
Empowerment is gaining the necessary knowledge to impact upon change that is 
essential for effective educational outcomes. It is about Aboriginal people making 
decisions and sharing their knowledge and skills with others. Being empowered is about 
making a difference. 
Engagement is being able to interact purposefully with the discourse around 
mathematics learning. It is about being excited about what you are doing. It is about 
being treated as a capable learner. It is about respect and positive interactions. 
Reconciliation is about walking in someone else‟s shoes. It is about taking the time to 
listen and to care. It is about working together. It is about sharing and understanding the 
diversity of culture. It is about appreciating people and their values, language and 
learning styles. It is about recognising and appreciating difference. 
Self-determination is political. Aboriginal people are a minority people in their own 
country. To achieve self-determination, there need to be Aboriginal people in control and 
making decisions. It cannot happen when there is always a non-Aboriginal person with 
the power to say „yes‟ or „no‟ as to what can happen. Individually it can be achieved - 
you can determine for yourself if you have access to health, education and support. 
Connectedness is a sense of belonging. A feeling of being accepted, knowing that you 
have as much right to be in a place as any other person. The need for Aboriginal students 
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to know that people [teachers] like you, relate to you for who you are. It is about the need 
to implement the talk. It is about honesty, integrity, being a critical friend in what you 
bring to any given situation as an important person within the Australian society. 
Relevance is about bringing the Aboriginal students‟ environments into the mathematics 
classroom. It is about providing Aboriginal students with the necessary mathematical 
skills to enable them to look beyond their horizons. It is about Aboriginal country, 
Aboriginal nations. It is about where an Aboriginal student lives and using that country in 
mathematics curriculum, teaching and learning. It is tokenistic to think of relevance being 
only the application of Aboriginal motifs to classroom materials. The relevance is in how, 
why, and who make the motifs and how materials are used. (Matthew et al., 2003, pp. 23–
24) 

Insights about learning mathematics  
As part of the Bridging the Numeracy Gap Project evaluation, two members of the 
research team met with three ATAs at School K to discuss their views about the impact 
of the project and advise about how to assist students to learn mathematics effectively. 
The conversation was digitally recorded and transcribed, then analysed in terms of the 
seven constructs identified by Matthews et al. (2003): Social justice; Empowerment; 
Engagement; Reconciliation; Self-determination; Connectedness; and Relevance.  
 First, the transcript was broken into 44 naturally occurring segments according to the 
topics, ideas, and issues discussed during the conversation, and then each segment was 
tagged according to the construct with which it was most strongly associated. The 
number of segments associated with each construct is shown in Table 1. 
 

Construct Number of Segments  
Social Justice  2 
Empowerment 4 
Connectedness 5 
Engagement 12 
Reconciliation 10 
Self-determination 6 
Relevance 5 

Table 1. The number of transcript segments associated with each construct. 

The most common associations were with the engagement, reconciliation, and self-
determination constructs. The Aboriginal Teaching Assistants provide many insights 
about the challenges faced by children when they are learning mathematics. The 
following section presents illustrative examples of these insights in relation to the seven 
constructs. 

Social justice 
Social justice is about treating everyone with respect and dignity. It is about 
acknowledging and addressing injustices so that there is a degree of equality in the 
overall outcomes. It is about living with your own beliefs and not those imposed from 
others. However, this is not always the experience of Aboriginal students, parents, and 
teachers. One ATA raised the issue of how important it is that teachers have high 
expectations of Aboriginal students: 
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Perceptions, and that (Aboriginal children) have potential. They can excel at anything. 
Because a lot of people, when you have an Aboriginal child that can read really well, is 
really good at maths, it‟s like, “Oh!” They‟re surprised by it. Why should they be 
surprised? It‟s like, “Yeah we can do it.” 

This issue of low expectations of Aboriginal students is a social justice issue that needs 
to be addressed by school communities and school systems. 

Empowerment  
As part of the Bridging the Numeracy Gap Project, each Catholic School in the 
Kimberley nominated an ATA and a classroom teacher to participate in a six-day course 
focused on learning and teaching mathematics. One of the ATAs explained that this 
experience enabled her to gain important knowledge from other Aboriginal people.  

It‟s been really good actually „cause there‟s a lot of things that I didn‟t sort of know were 
happening. „Cause I‟ve been talking to other ATAs who are involved in this, like Robert 
who‟s from St Clare‟s and he was saying that they were … taking on the more hands on 
approach and he was saying how it works there, and he had a lot of stories and so did Lisa 
from (up north) … and it was good in that way, just that networking, and we could all talk 
about it … Some of the data stuff though, Alice sat down and had to actually explain to 
me, but otherwise, other than that, it was really good. I enjoyed it. 

She also gained knowledge through observing the classroom teacher assess students 
using the Mathematics Assessment Interviews (Gervasoni et al., 2010), and was 
impressed that this assessment used practical tasks rather than written questions. 

I‟ve seen Linda do a couple (of Mathematics Assessment Interviews). Like she‟s invited 
me into actually watch her test … It‟s been good „cause she‟s got everything set up and 
they‟re just doing each question with the different equipment that‟s needed. And again, 
testing hands on, that‟s something that, you know. When you look at testing, “Oh it‟s just 
a written piece of paper, it‟s a written test” but testing hands on, you know, it‟s great! 

Lucy recognised the importance of her role for making a difference in the community. 
Sometimes I think about being a teacher but then I also think maybe I do a lot of good as 
an ATA as well. 

ATAs are encouraged to pursue further studies in education, but many believe that the 
role they play in connecting with the community would be difficult if they were 
teachers and worry that the community would view them differently. 

Engagement  
Children‟s engagement in mathematics was an issue of considerable interest and 
concern for the ATAs. They had a clear view that Aboriginal students learn well 
through visualisation and hands-on activities, such as they experienced with Linda. 

Oh it‟s awesome. The kids love when Miss Linda comes over to Year 2 because there‟s 
that hands on, that visual, the fun atmosphere about learning about Maths, not just the 
blackboard and the paper you know. I‟ve noticed that when … Aunty Linda has come to 
our classroom, the kids love learning Maths without even realising it‟s Maths time. 
They‟re just straight into it. It‟s good. 

However the ATAs explain that, as the children move through the school, their 
experiences of learning mathematics change; they become less engaged. 
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Getting them to participate, that‟s something we do really well at in (the) Early 
Childhood Years, and that shows in the attendance rate and yet …(in) middle primary and 
in senior school and the high school, slowly it drops away because they‟re not having fun 
anymore. You know they‟re not learning the way that the... How can we teach one way 
hands on, and then all of a sudden they hit Year 2 and Year 3 and then straight away (the 
teachers) are banging in the worksheets there, and the text books there, and writing from 
the board, reading, and all that sort of stuff. 
 
And it goes back to the point, if you can‟t read the question, then you can‟t answer the 
story, so why are you giving them a Maths book … if they can‟t understand it, then 
they‟ll just sit around. Whereas if you‟ve got the hands on stuff that we do with Linda, 
and then that‟s good and everybody gets involved. 

The views of the ATAs highlight that creating mathematics classrooms where students 
are engaged and enjoy learning is critical. 

Reconciliation 
Reconciliation is about listening and caring, working together, and appreciating people 
and their values, language and learning styles. This theme of reconciliation was 
apparent in the ATAs‟ conversation around children, parents, teachers, and themselves. 
 They highlighted how important it is for education that connections are made 
between students and teachers. 

It‟s making the connection with the kids and then knowing who they are, and what they 
can do, not kind of labelling them under the levels and abilities. 

A number of the families live in a community some 30 minutes from town, and seldom 
visit the school. However, the ATAs were critical in helping the teachers to appreciate 
this community, and parents to appreciate the school. 

We went out to Willow Creek again at the end of last term and we actually took out all the 
(children‟s) reports and portfolios out there and we actually sat down and went through 
the reports with the parents, because, I mean reporting is very, it‟s really hard for a 
parent, especially one that isn‟t as educated, and even, like the teachers at the school, we 
don‟t understand all the dots and the shapes (in the reports). You know, how can we 
expect a parent to? So we sat down with (the parents) and we actually went through it 
saying, “He‟s good at this” or “He needs work on this” and this sort of thing…. And they 
enjoyed it, and we actually got invited back again. 

The ATAs felt highly valued and appreciated by the principal, and made several 
comments about this. 

We all feel valued and we know that we‟re valued and even … Mike [principal] will 
come to us and ask us questions. We‟ve never had that sort of a principal before. And it‟s 
that feeling valued and knowing that your opinion counts. 

The ATAs also highlighted how important it is for classroom teachers to listen and learn 
about the community from all those about them.  

And I think too, with new graduates … „cause I‟ve had a string of graduates sort of 
straight out of university, it‟s just listening to who you have in your community. Who you 
have in your school as well, ‟cause ATAs are a good source of information, as are you 
know people that have been there for a while, as well and the Indigenous parents.  
 
Our role isn‟t just confined to the classroom … we‟re a member of the community, but 
we‟re also, we have a lot of other input, and … value to the rest of the school. But a lot of 
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teachers think, oh you‟re just there to assist them, that‟s it. But it‟s not. … There‟s a lot 
more to our role than that. 

Self-determination 
Self-determination is about politics and about voicing your opinion and making 
decisions about what can happen, without someone else having the power to say „yes‟ 
or „no.‟ The ATAs have many insights and opinions related to education, and exercise 
their agency. 

We‟re very passionate about what we do and we put 100% into our positions. If we see 
that there‟s something not quite right, then we‟re quite willing, and you know, very open 
to voice our opinion. 

They also voiced the opinion that things need to change if the education gap is to be 
bridged, and argue that a hands on approach is needed in mathematics. 

 (Our) whole thinking needs to be changed, because obviously what we‟re doing now 
isn‟t helping. It‟s not working. That‟s why the gap is there with the Indigenous and non-
Indigenous students with their education. And I think we need to look at it as a country, 
“Okay, so this isn‟t working”. We need to bring in something that will work, and that 
would be with this, hands on (approach). 

One ATA highlighted the importance of Aboriginal parents being involved in decision 
making about their child‟s education. 

When my son was in Year 1 … it took me a long time to convince the teacher that he 
could read really well. I knew what he could do at home and then I could see what he was 
bringing home and I said, “No he can read.” and she had him as a level 1 … and I‟m not 
into levels or anything, but I think, “He‟s going into Year 2 as a level 1 and he hasn‟t 
been assessed or anything” and I actually got him assessed with his reading test and he 
was a level 18 ... This teacher had this assumption that he couldn‟t read, you know. It 
took me as a parent to say, “ No. I know he can be better at that.” That‟s just keeping him 
down there when he could be ... 

This excerpt also highlights the importance of the teacher listening to parents and 
assessing students at the beginning of each year to determine their current knowledge so 
that appropriate instruction can be designed to meet students‟ learning needs.  

Connectedness 
Connectedness is about belonging and being accepted. The ATAs explained that 
connections and relationships were very important, particularly for the parents. It was 
also clear that the ATAs played a critical role in building connections and relationships 
between the school and family members. 

Just to know each other and get an understanding. Like get (parents) to understand where 
we come from at the school, and what we do, and then how they feel at home, like you 
know, if they‟re feeling left out of the loop; then it‟s kind of like for us to explain it to 
them. Like that connection … If … they feel they don‟t want to speak to the teacher about 
it, then there‟s always us there, and you even actually get the connection between non-
Indigenous parents coming up to us as well … I think you feel that connection as soon as 
you start talking, as soon as you know everybody in your community, then it‟s a good, 
like, fostering that relationship. 
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The ATAs also developed and co-ordinated a Backpack Program for families that 
included mathematics content. This was another way in which they built connections 
between the school and home. 

I think also the backpacks are good for parents to take an interest in what their children 
are doing at school. It‟s like, “Oh so this is what you‟re doing, it‟s great you know”. And 
just being a part of that and they‟re doing it at home. They don‟t have to come into the 
school to see what their child is doing, you know what they‟re learning and that. Those 
backpacks are at home, it‟s in their environment where they‟re most comfortable 
probably, so that‟s good as well. 

However, the ATAs also cautioned that schools are unfamiliar environments for some 
students, and they were very concerned about this. 

This is the school, it‟s a foreign environment and if they‟re not going to be happy with 
their learning, well then, we‟ll try and do something else and take them out and do 
something different … 

Researcher: Schools shouldn‟t be foreign environments should they? 
Interviewee: No. They shouldn‟t be. … I think for Indigenous kids. A lot of parents 

keep their kids at home for a very long time. They don‟t look at pre-
primary as being compulsory and Year 1 as being compulsory. It‟s … up 
to the school to try and get those kids in. But we have kids that might turn 
up on one day, and that day they might not like it, so they don‟t come for 
the rest of the term. So … to them it‟s like, “What am I doing here?” and 
“I don‟t want to be here.” So it is a foreign environment, and I know it 
shouldn‟t be, but that‟s usually it to them. 

Surely Aboriginal children should not be experiencing schooling as a foreign 
environment in their own country. 

Relevance 
Relevance is about bringing Aboriginal students‟ environments into the mathematics 
classroom and enabling students to use mathematics knowledge and skills to look 
beyond their horizons. The ATAs described a program in the western desert that made 
school relevant for students. 

The perfect example would be Fitzroy Crossing. The kids that we were talking about 
before, Melbourne College, they took those kids out of the Fitzroy School and took them 
out to Leopold. Now those kids went to school every day but they weren‟t just in the 
classroom, they were doing a lot of practical things, they were learning at the same time. 
Now (some of) those kids are going to Melbourne College but they actually enjoyed it 
because it was the practical things that made it enjoyable for them. 

The ATAs were also aware of the mathematics students used outside of school. 
However, they noted that the students didn‟t always connect this knowledge to what 
they saw in textbooks and worksheets. 

Researcher: Do the kids do much Maths outside of school? There‟s a lot of the card 
games that go on and then, what else? 

Interviewee: Well they know about money. They understand money, like they know 
what two dollars is and a dollar and 50 cents and they know if they want 
to buy an ice-cream, they have enough money to buy an ice-ream. So 
they understand that, I suppose they‟re doing that all the time. 

 I think the difference is whether they understand the concept of money, 
oh yeah here‟s money, here‟s two dollars, I can go and buy this lolly, like 
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the price tag of two dollars. But as soon as you come into the classroom, 
it‟s just that different atmosphere of learning and how do you put the two 
and two together, but they‟re still the same thing as when you‟re 
shopping. 

This last comment highlights how importantly the ATAs view students‟ development of 
mathematical concepts, as opposed to their simply being taught procedures for 
calculating that they do not understand. 

Conclusion  
The perspectives examined in this paper highlight the critical role played by Aboriginal 
Teaching Assistants in helping school communities in the Kimberley provide high 
quality learning environments for students and their families. Although they are 
sometimes viewed as just helping out the itinerant teachers in the school, Aboriginal 
Teaching Assistants are often the only permanent members of the school staff, and play 
an essential role in building community connectedness and relationships between 
teachers and families. 
 When associating the transcript excerpts with the seven constructs used to examine 
their perspectives, it was found that the Aboriginal Teaching Assistants were 
particularly concerned about: (1) student engagement in mathematics learning; (2), the 
importance of the school community appreciating people‟s values and learning styles 
(reconciliation); and (3) involving Aboriginal people in decision-making about their 
children‟s education (self-determination). Connectedness (belonging), and relevance 
were also highly represented in their discussion. 
 Overall, the views expressed by these Aboriginal Teaching Assistants lead to a 
vision of education in which: Aboriginal students and families feel part of the education 
system and are highly involved in decision-making; students are engaged in a relevant 
and engaging curriculum that they enjoy, and that enables them to learn successfully 
through visualising, modelling and practical experiences, with minimal use of 
worksheets and textbooks; teachers believe in the potential of Aboriginal students, have 
strong relationships with students and their families, high expectations for students as 
learners, and are able to meet students‟ learning needs through culturally appropriate 
instruction; and school communities draw upon the expertise of Aboriginal Teaching 
Assistants, invest in their professional learning, and acknowledge their critical role in 
building community connectedness and advocacy for Aboriginal students and their 
families. 
 Learning from each other and working together to bring about this vision for 
education is what Reconciliation is all about. 
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Five interpretive place value tasks were added to the Early Numeracy Interview (ENI) to 
gain further insight about students’ construction of conceptual knowledge associated with 
2-digit and 3-digit numbers. The researchers hypothesised that even though some students 
were successful at reading, writing and ordering numbers, interpreting multi-digit numbers 
for problem solving remained a struggle for them. Analyses of students’ responses showed 
that the new tasks distinguished students who previously were assessed as understanding 2-
digit or 3-digit numbers, but who could not identify 50 or 150 on a number line or state the 
total of collections reduced or increased by ten. The new tasks assist teachers to identify 
students who need further instruction to fully understand 2-digit and 3-digit numbers. 

Introduction 
Most children learn to read and write 2-digit and 3-digit numbers fairly easily, but 
interpreting the cardinal value of these numbers is the greater challenge. Research 
during the Early Numeracy Research Project (ENRP) in Australia (Clarke et al., 2002) 
found that being able to read, write, order and interpret 2-digit numbers was a difficult 
growth point for young children to reach. In a later study involving over 7000 Victorian 
primary students, Gervasoni, Turkenburg, & Hadden (2007) also highlighted the 
number of students in Grades 2–4 who were yet to fully understand 2-digit numbers. If 
we are to improve young children’s whole number learning it is important to understand 
the challenges children face in coming to understand multi-digit numbers. This is the 
issue explored in this paper that reports on the refinement of the ENRP Early Numeracy 
Interview (ENI) and framework of Growth Points (Clarke et al., 2002) as part of the 
Bridging the Numeracy Gap Project (Gervasoni et al., 2010). The research team aimed 
to refine and extend the ENI and associated Growth Points, originally designed for use 
in the first three years of schooling, to address issues such as the Place Value dilemma, 
and so that they were more appropriate for assessing students across all primary school 
years. The aspect of the research reported here is the refinement of the assessment tasks 
for Place Value Growth Point 2 (GP2) — reading, writing, ordering and interpreting  
2-digit numbers, and Place Value Growth Point 3 (GP3) — reading, writing, ordering 
and interpreting 3-digit numbers. 
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Early Numeracy Interview and Growth Points 
The Early Numeracy Interview (ENI) developed as part of the Early Numeracy 
Research Project (Clarke, Sullivan, & McDonough, 2002), is a clinical interview with 
an associated research-based framework of Growth Points that describe key stages in 
the learning of nine mathematics domains. Teachers reported that the ENI provided 
insights about students that might otherwise remain hidden (Clarke, 2001). The data 
discussed in this paper were drawn from the ENI and Growth Point Framework, so both 
need to be understood.  
 The principles underlying the construction of the Growth Points were to: describe the 
development of mathematical knowledge and understanding in the first three years of 
school in a form and language that was useful for teachers; reflect the findings of 
relevant international and local research in mathematics (e.g., Steffe, von Glasersfeld, 
Richards, & Cobb, 1983; Wright, Martland, & Stafford, 2000); reflect, where possible, 
the structure of mathematics; allow the mathematical knowledge of individuals and 
groups to be described; and enable a consideration of students who may be 
mathematically vulnerable. The processes for validating the Growth Points, the 
interview items and the comparative achievement of students are described in full in 
Clarke et al. (2002). The following are the growth points for the domain of Place Value. 
1. Reading, writing, interpreting and ordering single-digit numbers. 
2. Reading, writing, interpreting and ordering two-digit numbers. 
3. Reading, writing, interpreting and ordering three-digit numbers. 
4. Reading, writing, interpreting and ordering numbers beyond 1000. 
5. Extending and applying Place Value knowledge. 
Each growth point represents substantial expansion in knowledge along paths to 
mathematical understanding (Clarke, 2001). The whole number tasks in the interview 
take between 15-25 minutes for each student and are administered by the classroom 
teacher. There are about 40 tasks in total, and given success with a task, the teacher 
continues with the next tasks in a domain (e.g., Place Value) for as long as the child is 
successful. Children’s responses are recorded on a detailed record sheet. 

The challenge of understanding multi-digit numbers 
Many studies have provided insight about the challenges involved in understanding and 
using multi-digit numbers. One important finding is that children who have not 
constructed grouping and Place Value concepts often have difficulty working with 
multi-digit numbers (Baroody, 2004). Another finding is that being able to interpret 
numerals to order them from smallest to largest is another difficulty for some children. 
Griffin, Case, and Siegler (1994) observed that this involves integrating the ability to 
generate number tags for collections, and make numerical judgments of quantity based 
on the construction of a mental number line (Griffin & Case, 1997; Griffin et al., 1994).  

Grouping and place value concepts  
Studies have found that successful problem solving with 2-digit numbers depends on 
children’s ability to construct a concept of ten that is both a collection of ones and a 
single unit of ten that can be counted, decomposed, traded and exchanged for units of 
different value (e.g., Cobb & Wheatley, 1988; Fuson et al., 1997; Ross, 1989; Steffe, 
Cobb & von Glasersfeld,  1988). Cobb and Wheatley (1988) found that some children 
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develop a concept of ten that is a single unit that cannot be decomposed, and proposed 
that this type of concept is constructed when children learn by rote to recognise the 
number of tens and ones in a numeral, but do not recognise that the face value of a 
numeral represents the cardinal value of a group. 
 Fuson et al., (1997) identified five different correct conceptions of 2-digit numbers 
and one incorrect conception that children use, several of which may be available to a 
given child at a particular moment and used in different situations. These six 
conceptions provide researchers with a detailed model to analyse children’s use of 2-
digit numbers and were considered by researchers when developing the ENRP Place 
Value framework of growth points and the associated ENI. However, for the ENRP, 
researchers opted for a less complex model than the Fuson et al. model that they hoped 
would be more user-friendly for teachers. Ten years on, in refining the ENRP 
assessment interview and framework of growth points as part of the research reported in 
this paper, it seems important to consider whether the Fuson et al. model better explains 
the difficulties that some children experience in coming to understand 2-digit, and 
consequently 3-digit numbers. The six conceptions of 2-digit numbers are explained in 
detail in Fuson et al. (1997). They are the: Unitary Multi-Digit Conception; Decade and 
Ones Multi-digit Conception (noticing word parts); Sequence of tens and ones 
conception (noticing the advantage of counting by tens associated with partitioning in 
tens); Separate Tens and Ones conception (noticing the number of tens and the number 
of ones); Integrated sequence-separate tens conception (noticing that the number of tens 
is linked to the number name); and the Incorrect Single-Digits Conception (viewing 
each digit as representing ones). 
 Fuson et al. (1997) contend that for full understanding of number words and their 
written symbols, children need to construct all five of the correct multi-digit 
conceptions, with the Integrated Sequence-Separate Tens Conception being the most 
sophisticated understanding. This requires considerable experience and time. Thus, we 
believe that the refinement of the ENI needs to ensure that teachers can identify students 
who can use the Integrated Sequence-Separate Tens Conception of 2-digit numbers. To 
this end we included three new tasks that require students to demonstrate this 
understanding when increasing or decreasing a given quantity by ten.  

Constructing a mental number line 
Another important characteristic of number learning is the forming of a mental number 
line. Griffin, Case and Siegler (1994) proposed that success in early arithmetic depends 
on the formation of a mental number line in association with understanding the 
generative rule that relates adjacent cardinal values (i.e., each adjacent number in the 
number line is one more or one less than its neighbour); and understanding the 
consequence of the previous idea: that each successive number represents a set which 
contains more objects, and thus has a greater value along any particular dimension. 
 One way to help children develop a mental number line for use in problem solving is 
to engage them in activities involving an empty number line. This is a strategy widely 
used in the Netherlands and aims to link early mathematics activities to children’s own 
informal counting and structuring strategies. “The choice of the empty number line as a 
linear model of number representation up to 100 (instead of grouping models like 
arithmetic blocks) reflects the priority given to mental counting strategies as informal 
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knowledge base” (Beishuizen & Anghileri, 1998, p. 525). This emphasis in the research 
literature on the importance of the mental number line and empty number line as a 
means of interpreting numbers is not reflected in the ENI until Place Value Growth 
Point 5 (GP5). When refining the ENI we included two new number line tasks earlier in 
the interview to determine whether students who reach Growth Point 2 (GP2) and 
Growth Point 3 (GP3) are able to interpret numbers on a 2-digit and 3-digit number line.  

Refining assessment tasks for 2-digit and 3-digit numbers  
This paper examines students’ place value knowledge and the effect of the five new 
tasks designed to identify students who were assessed at GP2 or GP3, but who may not 
interpret successfully the quantitative value of 2-digit and 3-digit numbers. These tasks 
were added to the ENI as part of a refinement process. The data examined are drawn 
from 2011 assessment interviews with approximately 2000 Grade 1 to Grade 4 students 
(5-9 years old) from 42 low SES school communities in Victoria and Western Australia 
who are part of the Bridging the Numeracy Gap Project (Gervasoni et al., 2010). This is 
a Federal Government funded project aiming to bridge the numeracy gap for low SES 
and Aboriginal and Torres Strait Islander students, and is collaboration between the 42 
school communities, Catholic Education Offices in the regions of Ballarat, Sandhurst, 
Sale, and Western Australia, and Australian Catholic University. The new tasks are 
shown in bold in Figure 1 (GP2 tasks) and Figure 2 (GP3 tasks).   

 

Figure 1. New Growth Point 2 tasks (in bold). Students’ place value knowledge. 

Part b of the Pop-Sticks Bundling Task (2-digit), and the Ten More and Ten Less 
questions (3-digit) were designed to distinguish those students who use the Integrated 
Sequence-Separate Tens Conception strategy when interpreting multi-digit numerals. 
Inclusion of the 2-digit and 3-digit number line tasks reflects the emphasis in the 
research literature of the importance of students developing a mental number line to 
interpret quantities when problem solving. 

Pop-Sticks Bundling Tasks – Interpreting 2-Digit Numbers 
Ask the child to unpack the icy pole sticks.  
Here are some icy pole sticks in bundles of ten. (Offer the chance to check a bundle if it seems 
appropriate).  
Here are some more loose ones. (Show white card for 36.) 

a) Get me this many (icy pole) sticks. (If the child starts to count all in ones,   
   interrupt and ask  them if they can do it a quicker way with the bundles). 
Tell me how you worked that out. 
b) Please put one bundle back. How many sticks are there now? How do you know that?  
 
2-Digit Number Line – Interpreting 2-digit Numbers 

Show the child the mauve 2-digit number line card. Look at this number line. Please tell me the 
largest number (100). Point to the little mark. What number would go here? (50 – acceptable 
number range is 45-55). Please explain. 
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Figure 2. New Growth Point 3 tasks (in bold). Students’ place value knowledge. 

A key issue for the research reported in this paper was to determine students’ Place 
Value Growth Points, and whether the new GP2 and GP3 tasks identified students who 
were not successfully interpreting the quantitative value of 2-digit and 3-digit numbers. 
Figure 3 shows the distributions of ENI Place Value Growth Points at the beginning of 
the 2011 school year for 1920 Grade 1–4 students. Each student was assessed by their 
classroom teacher, and the growth points were calculated independently by trained 
coders to increase the validity and reliability of the data. 

 

Figure 3. Place Value growth point distribution for Grade 1– 4 students. 

An issue highlighted in Figure 3 is the spread of growth points at each level. This has 
been noted elsewhere (e.g., Gervasoni & Sullivan, 2007; Bobis et al., 2005) and 
confirms the complexity of the teaching process and the importance of teachers 

3-Digit Number Line – Interpreting 3-Digit Numbers 
(Show the child the white 3-digit number line card.) Look at this number line. Please tell me the 
largest number (200.) Point to the little mark. What number would go here? (150 – acceptable 
number range is 130-170). Please explain. 

  
 

Ten More – Interpreting 3-digit numbers 
Show the child the white 592 card.  Pause for a couple of seconds for the child to look at the number. 
Tell me the number that is ten more than this number. 
 

Ten Less – Interpreting 3-digit numbers 
Show the child the white 408 card. Pause for a couple of seconds for the child to look at the number. 
Tell me the number that is 10 less than this number. 
 
3-digit Chart Task 
Show the child the white 3-digit chart card. This is a number chart. Look at the way the numbers go on 
this number chart. Point to the shaded square. Tell me which number goes in this square (540). Please 
explain. 
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identifying each student’s current knowledge and knowing ways to customise learning 
to meet each student’s needs.  
 The ENI data indicate that more than half the Grade 1 students are at GP1, so the 
initial focus for Place Value instruction for most students is GP2—reading, writing, 
ordering, and interpreting 2-digit numbers. By the beginning of Grade 2, most students 
reach GP2. However, by Grade 3, half the students remain on GP2. Examination of the 
assessment tasks for GP3 and GP4 indicate that students cannot reach these growth 
points unless they interpret the quantitative value of numbers. We also noted that with 
the ENI tasks, students could reach GP2 and GP3 successfully using only procedural 
knowledge to read, write, and order numbers, collect 36 pop-sticks, and identify a  
3-digit number on a number chart. The original tasks did not actually require conceptual 
knowledge to interpret quantities, although conceptual knowledge was assumed. 

Analysis of new assessment tasks 
Next we examined the data to assess the ability of the new GP2 and GP3 tasks to 
identify any students who were not interpreting the quantitative value of numbers in the 
tasks. As the majority of students in Grades 2, 3, and 4 had reached GP2 at least, 
students in these grades who were assessed at GP2 and GP3 respectively were selected 
for further examination, and their responses to the two new tasks analysed.  
 The first new 2-digit task required students to identify the value of a quantity that 
was reduced by ten (Pop-stick Bundling task). Only students who were judged to be 
using Fuson et al.’s (1997) Integrated Sequence-Separate Tens Conception strategy 
were deemed to be successful. This provided confidence that students were able to use 
all five correct conceptions of 2-digit numbers. The second task required students to 
interpret a 2-digit number line by identifying the number that was half way between 0 
and 100, where a number between 45 and 55 was deemed to be successful. 
 The data presented in Figure 4 demonstrate that these tasks did identify students who 
were assessed at GP2, but who did not successfully interpret 2-digit numbers in the 
‘One Less’ Bundle and Number Line tasks. 

 

Figure 4. Percent of Gr 2, 3, & 4 students on ENI GP2 who could solve the new 2-digit tasks. 
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About one third of the Grade 2 students and one quarter of the Grade 3 and Grade 4 
students on GP2 were not able to solve both new tasks. This highlights that interpreting 
2-digit quantities is an issue for a significant number of students. The number line task 
was the more difficult of the new tasks. The most common incorrect response was 10, 
with students counting by ones along the number line until they reached the half-way 
mark. Of the remaining students who were successful, analysis of their responses to the 
3-digit assessment tasks showed that none of these students were successful with the 3-
digit interpretive tasks, although many could read, write and order 3-digit numbers. This 
inability to interpret quantities was the reason why students did not progress to GP3.  
 Data presented in Figure 5 show that the 3-digit tasks also identified considerable 
numbers of students who were assessed at GP3, but who could not successfully interpret 
3-digit numbers in the 3-digit number line and 10 more/10 less tasks. Only a quarter of 
the Grade 3 students and 20% of the Grade 2 and Grade 4 students on GP3 were able to 
solve all 3-digit interpretive tasks. Further analysis showed that the 3-digit Number Line 
task and the 10 Less than 408 tasks were the most difficult of the new tasks. For those 
students who got three out of the four 3-digit interpretive tasks correct, half were unable 
to complete the Number Line task, and just under half were unsuccessful with the 10 
Less task. Of those students who got only two 3-digit interpretive tasks correct 88% 
were unsuccessful with the Number Line task and 75% were unsuccessful with the 10 
Less task. All these students could read, write and order 3-digit numbers, and all but 5% 
of these students could successfully complete the original 3-Digit Number Chart task. 

 

Figure 5. Percent of Gr 2, 3, & 4 students on ENI GP3 who could solve the new 3-digit tasks. 

Conclusion 
Analysis of 687 Grade 2–4 students’ ENI responses to the new 2-digit interpretive tasks, 
and 215 Grade 2–4 student’s responses to the new 3-digit interpretive tasks showed that 
these tasks distinguished students who were assessed as understanding 2-digit and  
3-digit numbers respectively, but who in fact could not reliably identify numerals on a 
number line or state the total of a collection reduced or increased by ten. These 
additional tasks assist teachers to identify students who need further experience with 
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multi-digit numbers to construct full conceptual understanding, and highlight the 
importance of teachers focusing instruction on interpreting quantities and developing a 
mental number line, and not simply reading, writing and ordering numerals. Most 
children learn to read and write 2-digit and 3-digit numbers easily, but interpreting the 
cardinal value of these numbers is the greater challenge. Interpretation of quantity and 
relative quantity are essential for conceptual understanding and problem solving with 
multi-digit numbers. Perhaps the fact that the ENI has not included tasks that identify 
students who do not fully interpret 2-digit and 3-digit quantities has given teachers an 
inflated impression of some Place Value GP2 and GP3 students’ understanding. We 
argue that a significant number of these students need further instruction focused on 
their development of 2-digit and 3-digit number conceptions, including an 
understanding of quantity, relative quantity and the development of a mental number 
line.  
 An implication of these findings is that learning trajectories associated with Place 
Value and the development of whole number concepts need to adequately account for 
students’ interpretations of quantities. We believe that the ENRP Place Value growth 
points and the associated assessment interview (ENI) needs to be modified accordingly, 
and recommend that the new tasks that were piloted are now included in the ENI. Such 
a refinement will give teachers more certainty about students’ current number 
knowledge and assist them to design more precise instruction. 
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Linear algebra is a difficult introduction to advanced mathematical thinking for many 
students. In this paper we consider the teaching approach of an experienced lecturer as he 
attempts to engage his students with the key ideas embedded in a second course in linear 
algebra. We describe his approach in lectures and tutorials using visualisation and an 
emphasis on language to encourage conceptual thinking. We use Tall’s framework of three 
worlds of mathematical thinking to reflect on the value of these activities. An analysis of 
students’ attitudes to the course and their assessment results help to answer questions about 
the value of such an approach, suggesting ways forward in teaching linear algebra. 

Introduction 
Research examining the teaching of mathematics at university is a growing but 
relatively new field and, compared with school-based research, outputs are still 
relatively modest (Selden & Selden, 2001). Further, the research that has been 
conducted has rarely examined the daily teaching practice of mathematicians (Speer, 
Smith, & Horvath, 2010). Three possible reasons for this research lack are enunciated 
by Speer et al. (ibid) as: lecturing is a teaching practice rather than a common 
instructional activity in which teaching takes place; the professional culture of 
mathematicians tends to obscure differences in teaching; and strong content knowledge, 
well-structured for students is considered sufficient for good teaching. Among studies 
that have been conducted, Rowland (2009) documents the way a university teacher’s 
beliefs about mathematics led her to implement changes to her style of teaching, 
avoiding a paradigm of exposition and note-taking. Instead she introduced an interactive 
environment in which class session exercises, testing of conjectures and sense-making 
were commonplace. Establishing such a community of inquiry in any classroom 
requires all involved to believe that all participants are learners (Jaworski, 2003). 
Another study, focussing on university linear algebra teaching (Jaworski, Treffert-
Thomas & Bartsch, 2009), examined teaching from a community of practice 
perspective. This research highlighted that how to deal with the common difficulty of a 
didactic tension between an abstract/conceptual approach and one that emphasises 
computational facility is not well understood at university. We agree with the authors 
that: “Awareness of didactical challenge and a didactic tension can illuminate practice 
more broadly.” (ibid, p. 256) and that doing so through a community of inquiry is likely 
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to be a productive way forward. The research described in this paper investigated, 
through a community of inquiry, how linear algebra may be taught to promote both 
procedural and conceptual understanding and thinking. Linear algebra demands a more 
formal approach than calculus, making it difficult for undergraduates to understand the 
subject (Dorier & Sierpinska, 2001) and research suggests that many students have a 
minimal understanding of concepts, manipulating matrices instead to pass examinations. 

Theoretical framework 
Tall’s (2004, 2008, 2010) developing theory of three worlds of mathematical thinking 
seems highly relevant for analysing linear algebra students’ thinking processes. It 
introduces a framework for development of mathematical thinking based on three 
mental worlds of mathematics: conceptual embodiment; operational symbolism; and 
axiomatic formalism (Tall, 2010). The embodied world is enactive and visual. It 
contains embodied objects; it is where we think about the physical world, using “ ... not 
only our mental perceptions of real-world objects, but also our internal conceptions that 
involve visuo-spatial imagery” (Tall, 2004, p. 30). The symbolic world is the world of 
procepts, where actions, processes and their corresponding objects are realized and 
symbolized, and the formal world comprises defined objects (Tall, Thomas, Davis, Gray 
& Simpson, 2000), presented in terms of their properties, with new properties deduced 
from objects by formal proof. All three worlds are available to, and used by, individuals 
as they engage with mathematical thinking. In particular, the three worlds of 
mathematical thinking combine so that “three interrelated sequences of development 
blend together to build a full range of thinking” (Tall, 2008, p. 3). A pedagogical 
implication is that the framework is not proscriptive, and “(a)lthough embodiment starts 
earlier than operational symbolism, and formalism occurs much later still, when all 
three possibilities are available at university level, the framework says nothing about the 
sequence in which teaching should occur” (Tall, 2010, p. 22). For example, Tall claims 
that many students learning mathematical analysis are happy to think and operate 
entirely in the formal world, whereas others prefer a more natural approach and think in 
terms of thought experiments and concept imagery. Thus no single approach is 
privileged over another, instead decisions should be based on the objective of each 
course “and not to inflict formal subtleties on students who are better served by a 
meaningful blend of embodiment and symbolism” (Tall, 2010, p. 25). 

Method 
The research reported here employed a mixed-methods approach, partly an action 
research project in which the first-named author (referred to as ‘the lecturer’ or ‘John’ 
in what follows) worked with the other authors as he tried to determine the effectiveness 
of certain aspects of his teaching of introductory linear algebra, forming a community of 
inquiry to discuss the teaching openly, and partly a case study of the students. The 
project involves cycles of planning the relevant teaching episodes, implementing them, 
and then reflecting on and evaluating the results. Data was collected in 2010 from a 
second year linear algebra course at the University of Canterbury taught by the lecturer. 
About 170 students took the course, almost all of them majoring in science or 
engineering. The lecturer was interviewed (in a discussion mode) twice by the other two 
researchers, in connection with each of the stages of the project. Thus some of the 
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discussion focussed on his overall goals for the course, and in particular to determine 
how these goals related to Tall’s framework of three worlds (embodied, symbolic and 
formal) of mathematical thinking, or to the relationship between language and 
understanding. In addition, other questions dealt with the day-to-day implementation of 
these goals during lectures and tutorials (the lecturer kept a diary of what happened after 
each class). Finally, some questions dealt with how the course was measuring up against 
the intended goals. There were also regular Skype discussions after the lectures had 
finished as part of the community’s discussion of these issues. The interviews and the 
Skype discussions were audio-recorded and later transcribed for analysis. Data for the 
case study providing a student perspective comes from several sources. A good number 
of students (48 out of 170) allowed us to examine their responses to test questions, some 
of which had been designed to elicit information about their acquisition of the language 
of linear algebra, or about their relationship to the kinds of thinking described by Tall’s 
framework. About 100 students filled in a survey about the lecturer’s teaching and 
three-quarters of these gave responses to some open-ended questions. Finally, a small 
number (nine) of students volunteered for individual semi-structured interviews two 
weeks after the completion of the course. They were asked about definitions (Can you 
give me the definition for any of these terms in the first question? Were you confident 
with the definitions during the course?), geometry (Which of these terms in part A can 
you describe geometrically? Would geometry help you to understand it better?) and 
general questions (How did you find linear algebra in general? How did you learn the 
concepts?). Some of the points that came up in discussion with the lecturer were: I 
wondered if you’d like to tell us how you see the role of the tutorial; I think you like to 
get the definition motivated by what you’re doing in solving equations. Can you tell us 
how that works?; What’s your view of the use of technology in general in this course; 
How confident were the students in speaking the linear algebra language?; What was 
your thinking behind setting the exam questions? 

Results 
In this paper we principally describe the outcomes in terms of the students, and their 
reactions to the style of the course and evidence of their consequent learning of linear 
algebra in relation to the lecturer’s expectations. The course was founded on the value 
of language, visualisation, technology (Matlab) and writing and problem solving in 
tutorials to give students the tools to think about mathematics for themselves. This was 
all part of what John called trying to put across the “big picture”. Both the lectures and 
the tutorials had to fit in to this overarching aim, and an example of a section of a 
tutorial, to show the general philosophy behind them, is given in Figure 1. 

The tutorial exercises look at span and linear independence for typical vectors in 2-space and 3-
space, and also look at the geometric meaning of span and linear independence. 
1. (a)  i. Let u1, u2 be two vectors in 2-space. Does u2 usually belong to the span of u1? Hint: Use 

Matlab’s rand command to construct random pairs of vectors. Use rref if you need to solve 
any systems of linear equations. ii. Does u2 always belong to the span of u1? Give an 
example of each possibility. iii. Interpret your results geometrically ... [Formatting 
changed] 

To be handed in: Write a short report (at most one side of A4 paper) describing your results. 
Your report should consist entirely of English sentences, with no symbols or equations. 

Figure 1. An example of a section from one of the tutorials. 
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The overall aims of the tutorials were expressed to the students by the lecturer as: Learn 
the technical terms used in linear algebra; Get a feel for what usually happens in linear 
algebra, but be aware of exceptions; and Be able to describe what happens in linear 
algebra using ordinary English. As John said in his first interview: 

The main reason I’m in the job is I like helping people. I’m curious about how people 
think, why they do the things that they’re doing. I’d like to show them other ways of 
thinking, but I’d really prefer that they went out into the world thinking for themselves, 
and if I could give them some tools that will do that, that will be really nice. 

The student interviews were revealing about the lecturer and student perspectives on 
each of the areas of language use in tutorials, definitions, and visualisation, and these 
are considered below. 

An emphasis on language 

For this year’s version of the course, John decided to put greater emphasis on gaining 
the “big picture” through getting the students to use and understand the language of 
linear algebra. Some of his motivation for this surfaced while he was trying to use a 
theoretical framework to analyse an incident during lectures where he had been telling 
the class about how the tutorials were going to work “[My] actual goal [here] is getting 
students to use written language to describe mathematical ideas, events, etc. because I 
think this will help them to learn or understand the new ideas.” In order to promote this 
aspect of writing about mathematical ideas, John put some thought into what the 
tutorials for the course should be like. What resulted was that one aspect of the tutorials 
required students to write about their ideas. For example, in Figure 1 we see the 
direction in the tutorial to ‘Write a short report’. John’s reason for this was that “they’re 
not used to being asked questions like ... ‘write a paragraph of 75 words about such and 
such’ ... a really common response to that was to just write down all the relevant 
definitions in sequence, and not make any reference to what they were actually asked 
for.” Clearly focussing on ideas and language, devoting time to experiments and reports, 
comes at a cost. John expressed how “I’ve sacrificed tutorial time that would normally 
be spent doing hand calculations ... I’ve told the students, ‘Well, actually you can do 
that in your own time. There’s a consultancy session where you can go and get help if 
you’re stuck. But I want to use the tutorial to do something extra.” When he reflected on 
the value of the tutorials John observed that the students found it hard to express 
themselves mathematically in written language. However, in spite of their struggles at 
times, they were attending the tutorials in greater numbers than previous years and were 
more active participants. 

They’re certainly behaving very differently from last year’s class. For a start, even though 
there’s no compulsion on them showing up to tutorials, I’ve got I’d say two thirds of the 
class actually showing up to the tutorials, whereas last year we were lucky if we got a 
third of them coming along ... the talking in the tutorial is definitely different as well. 

Overall the students who were interviewed were often positive about the tutorials. 

S2  I guess formal reports is pretty good ... talking about it with someone else is 
actually really helpful, so it depends, I would probably keep that ... we had to 
write reports on certain questions ... and I think that was a really good way of 
learning the definitions and applying them.  
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S4  The tutorial system I thought was exceptional. Because ... we had tutorials once 
every two weeks and even though ... you really had to think about them. So I kind 
of developed the ideas quite a lot in my head. 

S5  The tutorials were quite helpful because you go through and it says what did you 
learn, and you learn something by doing it.  

Formal world thinking often begins with definitions of objects (Vinner, 1991) and the 
students were given a list of definitions from the start of the course; they were not 
expected to learn them but to talk and write about them. In fact they could take an A4 
sheet into the examination with data, including definitions, written on it. The students’ 
responses to this approach showed that they understood the importance of the language 
and the need to be able to talk about the ideas. 

S6 Yeah, to the subject, they [definitions] are quite important, cause much of that 
area, linear algebra can’t be described without actually understanding and 
knowing those terms.  

S8   Yep, yep, it was made pretty clear to us that these were terms that we were going 
to need to know, in and out, and we were going to be able to have to use them in 
conversation ... So it was yeah made pretty clear that they were going to be very, 
very important ... They [the definitions] were definitely taught.  

Visualisation 

One of the cornerstones of John’s approach to teaching was the value of visual imagery, 
in terms of encouraging mental imagery through the use of both physical objects and 
pictures. This is related to the embodied world of Tall’s framework, which involves 
iconic and enactive actions. In the lectures John employed a combination of embodied, 
iconic and enactive, physical ideas with props, as well as pictures, to get across the 
ideas. He also values being able to make links between the representations. In his 
reflections on the lectures he indicated the value of pictures to him personally “I think I 
have always liked a good picture, although I don't remember any pictures being used 
when I learned linear algebra as a student—it was just lots of calculations, usually row 
operations.” However, he is conscious of the need “ ... to strike a balance between what 
my colleagues want the students to know in later courses (usually technical stuff like 
‘how to do this type of calculation’) and giving them ... pictures or ‘what this all really 
means’, or ... communication skills.” Some of the physical, enactive demonstrations he 
used, and the fact that a picture was also drawn, were described in his lecture 
reflections: 

I assembled a solid picture of our problem with the rectangular piece of board as the 
subspace U, my red OHP pen standing on end to represent the given point v (at the top of 
the pen) so that the projection p that we seek is at the base of the pen. A picture version of 
the situation was drawn too. 
So I waved my board and a pointer, and then drew a picture, illustrating that if our plane 
W went through the origin, then the plane and (a suitably positioned) normal line U were 
both subspaces of 3-space, and that vectors chosen, one from each subspace, were always 
perpendicular.  

However, the pictures were sometimes used to show mathematical relationships, as seen 
in this example, which refers to the picture in Figure 2: 

I decided to remind them of our earlier picture of the action of a 2x2 matrix A [see Figure 
2]. We see now that what was called the 'range of the transformation given by A' is 
actually col(A) and what was called the 'solution to Ax=0' is actually null(A). The other 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

328



HANNAH, STEWART & THOMAS 

line in that diagram is not a subspace as it does not go through the origin (or zero vector). 
But our third subspace, row(A) can be pictured in this diagram too ... vectors in row(A) 
are all perpendicular to vectors in null(A), so we can add a line representing row(A) to the 
domain part of the diagram, perpendicular to the line representing null(A).  

 
 

Figure 2. A picture of the effects of a linear transformation. 

The interviews with the students showed that they valued the imagery, both enactive 
and pictorial, that John had incorporated into his explanations. 

S1  We did lots and lots of drawings about taking the vector away and when he was 
describing linearly independent he did some quite good visualisations as well ... 
He actually got like two sticks or whatever and dropped them and said they’re not 
parallel these are linearly independent. 

S4  Yeah John did a lot, yeah he had a lot of using rulers and pencils. I really enjoyed 
it. I thought it was a fantastically taught class ... he just had a very visual 
emphasis in the class and really helpful. 

S9  Yeah definitely, it definitely helped seeing the pictures. If I’d just read that, I 
wouldn’t have got any kind of a grasp ... I might have been able to do some of it 
[without the pictures], but I definitely wouldn’t have been able to do it as well. 

In the interviews students talked about some of the geometric images they used to 
understand constructs: “Yeah linear combination ... I visualise that parallelogram when 
you add the vectors.” (S3); “The span of two, one of the independent vectors no matter 
what space it’s going to be a plane so if that’s going to be a plane ... using a multiple of 
each of the spanning vectors you can get to any point in that sub space.” (S4); and “So 
linear combination of a couple of vectors is going to span out the plane unless they’re 
along the same line in which case they’re dependent so just spans out that line.” (S7).  

The outcomes 

Of course innovation in one’s teaching does not necessarily imply that it has value for 
student understanding. Hence we have to ask the question, did it help understanding? 
John’s answer to this includes the statement: 

You’ve got to remember, there were almost 170 students in the class ... I did feel that they 
had a better grasp of things than they’ve had in previous years ... There were some really 
pleasing ones, and on the exam I had that question where, I gave them three vectors and 
they had to talk about them, basically write a little story about them, using all the words 
that we learnt, and there were some really nice answers to that. 

Certainly the student evaluation of the course supported the view that the students liked 
the approach taken. The scores provided by the 101 respondents were: Q1 The classes 
were well organised 4.7(/5); Q2 The lecturer was able to communicate ideas and 
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information clearly 4.5; Q3 The lecturer stimulated my interest in the subject 4.1; Q4 
The lecturer’s attitude towards students was good, 4.7; and Q5 Overall, the lecturer is an 
effective teacher, 4.6. In addition, some of the comments made in the open question on 
the evaluation were often extremely positive. Examples include: “Best lecturer I ever 
had in Engineering” (S1); “One of the best lecturers in [name] university. Asset!!” (S8); 
“ ... this course is probably one of the best taught classes I’ve had” (S20); “Excellent 
lecturer—Interesting presentations ... Examples and physical representations useful” 
(S37); and “I think he has perfected the art of teaching. His teaching style matches my 
learning style. Keep up what he is doing and students will do well.” (S44).  
Was this positive view of the course borne out by the assessment results? In the mid-
semester test, in addition to standard skills, a conceptual question was included to 
examine the students’ ability to relate mathematical thinking across the embodied, 
symbolic and formal worlds. Question 3(a) had two parts as seen in Figure 3. The mean 
score on this question was 6.55 out of 12, and the students did significantly worse on 
this question than on question 1, which comprised standard procedures (meanQ1=60.4%, 
meanQ3=54.6%, t=2.98, p<0.005). However, given the testing nature of some of 
question 3 this is a reasonable result. In part (a)(i) of the question they were required to 
interpret the symbolic-algebra equation u = 2v + 3w in an embodied-process manner by 
drawing a diagram. 67% correctly drew either a parallelogram or a triangle to represent 
the vectors and a further 27% were partly correct.  

(a) Suppose that u, v, and w are nonzero vectors in  such that . i. Draw a 
diagram to illustrate the relationship between u, v, and w. ii. Use the appropriate technical 
terms from linear algebra to describe the relationship between u, v, and w. 

(c) Suppose that u, v are linearly independent vectors in . i. Give a geometric description of 

the span of u and v. ii. Which of the following sets of vectors could be a basis for ? (α) u, v, 
u + 2v. (β) u, v, u v. (γ) u, v, u + 2v, u v. [Formatting changed] 

Figure 3. Two parts of the test question 3. 

Part (a)(ii) then asked them to use technical terms to describe the relationship between 
u, v and w. Of the 35 students who got full marks on this part, 5 students mentioned 
only one concept, namely linear combination, 26 students mentioned 2 concepts (and 18 
of these spoke of linear combination and span), and 4 students mentioned 3 concepts 
(linear combination, span, and linear dependence). Typical examples of comments from 
students in these three groups were: “u is a linear combination of v and w”; u belongs to 
the span of v and w”; and “u, v and w are linearly dependent”. Part c(i) examined 
whether students could relate the definition of span of two linearly independent vectors 
to an embodied process. Tewnty-seven were able to say that the span was a plane in , 
but only 10 gained full marks by going on to say that both u and v would lie in the 
plane. Only seven of the students drew a picture for this part. For c(ii) the students 
needed to understand the definition of basis and then be able to test whether the sets of 
vectors satisfied the conditions that the set must a) be a minimum spanning (or 
generating) set and b) comprise linearly independent vectors, testing the relationship 
between the formal world definition of basis and symbolic-algebra object thinking. 
Only one drew a picture, showing that embodied thinking was not to the forefront on 
this question, and two used matrices to assist them, showing an absence of symbolic-
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matrix thinking. Some excellent thinking and reasoning targeted the key properties (see 
Figure 4). 

 

Figure 4. An example of clear application of the properties of basis. 

It was also interesting that many used informal ways of thinking about the required 
properties. Examples of this included the vectors in (γ) being rejected because the set is 
‘not efficient’ or there is a ‘redundant’ vector. In this latter case they were echoing 
John’s language, since in his lecture commentary he used it repeatedly, and wrote down 
the working definition of basis he gave them as: “A basis for a subspace is a set of 
vectors which span the subspace and in which there are no redundant vectors”, avoiding 
use of the term linear independence.  
 The final examination was a traditional one covering the whole course, with the 
required test of skills, such as using the Gram-Schmidt process to find an orthogonal 
basis for the column space of a given 4x3 matrix (Q2(b)). However, it also included 
questions such as “3(b) Give a geometric description of the following situation: a, b, c 
are linearly independent vectors in .” and 3(c): “Consider the vectors u = (1, 0, 0), v 
= (0, 2, 0), w = (3, 4, 0) [given as columns]. Write a short paragraph about u, v and w. 
Your paragraph should be at most 75 words long, but should include as many as 
possible of the following technical terms from Linear Algebra: basis, dimension, 
dependence relation, linear combination, linearly dependent, linearly independent, 
span, subspace.” Once again students found such questions harder than the more 
algorithmic questions. The average mark for Q2(b) was 2.6/3 whereas the averages for 
Q3(b), (c) were 0.8/2 and 3.8/6. However, a significant number of students gave fully 
correct answers (e.g., 22 out of 162 students got 6/6 for Q3(c)). The distribution of the 
final examination marks showed a mean mark of 32.7 out of 50, with 12.3% above 40 
and a pass rate of 89.5%. These results compare favourably with previous years’, so the 
students were not disadvantaged in traditional understanding by the course presentation.  

Conclusion 
In this study we have looked at student reactions to a particular style of delivery for a 
second year course in linear algebra, and at the effect this style may have had on the 
students’ learning. Features of the delivery were the emphasis on language, visualisation 
and experimentation using technology. Experimentation was structured into fortnightly 
tutorial sessions, visualisation was encouraged through use of models and pictures in 
lectures, and language was emphasised in report writing. Students were generally 
positive about all these features of the course. Talking to fellow students during the 
experiments, knowing the correct technical language and actually using it in written 
reports, having to think about the material—all these things were reported as having 
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helped them to learn. This reaction may not seem very surprising, but it is perhaps little 
unusual coming from a course in linear algebra. Students were also positive about the 
use of visualisation. For some, memories of boards and marker pens being manipulated 
conjured up the process of finding projections, while for others, sticks being dropped on 
the floor remained vivid reminders of linear independence. The assessment results show 
that many students found these ideas quite challenging. Most students performed better 
on routine algorithmic tasks in the test and exam, than they did on tasks exploring links 
between the geometric, symbolic and formal views of linear algebra. This is hardly 
surprising, of course, as algorithms can be applied without understanding, whereas the 
other tasks require making links between different representations of the concepts. A 
pleasing feature of the study was the number of students who succeeded in writing 
coherent prose that linked the various concepts of linear algebra, to each other in the 
formal world, and to concrete visualisations in the embodied world. On reflection the 
lecturer feels quite pleased with the result of his pedagogical experiment, and the 
supportive community of inquiry worked well too. A good number of students in a 
second year class learned how to express themselves in the language of linear algebra 
without loss of skills. This isn’t to suggest that we have solved the problem of how to 
teach linear algebra, since some concepts, such as linear independence and basis, seem 
harder to learn than others. There lies the continuing challenge.  
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This study investigated the fraction content knowledge of a student teacher, and his ability 
to use that knowledge in a novel situation through use of a scaled elastic strip. Data 
indicated that using the elastic strip was effective in challenging and enriching the 
participant’s knowledge of ordering fractions. The results suggest that use of the elastic 
strip could assist student teachers to develop their understanding of fractional concepts. 

Introduction 
This paper reports a study exploring the use of an elastic strip (Figure 1), which can be 
viewed as a flexible number line and acts as a manipulative for supporting and 
extending fraction concepts.  It reports on a teaching experiment that investigated the 
effectiveness of the elastic strip to challenge and give support to developing the content 
knowledge and pedagogical content knowledge of pre-service primary teacher.  

 

 

Figure 1. Elastic strip divided into 10 intervals being used to find 7/9 of length of a table. 

Primary teachers’ knowledge about fractions 
Many studies have shown that a high proportion of primary teachers lack sufficient 
content knowledge and Mathematical Knowledge for Teaching (MKT) (Hill, 2010) to 
teach the fraction concepts of primary mathematics effectively (e.g., Leinhardt & Smith, 
1985; Ward, 2010). In a study in which 53 New Zealand primary teachers self-assessed 
their knowledge for teaching fractions, 27% rated themselves as very weak or weak 
(Ward & Thomas, 2007). In a study of the fraction MKT of 78 New Zealand teachers 
from years 1 to 9 Ward (2010) found 85% of teachers correctly ordered fractions 3/5, 

1/3, 
and 4/8, however just 30% were able to describe how they could support students to 
order these fractions using a conceptual approach. 
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Primary school-based studies of fraction learning 
In an analysis of the strategies school students used when solving fraction tasks, Smith 
(1995) found that the competent performers used a rich range of approaches, well 
matched to specific tasks. Weaker students tended to use a narrower range of taught 
strategies performed in an algorithmic manner.  In an Australian study, 323 grade 6 
children were required to explain the reason for their selection of the larger of a pair of 
fractions. Benchmarking, whereby fractions are ordered by considering the relationship 
of each one to common benchmarks such as 0, ½

 
and 1, and use of residual strategies 

whereby fractions just less than 1 are compared by consideration of the difference of 
each from 1, were strategies that demonstrated good number sense that were used 
effectively. Neither of these strategies was familiar to many of the teachers of these 
children, indicating that they were likely to have been developed by individual children 
(Clarke & Roche, 2009). 
 Results from empirical studies have suggested that the teaching of fractions in 
primary school should be guided by the following:  

 an increase in emphasis on the meaning of rational numbers rather than on 
calculation procedures (Charalambous & Pitta-Pantazi, 2007; Clarke & Roche, 
2009; Moss & Case, 1999);  

 making the process of constructing fraction equivalence more explicit in a range 
of fractional situations (Ni, 2001); 

 explicit sharing of benchmarking (Clarke & Roche, 2009; Moss & Case, 1999) 
which, for example, supports the ordering of 3/7 and 11/20 by comparing them both 
with ½; 

 a decrease in using pie graphs as a representation of fractions, and an increase in 
using other forms of visual representation (Moss & Case, 1999); 

 building on children’s self-developed solution strategies (Moss & Case, 1999); 
 careful definition of numerator and denominator so that the improper fractions fit 

naturally within the definition (Clarke & Roche, 2009); 
 explicit sharing of residual thinking which, for example, allows reasoning such as 

7/8 is greater than 4/5
 
by comparing the amount by which each is less than one 

(Clarke & Roche, 2009); and 
 increased emphasis on estimation and approximation when representing and 

operating with rational numbers, in order to develop number sense (Clarke & 
Roche, 2009).  

Transforming primary mathematics teaching to meet these recommendations requires 
analysis of approaches to teaching that can support such instruction.  

Models for teaching fraction concepts 
There is a range of models commonly used to support fraction instruction, for example, 
sets of discrete objects, number lines, double number lines, and area models such as 
circles and rectangles. The selection of the most effective models for use in instruction 
is paramount (Cramer & Wyberg, 2009). An important feature of effective instruction is 
the explicit discussion of the attribute on which the model is based, such as relative 
length for linear models, relative area for two-dimensional models, and relative number 
in the set model (Steinle & Price, 2008). 
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Number lines are commonly used for fraction instruction. Effective use of number lines 
requires the learner to co-ordinate information provided pictorially by the marked line 
together with the numbers which give information about scale (Bright, Behr, Post, & 
Wachsmuth, 1988). Bright et al. (1988) suggested that using multiple number lines, 
partitioned in different ways but all showing the same fraction, would assist learners to 
construct richer understandings of number lines. In a similar way, Abels (1991) used a 
calibrated elastic strip as a tool for supporting the introduction to calculating percentage 
change. This tool is similar to the tool used in the current study (Figure 1). 

Description of the elastic strips 
The elastic strips used in the teaching experiment (Steffe, 1991) have graduated scales 
with equal intervals. The initial scale used in the study was about one metre in length 
and marked off in ten intervals (Figure 2). The elastic used to make the strips was able 
to be stretched to approximately double its un-stretched length. When the strips were 
used to find fractions of lengths, the physical restriction imposed by the limits on the 
elasticity necessitated the use of equivalent fractions to complete some tasks.  

  

Figure 2. Elastic strip being used to find 5/6 of the length of a table using the equivalent fraction 20/24. 

Method 
The research model used was a teaching experiment in which the researcher held both 
participatory and data collection roles (Steffe, 1991).  This paper reports on the teaching 
experiment conducted with one student teacher, Greg, held two months into his one year 
primary teacher education programme. Greg volunteered to participate as he believed 
his own knowledge of fractions was weak.   
 Greg completed a written questionnaire (Figure 3), and then participated in the 
teaching experiment which was informed by the results of the questionnaire. Initially 
Greg was questioned about his answers to the questionnaire, then shown how to use a 
ten-segmented elastic strip. He was then asked find points that were 7/10, 

7/9, and 2/3 of 
the length of the table. Intentionally, the strip was not sufficiently elastic to stretch 
across the table using just three segments. Other elastic strips were then introduced 
which had been graduated and numbered into 20 and 25 segments respectively and the 
tasks from the questionnaire were investigated using the strips. The physical nature of 
the task required Greg to give instructions to the researcher to act as partner in carrying 
out the tasks. When appropriate he was asked to support the instructions and actions 
with reasoning.  
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Figure 3. Greg’s answers to the questionnaire. 

Results  
Themes emerging from the data (equivalence, ordering, and benchmarks) are presented 
below in order to illustrate ways in which the student teacher’s knowledge was 
challenged and extended through the initial questionnaire and the interview.  

Equivalence 
Greg correctly calculated equivalent fractions in questionnaire parts (b) and (c). At the 
start of the teaching experiment Greg needed to find a suitable equivalent fraction for 
2/3. He quickly found 4/8 and 8/12, but neither of them was suitable to use with the ten-
segmented strip. He had some difficulty realising that he could multiply both terms in 
the fraction by 3 to create the equivalent fraction 6/9. From then on he found equivalent 
fractions fairly comfortably, however he was hampered at times by his lack of certainty 
with multiplication and division facts.  

Ordering fractions with the same numerator but different denominators 
Greg incorrectly ordered the fractions 3/11, 

3/14, and 3/17
 
as going from smallest to largest 

in question (e) (Figure 3). He explained his ordering: 

Greg I was thinking 3 pieces shaded out of 11, 3 out of 14, and 3 out of 17. But 
I think the order might be reversed. I really struggle with that one.  

Later the question was revisited with the aid of the strip. Initially 3/11 of the length of the 
table was found. 
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Researcher  Now we are going to find 3/14. Before we do it, what is going to happen 
to each of the pieces? 

Greg It’s going to stretch forward. So it is going to go (hand gesture indicating 
that the fraction was larger). 

After the three fractions had been found using the strip, Greg proposed a rule: 

Greg So it is actually the other way round from my answer. I am just 
wondering when we have got the same number on top. Is that a general 
rule that you could follow, if you have the same number on top, and the 
denominator is bigger, the smaller the value?  

After discussion about the ordering of unit fractions and then fractions with the same 
denominator, Greg was asked if the elastic strip had helped his thinking. 

Greg It just totally changed my way of thinking about fractions. It’s a visual for 
me that I like to see.  

Ordering fractions and benchmarking 
Greg’s incorrectly ordered the fractions from questionnaire part (d) (Figure 3) as 1/3, 

3/5, 
4/8, and explained: 

Greg I tried to draw pictures to help me work it out. 1/3 is quite easy to 
visualise. I just see one piece shaded out of three. The same with 3 out of 
5, so I thought 1/3 is smaller, 3/5 is getting more pieces so if I have 3 
pieces out of 5 shaded, I can see more pieces being shaded with less left 
over. And 4/8 is 1/2. So you are getting 1/2 of something, and that is the 
biggest. 

Researcher Are you happy with that order? 
Greg I think it is wrong. Maybe I might change it to 1/3, ½, 3/5. I feel I should 

change it, I feel that 3/5 is more than 1/2, but I am not confident. This is 
where I really struggle.  

After using the elastic strip to correctly order these fractions, Greg again commented 
that using the strip had helped his understanding. 
 In the questionnaire, Greg answered question (g) correctly as 9/40, 

5/11, 
12/23, and 11/13, 

but he was not confident about his answer.  

Greg 9/40 is the smallest seems a ridiculous amount shaded out of 40. Littlest 
amount I could think of. Seems small to me. 5/11, that is quite close to ½. 
12/23

 
is quite close to ½. 5/11 and 12/23

 
and seems almost the same: both 

close to ½. 11/13 is seems quite close to 3/4. There is a lot more shaded out 
of that proportion. If we did that stretchy thing we might actually be quite 
close. 

Greg used the strip to locate each of the fractions in this set. He recognised that 9/40 was 
approximately ¼, and after prompting to compare 9/40 to 10/40, recognised 9/40 was just 
less than ¼. Similarly the strip was used to find 5/11, and it was pointed out that 5.5 out 
of 11 would be ½, so 5/11 is just less than 1/2. 

Researcher These two (5/11 and 12/23) were pretty close and you said they were both 
about 1/2. Tell me about 12/23. 

Greg 12/24 would be ½. Half of 23 is 12.5, sorry 11.5. So 12/23 is slightly more 
than ½.  

 So it is more than this one (5/11) because it is slightly less than ½.  
So if I was to work this out again knowing this now, I could do it. Half of 
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11 it is 5.5. Half of 23 it is 11.5, and so I could compare them to a half 
and see that one was slightly more than half and one was just less than 
half. 

This idea of benchmarks was discussed and consolidated by considering 11/13. Greg was 
asked to order a similar set of fractions and then asked if he had learnt anything from 
the session.  

G Yes I have. I have got more of an understanding of fractions and how they work. I’d 
love to take this strip into an exam and sit down and stretch it out. Now I have some 
kind of visual measurement in my brain that I can see; I can see that is close to 1, that 
is close to 0, that is more than a quarter, or less than quarter. Those are now my 
measuring blocks. 0, ¼, ½, ¾, and 1. I can work within those boundaries to work out 
what the answer might be. I might borrow it now and go home and practise it so I re-
illustrate it in my head again. 

Discussion  
In the questionnaire Greg was able to use a fraction to generate equivalent fractions. His 
lack of certainty about the relative size of fractions casts doubt on whether this skill was 
securely linked to the idea of size of fractions. After the investigation of fractions with 
the same numerator, Greg’s tentative proposal about a rule for ordering them is 
encouraging. Greg found the fraction ordering tasks in the questionnaire challenging, 
and the diagrams that he drew to support his working (Figure 3) appear unhelpful.  He 
had recognised 5/11 and 11/23 as were being about ½, but was not confident in his 
ordering of those two numbers. The dialogue suggests that the use of the strips had 
assisted him to see how benchmarks could be used to find the approximate magnitude 
of numbers. This development was physically supported by the strips, however later in 
the teaching experiment Greg reported that he was developing and using mental images 
to assist his ordering of fractions.   

Conclusions 
The study showed that the fraction strip has the potential to assist learners in 
consolidating and reinforcing the images of the number line. The results support 
previous research (e.g., Leinhardt & Smith, 1985; Ward, 2010; Ward & Thomas, 2007) 
showing that some student teachers have significant gaps in their fractional content 
knowledge, casting doubt on their ability to effectively teach these concepts in primary 
classrooms. These concerns are illustrated in the vignettes from the interview with Greg 
who appears to need ongoing support to help him develop understanding of the key 
ideas of primary school fraction knowledge. For Greg, use of the elastic strip was an 
effective activity to challenge, consolidate, and extend his fraction thinking. Specifically 
the teaching experiment addressed fraction concepts of equivalence (Ni, 2001), 
representation of fractions using a linear model (Moss & Case, 1999), and 
benchmarking (Clarke & Roche, 2009; Moss & Case, 1999). The novel and the physical 
nature of the activity made recalling rote routines less likely, and communicating in 
order to complete the task required Greg to re-engineer his knowledge of fractions.  
 When using elastic strips, care is required to keep the learner’s attention on the size 
of the unit. It is essential that the teaching does not stop with the use of the strip, but 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

338



HARVEY 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

rather starts with it and moves on to developing images of the strip, and then to the key 
fraction ideas.  
 There have been calls for the teaching of primary school mathematics to have a 
greater focus on concepts (Charalambous & Pitta-Pantazi, 2007; Clarke & Roche, 2009; 
Moss & Case, 1999). A significant number of teachers have weak knowledge of 
fractional concepts (Ward, 2010; Ward & Thomas, 2007). Programmes that enhance the 
MKT of student teachers in fractional concepts need to be considered as one way to lift 
the teaching skill in this area. The use of the elastic strip offers the potential to challenge 
and extend the knowledge of fractions of student teachers.  
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Pre-European traditional Māori education in New Zealand was integrated and holistic. With 
Western influence many Maori children struggled to achieve at school. Māori medium 
education based on retaining Māori values, language and culture therefore emerged to 
provide an alternative avenue for education. A key element in this initiative is to increase 
children’s engagement with, and learning of, mathematics. Views from 61 Year 5-8 
children in Māori medium contexts have been sought to provide insights about their 
mathematics education. This paper discusses some of these views and raises possibilities 
for future directions to support the momentum of this positive initiative. 

 

Introduction 
E kore au e ngaro he kākano i ruia mai i Rangiātea. 

(I will never be lost, the seed which was sown from Rangiātea). 

In traditional Māori society, education was oral, thematic and holistic (Barton & 
Fairhall, 1995; Riini & Riini, 1993). Māori children enjoyed the support of a variety of 
community members to fulfil their potential for learning (Hemara, 2000). A Māori 
world-view synthesized links between people, their activities and the environment. 
Shared meanings and understandings were integral to the learning process. This 
thinking is still prevalent in many parts of Maori society (Hemara, 2000; Pere, 1994). 
 Mathematics for Māori included a “very good system of numeration … doubtless 
quite elaborate enough for their purposes” (Best & Hongi, 2002). They also developed 
systems of measurement and geometrical concepts to support their needs and 
innovations. A strong oral tradition meant that an emphasis on the development of 
mental strategies as well as physical skills was expected for solving problems in a range 
of contexts. This often included mathematical thinking which assisted Māori in adapting 
to various environments by integrating mathematics ideas and tools within everyday 
practices such as making waka (canoes), constructing whare (houses), gardening and 
rongoa (medicine) (Ohia, 2002). 
 When Māori children began to participate in a Western form of schooling, there 
came a change in the ethos of education and the learning environment for them. The 
values promoted in that curriculum (including mathematics) supported the dominant 
culture and contributed to many Māori children’s general underachievement in formal 
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education settings (Bishop, 1988; Knight, 1994). D’Ambrosio (2001) argues that 
mathematics education has a responsibility to include ways to “reaffirm, and in some 
instances restore, the cultural dignity of children” (p.308). It is important for children 
from minority groups to appreciate that they possess a long and rich mathematical 
heritage and that they can be mathematically capable (Zaslavsky, 1998). Furthermore, 
Penetito (2010) suggests that successful education for Māori should begin with what it 
means to “be” Māori. Accordingly, alternative spaces such as Kura Kaupapa Māori 
(KKM) have been established as an educational option to educate Māori children 
through the medium of their own language and culture (Smith, 1991). This includes 
their mathematics education. 
 The official philosophical basis for guiding learning and teaching in KKM is Te Aho 
Matua o ngā Kura Kaupapa Māori (Ministry of Education, 2008a). A key element 
within this document is the notion of actively promoting a close relationship between 
kura (school) and the community which is considered important for supporting 
children’s learning in mathematics (Anthony & Walshaw, 2007). While there are 
special teachers employed at the school, education for children enrolled at kura is a 
communal responsibility (Ministry of Education, 2008c). Participation of whānau 
(family) is expected and valued. However, involving Māori whanau in their children’s 
formal education requires much consideration. Genuine engagement and discussion 
with them about children learning mathematics is not easy or simple as many have a 
background of unsuccessful achievement in mathematics education themselves 
(Meaney & Fairhall, 2003).  
 Current education literature portrays mathematics as a dynamic entity that is 
constructed by learners themselves (Dossey, 1992; Mason, 2008). Cotton (2004) states 
for example that mathematics is about supporting people to develop a range of 
mathematics ideas in order to make sense of their world and thereby control the 
complexities within it. Article 29 in the UN Convention on the Rights of the Child 
espouses that children have a right for education to be directed to the development of 
mental abilities to their fullest potential (Munn, 2005). To this end children should be 
encouraged to develop a variety of mental strategies and choose the most appropriate 
for the situation or problem they are engaged in (Suggate, Davis & Goulding, 2006).  
 National assessments have indicated progress by Māori children in recent years 
regarding mental computation. This research notes however, that children in these 
contexts need to develop greater problem solving strategies (Crooks & Flockton, 2006). 
To advance mathematical thinking the development of efficient multiplicative strategies 
is necessary (Young-Loveridge, 2008). Higgins (2005) suggests that the use of concrete 
materials can help promote such mathematical thinking and discussion. Using 
equipment (accompanied by appropriate discourse) can have a positive effect on Māori 
children’s experiences in mathematics learning situations (Holt, 2001). Te Poutama Tau 
(Numeracy Development Projects) that has been implemented in some KKM, endorses 
this stance (Higgins, 2005).  
 Twenty-first century mathematics education promotes the use of tools such as digital 
technologies. Neal, Barr, Barrett and Irwin (2007) suggest that e-learning (learning 
supported by or facilitated by ICT) can provide a vehicle to achieve Māori aspirations in 
education. Use of appropriate technology can influence students’ engagement with 
mathematical tasks and help them understand mathematics in alternative ways (Calder, 
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2009). The curriculum document for KKM, Te Marautanga o Aotearoa (Ministry of 
Education, 2008b) encourages the use of ICT to support children’s learning. Recent 
initiatives by the Ministry of Education have endorsed this policy by providing for 
example, digital learning objects to support mathematics learning through te reo Māori 
(the Māori language).  
 Children are major stakeholders in their education. Their voices can alert educators 
to unique perspectives on mathematics learning (Averill & Clarke, 2006; Hāwera & 
Taylor, 2010; O’Shea, 2009). This paper seeks to acknowledge the importance of 
children’s perspectives regarding their mathematics education. Analysis of these 
perspectives can only contribute to understanding their mathematics experiences and 
constructing possibilities for future directions. 

Methodology  
This paper focuses on the responses of 61 year 5-8 Māori children in four KKM. Data 
were gathered as part of a larger study. Most children had participated in Te Poutama 
Tau, the Māori medium equivalent of the Numeracy Development Projects for several 
years prior to the study.  
 Schools were asked to nominate year 5–8 children from across a range of 
mathematics levels. Children were interviewed individually for about 30 minutes in te 
reo Māori or English (their choice) in a quiet place away from the classroom. They were 
told that the interviewer was interested in finding out about their thoughts regarding the 
nature of mathematics and their learning of pāngarau/mathematics. Data regarding five 
questions are discussed in this paper to illuminate the thinking about a range of ideas 
that these children held about their mathematics learning experiences. These are: 

• Ki ōu whakaaro, he aha tēnei mea te pāngarau? 
(What do you think mathematics is about?) 

• Kei te kainga ētehi tāngata hei āwhina i a koe ki te ako pāngarau? Pēhea to rātou 
āwhina? 
(Are there people at home who help you to learn mathematics? How do they 
help?) 

• I ā koe e mahi ana āu mahi pāngarau, ka whakamahia e koe ētehi taputapu pērā i 
te pirepire, te porotiti rānei? Ka whakamahia mo te aha?  
(When you do mathematics, do you use equipment like beads and counters? What 
are they used for?) 

• Pēhea nga rorohiko? Ka whakamahia ēnei mo te ako pāngarau? 
(What about computers? Do you use these when learning mathematics?) 
Of the 61 children interviewed, 44 were Year 7 and 8 (12-13year olds) who were 
also asked to solve a problem involving multiplication: 

• E hanga motokā ana te kamupene o Hera. E 4 ngā wīra mo ia motokā. E hia katoa 
ngā wīra mo te 17 motokā? 
(Hera has a car manufacturing company. She needs 4 wheels for each car. How 
many wheels does she need for 17 cars?) 

Further analysis and discussion of this data and other questions children were asked can 
be found in Hāwera, Taylor, Young-Loveridge & Sharma (2007) and Hāwera & Taylor 
(2008, 2009, 2010). 
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Results and Discussion 
Children’s thoughts about the nature of mathematics 

Table 1. Children think mathematics is about. 

Number and 
operations 

Don’t know 
No reply 

Learning  and 
stimulating 
the mind 

Links to a 
context 

Everything School 
work 

Problem 
solving 

18 17 12 8 3 2 1 
 

When asked what they thought mathematics was about the children’s responses varied 
with two categories dominating. Eighteen children indicated that mathematics was 
about number and operations while 17 did not offer a view about the nature of 
mathematics at all. This is of interest given that the pre-2008 national curriculum 
documents for English and Māori medium promoted the notion that children should 
learn a spectrum of mathematics ideas within a range of meaningful contexts, yet this 
intent has not been reflected in their responses. Only eleven of the 61 children suggested 
that mathematics might be connected to a situation outside the school arena. 
 For those children who do not have a view of the nature of mathematics, Presmeg 
(2002) suggests that they may find it difficult to recognize and appreciate the links 
between the mathematics ideas learned at school and those embedded in everyday 
practices in their communities. This absence of connection can compromise their ability 
to capitalise on the potential of the mathematics learning experiences available to them. 
Mathematics educators need to consider how learning for children in kura can be more 
closely integrated with those issues, activities, values and principles espoused and 
promoted within their communities. This may help these children to develop and 
articulate a view of mathematics and to make further connections with the mathematical 
ideas embedded in their lives and culture as Māori. There is an onus on education in 
New Zealand to support Māori children to achieve well mathematically while 
reaffirming the value of mathematics in their cultural milieu. 

People at home whom children think help them learn mathematics 

When children were asked about support at home for learning mathematics, 58 out of 
the 61 children responded in the affirmative. This support included mothers, fathers, 
grandparents, siblings, as well as uncles and aunties.  

Table 2. Children’s views about how people at home help them to learn mathematics. 

Offer 
strategies 

Not sure how Ask questions In various ways Teach me 
mathematics 
ideas 

No help 

18 11 10 10 9 3 

  
It is pleasing to note that 80% of the children reported that support for learning 
mathematics was available to them at home. This involved receiving advice about 
strategies to use, being asked questions, clarification of particular mathematics ideas 
and practise with number operations. However, 11 out of 58 children (almost 20%), 
were not sure how their families at home supported them with their mathematics 
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learning. The involvement of whānau, hapū and iwi in Māori education is crucial for 
learners’ success (Penetito, 2010). If children do not have a clear view of the role their 
families can play in helping them to learn mathematics, their expectations of any 
support from family members may be overlooked. Clarifying roles and expectations 
between members of families as well as between kura and families could assist children 
to learn mathematics. Families clearly have a powerful influence on children’s learning 
(Anthony & Walshaw, 2007; Ministry of Education, 2008c). Graham (2003) suggests 
that kanohi ki te kanohi (face to face) interactions are critical for establishing reciprocal 
relationships between Māori and kura to engender change to current practices. It is 
incumbent on mathematics educators to be more creative in facilitating situations where 
this can occur. 

Using equipment for learning mathematics 

The children’s responses to use of equipment are shown in Table 3. It is reassuring to 
note that 60 out of 61 children thought that using equipment could help people to learn 
mathematics. However, more than half said that they did not use it themselves (see 
Table 4). The major reason that children gave for not using equipment for mathematics 
learning was a perception that they did not need or want it. Some thought that the use of 
equipment would encourage an unnecessary reliance on this practice when older, while 
others considered it a necessity to visualise or become an abstract thinker as soon as 
possible in order to advance their mathematical thinking. Other children viewed the use 
of equipment as time-consuming and therefore an unproductive part of their 
mathematical learning sessions.  

Table 3. Children’s responses to using equipment. 

Use equipment Use equipment 
sometimes 

Don’t know Don’t use equipment 

16 9 1 35 

Table 4. Reasons for not using equipment. 

Didn’t need any  Didn’t want any Were not offered any 
19 12 4 

 
Mathematics education in New Zealand has for some time strongly encouraged the 
practice of using equipment in learning sessions particularly when new ideas are being 
introduced (Higgins, 2005; Ministry of Education, 2008c). It seems that the purpose and 
potential of using equipment could be made more explicit to some children so that they 
can avail themselves of opportunities for scaffolding their learning. Limited use of 
equipment can have consequences for learners and impact on their mathematical 
reasoning and subsequent understanding (Anthony & Walshaw, 2007; Higgins, 2005; 
Young-Loveridge, 2008). Future directions could include using equipment to focus on 
the exploration of ideas so that children recognise its value as media for understanding 
and learning mathematics. 
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Table 5. Use of computers for mathematics learning. 

Yes No 
13 48 

 The adoption of innovative equipment for survival is not a new idea for Māori (Ohia, 
2002). However, children’s responses regarding equipment indicated that there was 
very little use of ICT (including calculators) to support their learning in mathematics. 
There did not appear to be any planned, systematic use of ICT in classroom 
sessions. The digital tools that Māori (like others) are able to access outside the school 
environment seem to be absent from their cache of mathematics learning tools at school. 
Recent government initiatives (which include digital learning objects in te reo Māori) 
potentially offer Māori medium children a further avenue for exploring mathematics. 
Possibilities for future learning need to emphasise a greater use of ICT to facilitate the 
learning of mathematics ideas (Calder, 2009; Ministry of Education, 2008b). KKM may 
need further support to develop ways to embrace digital technologies for enhancing 
mathematics programmes.  

Children’s strategies for solving a multiplication question 

Data shows that 29 out of the 44 Year 7-8 children were able to solve the multiplication 
question correctly using a range of strategies. These strategies included: 

• (SPVP) is the Standard place value partitioning strategy e.g., 4x17= 
(4x10)+(4x7)=40+28 = 68 

• (DF) is the Derived fact strategy e.g., 4x17=(4x10)+(4x5)+(4x2)= 40+20+8=68. 
• (TD) is the Times doubling strategy e.g., 4x17=(2x17)+(2x17)=34+34=68 
• (TT) is the Times twice strategy e.g., 4x17=(2x17)x2=34x2=68  
• (DD) is the Double double strategy e.g., 4x17=(17+17)+(17+17)=34+34=68 
• (C4) is the Counting up in fours strategy e.g., (4,8,12,16, …, 68) 
• (ALG) is a traditionally-taught written procedure. 

Table 6. Strategies used for the multiplication task. 

Kura Number of 
year 7-8 
children 

SPVP DF TT DD TD C4 ALG No attempt 
made or 
strategy offered 

1 6 0 0 0 0 1 0 1 (1W) 4 
2 5 1 1 1 1 1 0 0 0 
3 12 6 0 0 0 1 0 2 3 
4 21 4  

(1W) 
4  
(1W) 

0 0 1 5  
(1W) 

6  
(3W) 

1 

Total 44 11 5 1 1 4 5 9 8 
 (nW) indicates the number of incorrect solutions 

 
Developing efficient mental strategies for solving problems has become a focus in 
mathematics education in New Zealand and other parts of the world in recent years. It is 
pleasing that some of these children demonstrated a range of strategies for solving a 
multiplication question. It remains a concern however that almost half were not able to 
begin the problem or they used what might be considered an inefficient mental strategy 

345



HĀWERA AND TAYLOR  

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

(counting on in 4’s or an algorithm). Multiplicative thinking is crucial for proficiency in 
problem solving (Young-Loveridge, 2008). Avenues must be carefully considered to 
ensure Māori children develop the strategies needed to support appropriate 
mathematical thinking. Māori have a right to be in a position of solving problems 
efficiently so they can fully participate in the challenges that arise in today’s world.  

Conclusion 
Research with children educated in Māori medium settings is limited. While this study 
involves only 61 children, they are from four different kura. If we are serious about 
maximizing opportunities for children in Māori medium to learn mathematics, their 
views must be considered. This data indicates that many children have well established 
views about the nature of mathematics, the support they have at home, the value of 
equipment and ICT and the strategies they might use for solving multiplication 
problems. The insights gained from considering these children’s responses suggest to us 
that a more focused strategy is required in Māori medium education to seek out multiple 
ways of: 

• helping children develop a broader view about the nature of mathematics; 
• ensuring that utilizing equipment including ICT, is an integral part of mathematics 

programmes; 
• exploring and maximizing whānau involvement in children’s mathematics 

learning;  
• supporting more children to become efficient multiplicative thinkers;  
• connecting children’s learning experiences with the mathematics in their 

community; and 
• enhancing education so that children in Māori medium can succeed 

mathematically as Māori. 
 
Acknowledgements 

We wish to thank the children, whānau and teachers of the kura who agreed to 
participate in this research. Many thanks also to the Ministry of Education for funding 
this research. 

References 
Anthony, G., & Walshaw, M. (2007). Effective pedagogy in mathematics/pāngarau: Best Evidence 

Synthesis iteration (BES). Wellington: Ministry of Education. 
Averill, R. & Clark, M. (2006). “If they don’t care, then I won’t: The importance of caring about our 

students’ mathematics learning. Set: Research Information for Teachers, 3, 15–20. 
Barton, B., & Fairhall, U. (1995). Is mathematics a trojan horse? In B. Barton & U. Fairhall (Eds.), 

Mathematics in Māori education (pp. 1–12). Auckland: The University of Auckland. 
Best, E., & Hongi, H. (2002). Māori numeration. Christchurch, NZ: Kiwi.  
Bishop, A. J. (1988). Mathematical enculturation: A cultural perspective on mathematics education. 

Kluwer Academic Publishers: Dordrecht. 
Calder, N. (2009). How digital technologies might influence the learning process. In R. Averill & 

R. Harvey (Eds.), Teaching secondary school mathematics and statistics: Evidence-based practice, 
(Vol. 1, pp. 131–144). Wellington: NZCER Press. 

Cotton, T. (2004). Inclusion through mathematics education. Mathematics Teaching, 187, 35–40. 

346



HĀWERA AND TAYLOR  

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

Crooks, T. & Flockton, L. (2006). Assessment results for students in Māori medium schools 2005. 
National Education Monitoring Project Report 38. Ministry of Education: University of Otago. 

D’Ambrosio, U. (2001). What is ethnomathematics and how can it help children in schools? Teaching 
Children Mathematics, 7(6), 308–310. 

Dossey, J. A. (1992). The nature of mathematics: Its role and its influence. In D. A. Grouws (Ed.), 
Handbook of research on mathematics teaching and learning (pp. 39–48). New York: Maxwell 
Publishing. 

Graham, J. (2003). Kanohi ki te kanohi: Establishing partnerships between schools and Māori 
communities. SET: Research Information for Teachers (2), 8–12. 

Hāwera, N., Taylor, M., Young-Loveridge, J., & Sharma, S. (2007). Who helps me learn mathematics, 
and how? Māori children’s perspectives. In B. Annan, F. Ell, J. Fisher, J. Higgins, K. Irwin, A. Tagg, 
G. Thomas, T. Trinick, J. Ward, J. & Young-Loveridge (Eds.), Findings from the New Zealand 
Numeracy Development Projects 2006 (pp. 54–66). Welllington: Ministry of Education. 

Hāwera, N., & Taylor, M. (2008). Māori and mathematics: “Nā te mea he pai mō tō roro!” (Because it’s 
good for your brain!). Te Poutama Tau Evaluation Report 2007. Research Findings in Pāngarau for 
Years 1–10 (pp. 36–48). Wellington: Ministry of Education. 

Hāwera, N., & Taylor, M. (2009). Some strategies used in mathematics by Māori-medium students. Te 
Poutama Tau Evaluations 2008. Research Findings in Pāngarau for Years 1–10 (pp. 22–33). 
Wellington: Ministry of Education. 

Hāwera, N., & Taylor, M. (2010). Māori students’views on equipment. Findings from the New Zealand 
Numeracy Development Projects 2009 (pp. 88–99). Wellington: Ministry of Education. 

Hemara, W. (2000). Māori pedagogies. Wellington: New Zealand Council for Educational Research. 
Higgins, J. (2005). Equipment-in-use in the Numeracy Development Project: It’s importance to the 

introduction of mathematical ideas. Findings from the New Zealand Numeracy Development Projects 
2004 (pp. 89–96). Wellington: Ministry of Education. 

Holt, G. (2001). Mathematics education for Māori students in mainstream classrooms. ACE Papers 11, 
18–29. 

Knight, G. (1994). Mathematics and Māori students: An example of cultural alienation? In J. Neyland 
(Ed.), Mathematics education: A handbook for teachers (Vol. 1, pp.36–40). Wellington, NZ: 
Wellington College of Education.  

Mason, J. (2008). ICMI Rome 2008: Notes towards WG2. Retrieved March 8, 2011, from 
www.unige.ch/math/EnsMath/Rome2008/WG2/Papers/MASON.pdf 

Meaney, T. & Fairhall, U. (2003). Tensions and possibilities: Indigenous parents doing mathematics 
curriculum development. In L. Bragg, C. Campbell, G. Herbert & J. Mousley (Eds.), Mathematics 
Education Research: Innovation, Networking, and Opportunity. Proceedings of the 26th annual 
conference of the Mathematics Education Research Group of Australasia (pp. 507–514).  Geelong: 
MERGA. 

Ministry of Education (2008a). New Zealand Gazette (No. 32, February 21, 2008). Official version of Te 
Aho Matua o ngā Kura Kaupapa Māori and an explanation in English. Wellington: Department of 
Internal Affairs. 

Ministry of Education (2008b). Te Marautanga o Aotearoa. Te Whanganui-a-Tara, Aotearoa: Wickcliffe. 
Ministry of Education (2008c). Book 3: Getting started. Wellington: Ministry of Education. 
Munn, P. (2005). Young children’s rights to numeracy. International Journal of Early Childhood, 3, 61–

126. 
Neal, T., Barr, A., Barrett, T., & Irwin, K. (2007). Toi whakaakoranga: Māori and learning technology. In 

L. E. Dyson, M. Hendriks & S. Grant (Eds.), Information Technology and Indigenous People 
(pp. 120–123.). London: Information Science Publishing. 

Ohia, J. A. (2002). Māori mathematics: Traditional measurement. Unpublished Master’s thesis, 
University of Waikato, Hamilton, New Zealand. 

O’Shea, H. (2009). The ideal mathematics class for grades 5 and 6: What do the students think? 
Australian Primary Mathematics Classroom, 14(2), 18–23. 

Penetito, W. (2010). What’s Māori about Māori education? The struggle for a meaningful context. 
Wellington: Victoria University Press. 

Pere, R. R. (1994). Ako: concepts and learning in Māori tradition. Te Kohanga Reo Trust Board: 
Wellington. 

347



HĀWERA AND TAYLOR  

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

Presmeg, J. (2002). Beliefs about the nature of mathematics in the bridging of everyday and school 
mathematical practices. In G. Leder. E. Pehkonen & G.Torner (Eds.), Beliefs: A hidden variable in 
mathematics education (pp. 293–312). Dordrecht: Kluwer.  

Riini, M. & Riini, S. (1993). Historical perspectives of Māori and mathematics. In Pāngarau – Māori 
mathematics and education (pp.16–20). Wellington: Ministry of Māori Development. 

Smith, G. H. (1991). Reform and Māori educational crisis: A grand illusion (Monograph no. 3). 
Auckland: Research Unit for Māori Education, University of Auckland. 

Suggate, J., Davis, A., & Goulding, M. (2006). Mathematical knowledge for primary teachers. Abingdon, 
UK: David Fulton.  

Young-Loveridge, J. (2008). Multiplicative thinking: The challenge for teachers of moving from a 
procedural to a conceptual focus. Findings from the New Zealand Numeracy Development Projects 
2007 (pp. 67–78). Wellington: Ministry of Education. 

Zaslavsky, C. (1998). Ethnomathematics and multicultural mathematics. Teaching Children Mathematics, 
4 (9), 502–503. 

348



HOW INCLUSIVE IS YEAR 12 MATHEMATICS? 

SUE HELME 
University of Melbourne 

sueh@unimelb.edu.au 

RICHARD TEESE 
University of Melbourne 

rvteese@unimelb.edu.au 

 
This paper draws from a longitudinal study of student achievement in Melbourne’s northern 
suburbs. It examines Year 12 students’ attitudes to mathematics, their experience of the 
mathematics classroom, their views of teachers and their expectations of success. Despite a 
differentiated Year 12 mathematics curriculum, there is evidence of inequity in students’ 
experience of mathematics. Perceptions of mathematics classrooms and mathematics 
teachers, and expectations of success, vary according to subject, gender and social 
background. Implications for pedagogical and curriculum reform are discussed. 

Introduction 
Mathematics is not a level playing field. Achievement gaps based on socioeconomic 
status (SES) are evident in early primary school and increase in magnitude throughout 
the school journey. Recent achievement data show this to be the case nationally 
(ACARA, 2009) and within the Northern Metropolitan Region (NMR), which is one of 
the poorest regions in Victoria. In 2007 the NMR’s literacy and numeracy achievement 
levels were among the lowest in the state (Department of Education and Early 
Childhood Development (DEECD), 2009). The region also had the lowest VCE study 
scores in Victoria and the lowest rate of transfer to university (Helme, Teese & Lamb, 
2009).  
 Helme, Teese & Lamb (2009) reported that, within the region, there were marked 
social gaps in Year 7 achievement and subsequent achievement in Year 9. Most low 
achievers from poorer backgrounds did not improve their position relative to the 
average student during lower secondary education. For example, in mathematics 80 % 
of low achievers from the lowest SES band remained low achievers. The higher the 
social level of students, the greater the chance of the weakest learners improving—in 
addition to the lesser likelihood of low achievement in the first place.  
 In recognition of low student achievement levels, the NMR embarked on a major 
school improvement campaign in 2008 whose key initiative is the Achievement 
Improvement Zones (AiZ) project. The AiZ aims to improve literacy and numeracy 
levels across all schools in the region, focusing on leadership development, professional 
learning in numeracy and literacy, ongoing coaching and training and support from the 
region, department and education experts (DEECD, 2009).  
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 This paper draws from a broader longitudinal study funded by DEECD that is 
evaluating the impact of strategies to lift achievement within the NMR, the Raising 
Achievement in Public Schools (RAPS) project. The project is synthesising data from a 
range of sources: NAPLAN data, student and teacher surveys and teacher interviews. 
Years 3, 5, 7 and 9 NAPLAN data will be monitored for a period of five years, with a 
focus on SES differences in achievement as students progress from one stage to the 
next.  
 Teacher surveys have been conducted in a sample of 10 primary and 10 secondary 
schools in the region to obtain a teacher perspective on the challenges of lifting student 
achievement and the strategies needed to achieve progress. Focus groups with teachers 
and leadership teams were undertaken in 2011 and a second wave of interviews is 
planned for 2013 to allow teachers to reflect on progress. Surveys have been completed 
with students in Years 3, 5, 7, 9, and 12 in the 20 sample schools to obtain a student 
perspective on learning and achievement. The focus of this paper is on students’ 
experiences of mathematics in Year 12 (final year) and asks how inclusive it is. 

Background and research questions 
In Victoria, almost all young people complete school within the framework of the 
Victorian Certificate of Education (VCE). Mathematics in the VCE is optional, and is 
designed to accommodate a broad range of student skills, interests and abilities through 
the provision of a set of subjects that forms a hierarchy of difficulty. Further 
Mathematics is the least difficult and Specialist Mathematics is the most advanced, with 
Mathematical Methods occupying an intermediate position. Students enrolled in 
Specialist Mathematics must also be concurrently enrolled in Mathematical Methods. 
Students enrolled in the Victorian Certificate of Applied Learning (VCAL), a non-
academic alternative to VCE, can undertake a VCE mathematics study or a VCAL 
numeracy skills unit, which is a more practical subject with a vocational emphasis. 
 Gender differences are characteristic of enrolment patterns in Year 12 mathematics. 
Enrolment rates derived from VCAA (2010) figures indicate that participation in 
Further Mathematics is much the same for males and females, but that girls are less 
likely than boys to select Mathematical Methods (26.0% compared with 37.4%) and 
even less likely to enrol in Specialist Mathematics, where the enrolment rate of boys is 
more than double that of girls (13% compared with 6.2%). 
 SES differences in VCE mathematics participation are also evident. Helme and 
Lamb (2007) examined 2005 enrolment data and found that enrolment levels in Further 
Mathematics were relatively similar in all SES quintiles, but in Mathematical Methods 
and Specialist Mathematics enrolment levels were substantially higher in higher SES 
quintiles. Yeoh and Lancaster (2010) also found a social gradient in the distribution of 
enrolments in Mathematical Methods and Specialist Mathematics, but not in Further 
Mathematics. SES differences also characterise mathematics enrolment in the NMR. 
Enrolment rates in Mathematical Methods are almost twice as high in the highest SES 
quintile as in the lowest, and for Specialist Mathematics this ratio exceeds 2:1 (Helme, 
Teese & Lamb, 2009).  
 Outcomes in Year 12 mathematics also demonstrate a SES pattern. Yeoh and 
Lancaster (2010) found a social gradient in study scores in all three mathematics 
studies. Helme, Teese and Lamb (2009) found that Further Mathematics students in the 
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highest SES quintile in NMR were more than twice as likely than their counterparts in 
the lowest SES quintile to achieve a study score above the defined average of 30. 
Similar patterns were evident in Mathematical Methods. For example, more than half 
the Mathematical Methods students in the lowest quintile of SES achieved scores below 
24 (53 per cent), compared with 18 per cent of those in the highest SES quintile.  
 There is also evidence of inequality in students’ experience of Year 12 mathematics 
(Teese, 2000). Teese, Lamb, Helme & Houghton (2006) found substantial differences in 
students’ views of mathematics between different schools and between different 
mathematics subjects. Mathematical Methods students were more satisfied with 
teachers, the classroom environment and the subject itself than Further Mathematics 
students. Furthermore, girls perceived mathematics as less interesting, more difficult 
and less relevant to the real world than boys did.  
 These findings warrant further investigation. If mathematics is inclusive, as it claims 
to be, there should be broadly similar levels of satisfaction across the different study 
options. One would also hope that quality of classroom experience would be much the 
same, regardless of individual characteristics such as gender and socioeconomic status. 
This study set out to explore whether or not this is the case. 

Methodology 
The data for this paper were derived from a survey of Year 12 students in ten secondary 
schools in the NMR. The ten schools were selected on the basis of their intake-adjusted 
performance on a range of indicators such as attendance, academic achievement and 
post-school transitions. The sample comprised five schools with above expected 
performance, one school with expected performance and four schools with below 
expected performance. The schools were diverse in terms of size and the socioeconomic 
background of students. 
 The Year 12 surveys were completed by consenting students during the last two 
weeks of Term three, 2010. Of a total enrolment of 1107 Year 12 students in the ten 
schools, 841 completed the survey, giving an overall completion rate of 76 per cent. 
Six-hundred and three students nominated a mathematics subject that they were 
currently enrolled in and responded to a set of questions about that subject. These 
questions canvassed their views of subject content and difficulty, quality of teaching, 
quality of classroom experience and their expectations of success. Students were also 
invited to contribute their ideas on how to improve mathematics and the way it is taught 
in their school.  
 Students were also asked to nominate, for each parent separately, their highest level 
of school completed and their highest post-school qualification, in order to establish a 
measure of SES. These data were combined into a single scale showing the qualification 
level of the parent with the highest qualification level. Students were then grouped into 
five categories according to parental qualifications. In the discussion that follows two 
contrasting socioeconomic groups were used: students with a parent who had obtained 
university qualifications and students for whom neither parent went beyond Year 11. 
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Results and Discussion 
Is quality of classroom experience independent of the type of maths 
studied? 
Figure 1 shows students’ views of their current mathematics study, and indicates 
significant differences between subjects in students’ perceptions of their classroom 
experience. VCAL numeracy students are more likely than other students to agree that 
their teacher understands how they learn and to view the subject as relevant to their 
future plans, suggesting a good match between subject content and pedagogy and the 
learning needs of students. Conversely, Further Mathematics students are the least likely 
of all students to agree that they enjoy the subject, that their teacher makes the work 
interesting or that their teacher understands how they learn. 
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Figure 1. Students’ views of current mathematics study, by subject. 

Can we conclude that there is a mismatch in Further Mathematics between curriculum 
content and teaching approaches, on the one hand, and the needs of learners, on the 
other? Is the relatively low level of student satisfaction in this study a reflection that 
Further Mathematics enrols many academically-weaker students who struggle to engage 
with mathematics and may have been pressured into taking “at least some maths”? They 
are certainly the least likely to endorse its connection with future life and career. If 
Further Maths is the path of least resistance for students who dislike mathematics, this 
places particular pressure both on the design of the study and on the nature of the 
teaching approaches that are required to engage students in successful learning.  
 The more academic options of Specialist Mathematics and Mathematical Methods 
are relatively strongly endorsed in terms of enjoyment and interest, suggesting a better 
match between the content and pedagogy of these subjects and the needs of their 
clientele. 

Is quality of classroom experience independent of gender? 
Figure 2 shows gender differences in students’ mathematics classroom experience, for 
Further Mathematics and Mathematical Methods (numbers in Specialist Mathematics 
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and VCAL Numeracy were too small for further analysis). Gender differences in favour 
of boys were evident for all items, but the magnitude of the differences varied.  
 Girls in both subjects were significantly less likely than boys to perceive 
mathematics as relevant and useful for the future. Female Further Mathematics students 
were significantly less likely than their male counterparts to agree that their teacher 
understands how they learn, and significantly more likely to report that the pace of 
learning is too fast. Female Mathematical Methods students were significantly less 
likely than their male counterparts to agree that they enjoy the subject. While gender 
differences in mathematics anxiety were not significant, the trend suggested here is 
consistent with the findings of previous studies (e.g., OECD, 2004). 
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Note: Levels of significance based on Chi-square tests: *p<0.5, **p<0.01 

Figure 2. Students’ views of current mathematics study, by gender. 

Is quality of classroom experience independent of SES background? 
Figure 3 displays quality of classroom experience in Further Mathematics and 
Mathematical Methods (Specialist Mathematics and VCAL Numeracy were excluded 
from the analysis due to small numbers). 
 While none of the differences was statistically significant, the data suggest some 
notable disparities between children of contrasting social backgrounds. In both subjects, 
the pace of learning appeared to be a greater problem for students from a less educated 
background, and in Mathematical Methods there were consistent differences in favour 
of children of university educated parents. These findings are consistent with Teese’s 
(2000) view of the influence of family educational, economic and cultural capital on 
access to Mathematical Methods: the further up the hierarchy of cognitive demands, the 
greater the call made by the curriculum on cultural resources and the narrower the SES 
base from which these are available. 
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Figure 3. Students’ views of current mathematics study, by SES background. 

Are expectations of success equitably distributed? 
As Figure 4  indicates,  expectations of  success varied among  subjects.  (VCAL was 
excluded from the analysis due to small numbers.) Further Mathematics students 
were  the  least  confident  of  success,  perhaps  not  surprising,  given  that  many 
students  taking  this  option  have  a  history  of  low  achievement,  while  Specialist 
Mathematics  students  were  the  most  confident,  with  Mathematical  Methods 
students occupying an intermediate position. In Further Mathematics there was no 
notable gender difference in students’ expectations of success, but this was not the 
case  for  Mathematical  Methods  and  Specialist  Mathematics.  Male  Mathematical 
Methods  students  were  more  than  three  times  more  likely  than  their  female 
counterparts  to  expect  to  do  very  well  (29%  compared  with  9%).  The 
corresponding percentages for Specialist Mathematics were 62% and 40%.  
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Figure 4. Students’ expectations of success, by subject and gender 
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Given that girls take Methods less frequently than boys, one might expect that those 
who enrol in the subject have at least as much confidence as their male peers. But they 
do not, which suggests that there is still some way to go to improving gender equity, 
quite apart from the persistent gap in enrolment rates. 
 When data for all mathematics subjects were combined, students from more highly 
educated homes were more likely than students from less well educated homes to expect 
to do very well (25% compared with 14%). The compounding effect of being a boy 
from a well educated home background pushed this expectation to 33%, while that for a 
girl from a less well educated home reduced this expectation to only 10%. 
 These findings are consistent with the view that children of more highly educated 
parents have stronger social and cultural ties with the values and practices of senior 
secondary schooling, and therefore feel more confident of success. Conversely, children 
from families where there is no experience of completion of secondary education or of 
further education are more likely to struggle to adapt to the demands of the VCE (Teese, 
2000; Teese, Lamb, & Helme, 2009). 
  

Improving mathematics and the way it is taught 
Students were asked to complete an open-ended item asking them to make suggestions 
for improving mathematics and the way it is taught. The findings of this aspect of the 
analysis will be reported separately as space does not permit a detailed discussion here. 
Suffice to say that the most frequently mentioned suggestion for improvement 
concerned quality of teaching. Students asked for teachers who could speak and explain 
more clearly, and adapt their explanations to individual needs. They also called for 
teaching methods that were less dependent on textbooks and were more interactive.  
 Other feedback included better teaching at earlier year-levels, more thorough 
preparation for Year 12, and a slower pace of teaching in Year 12. Students also asked 
for more enjoyable coursework and course content that has stronger links to real life 
situations. Students in all subjects expressed a desire for more “hands on” mathematics.  
 Student feedback suggests that some schools need to review curriculum, pedagogy 
and teacher allocation practices in earlier years. It also highlights the difficulties schools 
face in finding mathematics teachers who have the appropriate expertise. This is a 
particular issue in low SES schools in the region, which are more vulnerable to 
shortages of qualified mathematics teachers and high teacher turnover (Helme, Teese & 
Lamb, 2009).  
 These findings reveal a mismatch between what students say they need and what 
they get. While students appear to have a good understanding of their needs as learners, 
these often clash with externally imposed demands and constraints. Teachers must 
complete the coursework in the time available and prepare their students for final 
examinations. They cannot slow the pace, diverge from the set curriculum or amend the 
content to suit students’ needs and interests. This issue has been previously identified in 
low SES schools, where the need to accommodate student diversity is the greatest 
(Helme, Lamb, & Teese, 2009; Teese, Lamb, & Helme, 2009). 
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Conclusion 
Despite a differentiated Year 12 curriculum, students undertaking different Year 12 
Mathematics subjects in the NMR do not enjoy the same quality of experience. 
Perceptions of mathematics classrooms, mathematics teachers and expectation of 
success vary according to the mathematics subject students are enrolled in.  
 This study also shows that children of tertiary educated parents are more connected 
to mathematics and more confident of success, and therefore better placed to achieve 
good results and enter tertiary education. These students are also more likely to attend 
larger schools that do not experience the serious staffing issues confronted by smaller, 
poorer schools in the NMR. It is noteworthy that four of the ten schools in this study are 
no longer able to offer Specialist Mathematics classes.  
 Despite decades of research in gender differences and strategies for making 
mathematics content and pedagogy more responsive to the needs of girls, this study 
reveals there is still more to be done.  
 Student feedback obtained in this study provides some signposts for action, which 
include more engaging pedagogy, better ways of preparing students for VCE and a 
stronger emphasis on addressing individual learning needs.  
 Inequities in the experiences and outcomes of Year 12 mathematics students cannot, 
however, be overcome simply by teachers in low SES schools continuing to struggle to 
adapt to the demands of the VCE. School systems must also heed student feedback, 
reinvigorate the curriculum and provide enough trained teachers to ensure that all 
students have the opportunity to engage deeply with mathematics. What better time than 
now to review curriculum and pedagogy, in the current context of the development of 
the Australian mathematics curriculum? Otherwise, too many students will remain 
marginalised from mathematics and the rewards conferred by curriculum and pedagogy 
will continue to be inequitably distributed.  
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Despite considerable research with students of calculus, rate and hence derivative, 
remain troublesome concepts to teach and learn. The demonstrated lack of conceptual 
understanding of introductory calculus limits its usefulness in related areas. Since rate is 
such a troublesome concept this study trialled reversing the usual presentation of 
introductory calculus to begin with area and integration, rather than rate and derivative. 
Two groups of first year tertiary students taking introductory calculus were selected to 
trial the effect of changing the sequence; a control group and a group which followed 
the reversed sequence. Two-sample t-tests undertaken in Minitab on the examination 
results indicate there is no significant difference between the examination results of the 
two groups. These results indicate that changing the sequence of delivery was not 
detrimental to the development of conceptual understanding of introductory calculus. 

Background 
Rate is an important mathematical concept that is often poorly understood by many 
people. It is a complicated concept comprising many interwoven ideas (see Figure 1) 
such as: change in a variable resulting from a change in a different variable; the ratio of 
two numeric, measurable quantities; constant and variable rate; and average and 
instantaneous rate. It expresses the change in the dependent variable resulting from a 
unit change in the independent variable, and involves the ideas of change in a quantity; 
co-ordination of two quantities; and the simultaneous covariation of the quantities 
(Thompson, 1994).  
 

 

Figure 1: Complexity of the mathematical concept of rate. 
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Rate is strongly connected to other mathematical concepts, such as ratio; proportion; 
fraction; division; gradient; and derivative. In addition, rate may be seen as a purely 
abstract mathematical notion or embedded in the understanding of real-world 
applications. Rate is considered constant if the way in which the quantities change in 
relation to each other remains the same and variable if it differs. For example, speed 
may express a constant relationship between the distance and time, whilst this 
relationship varies when speed is changing.  

Despite considerable research with students of calculus, rate remains a troublesome 
concept to teach and learn (see for example Orton, 1983; Ubuz, 2007). Calculus 
students‘ difficulties with rate manifest in many forms. One of the most significant of 
these is the confusion between the rate and the extensive quantities that constitute it 
(Rowland & Jovanoski, 2004; Thompson, 1994), for example understanding of speed as 
a distance. Thompson, reporting on the understanding of rate of his study of nineteen 
advanced mathematics tertiary students, describes students‘ confusion between the 
notions of change and rate of change and also confusion between amount and change in 
amount, for example when discussing the manner in which the volume of an inverted 
cone changed with height. Rowland and Jovanoski‘s study of the understanding of rate 
of fifty-nine first year science students with previous experience with calculus, found 
that many students confused amount and rate, for example they report one student‘s 
response that the constant term in a differential equation ―represents the amount of drug 
going into the patient‘s body‖ or the constant term in a differential equation ―is the 
initial amount of drug in the body‖ (p. 511). They suggest this confusion often resulted 
from a reliance on constant rate ideas not valid in the differential equations presented. 
Their findings indicate that the confusion between amount and rate, noted by Thompson 
(1994) still persists.  

Other difficulties with understanding of rate include: confusion relating to symbols 
and their use as variables (White & Mitchelmore, 1996); lacking awareness of the 
relationship between slope, rate and the first derivative (Porzio, 1997); 
misunderstandings related to average and instantaneous rate (Hassan & Mitchelmore, 
2006); related-rates problems in speed (Billings & Kladerman, 2000); and geometric 
contexts (Martin, 2000). White and Mitchelmore (1996) warn that symbolic 
manipulation may limit students‘ understanding to algebraic symbols and routine 
procedures. Hassan and Mitchelmore (2006) report on their study of fourteen Australian 
senior secondary students‘ understanding of average and instantaneous rate, suggesting 
that the students‘ previous introduction to calculus had not influenced the students‘ 
understanding of average rate or instantaneous rate. They emphasise the importance of a 
sound understanding of average and instantaneous rate before teaching more advanced 
concepts. Bezuidenhout‘s (1998) study involved five hundred and twenty-three South 
African first year calculus students and investigated these students‘ understanding of 
rate. He claims that the main confusion about rate involves the ―relations between the 
concepts ‗average rate of change‘, ‗average value of a continuous function‘ and 
‗arithmetic mean‘‖(p. 397). Similarly, Oliveros (1999) states that rate was often seen as 
a numerical operation, similar to the treatment of rate in early secondary years, rather 
than a relationship between quantities. 

Since the 1980s concern has been expressed regarding the difficulties some calculus 
students have with the concept of rate. The older research is cited to emphasise the 
persistence of these difficulties. Orton (1983) reports on the understanding of derivative 
held by one hundred and ten undergraduates in an introductory calculus course and 
states that these students showed some fundamental misconceptions such as confusion 
between: rate of a straight line versus rate of a curve; rate at a point versus rate over an 
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interval; and the derivative at a point versus the point‘s y-coordinate. More recently, 
Rasmussen and King (2000) observe that the confusion between rate of a straight line 
versus rate of a curve, noted by Orton many years earlier, was still evident in the initial 
understandings of rate brought by students to their project. Similarly, Hassan, 
Mohamed, and Mitchelmore (2000) report that the students in their study had difficulty 
linking tangents to rate and derivatives. The twenty-seven tertiary Maldivian students in 
Hassan et al.‘s study relied on formulae and rules. These students found it difficult to 
visualise the changing tangent as a point moves along a curve and were confused about 
the difference between average and instantaneous rate. 

The demonstrated lack of conceptual understanding of introductory calculus limits 
its usefulness in related science applications. Lopez-Gay, Martinez-Torregrosa, Gras-
Marti and Torregrosa (2002), in their study of 103 high school physics teachers and 
analysis of 38 Physics text books, stress the importance of students‘ understanding of 
differential calculus in understanding physics. They claim that physics students do not
understand the use of calculus in simple real-world problems and have difficulty in 
applying it with autonomy. This suggests that the value of calculus to other fields of 
study is undermined by students‘ lack of conceptual understanding of it.  

Despite the implementation of many innovations, such as the use of technology, 
designed to improve the outcomes of calculus courses, calculus students‘ lack of 
understanding of the fundamental ideas of change and rate persist (Hassan et al. 2000; 
Rasmussen & King, 2000; Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Rowland & 
Jovanoski, 2004; Coe, 2007; Ubuz, 2007). Since these fundamental ideas of change and 
rate provide an important underpinning of derivative, researchers continue to persevere 
to find effective innovations. One such innovation is reported in this paper. 

―[T]oday the concept of the derivative is usually presented first in calculus courses, 
with the notion of the integral coming later‖ (Boyer, 1970, p. 69). Currently, the usual 
sequence (Anton, Bivens & Davis, 2005 a recent tertiary introductory calculus text used 
in Australia) of introducing calculus involves limits, differentiation then integration 
where students are presented with a formal, abstract definition of limits and limit laws; a 

formal, abstract definition and rule ( hxfhxfdx
dy

h /))()((lim
0 fhh

lim
0 ) for differentiation; 

and integration viewed as anti-differentiation, with applications to area. In Anton et al. 
(2005), the first example of rate in their chapter on derivatives is the velocity of a 
moving body, such as a car or a ball. They emphasise this particular rate with a detailed 
discussion of displacement, velocity, average velocity, and instantaneous velocity. It is 
only after this detailed discussion that other examples of rate are mentioned, for 
example ―the rate at which the length of a metal rod changes with temperature‖ (p. 153). 
This is followed by a definition for the slope of a linear function as ―[a] 1-unit increase 
in x always produces an m-unit change in y‖ which is illustrated with the metal rod 
example. The unit rate is emphasised by the diagram seen in Figure 2. Variable rate is 
introduced through reference to the symbolic and graphic representations of the general 
function y = f(x), again emphasising a unit rate approach (see Figure 2). The usual 
approach to the introduction of the concept of derivative assumes a sound understanding 
of rate and illustrates the derivative as the gradient of the tangent to the curve at a point, 
then moves quickly to emphasise symbolic manipulation. 
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Figure 2. Rate diagrams from Anton et al., 2005, pp.153–154. 

For example, in Garner et al. (2006), a mathematics text with an introduction to calculus 
used in some Victorian schools, the symbolic representations of a function are 
manipulated to establish a symbolic expression for instantaneous rate by taking the limit 
of the average rate. Some students become competent in this manipulation and can 
accurately produce the symbolic representation of the derivative (delos Santos & 
Thomas, 2005), but may not appreciate its meaning and connection to other 
mathematical concepts studied in earlier years.  

Since rate is such a troublesome concept which affects the conceptual understanding 
of derivative, it is proposed that reversing the usual presentation of introductory 
calculus to begin with area and integration rather than rate and derivative, may improve 
students‘ conceptual understanding of this important area of mathematics. Doorman and 
van Maanen (2008) suggest that in ―history we do not see the regular textbook approach 
from limits to differential quotient, from methods for differentiation to methods for 
integration, and finally the main theorem of calculus‖ (p. 10). This view is supported by 
Boyer (1970) who asserts ―[t]hose textbooks that reverse the roles and place the integral 
before the derivative in a sense have history on their side, inasmuch as integration 
preceded differentiation by about two thousand years‖ (p. 69). This pilot study explores 
the effect of changing the usual sequence currently used to introduce calculus to begin 
with area and integration before rates and differentiation. 

Method  
Many mathematics students are introduced to calculus in secondary school; however, it 
was decided to trial the alternate sequence with tertiary students because of the high-
stakes nature of the examinations of subjects undertaken in senior secondary school 
when calculus is usually introduced. It was anticipated that schools would be reluctant 
to participate unless they could be re-assured that their students would not be 
disadvantaged by undertaking the alternate sequence.  

Two groups of first year tertiary students taking introductory calculus were selected 
to trial the effect of changing the traditional sequence described above. One group 
followed the traditional sequence and the other group followed a sequence beginning 
with integration. Both of these groups consisted of mathematics majors; human 
movement students intending to teach physical education and mathematics; and 
education students intending to teach mathematics. Whilst many students had been 
introduced to calculus at school, about one third of students had no previous experience 
of calculus.  
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Both groups were taught by the author—ensuring, as far as possible, a comparative 
delivery of the material. The learning experiences for both groups emphasised the 
support of a hand-held computer algebra system (CAS) and strong real-world 
connections. Delivery of content involved careful treatment of rate and extensive 
numerical integration stressing conceptual understanding as well as application of rules 
for differentiation and integration. At all stages of the delivery, strong, explicit 
connection to students‘ prior knowledge was attempted (Hiebert & Carpenter, 1992).

The concept of rate was explored in numeric, graphic and symbolic representations 
with instances of both constant and variable rate. The notion of average rate which built 
on students‘ understanding of linear functions, and hence constant rate, was employed 
to demonstrate a way of quantifying variable rate. The notion of instantaneous rate was 
developed by considering the average rates resulting from smaller and smaller intervals 
of the independent variable, that is, an informal treatment of the limit of average rate. 
The term instantaneous rate was eventually re-named derivative and symbolic 
manipulations undertaken to find the derivative from first principles using 

 noting that the fraction part is really just average rate. In this way, 
the concept of derivative was explicitly connected to the concept of rate. A 
consideration of limits was also employed in the introduction to numerical integration.  

The concept of area was explored by considering a circle divided up into sectors 
(see Figure 1a) and finding the sum of the areas of the triangles bounded by two radii 
and a chord (the area shaded in Figure 1a). The number of sectors was increased and the 
table seen in Figure 1b completed, leading to a discussion of the relationship of this 
limiting process to the formula for the area of a circle. This exercise provided the link to 
students‘ prior knowledge for numerical integration. A feature of the introduction to the 
Fundamental Theorem of Calculus (FTC) was the explicit connection between 
numerical integration and differentiation from first principles (see Figure 1c).  

No. of 
Triangles 

Angle at 
centre 

Total area 

8 π/4 2.82843r2

16 π/8 3.06147r2

32 π/16 3.12145r2

64 

128

Figure 1a. Introduction to 
numerical integration.

Figure 1b. Demonstration of 
limiting process leading to formula.

Figure 1c. Development of FTC.

The results of the end of semester exam were compared using a two sample t-test. The 
exam included a mix of CAS-supported questions (see Figure 2, below) and questions 
which required conceptual understanding of the concepts of integration and 
differentiation (see Figure 3) and represented 50% of the assessment for the unit.
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Your backyard pool is kidney shaped and its 
width can be modelled as a function of its 
length (x) using the rule  

180,7)( 2
18
253

9
14

324
1 18725

9324 xxxxxxw
 

(a) Use a numerical method to the total area 
of the pool by finding the area under this 
graph, for example divide the interval up into 
four subintervals and add up the areas.  
(b) Check your approximation using a 
theoretical method. 

Sketch one graph which satisfies all of the 
following conditions; 

f(0) = 0 ,  
f ‘ (−2) = f ‘(1) = f ‘ (9) = 0 , 
f ‘’ (x) > 0 on (−∞, 0) and (12,∞), 
f ‘’ (x) < 0 on (0, 6) and (6, 12) 

)(lim
6

xf
x  

0)(lim 0lim xf
x

 

Figure 2. Example of CAS-supported question. Figure 3. Example of question requiring 
conceptual understanding of integration & 

differentiation.

Results and discussion 
Figure 4 shows the results of a two-sample t-test undertaken in Minitab on the 
examination results of the two groups. The p-value of 0.809 indicates that there is no 
significant difference between the examination results of the two groups at the 95%
confidence level. This suggests that changing the sequence of delivery of introductory 
calculus had no effect on the overall performance of the students. 
Descriptive Statistics: group 1 - trad, group 2 - alt  
Variable Mean StDev Minimum Q1 Median Q3 Maximum 

group 1 - trad 64.19 22.84 14.29 50.89 68.45 79.76 98.81 

group 2 - alt 62.76 19.13 20.67 46.33 60.00 79.67 96.00  

Two-Sample T-Test and CI: group 1 - trad, group 2 - alt  
Two-sample T for group 1 - trad vs group 2 - al 

Difference = mu (group 1 - trad) - mu (group 2 - alt) 

Estimate for difference: 1.43 

T-Test of difference = 0 (vs not =): T-Value = 0.24 P-Value = 0.809 DF = 44 

Figure 4. Minitab printout of 2 sample t-test on examination results. 

It was thought that greater insight into the results might be gained by separating the 
results for differentiation questions from integration questions. Figure 5 shows the 
results of a two-sample t-test undertaken in Minitab considering questions where an 
understanding of differentiation was required. The p-value of 0.857, seen in Figure 5, 
indicates that there is no significant difference between the examination results on the 
questions relating to differentiation of the two groups.

Descriptive Statistics: group 1 - trad-diff, group 2 - alt-diff  
Variable Mean StDev Minimum Q1 Median Q3 Maximum 

group 1 - trad-diff 65.07 22.44 16.67 50.42 65.83 84.58 98.33 

group 2 -alt - diff 63.98 20.64 22.22 47.78 65.56 81.11 94.44 

Two-Sample T-Test and CI: group 1 - trad-diff, group 2 - alt-diff  
Two-sample T for group 1 - trad-diff vs group 2 -alt - diff 

Difference = mu (group 1 - trad-diff) - mu (group 2 -alt - diff) 

Estimate for difference: 1.08 

T-Test of difference = 0 (vs not =): T-Value = 0.18 P-Value = 0.857 DF = 47 

Figure 5. Minitab printout of 2 sample t-test on differentiation questions. 
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Figure 6 shows the results of a two-sample t-test undertaken in Minitab on the 
examination results of the two groups but only considering questions where an 
understanding of integration was required. The p-value of 0.064, seen in Figure 6, 
indicates that there is no significant difference between the examination results on the 
questions relating to integration of the two groups.  
 
Descriptive Statistics: group 1 - trad-int, group 2 - alt-int  
Variable Mean StDev Minimum Q1 Median Q3 Maximum 

group 1 - trad-int 61.98 28.40 0.00 41.67 66.67 83.33 100.00 

group 2 -alt - int 47.84 25.15 0.00 28.13 50.00 68.75 93.75 

 

Two-Sample T-Test and CI: group 1 - trad-int, group 2 - alt-int  
Two-sample T for group 1 - trad-int vs group 2 -alt - int 

Difference = mu (group 1 - trad-int) - mu (group 2 -alt - int) 

Estimate for difference: 14.13 

T-Test of difference = 0 (vs not =): T-Value = 1.90 P-Value = 0.064 DF = 46 

Figure 6. Minitab printout of 2 sample t-test on integration questions. 

Conclusion  
These results indicate that changing the sequence of delivery of introductory calculus 
was not detrimental to the development of conceptual understanding of introductory 
calculus for this group of tertiary students. However, many of the students in both 
groups had previously been introduced to calculus at school, so it is unclear how much 
this school-based introduction influenced their level of conceptual understanding. It 
may be that the alternate delivery trialled here with these tertiary students has a different 
effect when utilised at the school level. Perhaps this sequence of delivery may be more 
effective when all students are first introduced to calculus. This pilot study was 
undertaken to gauge whether the alternate sequence seriously disadvantaged students. 
This was an important consideration as calculus is included in the subjects taken by 
secondary school students in their high stakes examinations for university entrance. It 
was necessary to establish this before attempting to trial the alternate sequence at the 
secondary school level. Further research will be necessary to explore the efficacy of the 
alternate sequence for introductory calculus at the school level. 
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The results of the National Assessment Program – Literacy and Numeracy [NAPLAN] tests 
of Australian students in 2008, 2009, and 2010 were analysed by individual question 
responses (percentage correct) of females and males. The analysis of Grade 3 and Grade 9 
data demonstrate that a decline in the achievement of females is evident and these gender 
differences become larger as students progress through their schooling. 

Introduction 
National Assessment Program – Literacy and Numeracy [NAPLAN] testing 
commenced in 2008. As part of the program, students in Grades 3, 5, 7 and 9 are 
simultaneously tested using national tests in Reading, Writing, Language Conventions 
(Spelling, Grammar and Punctuation) and Numeracy (Australian Curriculum, 
Assessment and Reporting Authority [ACARA], 2010a). As explained by ACARA 
(2010b), the tests broadly reflect aspects of literacy and numeracy in all States and 
Territories. The types of test formats and questions are chosen so that they are familiar 
to teachers and students across Australia. The Victorian Curriculum and Assessment 
Authority [VCAA] (2010a) affirms that “questions for NAPLAN tests are developed 
with reference to the nationally agreed Statements of Learning which reflect the core 
elements of the curriculum documents used in the different states and territories” (p. 2) 
 Results of the National Assessment Program – Literacy and Numeracy, in 2008, 
2009 and 2010, the Program for International Student Assessment [PISA], in 2006 and 
2009, and the Trends in International Mathematics and Science Study [TIMMS], in 
2007, raise significant concerns with respect to the mathematical achievement of 
Australian females. The PISA is an initiative of the Organisation for Economic Co-
operation and Development [OECD] in Paris and reports on indicators in education 
(Thomson & DeBortoli, 2008). Similarly, the goal of TIMMS is to provide comparative 
information on educational achievement across countries to improve teaching and 
learning in mathematics and science (Thompson, Wernert, Underwood & Nicholas, 
2008).  
 Thomson and DeBortoli‟s (2008) analysis of the 2006 PISA results showed that 
Australian males performed significantly better in mathematics than Australian females. 
This was not the case in PISA 2003 where, although males achieved a mean score 
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higher than females, the difference was not statistically significant (Thomson & 
DeBortoli, 2008). Thomson, De Bortoli, Nicholas, Hillman and Buckley‟s (2010) 
analysis of the 2009 PISA data showed that Australian males scored ten points higher, 
on average, than Australian females in the mathematical literacy assessment. They go 
on to say that was a significant difference. Thomson et al.‟s (2008) analysis of TIMMS 
data presents similar findings. They found that nationally, at the Grade 8 level, there 
was a substantial and significant gender difference in favour of males. Supporting the 
findings of the analysis of PISA data (Thomson & DeBortoli, 2006), Thomson et al. 
(2008) found that this significant gender difference in favour of males, that had not 
previously been seen in 2003 or 1995, appeared to be due to a significant decline in the 
average score for females over the 1995-2007 time span. This change in achievement 
should raise alarm; the fact that there were significant declines in the scores of female 
students that had not been observed for over a decade suggests that the current 
education system may not be effectively providing girls with equal opportunities for 
success in mathematics and so is particularly relevant with respect to the current 
analysis. 
 The results of the analyses of data from PISA in 2006 and 2009, and TIMMS in 2006 
all point towards a considerable decline in the mathematics achievement of females that 
has not been observed for approximately a decade. The aim of the present analysis is to 
determine whether a similar decline in females‟ mathematics performance is evident in 
NAPLAN data for all grade levels taking the test (3, 5, 7, and 9) and for the three years 
2008 to 2010.  

Methodology 
For the current analysis, the percentage correct achieved by both females and males on 
each individual NAPLAN question (provided by VCAA) was utilised. The percentage 
of correct responses by gender and grade level was compared from each test from 2008, 
2009 and 2010. The data from each grade level was then grouped according to its 
mathematical dimension as described in the Victorian Essential Learning Standards 
[VELS] (VCAA, 2010b). The four mathematical dimensions of the VELS are: Number; 
Space; Structure; and Measurement, Chance and Data. The percentage difference in 
each question, by dimension, was then grouped into intervals of 5 percentage points. 
Questions for which there was no difference in percentage correct by females and males 
(ie. 0% difference) have been removed from the 0-4% group and reported separately; 
and the interval of 1-4% used.  

Results and discussion 
The results of the NAPLAN tests conducted in 2008, 2009 and 2010 for Grades 3 and 9 
were analysed in order to investigate what gender differences exist between the 
performance of students from the highest and lowest grade levels undertaking NAPLAN 
testing. These tests consisted of between 31 and 35 questions from each of the 
Mathematics Dimensions as described in the VELS (with the exception of the Grade 3 
tests in 2008, which did not include Structure questions). Grade 9 students undertake 
two NAPLAN tests; one in which they are able to use a calculator and one in which 
calculator use is not permitted. The number (% in brackets) of each question type is 
presented in Table 1. 
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Table 1. NAPLAN question types by dimension: Grade 3 and 9, 2008-10. 

Grade  2008 2009 2010 

  n n n 
Grade 3 N1 14 (40%) 11 (31%) 13 (37%) 
 M2 11 (31%) 10 (29%) 10 (29%) 
 Sp3 10 (29%) 10 (29%) 10 (29%) 
 St4 0 4 (11%) 2 (5%) 

Total  35 (100%) 35 (100%) 35 (100%) 

Grade 9 No Calculator N 8 (25%) 9 (29%) 9 (28%) 
 M 8 (25%) 8 (26%) 10 (31%) 
 Sp 8 (25%) 7 (23%) 7 (22%) 
 St 8 (25%) 7 (23%) 6 (19%) 

Total  32 (100%) 31 (100%) 32 (100%) 

Grade 9 Calculator N 8 (25%) 8 (26%) 10 (31%) 
 M 7 (22%) 8 (26%) 9 (28%) 
 Sp 9 (28%) 8 (26%) 7 (22%) 
 St 8 (25%) 7 (22%) 6 (19%) 

Total  32 (100%) 31 (100%) 32 (100%) 
1 Number dimension 
2 Measurement, Chance and Data dimension 
3 Space dimension 
4 Structure dimension 

 
The proportions of questions from each dimension remained relatively constant from 
2008 to 2010 although there was an increase in the number of Measurement, Chance 
and Data [MCD] questions in the Grade 9 No Calculator test with a corresponding 
decrease in the number of Structure questions. Similarly, in the Grade 9 Calculator test, 
there was an increase in the number of Number and MCD questions in conjunction with 
a decrease in the number of Structure and Space questions.  
 When considering all NAPLAN questions (all years and all grade levels) in which a 
difference existed in the percentage of females and males who correctly answered a 
particular question, there were fewer questions in which females performed better than 
males, with males outperforming females at all grade levels. The differences in favour 
of males were also much larger than those favouring females. Table 2 shows these 
performance differences for Grades 3 and 9. A percentage difference of 1-4% for 
females indicates that a higher percentage of females than males answered this question 
correctly. It must be noted that although there were several questions for which females 
scored 5-9% better, there was no larger difference than 7% across all years and grade 
levels; that is, there were a few questions for which 7% more females than males 
answered correctly but this was the largest difference found for all years and grade 
levels.  
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Table 2. Number of questions with differences in percentage correct by grade level and gender; 
Grades 3 and 9. 

  Girls Boys Total 
Percentage difference 0* 1-4 5-9 10-14 ≥15 1-4 5-9 10-14 ≥15  

Grade 3 2008 5 10 2 0 0 7 10 1 0 35 
Grade 3 2009 4 7 3 0 0 16 4 1 0 35 
Grade 3 2010 3 9 3 0 0 15 5 0 0 35 
Grade 9 No Calculator 2008 2 4 1 0 0 12 7 5 1 32 
Grade 9 No Calculator 2009 5 6 0 0 0 13 6 1 0 31 
Grade 9 No Calculator 2010 3 6 0 0 0 9 12 1 1 32 
Grade 9 Calculator 2008 3 8 1 0 0 14 5 1 0 32 
Grade 9 Calculator 2009 3 7 2 0 0 11 8 0 0 31 
Grade 9 Calculator 2010 5 4 1 0 0 13 9 0 0 32 
* Questions for which females and males performed equally well. 
 

NAPLAN 2008–2010 Grade 3 
When comparing the performance of Grade 3 students, Tables 3 and 4 show that there 
were no differences in the performance of females and males for 5 questions in 2008, 4 
questions in 2009 and 3 questions in 2010. As the number of test questions in each year 
remained constant at 35, these results represent a small decline in the number of 
questions in which females and males performed equally well.  

Table 3. Number and type of questions with percentage differences in favour of females - Grade 3. 

Dimension Number Measurement, Chance 
and Data 

Space Structure 

% difference 0 1-4 5-9 10-
14 

≥15 0 1-4 5-9 10-
14 

≥15 0 1-4 5-9 10-
14 

≥15 0 1-4 5-9 10-
14 

≥15 

Grade 3 2008 2 1 1 0 0 2 2 1 0 0 1 7 0 0 0 - - - - - 
Grade 3 2009 2 1 1 0 0 1 3 2 0 0 1 2 0 0 0 0 1 0 0 0 
Grade 3 2010 1 4 0 0 0 1 1 2 0 0 1 3 1 0 0 0 1 0 0 0 

Table 4. Number and type of questions with percentage difference in favour of males - Grade 3. 

Dimension Number Measurement, Chance and 
Data 

Space Structure 

% 
difference 

0 1-4 5-9 10-
14 

≥15 0 1-4 5-9 10-
14 

≥15 0 1-4 5-9 10-
14 

≥15 0 1-4 5-9 10-
14 

≥15 

Grade 3 
2008 

2 4 5 1 0 2 2 4 0 0 1 1 1 0 0 - - - - - 

Grade 3 
2009 

2 7 0 0 0 1 3 1 0 0 1 5 2 0 0 0 1 1 1 0 

Grade 3 
2010 

1 6 2 0 0 1 4 2 0 0 1 5 0 0 0 0 0 1 0 0 

 
Grade 3 females appeared to do well in Space questions. In 2008, 7 of 12 Space 
questions were answered correctly by a higher percentage of females than males. This 
result was not repeated in 2008 or 2009. Instead, males outperformed females in Space 
questions in these years. Of the questions for which a higher percentage of females than 
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males answered correctly, the difference in percentage was no greater than 7%. In 
contrast, there were two questions in which the difference favouring males was greater 
than 10%. Differences in performance, although small, are already obvious at the Grade 
3 level, with males outperforming females in all dimensions. 

NAPLAN 2008 – 2010 Grade 9 (No calculator) 
In the Grade 9 No Calculator test results it can be seen that there were very few 
questions with no percentage difference in the performance of females and males. 
Tables 5 and 6 show that far fewer questions were more likely to be answered correctly 
by females than by males. Females outperformed males by more than 5% in only one 
MCD question. Males outperformed females for most questions, especially those from 
the Number and MCD dimensions.  

Table 5. Number and type of questions with percentage differences in favour of females: 
 Grade 9 No Calculator. 

Dimension Number Measurement, Chance and 
Data 

Space Structure 

% 
difference 

0 1-4 5-9 10-14 ≥15 0 1-4 5-9 10-14 ≥15 0 1-4 5-9 10-14 ≥15 0 1-4 5-9 10-14 ≥15 

Grade 9 No 
Calculator 
2008 

1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 3 0 0 0 

Grade 9 No 
Calculator 
2009 

0 0 0 0 0 0 2 0 0 0 3 1 0 0 0 2 3 0 0 0 

Grade 9 No 
Calculator 
2010 

1 2 0 0 0 0 2 0 0 0 0 1 0 0 0 2 1 0 0 0 

 

Table 6. Number and type of questions with percentage difference in favour of males: 
Grade 9 No Calculator. 

Dimension Number Measurement, Chance 
and Data 

Space Structure 

% difference 0 1-4 5-9 10-
14 

≥15 0 1-4 5-9 10-
14 

≥15 0 1-4 5-9 10-
14 

≥15 0 1-4 5-9 10-
14 

≥15 

Grade 9 No 
Calculator 2008 

1 2 2 2 0 1 1 2 2 1 0 4 3 1 0 0 5 0 0 0 

Grade 9 No 
Calculator 2009 

0 6 2 1 0 0 4 2 0 0 3 2 1 0 0 2 1 1 0 0 

Grade 9 No 
Calculator 2010 

1 4 2 0 0 0 2 5 1 0 0 2 4 0 0 2 1 1 0 1 

 
In two questions, (one MCD and one Structure), males dramatically outperformed 
females. In these questions, a difference of greater than 15% existed in the percentages 
of males and females who correctly answered. These results can be contrasted to the 
results from Grade 3 students. In Grade 3, a much higher number of questions were 
more likely to be answered correctly by females than can be observed in the Grade 9 
data, demonstrating the decline in achievement of females as they progress through their 
schooling.  
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NAPLAN 2008 – 2010 Grade 9 (Calculator) 
Again, in the Grade 9 Calculator test results, there were few questions for which there 
was no difference in performance by gender, with results being similar to those from the 
Grade 9 No Calculator data. As shown in Tables 7 and 8, questions for which a higher 
percentage of females than males answered correctly comprise a greater proportion than 
those from the Grade 9 No Calculator data. Females appear to do best in Structure type 
questions. Interestingly, there was a reduction in the number of Structure questions from 
2008 to 2010. It is clear that in Grade 9, both males and females do better on the 
NAPLAN Calculator tests than on the Non Calculator tests, but males dramatically 
outperform females in both test types.  

Table 7. Number and type of questions with percentage differences in favour of females: 
Grade 9 Calculator. 

Dimension Number Measurement, Chance and 
Data 

Space Structure 

% 
difference 

0 1-4 5-9 10-14 ≥15 0 1-4 5-9 10-14 ≥15 0 1-4 5-9 10-14 ≥15 0 1-4 5-9 10-14 ≥15 

Grade 9 
Calculator 
2008 

1 1 0 0 0 2 1 0 0 0 0 1 0 0 0 0 5 1 0 0 

Grade 9 
Calculator 
2009 

0 2 0 0 0 2 1 1 0 0 0 1 0 0 0 1 3 1 0 0 

Grade 9 
Calculator 
2010 

0 2 1 0 0 0 0 0 0 0 4 0 0 0 0 1 2 0 0 0 

 

Table 8. Number and type of questions with percentage differences in favour of males: 
Grade 9 Calculator. 

Dimension Number Measurement, Chance and 
Data 

Space Structure 

% 
difference 

0 1-4 5-9 10-14 ≥15 0 1-4 5-9 10-14 ≥15 0 1-4 5-9 10-14 ≥15 0 1-4 5-9 10-14 ≥15 

Grade 9 
Calculator 
2008 

1 5 1 0 0 2 1 2 1 0 0 6 2 0 0 0 2 0 0 0 

Grade 9 
Calculator 
2009 

0 3 3 0 0 2 0 4 0 0 0 6 1 0 0 1 2 0 0 0 

Grade 9 
Calculator 
2010 

0 2 5 0 0 0 5 4 0 0 4 3 0 0 0 1 3 0 0 0 

Conclusion 
The results of this analysis of NAPLAN data support the findings of Thomson and 
DeBortoli (2006), Thompson, Wernert, Underwood and Nicholas (2008) and Thomson, 
De Bortoli, Nicholas, Hillman and Buckley (2010). It is evident that the mathematics 
achievement of females in Australia is on a decline and it appears that gender 
differences in favour of males become larger as students progress through their 
schooling. As stated by Forgasz (2008), „gendered patterns from the past are still 
evident in the context of contemporary mathematics education in Australia‟ (p. 13). The 
issue of gender differences in mathematics achievement needs to be brought to the 
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forefront of educational research before such differences become even more 
pronounced. 
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The Make It Count project aims to provide better mathematical outcomes for Indigenous 
children, and, to that end, the Swan Valley cluster identified various initiatives. This paper 
reports on a research project that investigated those initiatives and resultant changes in 
practice. First, a modified First Steps in Mathematics professional learning program was 
provided for Education Assistants and Aboriginal and Islander Education Officers to 
upgrade their mathematical and pedagogical content knowledge. Second, elements of best 
practice in teaching Indigenous children were investigated. It is apparent that genuine 
professional learning communities have begun to develop in the wake of the professional 
learning and that there are clear directions for pedagogical practice that may lead to 
improved student attendance and engagement. 

Introduction 
During 2009 and 2010, the Swan Valley Cluster in the Make It Count project identified 
a number of factors having an impact on the mathematical learning of Indigenous 
children (e.g., Hurst & Sparrow, 2010). It was felt that, unless these factors were 
addressed, it would likely be difficult to achieve improved numeracy outcomes and that 
even if such issues could be addressed, the desired improvement in numeracy outcomes 
may not be immediately evident. Among other things, the professional learning of 
teaching and support staff was seen as an important factor, as was the raising of 
expectations for student learning, and these points are the focus of this paper.  
 First, during 2010, a program of professional learning based on First Steps in 
Mathematics was implemented for teaching and support staff. Second, information was 
gathered about the practice of the most effective teachers of Indigenous children. This 
paper reports on the research conducted into these two aspects of the Swan Valley 
Cluster Plan. 

Background 
Professional learning and professional learning communities 
According to Bolam et al. (2005), professional learning communities (PLCs) have the 
“capacity to promote and sustain the learning of all professionals in the school 
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community with the collective purpose of enhancing pupil learning” (p. 4). They 
include a joint responsibility for student learning, team planning, collaboration across 
roles, and the involvement of all staff, including support staff, in a range of professional 
learning. Mutual trust and respect are evident. These features sit well with the mantra of 
Make It Count, the aims of which include working “with all components of the school 
community—students, teachers and paraprofessional staff, school leaders, parents and 
parent groups, and the wider community” (AAMT, 2009, p. 1). 
 Anthony and Walshaw (2009), in discussing the importance of teacher knowledge as 
a component of effective pedagogy, note how “the development of teacher knowledge is 
greatly enhanced by efforts within the wider educational community”, and also that 
“teachers can learn a great deal by working together with a group of supportive 
mathematics colleagues” (p. 26). Such a group of supportive colleagues might well 
include paraprofessionals such as teacher assistants and aides.  

Mathematical and pedagogical content knowledge 
Shulman (1986) identified several categories of content knowledge required for 
effective teaching. Subject matter content knowledge that constitutes “the amount and 
organisation of knowledge per se in the mind of the teacher” (p. 9) is much more than 
just ‘knowing the facts’ about mathematics, but includes why certain facts are as they 
are and the ability of teachers to explain such things to students. More recently, these 
ideas have been developed by others including Rowland. In a similar way, Rowland 
(2005) coined the term ‘knowledge quartet’ to describe different categories of 
knowledge, these being foundation, transformation, connection, and contingency. The 
first category, ‘foundation’, is much more than simply factual knowledge in that “the 
possession of such knowledge has the potential to inform pedagogical choices and 
strategies in a fundamental way” (p. 4). In other words, it is the key content knowledge 
of mathematics that underpins the pedagogical knowledge and decisions that follow. It 
seems reasonable to suggest that strong pedagogical knowledge and skills will be more 
likely to emerge if teachers and paraprofessionals have strong ‘subject matter 
knowledge’ (Schulman) or ‘foundation’ knowledge (Rowland).  

Cultural competency, awareness, and support 
Perso (2003) considered the situation faced by Indigenous children in Australian 
schools as being similar to being in a different culture, a major reason being that most 
teachers lack sufficient awareness of Indigenous cultures in order to provide the support 
needed by those children. Further to this, Perso (2009) developed a Pedagogical 
Framework for Cultural Competence, in which she underlined the need for teachers to 
develop “cultural competence” in order to “demonstrate behaviours and attitudes that 
engage, build and maintain relationships with Aboriginal and Torres Strait Islander 
peoples”  
(p. 1). Within the framework, Perso nominated eight categories, including pedagogies 
related to questioning, contextualized learning, and most significantly, classroom 
relationships and the identification of expectations. Indeed, Perso noted that the 
successful learning for Indigenous students “depends to a great extent on the personal 
relationship of trust and rapport established between teacher and student”  (2009, p. 5). 
 These sentiments are further echoed by Anthony and Walshaw (2009) in discussing 
the notion of ‘an ethic of care’ as one of ten components of effective pedagogies in 
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mathematics. They note that students learn best in a harmonious and caring environment 
in which they feel safe, and where expectations are clear. Indeed, “teachers can help 
create such an environment by respecting and valuing the mathematics and cultures that 
students bring to the classroom” (p. 7). 

Methodology 
A qualitative study was established to consider the two broad areas of content 
knowledge of teachers and paraprofessionals and links to the development of 
professional learning communities, as well as the practice of effective teachers of 
Indigenous children. Specifically, the study sought to answer the following questions. 

• To what extent did the provision of professional learning for Education Assistants 
(EAs) and Aboriginal and Islander Education Officers (AIEOs) assist in the 
development of professional learning communities? 

• What attitudes and strategies are evident in the practice of effective teachers of 
Indigenous children? 

The study was based on two particular initiatives taken within the Swan Valley Cluster. 
The first was the cluster-wide provision of three half-days of professional learning in 
mathematics teaching for EAs and AIEOs, conducted by a qualified First Steps in 
Mathematics facilitator. Semi-structured interviews were conducted following the 
professional learning and included initial questions such as ‘What you have learned and 
how it has helped you assist children?’ and ‘In what ways has your classroom role 
changed as a result of the professional learning?’ Data were generated from the semi-
structured interviews with principals, teachers, EAs, and AIEOs, and this provided a 
measure of triangulation as perspectives from a range of people in different schools 
were sought. In all cases, the discussion that took place following the initial questioning 
diverged from that point and enabled the generation of rich data from which emerged 
some strong themes.  
 The second initiative was a plan adopted by Swan View Primary School where the 
Indigenous cohort was concentrated in four classes taught by teachers identified as 
being culturally sensitive and empathetic towards Indigenous children. Again, semi-
structured interviews were conducted with principals, teachers, EAs, and AIEOs. These 
interviews were audio-recorded and transcribed to determine emergent themes. Staff 
members involved in the Swan View plan provided the initial focus for interviews but 
those from the other cluster schools were also interviewed in order to gain a wider 
perspective.  
 A teacher questionnaire about strategies employed with Indigenous children and 
attendance records of Indigenous children were used to generate further data. In the data 
analysis stage, to identify emergent themes, interviewee replies and comments were 
analysed for key words and then grouped with similar ideas to form categories. The 
frequency of occurrence of each main idea was recorded for each of the interviewee 
types (principal, teacher, EA/AIEO). It is important to note that the following discussion 
draws upon comments made by interviewees that may support more than one of the 
themes. 
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Results and discussion 
Professional learning and professional learning communities  
The four themes that emerged in relation to the first research question are represented in 
Table 1.  

Table 1. Themes related to outcomes of professional learning. 

Theme Frequency 
Improved levels of confidence  34 
Development of a professional team approach 34 
Improved content knowledge and pedagogical knowledge 27 
Improved engagement with children 15 

 
Within the first theme, Improved levels of confidence, responses from all participant 
types were recorded for the key ideas of “being more proactive” (32%) and “having a 
greater level of confidence” (29%). Other responses related to “having an improved 
status in the school” (12%), “teachers having more confidence in me” (8%), and 
“feeling more independent in knowing what to do” (8%). Comments included:  

That’s because we’ve been shown the direction and with the confidence we’ve got 
because we’ve done the PDs, we can keep going with it and not have to look for help and 
direction all the time. (Lesley—EA).  

As well, this was stated with regard to the confidence of the aides following the 
professional learning: 

They’re not just lackeys that don’t know anything; these are now women of confidence, 
of knowledge, of capacities that they didn’t know they had before. (Megan—Principal)  

Indeed, the increase in confidence seems to be reflected in the teachers as well as in 
their aides, as shown by the following:  

I think the teacher has confidence in you because you [her emphasis] know what you’re 
doing and that makes you feel good because the teacher can say ‘You take [children] over 
there and do ‘blah blah blah’ with them’, and that makes you as a person feel good. 
(Kelly, EA) 

Development of a professional team approach 

Within this theme, the key ideas noted were “more a part of a team approach” (32%), 
“being better able to support the teacher” (18%), “better able to watch the teacher and 
learn/know” (18%), “more comfortable and at ease with the role” (15%), and “able to 
step in when the teacher is occupied” (15%). These key ideas were typified by 
comments such as the following: 

You’re more comfortable because you actually know what she [the teacher] is trying to 
do now ... you know where she’s headed with it and we’re all on that same level—there’s 
no miscommunication ... because we’ve been shown the direction and with the 
confidence we’ve got because we’ve done the PDs, we can keep going with it and not 
have to look for help and direction all the time. (Jenny, EA)  

Similarly, this anecdote was provided:  
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You pick out one child who’s not getting it and you’re able to go over and say ‘What 
about if it you about it like this?’ and the teacher hears and says, ‘Oh yeah, can you tell 
everybody about that?’ and so you get up and tell the whole class. (Christy, AIEO) 

The previous theme described the development of a greater feeling of confidence, as a 
result of a change of status. This latter point was echoed in this theme as well, with 
comments such as: 

You’re not just the assistant doing the gluing and cutting out and things like that—you’re 
actually helping with the actual learning. (Hayley, EA)  
 

Nobody treats us like we’re just [her emphasis] teacher assistants. (Shona, EA)  

Improved content knowledge and pedagogical knowledge 

The key ideas within this theme were predominantly one of two—”better content 
knowledge/teaching knowledge” (88%) and “aware of other ways of teaching maths” 
(47%). The first key idea was noted in interviews with all participants. In describing her 
aide’s role, one teacher noted:  

She did say that it [P/learning] helped her to understand what I was doing in the 
classroom. She did comment that ‘Oh I know why you do that now’. It’s been helpful for 
her to understand what we do as teachers. (Irene, Teacher)  
 

I know where the teacher is coming from, whereas if I hadn’t had the PD, I’d really be in 
my ‘forty years back maths thinking’ and wondering what she is doing, but now I do 
understand. (Annie, EA).  
 

Basically, we’re the children aren’t we? We’ve had to go back and re-learn, and a lot of 
the procedures we learned [in the P/learning] have really helped, so when I see the 
teacher do it on the board, I think that’s the way for them to do it—you’re understanding 
it better; it’s breaking it right down. (Rose, EA) 

Improved engagement with children 

Almost all of the responses within this theme were categorised as “being better able to 
recognise needs and help children” (80%). Again, this response was noted from all 
types of interviewees and it is summed up in the following statements.  
 When asked about being better able to recognise children’s needs, one aide said  

Yeah, I know what part’s missing. I can say ‘We need to go back a step further because 
they haven’t got this bit down’. (Shona, EA)  

Also, the link with increased confidence and status is clear from this comment: 
They [EAs and AIEOs] are more effective on the ground with the kids because the 
teachers know that they know what to do. (Megan, Principal) 

Similarly, the link to increased knowledge is made here: 
You write down which child is better at whatever ... so you relate that to the teacher that 
says ‘This child is good at ...’ and that’s what I do, you know—that one doesn’t know this 
bit much and this one doesn’t know that bit much’. (Donna, AIEO)  

In summarising responses about the benefits of the professional learning, the four 
themes (shortened to confidence, team, knowledge, and children) are encapsulated in 
the following comment: 

Teachers have got so many different children with so many different abilities that they’re 
just so happy to have someone in there that they can go, ‘This group are all at that level 
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so you can work with them and I’ll work with the rest. They’re quite happy to do that 
because it gives the children better opportunities (Christy, AIEO).  

Effective teachers of Indigenous children 
As with the first research question, themes emerged from key word analysis of 
interviewee replies and comments. The four themes are represented in Table 2. Other 
themes emerged but, for brevity, the discussion here is restricted to four. As was stated 
earlier, it was considered by the cluster schools that broad underpinning factors 
supporting teacher effectiveness needed to be addressed before it could be hoped to 
specifically improve numeracy outcomes. 

Table 2: Themes related to effective teachers of Indigenous children. 

Theme Frequency 
Building a better relationship through empathy, connection 40 
Displaying cultural sensitivity and awareness 37 
Support mechanisms 33 
Clarity of goals and expectations 27 

Building a better relationship through empathy and connection 

The key ideas within this theme were “connection” (30%), “empathy/warmth” (28%) 
and “trust/relationships” (25%). When discussing the question of why they are 
considered effective teachers of Indigenous children, teachers Dan and Teresa modestly 
stated that they didn’t feel that they did anything different but evidence suggests 
otherwise. Indeed, their principal, in response to the same question stated: 

This may sound a bit fey but these teachers [Dan and Teresa] have an authentic presence 
in the life of the child. It is the bottom line for me—It’s like, “I see the God in you 
looking at the God in me” ... that’s the key. It’s the recognition that you are a presence in 
my life. You might think that’s a bit over the top but that’s where it is—it’s a sense of 
spirituality with the children, a sense of communion, but the bit I can’t stress enough is 
the presence. (Megan, Principal) 

Dan noted that he and his colleague, Teresa, often spent a lot of time talking to their 
Indigenous children, dealing with social and emotional issues during their recess breaks 
or planning time and putting ‘school stuff’ to one side. Teresa noted that they both had 
strong interest in “out of school issues” like sport, adding: 

A lot of Indigenous kids connect with that and that works well. I think we’re 
approachable in that sense. (Teresa, Teacher)  

Dan’s comment provided further insight into what they do: 
The key thing is that you’ve got to have empathy with them. You’ve got to trust them, 
then they’ll want to come and talk to you and then you’re half way there. If you don’t 
have that, then it’s “I’m not interested, see you later”. It’s a critical thing—be open, let 
them talk to you, talk back with them. (Dan, Teacher) 

Further to the building of a strong relationship, teachers agreed that if the teacher-
student relationship is robust, then the teacher can ask students about almost anything: 

If you don’t have that relationship, then it’s like “Why are you asking me that question?” 
(Max, Teacher)  
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They probably don’t feel like they have to answer you, if there is no rapport” (Linda, 
Teacher).  

Regarding the idea of ‘making connections’, a number of EAs and AIEOs noted that 
effective teachers: 

… have empathy for and connected with Indigenous children ... who approach them for 
help because they provide it willingly. (Annie, EA) 

This was furthered expressed as follows: 
If you come at them [Indigenous children] on a personal level and you gain one little bit 
of information so you can ask them how the dog is, or something so that they know 
you’re concerned about them ... connect, yeah. Once you’ve got that connection, a bit of 
respect, you’re away. (Shona, EA). 

Finally, this conversation further underpins the notion of caring and connecting: 
I think that showing that you care... that’s it, you’re part of the family ... I rouse them all 
the time [laughed] (Donna, AIEO). 
 

They love her because even after she’s roused them, they know that she still loves them 
(Jean, Teacher). 
 

Consistency ... consistency. (Donna, AIEO) 

Displaying cultural sensitivity and awareness 

The key ideas within this theme were ‘being culturally aware and in tune’ (frequency 
19/33), “public shaming and failure” (8) and “sense of equity” (7). It was noted by a 
principal that the most effective teachers are aware of the effect of impoverishment on 
the Indigenous children and that: 

They work on the premise that for equity of access to the learning program, it doesn’t 
mean giving every child the same; it means giving them what they need. (Megan, 
Principal) 

It was also noted that the awareness is two way, in that Indigenous children are very 
much aware of who is supportive of them.  

Indigenous kids just know. They come to a Wadgula school with built in crap detectors. 
They can tell, just the way you look, you smile, you touch. They learn to reach out to 
people like Dan, Teresa, and Beth. These are wonderful teachers who have a clear, 
authentic and defined presence in the lives of the children. (Megan, Principal). 

Other teachers and aides noted the importance of being aware of what children had 
experienced the previous night at home, or coming to school, as these events had a 
profound impact on their in-school performance. Specifically regarding the notion of 
public shaming and displaying learning in public, several participants noted the 
importance of teachers being aware of this, but that it is something that can be 
overcome, as noted by the following comment: 

It all depends on the teacher, how they’ve modelled it, how they’ve developed those 
children, what kind of relationship they have. We have encouraged them to do risk-taking 
and things like that, whereas some teachers will put them on the spot and they will clam 
up. (Irene, Teacher) 
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Support mechanisms 

The main key ideas within this theme were “role models/mentors” (33%) “support” 
(30%), and “success” (24%). Dan’s principal, Megan, noted that teachers like him were 
successful because they are good role models—important as Indigenous children are 
“watchers of people more than anything”. Dan agreed that having appropriate role 
models was crucial for the children:  

You’ve got to be really careful with what you do, what you say, because someone is 
watching all the time. (Dan, Teacher).  

Dan also noted that the concentrating of Indigenous children into four classes had made 
a difference as it had given them a sense of camaraderie, enabling them to compete with 
one another at appropriate levels, without ‘being blown out of the water’. Beth agreed 
with this, noting the following: 

Most of my Indigenous children have come along in leaps and bounds this year so I think 
[having them grouped together] is really working. They associate with each other 
culturally, and they’re more comfortable. They’re more relaxed and you can target their 
needs ... they don’t have to go outside at lunchtime and prove themselves because they 
know where each other is in the pecking order, being in the same class (Beth, Teacher). 

Specific strategies employed by teachers to provide support included extensive use of 
peer tutoring and providing ample opportunities for the Indigenous children to succeed. 
Clarity of goals and expectations 

The key ideas within this theme were simply “clear expectations” (44%), “realistic 
goals” (26%), and “consistency” (19%). Most participants differentiated between 
academic goals and behavioural goals noting that the former had to be realistic and 
linked to success, while the latter needed to be clear and firm. Many comments echoed 
the Cluster Plan regarding the raising of expectations, encapsulated in the following: 

Show that you’re a strong person ... they don’t respond well to weakness. If you go back 
on what you said you were going to do, you lose so much ground. You have to be very 
firm, fair, honest, follow through ... they like to know what your expectations are and that 
they can live up to them as well. (Leanne, Teacher) 

Teaching strategies 

The interviews highlighted a number of strategies used successfully with Indigenous 
children, and these data were also generated from the questionnaire. Significant were 
factors like cultural awareness, teacher student relationships, and support mechanisms. 
A common discussion point was the use of hands on materials and peer tutoring. 

It’s no good giving them book stuff, [they’ve] got to be doing it, touching things ... we 
use a lot of peer work with them. (Dan and Teresa, Teachers) 
 

They like to make things, build things ... hands-on manipulatives ... they like somebody 
working with them, but not pushing at them all the time with questions ... it comes in 
through general discussion and talking, but not direct questioning - they shy away. (Beth, 
Teacher).  

Other teachers noted that their Indigenous children needed time at the beginning of 
lessons to play with equipment because many had lacked this sort of experience in their 
home background. 
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 Table 3 contains a summary of questionnaire responses describing effective 
classroom strategies. 

Table 3: Effective practice with Indigenous children. 

Identify individual weaknesses and plan for teaching based on learning sequences.  
Revise, re-teach, and use continuous reinforcement of key ideas to account for short attention span. 
Use oral discussions and drawing to communicate ideas. 
Use game playing to teach key concepts 
Use rhyme, rhythm and movement in real life contexts 
Use hands-on resources and manipulatives. 
Use natural resources such as sea shells and familiar resources such as dice and cards. 

Conclusion 
It is apparent from the evidence presented that the mathematics professional learning for 
EAs and AIEOs contributed to the development of professional learning communities. 
As well, it is apparent that effective teachers of Indigenous children have particular 
qualities and use particular strategies that develop and enhance supportive and 
empathetic teacher-student relationships, and which will hopefully lead to improved 
numeracy outcomes for Indigenous children. The Swan Valley Cluster will build on the 
initiatives described here including an extension of the professional learning program 
for aides during 2011 and 2012. It is hoped that the anecdotal evidence provided in this 
paper will be translated into statistical gains in numeracy outcomes reflected in 
NAPLAN and other assessments during 2011–12.  
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Assessment systems should place more emphasis on the thinking process, not academic 
achievement alone. This study focuses on comparing Australian and Malaysian teachers’ 
views on the practicality of implementing the Mathematical Thinking Assessment (MaTA) 
Framework. It involved eight mathematics teachers from Australia and Malaysia. All 
teachers implemented the MaTA Framework in their schools to assess students’ 
mathematical thinking using a Performance assessment to elicit students’ thinking 
processes during problem-solving. They also used a Metacognition Rating Scale, a 
Mathematical Dispositions Rating, and a Mathematical Thinking Scoring Rubric. Teachers 
were interviewed and their views towards implementing the MaTA Framework were 
reported in this study.  

Introduction 
The Trends in International Mathematics and Science Study (TIMSS) for Australian and 
Malaysian Grade 8 students’ recorded a gradual decline over the years 2003 and 2007 
with average scores of 505, 496, 508, and 474 respectively (Gonzales, Williams, 
Jocelyn, Roey, Kastberg, & Brenwald, 2008). These results suggest that the Australian 
and Malaysian Grade 8 students were more inclined to apply basic mathematical 
concepts than organizing their thinking effectively from the information given. These 
performances have roused, to a certain degree, national concern about the quality of 
mathematics education in both countries’ education systems.  
 Therefore, we argue that the Mathematics Curriculum should give priority to 
fostering students’ abilities to think and to organize information, as well as possessing 
procedural knowledge in solving problems (Ginsburg, Jacobs & Lopez, 1993). With the 
intention to foster this goal, the Mathematical Thinking Assessment (MaTA) 
Framework was developed. It aims to assess students’ mathematical thinking 
performance in a holistic domain, which includes mathematical knowledge, mental 
operations and mathematical disposition. This paper focuses on comparing Australian 
and Malaysian teachers’ perspectives particularly on the practicality of implementation 
the MaTA Framework in their respective countries. 
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Mathematical thinking 
Mathematical thinking is usually referred to indirectly in the mathematics curricula 
produced by Australia and Malaysia as an important “process” to foster success in 
mathematical problem solving. In Australia, for example, “Working mathematically” is 
one of the important goals in mathematics (Stacey, 2005). Working mathematically is a 
process strand that comprises investigating, conjecturing, using problem solving 
strategies, applying and verifying, using mathematical language, and working in context 
(Australian Education Council, 1994). In Malaysia, the words “think mathematically” 
are contained in the aims of mathematics curriculum, which is “to develop individuals 
who are able to think mathematically ...” (Ministry of Education Malaysia, 2005, p. 2). 
It focuses on cultivating students who are able to possess mathematical content 
knowledge, and who learn effectively and responsibly in mathematical problem-solving 
and decision making. 
 The mathematics curricula in both countries seem to define mathematical thinking 
somewhat differently. This is to be expected because a well defined meaning or 
explanation of mathematical thinking has yet to be developed (Lutfiyya, 1998; Cai, 
2002). As a result, there is no detailed description of the words “mathematical thinking” 
in most national mathematics curriculum documents (Isoda, 2006). As such, different 
perspectives on mathematical thinking are evoked. Mason, Burton and Stacey (1982), 
for example, defined mathematical thinking as a dynamic process enabling one to 
increase the complexity of ideas able to handle, and consequently expand 
understanding. Katagiri (2004) defined mathematical thinking as the ability to think and 
to make judgments independently while solving mathematics problems. Alternatively, 
Schoenfeld (1992) proposed five important aspects of cognition involved in 
mathematical thinking and problem solving: (a) knowledge base; (b) problem solving 
strategies; (c) monitoring and control; (d) beliefs and affects; and (e) practices (p. 348). 
His use of mathematical thinking is thus much more grounded in the process of its being 
used and what the problem solver brings to that process. More recently, Wood, 
Williams and McNeal (2006) defined mathematical thinking as the mental activity 
involved in the abstraction and generalization of mathematical ideas, adding further 
dimensions to the idea. 
 However, all the above definitions are not totally dissimilar. They seem to highlight 
three major domains of mathematical thinking: (a) mathematical knowledge; (b) mental 
operations; and (c) dispositions. This categorization was supported by the model of 
Component of Thinking proposed by Beyer (1988). Mathematical knowledge refers to 
mathematical concepts and ideas that one has acquired or learnt, while mental 
operations can be considered as cognitive activities that need to be performed when 
thinking (Beyer, 1988). As for thinking dispositions, these refer to a tendency or 
predilection to think in certain ways under certain circumstances (Siegel, 1999). 
Examples of relevant dispositions include reasonableness, thinking alertness and open-
mindedness, as well as beliefs and affects.  
 In line with the above, it is proposed that mathematical thinking be characterized as 
including the following aspects:  
1. It is a knowledge-dependent activity;  
2. It involves the manipulation of mental skills and strategies; 
3. It shows the awareness and control of one’s thinking such as metacognition; and 
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4. It is highly influenced by the dispositions, beliefs, or attitudes of the student. 
Based on the foregoing, this study will take mathematical thinking to be mental 
operations that are supported by mathematical knowledge and by certain kinds of 
dispositions toward the attainment of solutions to mathematics problems.  

Mathematical Thinking Assessment framework 
The Mathematical Thinking Assessment (MaTA) Framework consists of four 
components: (a) a Performance assessment; (b) a Metacognition Rating Scale; (c) a 
Mathematical Dispositions Rating Scale; and (d) a Mathematical Thinking Scoring 
Rubric. The MaTA Framework is intended to be implemented by teachers with the aim 
of assessing students’ mathematical thinking. The Performance assessment component 
is administered by the classroom teacher to assess students’ mathematical knowledge 
and skills (conceptual, procedural, strategies and skills) while solving particular 
mathematical problems in one or more content areas that have been the focus of 
classroom instruction. The Metacognition rating scale is used, also by the teacher, to 
elicit students’ cognition awareness, such as monitoring and regulation, during problem 
solving process. The Mathematical dispositions rating scale is used by the teacher to 
indicate students’ predisposition toward learning of mathematics. Finally, the 
Mathematical thinking scoring rubric is used to score and grade students’ mathematical 
thinking according to the domains defined in this study.  

Teacher’s perceptions  
Even though performance assessment promises more fruitful feedback on students’ 
learning progress, the use of this assessment has declined in tests in United States of 
America (Parke & Lane, 2007). One of the major reasons is because implementing 
performance assessment is time consuming (Ryan, 2006; Linn & Miller, 2005; McKee 
& Lucas, 2005) compared to standardized testing. With current teaching workloads, 
administration duties and class sizes, it is argued that it is not cost-effective for teachers 
to invest so much time in these aspects of assessment.  
 Difficulty in implementing performance assessment is another reason why it has 
proved less popular. According to Baker (1997), performance assessment is difficult 
and expensive to develop. Mckee and Lucas (2005) also stressed that it is difficult at the 
beginning. Teachers need new knowledge and skills to implement performance 
assessment (Stiggins, 1995; Adi Badiozaman Tuah, 2006; Buhagiar & Murphy, 2008). 
Hence, extensive training is needed for teachers on how to administer performance 
assessment in the classroom (Aschbacher, 1992).  

Methodology 
Participants 
A total of eight secondary school mathematics teachers, four each from Australia and 
Malaysia were selected to participate in the study. All the selected teachers have at least 
five years of teaching experience in Mathematics. Through their teaching experiences, 
they were believed to be able to implement the MaTA Framework according to its 
guidelines in their respective schools. 
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Procedures and data analysis 
All the selected secondary school mathematics teachers were briefed and guided by one 
of the researchers on how to use the MaTA Framework to assess students’ mathematical 
thinking performances. This was conducted in a one-on-one basis where the researcher 
met the teachers regularly prior to and during the data collection processes. The 
following summarizes how teachers could be expected to implement the MaTA 
Framework in their home school context.  

Step 1: Designing performance assessment 

Based on the procedures or guidelines provided in the MaTA Framework, the teachers 
designed the performance tasks (i.e. test items or questions) and then administered these 
to their students. During the assessment, teachers encouraged students to use 
appropriate approaches to perform the tasks, such as explaining and justifying the 
answers obtained in their solutions, as required by the MaTA Framework. Usually, this 
was achieved by including specific prompts in questions, such as asking students to 
explain their thinking or to justify their solutions.  

Step 2: Scoring students’ performance 

By referring to the scoring criteria and scoring guide for each of the domains in 
Mathematical Thinking Scoring Rubric, namely conceptual knowledge, procedural 
knowledge, thinking strategies and thinking skills, teachers were able score their 
students’ levels of performances respectively based on their written solutions. After 
scoring students’ written solutions, the teachers then used the Metacognition Rating 
Scale to rate students’ levels of metacognition based on teachers’ classroom 
observations. Similarly, the levels of performances for students’ mathematical 
dispositions could be determined through a Mathematical Dispositions Rating Scale. 
 Step 3: Reporting students’ mathematics performance 

After scoring students’ written solutions and rating their metacognition and 
mathematical dispositions, students’ levels of performances for each domain were 
summarized into a standard report, entitled Teacher’s Report on Student’s Mathematical 
Thinking Performance. This report contained band scores and comments from the 
teacher for each domain of mathematical thinking. This report could then be given to 
students as feedback on each of the three areas indicating the quality of their 
performances, based on their written solutions and on their teacher’s classroom 
observations.  
 Finally, all the teachers involved were interviewed for between 30 minutes to 60 
minutes. The interviews allowed the teachers to justify their views concerning the 
practicality of implementing the MaTA Framework in their respective schools.  

Findings and discussions 
The findings reveal that teachers from Australia and Malaysia responded positively 
toward the impact of the MaTA Framework on the teaching and learning in the 
classroom. One of the Australian teachers commented that the band score provided 
under the MaTA Framework was consistent with and added value to the score given in 
the school’s current approach to assessment,  
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From the teacher perspective, I like the fact that I can compare my mark with another 
scoring rubric [the MaTA Framework]. I can recognize what I was giving … we were 
roughly the same. I wasn’t being too lenient or too harsh, which is always nice. (Teacher 
1/Australia) 

On top of this, the MaTA Framework was perceived as able to promote students’ 
thinking through solving and justification of solution, as evidenced by the following 
teacher, 

Because it encourages students to endeavour the answer…hence this helps the students to 
answer mathematics problem. For higher level mathematics problems, we are not going 
to encounter [problem like] one plus zero equal to one, we have to explain a lot. This is 
what I mean, the impact is great. Because we train the kids to think, endeavour to think! 
(Teacher 4/Malaysia) 

 The guideline provided in the MaTA Framework was able to help teachers to grade 
the students’ solution in a systematic and homogeneous way. This helps to ensure 
consistency of grading and fairness to the students who were being assessed, as 
illustrated by one of the Australian teacher: 

It’s very concrete, very detailed and very specific and therefore it would allow for large 
amount of consistency across (students and grades).” (Teacher 2/Australia)  

Even though teachers responded positively towards the MaTA Framework, there were 
negative views expressed as well. Eight major aspects concerning the practicality of 
implementing the MaTA Framework were identified. However, this paper only presents 
three of them: time limitations, inadequate knowledge, and students’ limited English 
proficiency. 

Time limitations 
All teachers involved in the study commented that scoring and reporting of students’ 
performances in each domain of mathematical thinking were time consuming. However, 
teachers from Australia seemed to look at these constraints from wider points of view, 
such as needed professional development and changing school assessment culture. One 
teacher argued that “time that is required to implement this versus the amount of 
benefits that would be achieved, it’s not a linear relationship”. When he was asked to 
further elaborated, he said: 

If we could perhaps get really used to it and could become more time efficient, but it 
requires certain amount of professional learning and change in culture across the whole 
school, or say among all Maths teachers. It has to be something accepted by all Maths 
teachers and adopted across the whole country. It would require a fair amount of 
professional learning to be able to use the method. (Teacher 2/Australia) 

By contrast, the Malaysian teachers were inclined to focus on the drawbacks, such as 
heavy workload, pressure of covering the syllabus and needing to keep the students on 
track, as illustrated by the following teacher. 

Again…(it) is the time factor. Do we have the time to do it? Now teachers are much 
overloaded, they have still got to do their report books, and they have still got to do the 
mark sheets … Even though he is a subject teacher, but the subject teacher could be a 
form teacher for another class and so on and so forth. So it is extra work for the teacher 
and then you have to score them individually … question by question. It is time 
consuming. That is one of…I think the major factor…time which we don’t really have. 
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Everyone is trying to finish the syllabus, trying to do a lot of revision so that [students] 
can pass the exam with a 7 or 8 grade. (Teacher 1/Malaysia) 

This finding was consistent with what was found by Ryan (2006), Linn and Miller 
(2005), McKee and Lucas (2005) and Parke and Lane (2007) that longer time was 
needed to implement performance assessment compared to other types of assessment. 
Nevertheless, the teachers admitted that this type of scoring and reporting could become 
easier once they were familiar with the terms or keywords used in the scoring and 
reporting. As teachers commented,  

It’s not complicated, it’s quite simple to use. As I said it just takes a while to fill up, once 
you have marked the actual assessment tasks yourself. (Teacher 1/Australia) 
 
Once you are familiar, it should be quite easy. (Teacher 3/Malaysia).  

This result was again in line with McKee and Lucas (2005) who claimed that 
performance assessment tends to be more difficult at the early stage of implementation. 

Inadequate knowledge and skills 
The teachers were familiar with traditional forms of assessment where scoring focuses 
only on the final answer produced by the students. Therefore, when the teachers were 
asked to focus more on assessing students’ thinking process, they found it more difficult 
to give fair and appropriate scores to students’ performance based on the scoring rubric. 
The Australian teachers admitted that they had inadequate knowledge and skill to 
implement the MaTA Framework. They agreed that this inadequacy could be remedied 
by teacher re-training. As one of the teachers said, “Not many teachers would be 
confident to be able to handle this type of assessment [the MaTA Framework] 
accurately. It requires a different teacher training approach for the present school 
teachers” (Teacher 3/Australia). Malaysian teachers also admitted this inadequacy, but 
they preferred self-directed learning to introduce themselves to this type assessment. 
They asked whether there was module provided to guide them through this assessment: 

Normally when we try to create something that is very new, …the Malaysian way is they 
want something to look at first, to go through first, they want something as examples, as a 
guideline or reference for them. And from there…I cannot say they want to copy or 
something, but normally they will follow exactly from there. (Teacher 1/Malaysia) 

These responses reflected that the teacher professional development in Australia tends 
to be more structured, with any implementation of new education policies requiring 
systematic dissemination and training. However, the situation in Malaysia is quite 
different where only few experienced teachers get selected for such training; and they 
are then expected to give “in house” training to other teachers from different schools at 
a later date. Very often, important information dissipates during the sharing process. 
Worse still, some teachers are not asked to attend any training due to tight budgets. As a 
result, many teachers have to learn the new education policies for themselves based on 
guidelines or modules provided by the Malaysian Ministry of Education. 

Limited English proficiency by students 
Even though Australia is an English speaking country, the teachers involved gave a 
surprising remark by saying that limited English proficiency was one of the major 
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drawbacks that caused some students to perform poorly under the MaTA framework. 
One of the teachers gave the following example which was happening in his class: 

We have a student this year in year 12, he is of Chinese background, his English language 
is very poor  ... he is so frightened of choosing subjects that will affect his marks based on 
his poor English. He actually chooses to do Further Maths, Maths Methods, and 
Specialist Maths in Year 12. (Teacher 1/Australia) 

Because of students’ limited English proficiency, some mathematics teachers focused 
on teaching mathematical skills, with less emphasis on solving mathematical problems, 
as commented by one of the teachers:  

Yeah, that’s [English proficiency] is critical, one of the reasons why we do mostly skill 
based teaching in this school is because we’ve got an extremely high (number of) non-
English speaking background students, 80% of them. (Teacher 3/Australia) 

Hence, students who were poor in English were not keen on being assessed using the 
MaTA Framework. This was similar to the Malaysian context where students preferred 
standardized-testing, such as tests with multiple-choice questions (Hwa, 2010). One of 
the Malaysian teachers said that,  

They have the idea but they don’t know how to explain it, how to write their idea ... 
because some of our students’ English is not good” (Teacher 1/Malaysia).  

As a result, students from non-English speaking backgrounds were expected to perform 
poorly in MaTA Framework. Students who were struggling in mastering English were 
rarely comfortable with being asked to write justifications of their solutions.  

Conclusion 
We found that the MaTA Framework provides sufficient information in guiding 
secondary school mathematics teachers from Australia and Malaysia to assess students’ 
mathematical thinking. The guidelines proposed were effective in enabling the 
mathematics teachers involved to implement the MaTA Framework in their schools. 
However, the data also reveal that the MaTA Framework was seen by teachers as 
lacking in simplicity and ease of use compared to traditional forms of testing. Much 
more time was needed to prepare performance assessment by using the MaTA 
Framework. Besides being time consuming, factors such as inadequate knowledge and 
skills by teachers, and limited English proficiency among students were seen also to 
affect the practicality of the MaTA Framework in the school context.  

These views were expressed in somewhat different ways by Australian and 
Malaysian teachers towards implementing the MaTA Framework. Hence, in order to 
give greater attention to the assessment of mathematical thinking, increasing teachers’ 
exposure to the key ideas of a framework such as MaTA, and consequent teacher 
training through workshops or seminars are necessary. These should increase the quality 
of the performance assessment, but also foster greater consistency in scoring and 
reporting of students’ mathematical thinking.  
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This paper reports on the language-related misconceptions of a group of post-secondary 
students when working on problems involving the limit of a real-valued function at a single 
point. In this qualitative study, 50 post-secondary students took a test and participated in a 
survey, from which 10 were interviewed after the test. The data revealed several 
misconceptions held by the post-secondary students about the limit concept that were 
related to the issue of language. Such language-related misconceptions resulted from 
incorrect internal representations and the inability to reify the limit. 

 
Analysis is the most important area in mathematics, where students have to learn 
concepts that are linked to the notion of limit of a function at a point. From the 
understanding of the limit concept, other fundamental concepts like continuity, 
differentiability and integrability are all established. Hence, the limit concept 
underscores almost every branch of mathematical analysis and can be studied in various 
settings. As Huillet (2005) stated: 

The limit concept can be studied in many different settings: geometrical (area and 
volumes), numerical (sequences, decimals and real numbers, series), cinematic 
(instantaneous velocity and acceleration), functional (maximum and minimum problems), 
graphical (tangent line, asymptotes, sketching the graph of a function), formal (  
definition), topological (topological definition, concept of neighbourhood), linguistic 
(link between natural and symbolic languages of limits), algebraic (limits calculations). 
Each of these settings underscores a specific feature of the limit concept. (p. 172) 

Historically, the idea of limits resonated since the Greek era, around 600 BC. The 
Greeks however focused on results and the idea of limits was used only intuitively. In 
the 17th Century calculus, the notion of limits came to the fore through the works of 
Newton and Leibniz. However, the idea of calculus rested on weak foundations. It was 
only about 150 years later that the rigorous definition of the limit was constructed 
through the works of Cauchy and Weierstrass. 
 The term limit used in this paper means the limit of a function at a point, unless 
otherwise stated. In other words,  means, for every ( ) , there exists 

( ) a  so that  whenever  and  domain of  It is 
to be noted that the limit of a function is defined to exist, if the left hand and right hand 
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limits both exist and are equal. As can be seen from the definition above, grasping the 
idea of limit requires students to decode its meaning from a relatively complex symbolic 
statement. 
 Educators and students face the hard transition that is necessary to leap from the 
routine to the non-routine aspects of mathematics where limits are first encountered. 
This transition is hard because the limit concept represents a concept that requires 
advanced mathematical thinking processes (see Dreyfus, 1991, pp. 35–36). Such 
advanced thinking processes calls for the assimilation of three key characteristics. These 
are, generalization (to derive from particulars), synthesizing (process of merging into a 
single picture), and abstracting (transition from the concrete to the abstract). Students 
require new methods to assist them in making the transition from the secondary to post-
secondary level mathematics. 
 Given the complex nature of the definition of the limit of a function at a point, it is 
not surprising that some students develop misconceptions about limits. Thus, it is 
fundamental for educators to investigate what the misconceptions are and why the 
misconceptions occur. A study on the misconceptions arising from limits may provide 
reflection into how curriculum should be designed and how teaching of limits should be 
carried out. 
 This paper will address two research questions.  
1. What kinds of language-related misconceptions are there when students study 

limits?  
2. Why do such misconceptions occur? 
The term misconception as used in this study refers to the reason which constitutes the 
basis over which an error is made, with reference to the individual student’s perspective. 
“The misconception which forms the basis of the observed error may lie in the child’s 
conceptual knowledge or knowledge store or in the strategies which are developed in 
order to handle the problems under study” (Booth, 1983, p. 32). Another definition of 
misconception as noted by Ferrini-Mundy and Lauten (1993), describes misconceptions 
as non-traditional student views (see p. 156).  

Literature review 
The language issue in the study of limits has been investigated previously. Monaghan 
(1991) stated that misconceptions in learning limits arise as a result of the language 
used in limit terminology. He reported ambiguities that arose primarily from four 
phrases, namely: approaches, tends to, converges, and limits. These terms were cause 
for ambiguity because students formed their own interpretations from the four terms 
mentioned. Students used speed limit to rephrase limit when asked to replace the word 
limit within another context. The word limit was seen as a boundary which could not be 
exceeded. The word converges was construed in the context of lines converging to lines, 
but not to numbers. The terms approaches and tends to seemed to give the students the 
impression that the limit is a dynamic concept. Accordingly, it can be said that all these 
language misconceptions stemmed from the everyday meanings of the word being used 
in limits. Monaghan added that: “Students should be led to explore and discuss their 
conceptions and to realize how everyday meanings of mathematical phrases can direct 
them into fallacious interpretation” (p. 24). 
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 Monaghan (1991) also studied the consequences the use of language has on teaching 
mathematics. When English phrases like tends to and approaches are used in 
mathematics, the terms have a different meaning in mathematics. The mathematical 
language is a precise one in contrast to the spoken English language, and in addition, 
students seem to attach their own meanings to things. In fact, according to Quine (1968) 
understanding things involves interpreting meanings. Such interpretation also entails 
translation. Quine argued that this translation is relative to each individual and thus 
indeterminate. Hence, students who attach meanings to concepts may simply be 
interpreting what they translate the meaning to be. Consequently, meanings are subject 
to the students’ ontological relativity. 
 Davis and Vinner (1986) argued that misconceptions will continue to proliferate as 
long as the word limit is used too early in the calculus syllabus. They proposed that 
using the word associated number - a neutral phrase in place of limit, at least at the 

onset of a calculus course might help. For example, for the sequence  

instead of asking for the limit of the sequence, one could ask for its associated number. 
Swenton (2006) argued that many difficulties that occur in the study of limits are caused 
by inadequate mathematical language: “we argue that a large number of the difficulties, 
both specific and general, that occur in the instruction of limits stem from the lack of a 
mathematical language that properly addresses the fundamental nature of limits 
conceptually, computationally and logically” (p. 643). Swenton proposed using near-
numbers as a language for limits (see p. 644 for details).  
 On the other hand, Schwarzenberger and Tall (1978) added that the technical 
language used is a matter that may create conflicts in learning. Schwarzenberger and 
Tall divided conflicts into conscious and subconscious ones. These authors also queried 
that when we say ‘make the nth partial sums as close to s (its limit) as we please, by 
making n sufficiently large’, what precisely is the meaning of that? Ambiguity arises as 
to ‘how large is large’ and ‘how close is close’. A cognitive subconscious conflict arises 
here as the term close means near but not coincident. Hence, a misinterpretation may 
occur; namely, the nth partial sums can be very near to s, but never equal to it. Skemp 
(1986) added that, “we should never use convenient but loose phrases such as ‘as small 
as we like’ “ (p. 67). 
 Epp (1999) contributed to the issue of language in mathematics, by bringing in the 
aspect of quantification. Some students, she argued, get confused between the everyday 
usage of certain words and their technical meanings in mathematics. Students are not 
able to spontaneously read into the truth or falsity of universal and existential 
statements. Evidence showed that the conditional statement ‘If A, then B’ is 
misconstrued as being equivalent to the converse; ‘If B, then A’. Epp highlighted that 
textbooks have a part to play in the formation of this errors. Williams and Irving (2002) 
discussed about the discourse people subscribe to at different times. They contended 
that different language registers allow for the construction of different universes of 
meaning (see p. 209). Hence, English and mathematics domains are mutually exclusive 
when it comes to certain terms involving limits where meanings have to be defined 
precisely.  
 The disadvantages of relating mathematical language to the English spoken language 
have been highlighted. However, the aforementioned relation can be advantageous as 
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well, when first presenting the limit concept. Gass (2006) used the word approaches on 
purpose instead of converges to establish a familiarity between the mathematical and 
English languages. “I prefer ‘approaches’ rather than ‘converges’, because it maintains 
a familiar-setting language while we take on the challenge of limit definitions and limit 
proofs” (p. 148). 

Methodology 
This paper reports on data collected from a larger qualitative study involving 50 post-
secondary students about the students’ misconceptions in the study of limits. These 
students had taken an introductory course in calculus that was taught during their first 
year in a private university in Singapore. A test comprising of 3 items each with several 
parts on the limits of a function at a single point was administered to the students. The 
functions included covered continuous, piece-wise continuous and discontinuous 
functions. The functions were also represented differently; for example, some were 
represented by formula while others by tables or graphs. Rational, modulus and floor 
functions were among the functions included on the test.  
 The data responses were collated and coded according to the type of error made. 
Subsequently an interview schedule (comprising of 4 items) was designed based on the 
errors observed on the test and 10 of the students were interviewed. The 10 students 
interviewed were chosen based on the different kinds of errors they made. In particular, 
only the students who made language-related errors will be the focus in this paper. The 
emphasis accordingly lies on the reasons why students faced language difficulties.  
 A survey was also carried out based on the interview data to probe further into the 
validity of some of the language misconceptions.  

Results and discussion  
The data collected from the participants included: test scores, test scripts, a survey and 
interviews. In discussing the two research questions that follow, this paper will focus 
primarily on the results from the test scripts and interview data. Due to space consraints, 
only a few cases are highlighted here. 

What kinds of language misconceptions are there when students study 
limits?  
The language error appeared on a number of items of the main test. In particular, some 
of the respondents used terms such as indeterminate, non-applicable, indefinite, 

undefined and does not exist. In this study, some responses included regarding  as a 

limit that does not exist, is undefined, is indeterminate, or is non-applicable. In addition, 
some students also wrote indefined. The response indeterminate was partially correct, 
however it had to be simplified into a limit that could be determined; often, this 
simplification was not performed and indeterminate was left as the final answer. 
Considering some of the students in the interview sample, Brooke and Ivy are low-
ability students while Joseph a middle-ability one. Brooke during the interview 
described the limit as infinite. “Ah, infinite, does not exist at all”. Ivy thought that 
infinity was similar to indeterminate. Joseph on the other hand regarded the term does 
not exist to be similar to indeterminate and undefined. It is evident that the students in 
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this study possess varying interpretations of the words infinite, does not exist, 
indeterminate, indefined, and non-applicable. In the literature, Monaghan (1991) 
uncovered that the terms: approaches, tends to, limit, and converges were all taken to 
mean different things because of the physical connotation each term entailed. For 
example, limit meant a boundary that could not be exceeded. Thus, the language issue is 
a factor that led to incorrect limit values. The students are not aware of when to use the 
words infinite, does not exist, and indeterminate. Brooke for example thought that 
infinite meant the same thing as does not exist. Responses from some students showed 
that the term approaches was misconstrued as synonymous in meaning to approaching 
from the left hand side. The following interview extract shows that some students 
assumed that it was acceptable to attach their own meaning to certain terms (in this case 
approaches means approaches from the left). During the interview, a particular student 
Mary was asked for the limit as x approaches 5 for a function defined by:  for 

 > 5 and  for  < 5. Mary responded as follows. 

I: What about for this graph, the limit as x goes to 5? 
Mary: As x goes to 5, it will, as x goes to 5, negative 1. 
I: Why negative 1? 
Mary: Because I view it in such a way that approaches means this way you see. 
I: Meaning comes from the left? 
Mary: Ah, normally when you say its approaching something means it’s from a 

smaller number. 

It is evident from the response of Mary above that the notion of ‘smaller to bigger’ 
factors into the meaning of the term approaches. Hence entailing inherently the concept 
of ordinal numbers which is then associated with the limit.  

Why do such misconceptions occur? 
The language of limits needs to be clarified. It is possible that confusion is caused 

because, in real numbers sometimes people write undefined and sometimes  

for .When this real number theoretical fact is imported into the limits domain, the 
misconception that ‘ undefined’ is formed. Regarding limits, ‘ ‘ represents 
unboundedness and does not exist means that the left and right hand limits are different. 
David, a high-ability student responded on item 1(v) of the main test (see Figure 1) that 
the limit was 0 and this was similar to saying that the limit does not exist. David’s 
statement clearly shows that, the notion of a limit that does not exist is not well 
understood.  

 

Item 1(v): Find:   

  Figure 1. Response from David on item 1(v). 

Schwarzenberger and Tall (1978) argued that technical language used can create 
conflicts in learning and some of these conflicts are subconscious ones. Hence, this 
sample demonstrated learning conflicts that stem from language in real numbers being 
regarded as similar to language in limits. While Monaghan (1991) showed that terms 
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like tends to and converges are taken to have different meanings, the data in this study 
show that the value zero is assumed to be synonymous to ‘the limit does not exist’. 
On the other hand, Goldin (1998) claimed that certain words may bring out images in 
the minds of the students. “For instance, words and phrases not only have grammatical 
and syntactic structure; they evoke non-verbal images” (p. 144). Some students in this 
study have linked certain words to represent certain objects; such as linking the phrase 

undefined to the indeterminate form . The phrase undefined has possibly evoked the 

image of representations of fractions where the denominator is zero. 
 The difficulty encountered with terms such as indeterminate, non-applicable, 
indefinite, undefined, and does not exist can also be analysed through a learning 
metaphor highlighted by Sfard (1998) which is explained as follows. Sfard claimed that 
the Acquisition Metaphor (AM) involves acquiring knowledge based solely from the 
individual standpoint. The focus of AM with respect to learning has the individual as 
the emphasis. Accordingly, the respective students could have acquired knowledge of 
the terms such as indeterminate, by acquiring the knowledge on their own. The 
misconception that indeterminate has the same meaning as undefined, is a 
misconception that might have been constructed by the students themselves. The 
acquisition of knowledge as analysed through the AM, takes place only between the 
student and the terms. There is no facilitation to correct or check student understanding. 
Hence in the absence of teacher intervention, it is likely that language-related 
misconceptions may manifest. 
 On the other hand, the students who did not have language-related misconceptions 
with terms such as indeterminate, could have learnt or acquired knowledge of terms by 
reaffirming their acquisition with some external authority. The acquisition where 
learning is checked can be analysed through another learning metaphor put forward by 
Sfard (1998); namely, the Participation Metaphor (PM). The PM explains that 
knowledge acquisition occurs through participation with the mathematical community. 
Students who had their learning facilitated probably did so using textbooks or inquiring 
with their teachers. Such participatory learning could account for students who were 
able to distinguish the differences between the terms indeterminate and so on. 
Essentially, two different learning approaches yielded two different learning outcomes. 
The AM: where learning takes place individually versus the PM: where learning 
involves student participation and interaction with others. 
 Moru (2009) argued that responses from her interviews with 15 first-year 

undergraduate mathematics students included thinking of  as 1, 0 or . The 

responses were accompanied by statements like ‘it’s undefined’ or ‘the limit does not 

exist’ (see p. 441). A particular student of Moru’s, S126, claimed that  does not exist 

and  is  because anything divided by 0 is (see p. 441). S126 thus thought that  

‘ ‘ meant the same thing as ‘does not exist’. The language factor persists in the 
response by S126 since he or she attached similar meanings between  and ‘does not 
exist’. Moru claimed that generalization is the epistemological obstacle accounting for 
the misconception. Accordingly, it is possible that the students in the present study have 
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made generalizations of their own when they surmised that classifying ‘ ‘ as undefined 

or as does not exist means the same thing. 
 The data revealed that some students thought the limit value was an approximation. 
For example, responses showed that the limit was a range or an estimate. Using 
Dubinsky and McDonald’s (2001) theory (see Dubinsky & McDonald, 2001, p. 277) of 
Action, Process, Object, and Schema (APOS), it can be argued that students who were 
able to find the limit value successfully made the transition from the Process stage to the 
Object stage. Successful transition refers to the sequence of approximations (the 
Process) evolving into finally the limit value (the Object). In other words, successful 
transition calls for reification to occur. The students who left the limit as an 
approximation regarded the Process and Object stages as similar. Thus, students who 
were able to go one step further to the Object stage were successful in the computation 
of the limit. Those students who left their answers as an approximation could have done 
so because of language factors. For example, terms like ‘tends to’ or ‘approaches’ as 
Monaghan (1991) argued were regarded as having different meanings. The limit in this 
sample is seen to be an approximation possibly because of words such as ‘approaches’, 
which carries the connotation of never being reached. Hence, approximations seem 
reasonable if students subscribe to the English meaning of ‘approaches’ in contrast to 
the mathematical meaning. Consequently if language precedes mathematics, then the 
limit is not reified. 

Conclusion  
The key reasons for the language misconceptions are a lack of proficiency in the English 
language and the inability to reify the limit as an object may have contributed to 
misconceptions. Other factors accounting for the misconceptions include strong 
internalized behaviour and knowledge acquisition through individual and non-
participatory modes of learning. Reasons such as generalization (a particular 
epistemological obstacle) and following normal behaviour in computing limits subject 
to everyday meanings of the English language, may have also contributed to 
misconceptions. It should be noted that certain presentations (e.g., use of colloquial 
language) in textbooks are also responsible for the formation of misconceptions (see 
Kajander & Lovric, 2009, p. 175). 
 Accordingly, the planning of courses on limits will have to consider carefully the 
role of language in the study of limits. The terms highlighted above have to be explored 
in greater detail with students. Clear distinctions have to made about the meanings 
attached to terms such as indeterminate, undefined, does not exist, and so on. While in 
any research an attempt is made for the study to cover as large a scope as possible, 
limitations would nonetheless exist. In this investigation, the results from the data 
collected may not necessarily be generalized to a wider population because of the 
specific nature of the sample in this study. Language-related misconceptions derived 
from this sample may not be similar to those arising out of other samples of students 
with different mathematical backgrounds. Looking forward, it is therefore timely to 
recommend a study on language-related misconceptions on limits to be conducted on 
students with different samples with varying mathematical backgrounds. 
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Australia is a country that has a strong interest in water and swimming with most of the 
population living within one hour of a body of water. Significant numbers of parents take 
their under-5s to swimming lessons. Anecdotally, the swim industry believes that 
swimming enhances many aspects of young children‘s growth and learning. This paper 
explores the ways in which the swim environment for under-5s offers significant 
opportunities for learning many mathematical concepts that have transferability to school 
contexts. However, with the costs of swimming lessons being high, questions are posed 
regarding equity and the potential of swimming to further advantage the already 
advantaged. 

 
In this paper we discuss the opportunities for learning mathematics that are afforded by 
early-years swimming lessons. The data are drawn from a very large study that focuses 
on the broader benefits of swimming lessons for under five year old children. While 
working through this large data set, it was clear that the early years swimming 
environment was rich with mathematical concepts and language, and also included a 
range of structures that helped children prepare for school in general.  
 Initially, the importance of prior-to-school mathematical experiences are briefly 
discussed, before the study is contextualised by outlining the significance of swimming 
in Australia. Then, after briefly outlining the details of the study, we use the data to 
show how in simple ways children who experience early years swimming lessons can 
be advantaged in their preparation for school and more specifically, the learning of 
mathematics. 

Mathematical experiences prior to school  
Research into early childhood mathematics learning has received increased attention in 
the last decade (Perry, Young-Loveridge, Dockett & Doig, 2008). The importance of 
this area was emphasised by the Australian Association of Mathematics Teachers and 
Early Childhood Australia (AAMT/ECA) in their Position Paper on Early Childhood 
Mathematics (2006, p. 2): 

The Australian Association of Mathematics Teachers and Early Childhood Australia 
believe that all children in their early childhood years are capable of accessing powerful 
mathematical ideas that are both relevant to their current lives and form a critical 
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foundation for their future mathematical and other learning. Children should be given the 
opportunity to access these ideas through high quality child-centred activities in their 
homes, communities, prior-to-school settings and schools. 

There is a general consensus amongst researchers that, prior to school, children are able 
to experience and engage with meaningful mathematical ideas and concepts. Through 
this they are able to begin to develop a mathematical foundation, and this enhances their 
future learning in mathematics (Clarke, Clarke, & Cheeseman, 2006; Kilpatrick, 
Swafford, & Findell, 2001). Therefore, it is important that children are able to access 
mathematical concepts and ideas through a range of activities prior to school settings 
(Perry & Dockett, 2005). 
 Research on prior-to-school mathematical experiences has focussed on both 
educational settings (e.g., pre-school centres) (e.g., Fox, 2005) and informal everyday 
settings (e.g., Clarke & Robins, 2004). In informal settings the activities are often more 
playful and not explicitly focussed on the learning of mathematical ideas, but they are 
nevertheless replete with mathematical concepts that can be experienced and 
understanding developed (Clarke, et al., 2006; Goos & Jolly, 1994). For example, in 
observing toddlers playing outside, Lee (2010) noted activity related to a range of 
mathematical categories including (in descending frequency): spatial concepts, number, 
measurement, patterning and shape. She noted that not only were the children engaged 
in activities that were mathematically rich, but that they were also using and learning 
mathematical ideas and problem solving. In this project we are also examining activity 
that is not specifically focussed on mathematical development, but rather we are 
examining the swim context to see what opportunities it affords for the incidental and 
informal learning of mathematical ideas. 

Swimming in Australia 
In a country where 90% of the population lives near the ocean, water is a significant 
recreational activity and part of the Australian identity. With families having pools and 
living near water (both salt and fresh water), having a nation that is competent in the 
water is critical to the national health as well as being a strong part of the national 
identity. Accidental death by drowning is the leading cause of death among children 
between 1 and 4 years of age, and 80% of all child drownings occur with the under 5 
age group (this was 229 children in 1999 and 2003) (Australian Bureau of Statistics, 
2006). Similar figures exist for New Zealand ( Kypri, Chalmers, Langley, & Wright, 
2000) and the United Kingdom (Sibert et al., 2002). However, and sadly, for every 
death, there are approximately eight near deaths which often result in brain damage and 
other permanent impairments. Therefore, swimming and water confidence need to be a 
critical part of children‘s learning. 
 To reduce the incidence of young children accidentally drowning, many swim 
programs have been developed for the under five year olds. Langendorfer (1990) argued 
that there was considerable anecdotal evidence to suggest that such programs not only 
improve children‘s water safety, but they may also enhance the development of young 
children, although there was little empirical evidence to show any links. That said, aside 
from the immediate benefits of ‗drown-proofing‘ young children, it would seem that 
early swimming programs offer considerable other benefits to children. 
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Broader benefits of early years swimming 
The instructional environment that is a feature of the pedagogy of the learn-to-swim 
program may offer new opportunities for young children to be exposed to a pedagogic 
discourse (Bernstein, 1990) that would not otherwise be available to them, particularly 
for those children whose home environment does not align with the school environment. 
By exposing young children to this pedagogic interaction, their early habitus (Bourdieu, 
1981) may be shaped by this environment, thus predisposing them to engage within this 
form of interaction in ways that prepare them better for school. As such, this interaction 
may create new forms of habitus for all participants. Participating in environments 
where the pedagogic discourse is a feature of interactions may well help enhance the 
linguistic capital of participants in terms of coming to understand the pedagogic relay. 
As Zevenbergen (2000) has argued, being successful in school discourses is as much 
about ‗cracking the code‘ of the pedagogic discourse as it is about intellectual concepts 
and processes. 
 The instructional discourse of the learn-to-swim programs creates opportunities for 
young children to build their intellectual capital of which linguistic capital is a key 
element. For example, as Zevenbergen (2001) has noted in mathematics, students from 
disadvantaged families, particularly working-class families and Indigenous families are 
less likely to use the formal register of school. As such, many of these children come to 
school with an impoverished language in comparison with their middle-class peers. She 
has noted that many of the linguistic terms common to early mathematics (e.g., colour, 
shape, number) may not be a feature of some families‘ out-of-school language. The 
instructional discourse of the learn-to-swim programs fosters many of these terms—―get 
the red ball‖—so that the children have greater opportunities to learn the school 
discourse. In this way, there is every chance that the students may have greater success 
in schools due to their exposure to the patterns of signification (concepts/language) 
within the learn-to-swim program that augers well with school knowledge. Through the 
instructional discourse, students will be exposed to rich iterations of language, thus 
offering potential to extend their linguistic capital. The swim environment may thus add 
to the students‘ repertoire of skills and dispositions that ultimately may position them 
favourably for schooling. 

The study 
The data reported here are drawn from a much larger project that seeks to identify the 
possible ways that early years swimming adds capital to young children. In this paper, 
we draw on the data around mathematical concepts. The swim environment, because of 
its three-dimensionality, offers rich language that resonates well with the language of 
school mathematics. We contend that exposing young children to the early years 
swimming environment offers new potential for learning many aspects of mathematical 
language and concepts in an environment that is different from most other learning 
contexts. The research question posed for this paper is: ―In what ways, if any, does the 
early-years swim environment offer potential for learning mathematical language and 
concepts?‖ 
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Framework 
This project draws heavily on the work of Bourdieu to frame the project. Often progress 
in young children is described within developmental frameworks where there are 
identified stages of development with characteristic features. Walkerdine (1984) has 
argued that often the theory shapes the practice, which, in turn, results in the predicted 
child behaviour, therefore confirming stages of development as if they are natural 
orders. Walkerdine has been foundational in challenging the status quo. In this project, 
we see the environment as a critical factor in shaping children‘s learning and 
dispositions. To this end, the work of Bourdieu has been useful in theorising the ways in 
which practice, in this case—swimming, is instrumental in shaping the learning 
outcomes of young children. 

Sample 
A total of 45 swim schools across Australia are participating in the lesson observation 
component of the larger study. As most lessons for under-5s are conducted in the 
mornings, there are usually six sessions offered each day—30 mins for each lesson 
between 9 am and 12 noon. During each session there can be as few as one class, and as 
many as eight classes, depending on the size of the swim school. This is the general 
pattern across the swim schools, although some swim schools offer lessons on the 
weekend and/or after school.  

Data collection 
What is reported in this paper is drawn from a much larger project where we are using 
multiple methods of data collection including surveys, interviews, observations, and 
formal testing. This paper draws from the observational data component of the project, 
and some supporting data is also drawn from the interview transcripts. While the larger 
project will have, over time, a large data base of observational videos, this paper draws 
from one case—a 30 minute lesson with five 3-year-old boys. The rationale for this 
process was based on the depth of analysis of the video to enable identification of 
possible forms of mathematics learning being made possible through the environment.  
 In focusing our observations for this aspect of the project, we were seeking to 
identify potential learning outcomes. As such, the focus was to identify possibilities for 
learning, rather than the strength or frequency of such potential learnings. This aspect 
will be developed later in the project once a more robust database of terms and 
categories has been established from the data.  

Observations 
At least two researchers visited each site to observe the swimming lessons. The 
observers videotaped aspects of the lessons and took detailed field notes, including 
noting examples of language used in the instructional discourse of the teachers. The 
observations included a classes taught by a range of teachers from relatively new to 
very experienced instructors, and spanned the entire range of pre-school age groups. 
The observed classes also included lessons where the parents/caregivers were in the 
water with the children and ones where they sat poolside. Immediately after each site 
visit, the researchers involved set aside time to review the experience and the data 
collected, and during these discussions key features of the data were noted and marked 
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for future analysis. The researchers also discussed the key mathematical concepts they 
observed, and together they negotiated a shared account of each site visit. For this 
paper, aspects of pedagogical discourses have been drawn out from the observational 
and interview data. Indeed, we have tried to use the ‗common‘ and ‗everyday‘ aspects 
of the data to underpin and exemplify the points raised in the remainder of the paper. 

Findings 
As noted previously, in this paper we are only focussing on the data related to 
opportunities to learn mathematics, hence the results outlined below are limited to this 
aspect. The findings are discussed as they are presented in turn. 

Pedagogic discourse in learning mathematics 
Mathematical learning occurs via the pedagogic discourse. This discourse is one that 
has particular regulatory rules and protocols that are part of the discourse. Students are 
exposed to the discourse as they inserted into the teaching/learning environment 
(Zevenbergen, Mousley, & Sullivan, 2004). As the swim environment is one where 
there is a high emphasis on safety, teachers work in small classes and are focused on 
ensuring all children are engaged with the lesson.  
 In the following extract, the teacher is relaying a number of important aspects of the 
teaching/learning environment. Here he is directing the student about where to 
commence, but also explaining the importance of waiting until it is the student‘s turn to 
undertake an activity. By waiting, the teacher is then able to work with, and assess, the 
student‘s behaviour and undertake any necessary corrections. The importance of being 
able to take turns is embedded in the interactions. 

Teacher:  Jack1, go back to the wall, start from the wall and wait your turn, Buddy. 

This was also noted in an interview: 
Teacher:  You need to have eyes in the back of your head. As soon as you hear a splash or 

yell, your immediate reaction is to see what has happened, to see if it is one of 
your kids. You don‘t get much a chance if they fall over: you have to make sure 
you know where each of them are at any point in time. 

In observing lessons, schools had various ways of managing safety and learning. The 
structure of the pools allowed children to sit on long underwater benches so that while 
they were in the water they were not submerged. This ledge was also useful for babies 
who crawled and hence would not have their faces below the water. Children were 
taught to line up by having illustrations, such as feet, under the water and they would 
follow the foot prints. Teachers would elicit instructions, such as ―kick, kick, kick, kick, 
stop‖ and then pause, waiting for the children to stop kicking their feet in the water. 
These simple patterns of interaction are similar to those found in school so, from a very 
early age, young children were being exposed to the instructional discourses that would 
induct them into similar practices that they would find in the school context. 
 Within a Bourdieuian framework what can be seen is that the swim environment is 
adding new forms of knowing to children that, in turn, is internalised into their habitus. 
These new dispositions to the learning environment will position them more favourably 
with teachers as they display these new learnings. The displays of learning that can be 
                                                        
1 Pseudonymns are used in this paper to protect the identity of participants and sites. 
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observed in the children need to align with the practices valued in the field if the child is 
to be seen as displaying valued knowledge. Such displays, in turn, can then be 
exchanged for other rewards in the learning environment. In the swim environment, 
these are often certificates that acknowledge what has been learned and, as a 
consequence, progression into a different class. While the swim environment primarily 
focuses on skill development leading towards independent swimming, what is of value 
is the incidental learning that can be readily observed. For us, there were many practices 
that created potential for mathematics learning that would prepare students for their 
mathematics learning but also support them in their transition into formal schooling. It 
is this aspect of the swim environment that is the focus of the remainder of this paper. 

Mathematical discourse 
Throughout the observation there were many times when the teacher used mathematical 
language and ideas in their instructions. In this section we will present some of those 
aspects, and all the extracts are instructions given by the teacher while taking the lesson 
with the 3-year-old boys. 
 The terms used in mathematics lessons relate to aspects of the mathematics 
curriculum including number (one, two three), to measurement (big, fast, slow), to 
space in the areas of geometry (circle, straight, line, edge) and positions (up, down, 
underneath, side-by-side, together, backwards, edge). For example: 

T:  After one-two-three, we are going to push off with our hands like a rocket. 
T:  I need to see really big arms, big and slow. 
T:  Clinton, can you follow the big line on the roof‖ [points to the line painted on 

the ceiling]? 
T:  Okay watch me, I am going to have my hands on the edge, toes on the wall, 

head backwards, looking up at the line on the roof. Watching me, push off the 
wall, eyes up, glide, like a ferry boat [teacher demonstrates]. Alex, hair in the 
water first, and push and glide. Hold your body nice and straight and long. 

As can be seen from the few examples above, these routine instructions—instructions 
that could be heard constantly throughout all the lessons, are rich with mathematical 
language and concepts. It is important to note that as many of these instructions were 
given, they were accompanied by gestures or signals to reinforce the spoken words.  
 Also, the use of ‗little‘ words (e.g., prepositions, adverbs) are important as these 
often have important meanings in mathematics (e.g., off, up, out). Being exposed to 
mathematical discourses where prepositions have been used is integral to learning, and 
it has been found that when students are not able to grasp the use of prepositions, there 
is considerable scope for error (Zevenbergen, Hyde, & Power, 2001). Below are a few 
examples: 

T:  Sitting on the edge of the pool, rockets up in the air, now on one, two, three, 
slide in and push off the wall swimming out to me using big arms. 

T:  Alex, put your rockets up like Benjamin. No, not hands side-by-side, hands one 
on top of the other. Keep your toes underneath the water, nice long legs, no 
spaghetti legs, nice long straight legs. 

T:  Climbing up out of the pool, using your muscles, tummies, hands and one knee. 
Standing on the edge now. Now, using your hand making a circle with your 
arm. Going up past your ear and around to your leg, up past your ear and around 
down to your leg. Big circles, I want big straight arms [teacher manipulates the 
child‘s arm to demonstrate]. 
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The quotations above are representative of the common instructional dialogue of the 
swim lessons observed. Indeed, the few included above only came from one 
observation, and certainly there were many more that could have been included from 
the lesson. Thus, it can be seen that the swimming lessons are replete with mathematical 
terms and concepts, and the important ‗little words‘, and they are experienced in 
meaningful context. These mathematical ideas include the concepts identified by Lee 
(2010), and others that are particularly relevant in the water context. Furthermore, it was 
clear during the observations that the children understood the mathematical terms, and 
they demonstrated their understanding by performing the appropriate action or 
behaviour. 

Concluding comments 
What we propose is that the swim environment offers considerable potential to add new 
forms of capital to early learners. In this case, there is ample evidence to suggest that 
the swim environment can add or enhance the mathematical vocabulary of young 
learners and which, in turn, we trust would enhance mathematical understandings. In 
Bourdieu‘s exchange economy, the learnings that young children gain through their 
exposure to the pedagogic discourse and the mathematical discourse may create new 
forms of knowing and acting in the social and academic worlds. Their transition into 
formal schooling may be enhanced through the exposure to these discourses and as a 
consequence they are better prepared to interact in the formal discourses and discursive 
practices of schooling. 
 Of course, the children who are offered these opportunities are generally from the 
middle/upper class, so in further iterations of the study we hope to open the swim 
school experience to children who do not usually have access. Also, we will be working 
with some of the children involved in the swimming lessons to see if the mathematical 
understandings evident in the pool transfer to other contexts (i.e., outside the pool). If, 
as we suspect, the mathematical learning advantages are clear, then it will provide 
impetus to make these sorts of experiences available for all young Australians. This is 
particularly the case because the learning benefits add to the already significant gains 
for the children in terms of the obvious safety and physical development gains. 
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Drawing on the work of James Gee in literacy, we apply his contemporary approach to not 
only the knowledge systems of mathematics but also the processes by which school 
mathematics can be learned through the digital games environment. Using a number of 
games, and young people working these games, we propose that there are novel ways to 
learn not only many of the concepts that are integral to school mathematics, but such 
concepts can be learned in ways that are deep. The games environment offers an engaging 
environment that is substantially different from that experienced in formal school settings. 
We suggest that many of the principles that underpin the games environment may create 
new opportunities for teaching and learning that will (re)engage learners and learning of 
school mathematics. 

 
Most social and education commentators concur that the digital age has impacted 
significantly on society, education, and young people. Terms such as millenials, digital 
natives, Gen Y, and nexters are just a few that have been coined to try to capture the 
very different generations that are emerging into schools and work and whose lives have 
been significantly shaped by a plethora of digital technologies. While there is a 
significant literature on this generation in terms of the values and their impact on the 
workplace, less is documented in terms of learners and learning, particularly in 
mathematics.  
 In the area of literacy, Gee has been a leader in reshaping thinking about this 
generation in terms of their learning preferences, which have been shaped by their 
exposure to digital games, but also his critical analysis of the learning environment per 
se. In his comprehensive analysis of the learning principles that underpin the games 
environment, Gee suggests that many of these principles are missing from school 
learning environments. These design principles raise pedagogical issues for teachers and 
systems. Not only do these principles engage learners for extended periods of time in 
the games themselves, they are also creating environments that stimulate the gamer, 
create genuine scaffolding to enable the gamer to successfully transition through the 
game, and create opportunities for success. Sadly, many of these characteristics are 
absent from school pedagogy. Controversially, Gee proposes that for many of the digital 
natives entering contemporary classrooms, immersion in these games environments has 
created new opportunities for new forms of learning. While there may be some space 
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for challenging this position through arguing that games are generally played by 
adolescents, in a study of preschool children (3-5 year olds) (Zevenbergen & Logan, 
2008) found that more 95% of preschool children had access to computers, generally 
outside the preschool setting. These computers were providing opportunities for 
engaging in literacy and numeracy activities that were not possible for previous 
generations. For example, not having fine motor skills to create letters is no longer an 
obstacle in the computer environment where children were able to recognise letters and 
create them via the keyboard. Parents also reported that many of the children accessed 
games on the computer—approximately 80% of the children playing games, with some 
differences in genders (with more boys playing the games than girls). 
 Gee (2003) has proposed a number of principles that underpin the games 
environment that work to engage gamers in the game but through these principles they 
learn to play the game and experience success. Some of the more poignant principles for 
learning environments include: 

 Active learning principle: All aspects of the game environment are established to 
encourage active and critical learning; 

 Committed learning principle: Gamers participate in extended engagement so that 
they feel commitment to the game in a world that they find compelling; 

 Achievement principle: There are intrinsic rewards for each level of the game to 
recognise the achievements of the gamer; 

 Amplification of input principle: For little input, the gamer receives considerable 
outputs 

 “Regime of competence” principle: The gamer operates within, but at the outer 
edge, of his/her level of competence so that there is both safety and challenge; 

 Multiple routes principle: There are many ways to solve the game, each of which 
caters for the strengths and interests of the gamer; 

 Intuitive knowledge principle: Knowledge built up through playing the game is 
valued and honoured among participants; 

 Discovery principle: Very little overt knowledge is given, as most knowledge is 
acquired through experimentation and discovery; 

 Concentrated sample principle: Early in the game, gamers experience a 
concentration of signs that they practise, developing proficiencies for later in the 
game; and 

 Transfer principle: Support is given to practise skills and knowledge that are then 
transferred to later problems. 

In this environment, learning is seen as hard but fair since gamers can see that while 
unable to pass a particular skill that they will come to learn it and it will be needed for 
later in the game. Learning is within the confines of the game, so failure is not public 
but is intrinsic to the learning process.  
 When it is clear that young people learn in this type of environment, and engage in it 
for considerable amounts of time, educators may need to pose critical questions 
regarding school learning environments and their relevance to digital natives.   

New forms of mathematics learning  
Lowrie (2005) noted in his numerous studies of young children engaging with 
Pokemon, that this environment created significant different opportunities for engaging 
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with spatial concepts. Unlike traditional teaching of spatial mapping where the map is 
represented in a two-dimensional space and contained to the page, the Pokemon 
environment creates opportunities to ―go beyond the seen‖ to visualise the worlds 
beyond what is observed on the screen. He found that children created images of the 
world beyond what they could observe. Being able to create such images was essential 
to the success of the game since it enabled players to plan their pathways through the 
world/s being represented in the game. Furthermore, Lowrie found that in this 
environment, the players also had to create three-dimensional visualisations so more 
complex representations were essential. This visualisation process is significantly more 
complex and demanding than the activities that are typically part of the school 
mathematics experience for 8 year olds. 
 At the other end of schooling, Jorgensen (Zevenbergen) has studied the numeracy 
practices in contemporary workplaces as undertaken by a range of young workers. In 
these studies she reported that there are emerging new numeracies that have been 
shaped by radically different workplaces than in the past. These workplaces have been 
significantly shaped by new technologies. For example, in the Jorgensen (2010) study 
of retail assistants, the technologies of shopping are quite different from old practices. 
In contemporary shopping, the cash register not only tallies prices but also acts as a 
stock control device. Many older people bemoan the numeracy of young people but 
many of the practices of contemporary retail demand that operators undertake particular 
processes so that human error is eliminated. For example, in many restaurants, costs are 
not entered but the register has the menu items listed so that the operator enters 
foodstuffs rather than prices. This may seem to ‗downskill‘ workers but the owner-
operator needs to have information to enable more profitable ways of working. By 
knowing sales of the period of day or week or month, owners are better able to plan 
their sales to create more sales of popular products and to eliminate wastage. Thus, not 
only has the nature of work been radically altered by technologies, but young people 
approach their work in different ways.  
 It is in this changing context, where new forms of numeracy are being created by 
these environments, that we sought to better understand the potential for learners of 
mathematics. The conservative practices that sometimes appear to be immovable in 
school mathematics (Gutierrez, 1998) may be enhanced by better understanding the 
potential of the games environment to create engaging contexts for learning many 
mathematical concepts and processes. To this end, we posed the question: What 
learnings are made possible for primary school children through the use of digital 
games? 

Method 
The method we adopted in this research is unique as it is constrained by a number of 
key factors. First is the researchers‘ limited knowledge (and skills) in the gaming 
environment. For researchers who are one or two generations removed from the game 
environment, we are not immersed in the culture of gaming and the ways in which the 
environment shapes actions and beliefs, so this limits our capacity to engage with the 
games environment in a naturalistic way. Conversely, gamers are able to intuit how 
games work, and are highly competent with games consoles. Second, it is not possible 
for the gamer to play the game while simultaneously eliciting his/her thinking. The 
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game becomes an environment that absorbs the learning; making it difficult to engage 
with the complexities of the game while talking about strategies, actions, and 
justifications at the same time.  
 For the remainder of the paper we have adopted the protocol of referring to the 
person who provided the rich description of the game as the ‗gamer‘ and the person who 
would play the game as the ‗player‘. For the purposes of this paper, we engaged a 
serious gamer to work through two games (one of which is the basis of this paper) and 
to provide a running commentary on how to work through the game. This included how 
to play the game, what to expect, where to cheat, moves to make, and so forth, so that 
the research team could gain an understanding of the game, its challenges, and how the 
game is played. In seeking a person external to the mathematics education community 
to provide the description of the game, we were cognisant of the need to not look for the 
mathematics in the game. This has been a common approach in non-school settings 
where mathematics teachers/researchers have worked in such sites to try to uncover the 
hidden mathematics. This is a strong criticism of the ethnomathematics tradition. We 
sought to not fall into this trap since our objective was to identify the principles for 
learning alongside any forms of mathematics (new or old) that may be learned through 
participating in the games environment. By using an external to the field, this bias was 
less likely to occur. 
 The gamer used a Nintendo DS to play the game The Legend of Zelda: Phantom 
Hourglass (Nintendo, 2008). This is a game suitable for general audiences and hence 
suitable for primary school children. In another part of this project where we have 
sought to identify the types of games played by primary-aged students in terms of most 
popular games and the time spent playing games, we found that this game was one of 
the most popular among this age group. Below is an example of the text provided by the 
gamer. 

When you play for the first time, tap on the NEW GAME file to create your own save 
game. You will need to keep saving your game as you progress as The Legend of Zelda is 
a rather large adventure game. 
 
You will then need to ENTER A NAME for your character. Once you have done this, hit 
the OK icon on the bottom right. It will also ask you if you are left or right handed so 
choose the appropriate one. (You can always come back to your Save game to continue 
your quest after turning the console off. Just select the save game you created when 
loading the game back up.) 

The instructions are very clear in terms of the moves and what the player needs to do to 
navigate through the game. The gamer also explained the various moves that were 
possible and how these can be used for different purposes in the game. For example: 

Swinging your sword: Early in the game you will find a sword to use against monsters to 
help you progress through the levels. When you see a monster just simply tap on it and 
your character will attack it and deal damage to it. You can also slash the long grass that 
you see in the environment by sliding your stylus in a downward direction or in a left to 
right direction to stab things. There is also a ―spin‖ attack that is useful if you have 
multiple enemies surrounding you. That will deal damage to all of them: just simply draw 
a large circle around your character to do this. 
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Collectively, his descriptions provided a clear description for novice players (and 
researchers) on how the game was organised and the skills and tools that would be 
needed to progress through the game. 
 He also offered a rich description of how the game screen could be used to play the 
game. Much like Pokemon, the games screen on The Legend of Zelda: Phantom 
Hourglass provided partial representations of the worlds through which the game would 
be played. Also, this game had a large screen display which was the playing area as well 
as a smaller, full scale map so that the gamer could create a sense of where s/he was in 
the overall landscape. 

There are two screens at your disposal in this game. The top screen will mainly display 
your map with your character icon to tell you where you are on the map and other 
information like huts and caves you can venture into, while the bottom screen (touch 
screen) is your main movement and interaction tool. [Also] The bottom screen will show 
you how much health you have. There are the 3 Heart icons on the top left hand corner of 
the bottom screen. These will deplete if you take damage from monsters during the 
game.♥♥♥ 
 
There is also a green Rupee icon underneath the hearts which tells you basically how 
much money you have. Rupees are the currency in the game to let you buy useful items 
from merchants that you will come across. ♦ 
 
You can drag your MAP SCREEN (top screen) down to the bottom touch screen by 
pressing the B BUTTON or the DOWN DIRECTION on the control pad at any time to 
jot down some notes on your map so you can remember where important landmarks are 
or if you need to write puzzle solutions down. 

Collectively these descriptions provided insights into the multiple sources of data that 
will be processed by the gamer as s/he moves through the game levels. Many variables 
must be considered simultaneously. The gamer provided 23 pages of instructions and 
explanations to explain to the research team how the game was played. The background 
information finished at page 6 and herein the game commenced. 

Gee’s learning principles 
It is not our intention to analyse the game in terms of Gee‘s learning principles. 
However, we do want to acknowledge their presence in the game. As Lowrie‘s (2005) 
work illustrated, the game environment offers a rich site for developing spatial skills. 
Similarly, in The Legend of Zelda: Phantom Hourglass the player must navigate 
through a range of landscapes, creating a mental map of where s/he has been, and as 
s/he moves through the game, create richer memories of these worlds in order to better 
work through them. There are not explicit instructions given to the gamer as to how to 
navigate through these worlds but, as he illustrates explicitly, this is common in the 
games environment (see bolded text below). But as the player moves back and forth 
through sites/locations, a strong memory of the path is being created. This process 
allows the player to develop a familiarity with the spatial layout of the game. In so 
doing, it creates a visual memory of the spatial representation of the landscape.  

You should now leave the hut and try to walk up the pathway to the left of the hut and 
you should see a sign that tells you that it‘s dangerous to walk any further (by tapping on 
the sign) because of the monsters ahead. When you have tried heading NORTH Ceila 
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tells you that it‘s too dangerous so you must go back to speak with Oshus/Grandpa in his 
hut.  
 
Once that is done you may now leave the hut and venture into the cave to the right hand 
side of the hut. There will be a barrel blocking the cave so just tap on it to pick it up and 
tap away from your character to throw it. The path is clear now. 
 
*NOTE: This type of information gathering is widely used throughout the game so 
some backtracking will be required! 

Mathematics and the games environment 
Number  
An example of this potential methodological flaw would be possible in the following 
extract where the player must know the number of trees in order to open a cave. This is 
a very low level of mathematics that we do not see as enriching mathematical 
understandings of young people. Hence, we do not see this aspect of the games 
environment as creating new possibilities.  

When you have walked up to the closed door Ceila will say that you must write down 
how many palm trees there are on the beach which is SOUTH of the cave when you exit. 
Simply walk around the beach area and count the PALM TREES only. If counted 
correctly you should have counted 7 of them.  
 
You may now head back to the cave and tap on the sign next to the door to write down 
the number of palm trees you counted to unlock the door. Just write the number 7 on the 
screen and the door should magically open! Proceed up into the middle of the room and 
tap on the treasure chest in the middle of the room and you will be given OSHUS`S 
SWORD. This will help you defend yourself against any enemies you come across. You 
may now leave the cave and proceed up NORTH. 

In terms of identifying new possibilities for learning mathematics and new forms of 
mathematical thinking, the use of the gamer helped to bridge the chasm between school 
mathematics and new mathematics. 

Mapping 
In line with Lowrie‘s work, we see that in this game also, players need to develop good 
mental maps of the worlds through which need to move. Moving back and forth through 
worlds enables this sense of space to be developed. As the gamer noted in the earlier 
sections of the paper, this is a strategy that is commonly used. It also helps us to explain 
the learning principles upon which the game is based. The novelty of repetition where 
the player must move back and forth between sites helps to build a robust mental image. 
However, the repetition is quite different from the repetition found in many of the drill 
exercises used in mathematics teaching. In this environment, the drill is masked by a 
motive to learn a new skill or information that will be used for another level or situation.  

Now you must exit the dungeon and make your way back to the port in town. Head 
towards the ship and some more story/explanation will follow. You must then solve a 
little puzzle when the Sea Chart is on the bottom screen. You will need to rub your 
stylus on the bottom right hand side island until you can see a picture of a symbol. Oshus 
will tell you that this is the ISLE OF EMBER. That will be your first destination when 
you set sail. 
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To set sail somewhere you must start drawing a line from where the feather quill is on 
your map to another point on the map. Your first destination is the isle of ember so draw 
a line from the feather to the ANCHOR symbol on the isle of ember. Once you do this 
tap on GO! 

This moving around, travelling back over previous paths is a strong feature of the game 
and highlights how the player comes to create mental images. In the extract below, the 
player has reached the end point for a level and now must return to the start point to 
enable him/her to move into the next level.  

Isle of Ember - Mercay Island. 
Return to Astrid's house. Linebeck will be there, and Astrid will give you a Power Gem. 
After that, return to the boat to leave the island. Return to Mercay Island. Once back on 
Mercay, make your way back to the Temple of the Ocean King. 

Using previous learnings from other levels is common in games design as it is essential 
to the success of the game. In ―The Legend of Zelda‖ this principle is at work. Players 
learn skills in a previous level that enables them to pass through a different level. In the 
following extract, this principle can be observed. However, what can be seen in the 
extract is the complex spatial knowledge that is needed to move through this one 
temple.  

This will—as you can guess from the last temple—extinguish the flames in the southwest 
corner. Get over there and run through to the northwest corner, then hang right and step 
on the small floor switch near the three-block barrier. This lowers the blue door in the 
corner, so go back over there and grab the Small Key. With the key, run over to the 
northeast corner and use it on the locked door, then go downstairs.  

The directions that the gamer has provided highlight the possibilities for developing rich 
spatial understandings that extend beyond what is generally possible in the mathematics 
classrooms. Moreover, the processes through which these understandings are made 
possible are quite different from those used in most mathematics teaching situations.  

Conclusion 
What we have sought to illustrate in this paper is twofold. First, we draw on the 
pedagogical principles identified by Gee at the start of this paper. While we can observe 
that there is considerable repetition in the games environment, it is often with purpose 
and function. The player must be able to build skills and understandings that will enable 
him/her to move through the current and subsequent levels. The scaffolding provided by 
this repetition enables the development of new learnings that will empower the player to 
move forward through the game. The repetitions are neither boring nor lacking in 
purpose. 
 What is more important, however, is the acknowledgement that the games 
environment not only scaffolds learning, but in so doing, enables new understandings to 
be developed. In this game, the movement through various worlds requires the player to 
build complex spatial maps that go beyond what is seen. Learners must create images 
that extend beyond the immediate screen, and often as three-dimensional 
representations. This is far more complex than the maps currently used in curriculum 
offerings for age groups. This challenges orthodoxies that shape curriculum offerings 
for young learners. How these complex understandings are made possible through the 
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games environment represents a considerable challenge to mathematics education—not 
only in the terms of what is learnt, but also how it is learnt. 
 As the gamer has illustrated in his description of the game, there is a complexity in 
developing the mental image of the spatial world/s represented in the games 
environment. As learners engage with the game, there is considerable scope for them to 
learn. 
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This paper explores the learning experiences of 346 year four low attainers in mathematics 
from Singapore. The pupils were interviewed about their learning experiences related to 
mathematics lessons in school. An innovative method, using pictures as stimulus, was 
adopted to engage pupils to talk about their lessons. From the interview data it is apparent 
that there was a mismatch between how pupils were taught and preferred to be taught. 
Almost all the pupils experienced teacher-led whole class instruction during their 
mathematics lessons. A study of three teacher-led whole class instruction lessons showed 
that these lessons were not unique but had some commonalities. The mathematical tasks 
used during instruction were routine and repetitive. Teachers also did not stimulate the 
development of pupils‘ metacognition.  

Background 
In this paper the term ―low attainers‖ refers to pupils who attain very much less in 
mathematics when compared to their contemporaries (Haylock, 1991) in the mainstream 
primary school. The use of this term does not make any judgment about the reasons for 
low attainment in mathematics. Low attainment in mathematics has been found to be a 
result of not a single factor but of the interplay of subject related difficulties, specific 
intellectual/behavioural characteristics of the pupils and pedagogical shortcomings 
(Haylock, 1991). The research reported in this paper is part of a larger research study 
that explores the factors related to low attainment of primary pupils in Singapore (Kaur 
& Sudarshan, 2010). 

The research question 
The research question that is addressed in this paper is one of the larger study‘s six 
research questions. The question is ―What are the learning experiences of low attaining 
mathematics pupils in school?‖ 

Review of literature 
The review of literature in this paper is specific to the learning experiences of low 
attaining mathematics pupils. According to Reusser (2000) there is sufficient evidence 
in research on mathematics learning and teaching that most observed failures and 
substandard performances are due to deficiencies in the teaching and learning 
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environments rather than genetic factors. In his review of theoretical and empirical 
research from a cognitive instructional perspective, Reusser contends that an effective 
teaching environment positively impacts students‘ mathematics attainment levels 
regardless of grade levels or mathematical ability. His perspective of an ‗effective 
teaching environment‘ for low attainers centres around adaptivity and empathy in 
teaching. He recommends the use of micro adaptation—moment-to-moment decisions 
of teachers aimed at tailoring instruction to the needs of different learners.  
 Direct structured instruction has also been found to be effective with students having 
difficulties in mathematics (Harris, Miller, & Mercer, 1995; Jitendra, & Hoff, 1996; 
Van Luit, 1994; Wilson, Majsterek, & Simmons, 1996). Direct instruction is systematic 
explicit instruction which is teacher-led (Jones, Wilson, & Bhojwani, 1997) and 
generally follows a fixed pattern of actions (Archer & Isaacson, 1989). Kroesbergen and 
Van Luit (2002) detail a typical direct instruction lesson as having three phases. In the 
opening phase the students‘ attention is gained, previous lessons are reviewed and the 
goals of the lesson are stated. In the main part of the lesson the teacher demonstrates 
how a particular task can be solved, following which the students and teacher work 
together on a few more similar tasks. When the students appear to have sufficient 
understanding of the tasks they are given new tasks to practise independently. The 
teacher monitors the students during such practice and provides feedback on completed 
tasks.  
 Cardelle-Elawar (1995) found that low achieving students showed metacognitive 
potential when stimulated by explicit individualized instruction and recommends that: i) 
special consideration should be given to each individual student‘s uniqueness, strengths 
and weaknesses; ii) these students need a supportive atmosphere in which errors and 
mistakes are considered a source of learning and not an occasion for punishment; iii) 
these students need more structure in the classroom; and iv) these students warrant a 
great deal of interaction between teacher and student. According to Watson (2001), 
these students are also able to make shifts in their thinking from the superficial features 
of mathematical tasks to forms of mathematical thought. She cites a specific example 
where students were able to shift from seeing fractions as congruent shapes to seeing 
fractions as quantities using the idea of areas to make the link. Watson asserts that low 
attainment is not the result of an inability to think but the lack of structured work that 
promotes higher order thinking among low attainers. Zohar and Dori (2003) also found 
that low achieving students can gain from teaching and learning processes that are 
designed to foster higher order thinking skills. They suggest that teachers should 
encourage students of all levels to engage in tasks that involve higher order thinking 
skills.  

Methodology 
Subjects 
The subjects of the study are 346 year four pupils from nine primary schools in 
Singapore who qualified for participation. They were nominated by their respective 
schools, had parental consent for participation and took the mathematics benchmark 
tests of the study.  

415



KAUR & GHANI 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

Instruments 
Specific to the research question addressed in this paper, only instruments used to 
collect data from pupils and teachers on learning experiences of the pupils will be 
presented.   

Pupils’ interviews  
From our interactions with the pupils and their teachers in the project we found that 
pupils lacked the language to talk about their learning experiences and about the actions 
of their teachers during mathematics lessons. So, to facilitate pupils‘ talk about their 
learning experiences, we adopted an idea from child psychiatry about using pictures as 
stimuli for interviews (Angold, 1976). We also found the pupils rather reserved in their 
oral communication with us when they were in a one-to-one interview setting. This 
observation led us to adopt a group interview format for our study. Pupils were 
interviewed in groups of four to five persons. During the interviews the researchers of 
the study used four pictures of mathematics lessons to stimulate talk amongst the pupils 
about how their mathematics teachers usually taught them in class and what their 
preferences for learning mathematics were. The four pictures shown in Figure 1 were 
used for the interviews.    

Picture A:
Teacher-led whole 
class instruction

Picture B:
Group work

(pupils working on 
tasks without 

manipulatives)

Picture C:
Individual working on 

task with 
manipulatives

Picture D:
Group work 

(pupils working on 
tasks with 

manipulatives)

Figure 1: Pictures of mathematics lessons. 

The prompts used for the interviews belonged to three categories, mathematics lessons, 
homework, and self. In this paper we only focus on the prompts related to mathematics 
lessons. The four pictures A, B, C and D were put on the table around which the pupils 
and interviewer sat for the interview session. The following prompts were used to 
engage pupils in talking about their mathematics lessons at school.  

 Prompt 1: Which picture shows the way your mathematics teacher usually teaches 
you in class? 

 Prompt 2: Which class do you want to be in? Why? 
 Prompt 3: Which class don‘t you want to be in? Why?

Lesson observations 

Nine schools participated in the project. The lesson of one teacher per school who 
welcomed the researchers to his/her class was observed. In one of the schools, two 
teachers volunteered and therefore a total of ten lessons were observed. The teachers 
taught mathematics to pupils participating in the project. Our lesson observations were 
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guided by the following main analytical questions that resulted from our theoretical
framework. The questions are: 

AQ1. What was the instructional sequence of the lesson like?  
AQ2. Did the teacher tailor instruction to meet the needs of different learners?  
AQ3. What were the characteristics of mathematical tasks used in the lesson? 
AQ4. Was the classroom learning environment a supportive one?   

If so, how did the teacher nurture such an environment? 

Data and findings 
In this section we first present the data and findings of the interviews according to the 
three interview prompts chronologically. Next we present our analysis of three of the 
ten lessons that were observed as part of the project. We have selected these lessons as 
they typify teacher-led whole-class instruction which almost all pupils experienced 
during mathematics lessons.  

Interview data and findings 
Ninety-eight percent of the pupils interviewed said that their teachers always used 
teacher-led whole class instruction during mathematics lessons. Figure 2a shows the 
preference of the pupils with regard to the type of instruction they desired. The highest 
percentage (40%) of the pupils said that they preferred to work in groups on 
mathematical tasks with manipulatives during mathematics lessons.
 Figure 2b shows the preference of the pupils with regards to the type of instruction 
they disliked. More than half of the pupils (62%) preferred not to be in a class where 
they would have to work by themselves on a task with manipulatives.  

Figure 2a. Responses to prompt 2 Figure 2b. Responses to prompt 3

From Table 1 below, it is apparent that pupils found: a) interacting with peers a fun and 
good way to learn; and b) the ―hands-on‖ experience gratifying and meaningful in 
learning. It is also apparent from Table 2 that pupils: a) lacked the confidence to attempt 
tasks without the support of peers and teachers; and b) felt bored and lonely working by 
themselves.
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Table 1. Sample of pupils‟ responses to the „Why” of “Which class do you want to be in?” 

Sample responses for Picture D - Group work (pupils working on tasks with manipulatives): 

S038:   ―Discuss with a group, tell each other the answer and find out which is the correct answer‖. 
S057:  ―When we do the activity, we can feel that maths is fun‖. 
S105:   ―More fun to work with a group and can discuss with friends if I am not sure‖. 
S234:   ―I feel happy when I can do things to help me understand and improve‖. 
S537:  ―We can see how things happen and touch things‖. 

Table 2. Sample of pupils‟ responses to the „Why” of “Which class don‟t you want to be in?” 

Sample responses for preference Picture C – Individual working on task with manipulatives: 
S074:  ―Work alone may not know how to do and then do the wrong thing‖. 
S084:  ―It is boring and lonely when doing by ourselves‖. 
S197:  ―If alone cannot study well, cannot ask anybody about the activity‖. 
S453:  ―Scared if I don‘t understand what teacher wants‖. 
S528:  ―Don‘t want to do things alone. With other people we can do better‖. 

 

Analysis of lessons observed 
Each lesson was observed by at least two researchers. Following the observation, a 
reflection of the lesson was guided by the analytical questions that provided the 
theoretical lens for analysis. The main aspects of the lessons on which the researchers 
concurred are presented in Table 3. 

Discussion and concluding remarks 
From the interview data of the pupils in the study, it is apparent that 98% of pupils are 
taught mathematics in classrooms where teacher-led whole class instruction is the norm. 
But, teacher-led whole class instruction was the preference of only 28% of the pupils in 
the study. Forty percent of the pupils preferred to work in groups on mathematical tasks 
with the help of manipulatives. They found interacting with peers a fun and good way to 
learn, and the ―hands-on‖ experience gratifying and meaningful in learning. From the 
above findings the apparent mismatch between how teachers teach these pupils and how 
these pupils would like to be taught in mathematics lessons may partially explain the 
low attainment in mathematics of these pupils. This finding reinforces that of Reusser 
(2000) that most observed failures and substandard performances are due to deficiencies 
in the teaching and learning environments rather than genetic factors. 
 The three lessons observed depicted teacher-led whole class instruction. All had 
three phases but there was variation between corresponding phases across the lessons 
(see Table 3). Although all teachers stated the goal of their lesson, only Teacher A 
reviewed the last lesson before embarking on the present one. In the main phase, 
although all the teachers demonstrated how to solve particular tasks, only Teacher A 
went on to do more tasks similar to the particular ones with inputs from pupils, before 
setting them new tasks to work on individually during the consolidation phase. 
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Table 3. Analysis of the three teacher-led whole class instruction lessons. 

Analytical 
Question 

Teacher A (School 3) 
Topic: Time [duration] 

Teacher B (School 7) 
Topic: Symmetry 

Teacher C (School 5) 
Topic: Tessellation 

AQ1 
 

i) Introductory  phase: 
review of past lesson and use 
of real life contexts to arouse 
pupils‘ interest   
ii) Main phase: development 
of concept and application of 
knowledge (adequate 
examples worked on the 
board with inputs from 
pupils) 
iii) Consolidation phase: 
pupils worked individually 
on new tasks, while teacher 
provided between desk 
instruction and feedback on 
completed tasks. 
 

i) Introductory phase: 
mentioned that the past 
lesson completed the topic 
time. Stated the goal of the 
present lesson. 
ii) Main phase: 
demonstration of concept 
using manipulatives, video 
clips and cut-outs of 
alphabets, followed by 
―hands-on‖ work by pupils 
in groups—identifying the 
lines of symmetry of the 
alphabet. 
iii) Consolidation phase: 
pupils worked individually 
on similar tasks without 
assistance from teacher or 
peers. 

i) Introductory phase: 
mentioned that lesson was 
on a new topic—
tessellations. 
ii) Main phase: 
demonstration of the concept 
of tessellation via examples 
and non-examples. Pupils 
worked in groups with unit 
shapes to make tessellated 
patterns. Pupils showed the 
class their patterns and 
teacher encouraged peer 
evaluation. 
iii) Consolidation phase: 
pupils worked in pairs and 
again were given unit shapes 
to make tessellated patterns.  

AQ2  No apparent attempt  No apparent attempt  No apparent attempt  
AQ3 Routine and repetitive. Routine and repetitive. Routine and repetitive.  
AQ4 Supportive. Encouraged 

pupils to ask questions, 
welcomed mistakes and 
praised pupils for 
participation.  

Supportive. Encouraged 
pupils to talk to peers about 
their work, welcomed 
mistakes and praised pupils 
for completing their work on 
time. 

Supportive. Encouraged 
pupils to comment on their 
peers answers and praised 
pupils for their attempts.  

 
While pupils were working on the new tasks, Teacher A provided between-desk 
instruction and feedback on completed tasks. However, for Teachers B and C during the 
main phase, pupils did tasks similar to those the teachers had demonstrated but in 
groups. Following this Teacher B assigned pupils individual work on similar tasks 
devoid of any assistance from peers or teacher, while Teacher C got pupils to do pair 
work on tasks similar to those they did during group work. From the instructional 
sequences of the three teachers, it is apparent that the lesson of Teacher A is similar to 
that advocated by Kroesbergen and Van Luit (2002). Hence it may be said that although 
almost all the pupils were experiencing teacher-led whole class instruction during their 
lessons, the variation between the types of such instruction may not be addressing the 
needs of the low attainers. Furthermore, teachers made no attempt to tailor their 
instruction to meet the needs of different learners.   
 The tasks used by the teachers were routine and repetitive, and it appears that 
teachers made no attempt to engage pupils in higher order thinking. This practice is at 
odds with the findings of Watson (2001) and Zohar and Dori (2003) who found that low 
attaining pupils are capable of making shifts in their thinking and improving in their 
mathematics attainment when challenged with higher order thinking tasks. In the three 
classrooms, the learning environments were conducive, teachers were welcoming of 
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mistakes, praising pupils for good effort, encouraging pupils to ask questions and 
engage in peer evaluation. However, the main focus was the use of correct procedures 
to solve mathematical tasks. Errors made by pupils were not used as springboards for 
reflection. Also questions asked by pupils were not exploited to engage the class in 
critical thinking. Hence it may be said that although the learning environment could 
have stimulated the metacognitive potential of the pupils it was not harnessed. This was 
yet another setback as Cardelle-Elawar (1995) found that low achieving pupils benefited 
from metacognitive training.  
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The New Zealand Government recently introduced National Standards in response to 
concerns about levels of student achievement in mathematics and literacy, and significant 
investment has been made in the Numeracy Development Project. Principals are 
responsible for improving teacher practice but most principals were educated in contrasting 
pedagogies to that of the NDP and have more language arts than mathematics strength. This 
qualitative case study compared two diverse, primary-sector principals, chosen for 
contrasting mathematical backgrounds and leadership of mathematical professional 
development. The results illustrate that a school principal is an influential „cog‟ in the 
mathematics professional development process and that their direct participation in 
mathematics professional development is required for effective leadership of mathematics. 
It provides evidence about the mediating influence of leadership in mathematics 
professional development and learning in schools. Practical implications for improving 
classroom practice in a distributive leadership environment will be discussed.  

Introduction 
Principals of primary sector schools are less involved in professional development for 
mathematics than other subject areas. Many current principals did not learn school 
mathematics through a constructivist pedagogy and many may not have taught in a 
classroom using constructivism. Spillane (2005) unmasked substantial differences 
between subject areas in terms of leadership. In mathematics-related leadership 
routines, fewer leaders were involved and they rarely contributed, whereas direct 
principal involvement was more prevalent in literacy routines. Timperley, Wilson, 
Barrer and Fung (2007), in their meta-analysis of research on teacher professional 
learning and development, highlighted a lower profile for school leaders in professional 
development in mathematics than in any other curriculum area, “It may be that what 
was being asked was as challenging for leaders as for the participating teachers” (p. 75). 
To compound the problem, Nelson and Sassi (2005) state that the knowledge that 
principals hold, in terms of mathematics education, will be reflected in how they 
approach the mathematical content and pedagogical improvement needs of their staff.  
 This paper explores how principals identify effective classroom practice and 
professional development needs if their own mathematical identity, knowledge, and 
presence are weak.  
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Background 
The role of the school leader 
In the past 20 years, schools have changed in terms of governance and management 
(e.g., New Zealand‟s Tomorrow‟s Schools) and subsequent changes in leadership have 
been necessary. The move requires school leaders to empower others whilst staying in 
touch with „best‟ practices and assisting staff in working towards improvement in 
professional practice. Many writers support the concept of distributive leadership (e.g., 
Leithwood, Harris & Hopkins, 2008), and principals have been encouraged to embrace 
this paradigm as a means of sharing the demands of the heavy workload imposed by 
self-management. The core of building pedagogical capacity in schools lies in how the 
principal focuses on the development of teachers‟ knowledge and skills (Fullan, 2002). 
According to Robinson, Hohepa, and Lloyd, (2009), the leadership dimension that 
produces the largest effect size on student achievement is where the school leader is 
participating in, and promoting, formal and informal opportunities for teacher learning 
and development as leaders or as learners, or both. Extending current knowledge in
mathematics is important in light of the dramatic changes effected from cognitive 
psychology and mathematics education research. Spillane (2000) asks if it is reasonable 
to expect leaders “to develop rich conceptions of mathematics” (p. 169) and concludes 
that it is reasonable because of their role in selecting and organising professional 
development for teachers.

A key element in educational leadership is for principals to intentionally enter 
classrooms to gather information and support teachers on an ongoing basis (Williams, 
1996). Classroom visits should be designed specifically to assess the degree of 
professional development implementation. Fink and Resnick (2001) identify that 
effective principals “are in teachers‟ classrooms every day” (p. 606). 

The leader-middle management-teaching team relationship 
When shared leadership is incorporated over an existing hierarchical structure it may 
lead to challenges when viewed from the perspective of Anderson‟s (2004) „model of 
leadership reciprocity‟. Anderson describes three situations: the „contested model‟, the 
„buffered model‟, and the „interactive model‟. 

Figure 1. Contested Model  Figure 2. Buffered Model  Figure 3. Interactive Model 

In the “Contested model‟, shown in Figure 1, the principal stands „out of the loop‟ 
usually in formal leadership roles and perhaps in opposition to teacher leaders. Figure 2 
shows the „Buffered model‟, where access to, and influence upon, others is mediated 
through the teacher leaders. The final of the three models, shown in Figure 3, is the 
„Interactive model‟ where the principal, teacher leaders, and other members of the 
school community share accessibility equally and communicate freely.  
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Mathematical Identity of teachers and principals 
Grootenboer and Zevenbergen (2008) define identity as “how individuals know and 
name themselves … and how an individual is recognised and looked upon by others” (p. 
243). The cultural or psychological interactions that affect a person‟s method of relating 
to mathematics are termed „mathematical identity‟. According to Grootenboer and 
Zevenbergen, the teacher‟s role is to facilitate the development of students‟ 
mathematical identities by bridging students and subject, enabling a positive 
relationship with mathematics. A negative aspect of mathematical identity is 
mathematics anxiety, and Hembree (1990) showed that pre-service primary teachers had 
higher levels of mathematics anxiety than any other major on US university campuses, 
whilst it is estimated that more than half of all Australian primary teachers have 
negative feelings about mathematics (Carroll, 2005). Weak teacher mathematical 
identities must be addressed through appropriate leadership and sustained professional 
development. 

Effective professional development in mathematics 
Research suggests that content, rather than context, of learning is the most influential 
factor in determining whether professional development in mathematics will result in 
improved student achievement (Timperley et al., 2007). Professional development of 14 
hours or less showed no effect on teachers‟ learning. The largest effect involved 
programs offering 30 to 100 hours spread out over 6 to 12 months (Darling-Hammond 
& Richardson, 2009). Research shows that there is a link between improving 
mathematical identity and engagement with professional development activities (e.g., 
Millett, Brown, & Askew, 2007). Higgins and Parsons (2009) characterise professional 
development that encourages change in mathematics instructional practice as having a 
focus on subject matter knowledge, an understanding of how students learn the subject 
matter, and how to convey content in meaningful ways. 

Data collection and analysis 
This paper reports a case study of two New Zealand primary schools; referred to as 
School A and School B with the respective principals referred to as Principal A and 
Principal B. It examined the principals‟ mathematical identities and leadership, the 
teachers‟ mathematical identities, and the professional development offered in 
mathematics pedagogy. The two schools were selected because they showed clearly 
contrasting mathematical histories of their principals, different approaches to 
professional development, and different outcomes on the mathematical identities of the 
teachers. Both schools had similar student ethnic compositions and socio-economic 
locations. Around 60% of the total teaching staff of each school responded to the survey 
and volunteers were then interviewed in a semi-structured format.  
 A qualitative approach was selected as the most appropriate method of obtaining 
data. A survey design was supplemented by interviews to explore primary principals‟ 
and teachers‟ perceptions of the provision of mathematics professional development in 
view of the inherent mathematical identities and the surrounding issues. The survey 
included an adapted Mathematics Value Inventory, or MVI, (Luttrell et al., 2010) 
whereby questions were posed about attitudes towards mathematics and responses made 
on a five-point scale ranging from strongly disagree to strongly agree. The statements 
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included indicators of either negative or positive beliefs about the value of mathematics. 
The data were analysed by the researcher using a grounded approach of identifying 
codes, categories, and themes that were then used in conjunction with dialogue and 
quotes from participants.  

Findings 
The principals’ and teachers’ mathematical identities 
Principal A did not formally study mathematics beyond secondary school nor completed 
any further qualification that included a mathematics or mathematics education 
component. Principal A described a history as a mathematics student and reflected 
negatively on their learning experiences in mathematics, “I am one of those kids who 
didn't get it at school and I know what that feels like.” Principal A did not connect to 
mathematics as a school student because, in a psychological sense, the education 
received failed to relationally bridge student and subject as described by Grootenboer 
and Zevenbergen (2008). A teacher education programme started to change the 
perception of their mathematical identity by changing elements of identity (such as a 
new path for their life history and improved affective qualities and cognitive dimensions 
for mathematics). Using the Mathematics Value Inventory (MVI), Principal A showed 
that they currently hold positive feelings towards mathematics. The repaired 
mathematical identity, combined with negative childhood memories, gave Principal A 
an increased understanding into students who struggle to understand mathematical 
concepts, “I can say to the staff that it's not that they are not trying: they don't get it.” 
The MVI showed that 90% of teacher respondents at School A held positive feelings 
towards mathematics despite prior mathematics anxiety for some participants. A teacher 
explained, “I was actually frightened at the thought of learning maths well enough to 
teach it. Coming here and getting the training has only made me more enthusiastic for 
maths.” 
 Principal B had formally studied Level 1 mathematics as a university undergraduate 
for a non-mathematical degree, with no further qualifications that included mathematics 
or had a mathematics education component. Principal B had a strong mathematical 
identity as a school student and as an adult. They held mathematics to have a high value 
and recognised the importance of mathematics as a subject area and as a life skill. 
Principal B had not taken part in Numeracy Project professional development because, 
the Principal stated, “we couldn't see the need”. Up to 44% of teacher responses at 
School B showed negative feelings and an explicit lack of value held for mathematics. 

Professional development related to mathematics 
At interview, evidence was provided that Principal A consulted with and considered the 
needs of individual teachers, pedagogical practices were observed and weaknesses 
identified, student achievement data was noted, and governmental initiatives were taken 
into account before goals for professional development were established. The school 
focus on mathematics (often with external facilitators) was reflected whereby 100% of 
teacher respondents had undertaken mathematical professional development in school. 
All newly employed teachers received an intensive introduction to the Numeracy 
Project and then joined the whole school professional development programme. 
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 School B‟s professional development programme was in direct contrast to School 
A‟s. Only 8% of teachers at School B had undertaken mathematics professional 
development. Literacy was the most common curriculum for professional development 
followed by ICT, inquiry, and English as a second or other language (ESOL). 
Mathematics and music professional development followed these subjects and science 
and Physical Education tied for last place. Teachers from School B stated that the 
school participated in too many initiatives and this resulted in a lack of focus for 
professional development programmes. They voiced concern at the apparent lack of 
links to best practice and classroom visits. Despite the teachers in School B, overall, 
holding higher mathematics qualifications than those held by the teachers in School A, 
they indicated a lack of content knowledge. “There are teachers at our school who don't 
know higher than 3A. How are we catering to those top kids when the teachers don't 
know it?” School B‟s teachers described the professional development in mathematics 
offered in the school as inadequate to meet their needs. One teacher stated, “I can‟t even 
remember doing maths PD. I don't think we are helping people that don't have strength 
in maths enough.” 

The principals’ promotion of, and participation in, professional 
development in mathematics 
Principal A was a consistent participant in mathematical professional development 
through personal attendance at professional development activities, working alongside 
the mathematics curriculum team, and in staff meetings where mathematics professional 
development was provided. Ninety percent of School A‟s teachers believed that 
Principal A promoted access to mathematics professional development well or better.  
 Almost half of School B‟s teachers recorded that the principal never participated in 
professional development in mathematics whilst 42% stated that this occurred once each 
year or less. Teachers outlined how they considered that Principal B‟s participation was 
inadequate in professional development and staff meetings. Thirty-one percent of 
School B teachers responded that they needed more professional development to 
maintain their skill and 46% said they did not receive any mathematics professional 
development at all.  

The principals’ leadership of mathematics 
Principal A described their leadership of mathematics as distributive, adding “We have 
a maths team of teachers. I am involved in the team and decision-making and in setting 
a budget that will allow for the gains made to be sustained.” Principal A assumed an 
interactive role of leadership reciprocity (Anderson, 2005) through attendance at the 
meetings and direct involvement in the professional development. Principal A merged 
internal professional development with external opportunities, including the provision 
of externally facilitated workshops twice each term. Resources were provided to allow 
attendance at these workshops and the principal managed the resources. Curriculum 
team meetings focused on how best to implement new learning and recommended the 
resources required. The principal attended these meetings. Staff received information 
through regular staff meetings where the curriculum team shared learning opportunities. 
  Principal B also espoused their preferred style of leadership as distributive, but 
not all School B teachers saw Principal B‟s version of shared leadership as being ideal, 
especially in mathematics. The teachers outlined how they felt that the leadership team 
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no longer led curriculum. One teacher said, “The whole curriculum focus has been lost 
from a senior management point of view”. Yet Principal B acknowledged that principals 
“need to engage in learning with the person to whom it is delegated so that you have a 
shared understanding.” However, Principal B also outlined a view that principals need 
not understand the content of mathematics: “I don't think a principal has to be 
mathematically orientated but has to understand that mathematics is one of the 
foundation skills”. 

Discussion and conclusion 
Mathematical identity of principals 
Common sense might suggest that a principal with a strong mathematical identity would 
identify more strongly with the subject and focus more on the provision of professional 
development specific to mathematics. My research found a stronger relationship 
between a formerly weak mathematical identity that had been addressed and the 
promotion of, and participation in, mathematical professional development than 
between a strong but unaddressed mathematical identity and promotion of, and 
participation in, mathematics professional development. 
 Principal A‟s position on the Mathematics Value Inventory (Luttrell et al., 2010) 
indicated that they had successfully repaired their mathematical identity and they have 
shown enthusiasm for professional development in mathematics content and pedagogy. 
This created a clear purpose for mathematics leadership, simply described by Principal 
A as being that a child in their care “would not suffer a belief that they were 
mathematically useless”. In contrast, Principal B described having a lifelong comfort 
with mathematics, indicating a positive mathematical identity from an early age, and 
having studied mathematics content at university. The MVI scale indicated that 
Principal B held mathematics to have a high value despite a lack of professional 
development in the subject and a fading knowledge base.  

The mathematical identity of teachers 
Teachers at School A benefited from stronger mathematical identities than teachers at 
School B. Only 10% of School A teachers indicated any negative feelings towards 
mathematics on some statements, contrasting sharply with School B‟s teachers where 
28% indicated negative feelings towards mathematics. 
 Those with a weak mathematical identity at School A started to address that identity 
immediately upon joining the school. Teachers stated that the focused approach gave 
them stronger content and pedagogical knowledge. That the entire school participated in 
mathematics professional development encouraged sharing and reflection, identified by 
Alton-Lee (2003) as a vital ingredient in effective professional development, and this 
strengthened their mathematical identity. In contrast, School B teachers had less 
developed mathematical identities and demonstrated having more negative feelings for 
mathematics. Some School B teachers lacked confidence in teaching mathematics and 
some perceived that they did not have the content knowledge required to teach at the 
level expected of senior primary students. In spite of this, a need for teachers to 
participate in mathematics professional development was not identified. The lack of 
targeted professional development opportunities in School B indicated that the 
mathematical identities of School B‟s teachers were being neglected.  

426



KENDALL-JONES 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

Educational leadership of mathematics in practice 
Principal A promoted, and participated in, professional development in mathematics, 
and conducted classroom visits to evaluate mathematical teaching practice. This task 
had priority over other administrative demands. It appeared that Principal B set other 
priorities above attending staff meetings for professional development in mathematics 
and did not do classroom visits for the purpose of evaluating the teaching and learning 
of mathematics. By not participating in professional development in mathematics, 
Principal B was not involved at a level where they could influence classroom practice or 
objectively identify teacher and student needs. Principal B reflected Spillane‟s (2005) 
findings of a lower leadership profile and different leadership routines applied to 
mathematics when compared to other curriculum areas. 

Distributive leadership of mathematics in the case study schools 
Both principals demonstrated contrasting positions on Anderson‟s Model of Leadership 
Reciprocity (2004). Principal A was firmly positioned within the Interactive model. 
Accessibility between the Principal, the lead teacher of mathematics, and other teachers 
was shared equally and communication between the constituent members was free 
flowing. In addition to highly visible participation in mathematical professional 
development, Principal A reinforced the role of educational leader in mathematics by 
promoting staff access to mathematical professional development and providing the 
necessary resourcing to ensure that access. Principal B was positioned in Anderson‟s 
Buffered model. Principal B stated that they did provide the resources to enable 
professional development, but the absence of direction towards mathematics and a lack 
of participation in mathematics professional development meant that the support was 
without structure or priority. Statements made by the teachers indicated a declining 
participation by the principal in mathematics professional development or no 
participation at all. By not interacting with the wider teaching body in a reciprocal 
manner, Principal B was considered to be more concerned with the study of pedagogical 
improvement rather than the practices that would lead to the improvement itself.  

Principal participation in professional development 
Nelson and Sassi (2005) raise the question of how much and what kind of knowledge is 
sufficient in order for principals to be able to make effective decisions regarding 
instruction. Principals who have not undertaken ongoing professional development in 
mathematics may not recognise, nor provide for, excellence in mathematics teaching 
and learning. Principal A improved both their own knowledge and their influence on 
teacher practices by sharing in the learning about mathematics alongside the teaching 
staff and being available for regular discussions with staff on mathematics. Nelson and 
Sassi tell us that the nature of a principal‟s mathematics knowledge affects their 
appreciation of mathematics instruction, and it was apparent that Principal A was well 
enough informed to have been able to make decisions regarding instruction.  
 From Principal B‟s perspective, they „shared‟ the leadership. However, it was clear 
that the teachers did not see the principal as the leader or as a member of a leadership 
team for mathematics. It was also apparent that the teachers had undertaken little 
mathematical professional development. The lack of professional development activities 
offered in mathematics and the absence of classroom visits and discourse about 
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mathematics are evidence that Principal B‟s hands-off approach to mathematics led to a 
limited appreciation of how and when to help initiate change in mathematics. 
Identification of the „expected outcome – observed implementation‟ gap of professional 
development is critical for a principal if resources are going to be effectively targeted. 
Principal B was not in a position to measure the gap. As such, there was no awareness 
of the need to address the weak mathematical identities of the teachers at School B. 
 Principal B‟s lack of strategic approach to professional development was shown in 
the wide and discrepant range of professional development activities undertaken. School 
B‟s professional development was done with the intent of providing personalised 
professional development for each teacher but the identification of pedagogical needs 
was made by the individual teacher themselves and not on data or observation. 
Therefore, if the teacher‟s mathematical identity was so low that this cognitive effect 
turned into a behavioural response of avoidance of participation in mathematical 
professional development, as described by Richardson and Suinn (1972), then there was 
no mechanism to ensure that students were achieving a good mathematical education.  
 School A‟s ongoing concentration of professional development towards mathematics 
ensured that the teachers at School A complied with Darling-Hammond and 
Richardson‟s (2009) research that the largest effects come from programs offering 30 to 
100 hours spread out over 6 to 12 months. Alternatively, School B‟s „smorgasbord‟ 
approach to professional development meant that each teacher received less than 14 
hours of mathematics professional development, the level at which Darling-Hammond 
and Richardson stated that there would be no effect on teacher learning.  

The influence of the principal on the mathematical identity of teachers 
Principal A positively influenced the mathematical identity of their teachers through the 
promotion of a formally structured, long-term mathematics professional development 
plan based on the Numeracy Project. The Principal‟s direct involvement, where they 
asked questions to deepen their own understanding and encourage others to seek 
clarification, demonstrated to the teachers that a mathematical identity may be improved 
by critical evaluation and reflection. The teachers from School B expressed concern that 
there was no educational leadership of mathematics and that there was a lack of 
professional development offered to improve their ability. The mathematical identity of 
teachers at School B suffered and they exhibited lower value perceptions of 
mathematics and higher mathematical anxiety than the teachers at School A. 

Implications 
As primary sector teachers have a higher anxiety towards mathematics than any other 
curriculum area, addressing the teachers‟ mathematical identity through sustained 
professional development should be a priority in all primary schools. It is the 
responsibility of the principal to attend to quality professional development, and to 
interact in the design process, if consistently high quality mathematical practice is to be 
attained within their schools. This will only be achieved through taking an interactive 
position in leadership reciprocity and not by arm‟s-length management of resource 
provision. Principals need to be aware that they need personal professional development 
in order to attend to their mathematical identity and to make decisions concerning 
effective practice in mathematics teaching and learning. Principals need to understand 
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the benefits of „standing alongside‟ their teachers as they undertake professional 
development in mathematics; learning the same content at the same rate as the teachers. 
Principals should reflect on the difference between distributive leadership and exclusion 
of themselves from areas in which they should be involved and informed. They may 
also gain information to identify where capacity lies or is absent in mathematics. 
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This study draws on Valsiner’s (1997) extension of Vygotsky’s (1978) theory on Zone of 
Proximal Development that had been further extended by those interested in teacher 
professional development (e.g., Blanton, Westbrook & Carter, 2005; Millett & Bibby, 
2004). These theories were used to guide the constant comparative analysis of interview 
data collected during a case study involving all teachers and leadership in one primary state 
school in Queensland. Through this analysis it became apparent that the principal created a 
Zone of Free Movement and a Zone of Promoted Action that limited teachers’ meaning 
making of reform in mathematics. Being alert to these actions is important if we are to truly 
understand how change in mathematics reform may be being implemented in schools. 

Literature review 
Concerns for the implementation of mandated curriculum reform has been consistently 
identified in the research literature (Fullan, 2001), with reform in mathematics no exception 
(e.g., Smylie & Perry, 2005). Handal and Herrington (2003) highlight this argument by 
specifically listing research on mathematics reforms where findings indicate that the 
implementation of innovations have failed. Researchers explain the high failure rate of 
reform in mathematics by pointing to the teacher, noting a number of inhibitors e.g., the 
majority of primary teachers are women who may not have pursued higher mathematics 
study and that teachers do not have the depth and breadth of content knowledge to 
successfully implement curriculum reform in mathematics (Ball & Bass, 2003; Ma, 1999; 
White, Mitchelmore, Branca, & Maxon, 2005). Furthermore, it is argued that teachers’ 
beliefs and attitudes about teaching mathematics are often formed from their own school 
experience that reflected a traditional style of teaching (Brosnan, Edwards, & Erickson, 
1996). Emulating this traditional style of teaching is said to give the teacher a sense of 
security and control. It provides the insecure teacher with a comfortable teaching 
environment; they are, therefore, reluctant to relinquish control of the lesson to their 
students as is expected with the current belief in co-constructive pedagogy in mathematics 
(Davis, 1990; Schoenfeld, 2000). Recognising these inhibitors to curriculum change in 
mathematics, there is a call in the literature for teachers to ‘unlearn’ their own school 
experiences in order to be open to change (Ball & Bass, 2003). 
 Considering how this unlearning would be achieved, literature encompassing 
educational change, teacher professionalism and professional development were 
reviewed (Lamb, 2010). Here it was found that emergent theories in each of these areas 
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coalesced around the concept of the professional learning community (PLC) described 
in terms of collaborative relationships, shared vision and values, and the active 
promotion of learning. As a consequence, the literature presents strong support for 
situating curriculum reform within the context of a professional learning community 
(Stoll, Bolam, McMahon, Wallace, & Thomas, 2006). Moreover, this literature also 
alerts us to the impediments in developing a professional learning community: 
inappropriate structures, inadequate social capital and sustainability, as well as 
inhibitors to successful professional learning (Smeed, Kinmber, Millwater, & Ehrich, 
2009).  
 As a way to interpret how the PLC engages with reform in mathematics, researchers 
(e.g., Millett & Bibby, 2004) have utilised Valsiner’s (1987) extension of Vygotsky’s 
(1978) theory on Zone of Proximal Development (ZPD). In his theory, Valsiner locates 
a further two zones, which he called the Zone of Free Movement (ZFM) and Zone of 
Promoted Action (ZPA). The ZFM is set by the adult and defines what action the child 
is allowed to undertake and the thinking to which the child is exposed. The ZPA is the 
tangible range of actions that the adult promotes in an effort to influence the child’s 
behaviour. The interaction of these zones is such that the action that is promoted must 
be allowed and therefore the ZPA is within the ZFM. However, the ZPD can only be 
stimulated if it lies within the ZPA, while greater potential for development may exist 
outside the promoted action. This theory is represented in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Model of interaction of the ZFM, ZPA, IZ and ZPD  
(adapted from Blanton, Westbrook and Carter, 2005, p. 8). 

Zone of Free Movement (ZFM)

Zone of Promoted Action (ZPA)

Zone of Proximal Development (ZPD) 

Illusionary Zone (IZ)

Blanton, Berenson and Norwood (2001) used this theory to analyse experienced 
teachers’ responses to professional development arguing that the “ZPD is affected by 
the intellectual quality and developmental appropriateness of interactions with a more 
knowing other” (p. 5). Further developing this theory, Blanton, Westbrook and Carter, 
(2005) identified an Illusionary Zone (IZ) of promoted action as a zone of permissibility 
that the teacher appears to establish through behaviours and routines used in instruction 
but in reality does not allow. IZ was distinct from the ZPA in that ZPA should be 
contained within the ZFM (one can only promote that which is at least allowed) while 
IZ was that which appeared to be promoted but in fact was not allowed. 
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This theory is also utilised by Millett and Bibby (2004) where they argue that the 
“situation” (p. 3) in each school PLC will be different depending on the ZFM, ZPA, and 
the possibility of IZ, leading to different responses and therefore different outcomes for 
mathematics reform. They provide a model (see Figure 2) for analysing the local 
context of reform in mathematics. 

 

Figure 2. Theoretical model for analysing the context of reform in mathematics (Millett & Bibby, 2004, p. 3) 

Here, Millet and Bibby (2004) focus on developing an understanding of a teacher’s 
response to sources of support in the reform in mathematics by placing the teacher at the 
centre of the model. To be considered here is the teacher’s “personal agency beliefs” 
and “beliefs about self-efficacy … and academic self esteem” (p. 5). In short, this theory 
seeks to understand the teachers’ capacity to change by examining the context and 
culture of the teachers’ working environment which includes the school’s professional 
learning community and pupils. They term this environment the “situation” (p. 3).
 Discussing their model in this way, Millett and Bibby then draw attention to the the 
zone of enactment (p. 4) for each teacher within the overall situation. This is an “an area 
of potential for professional development, the space in which the individual makes 
sense of reform or change initiatives in essentially a social process” (p. 1). In their view, 
the process of implementing curriculum change begins with one or more external 
factors (e.g. external professionals, policy, public and private). In the first instance, the 
personal and professional characteristics of the teacher will influence this decision 
whether to accept or reject this demand. However Millet and Bibby also argue that the 
zone of enactment is a “social construct” (p. 4) and, as such, will be influenced by 
interactions within the situation. If these interactions include “rich deliberations” that 
were “grounded in practice and supported by resources, curriculum change [is] more 
likely to be operationalised” (p. 4). Millett and Bibby (2004) argue that this 
interpretation of the actions within the school environment respects the position that 
each school’s response can be different even though external factors remain the same. 
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Each of these external factors directly impacts the teacher’s professional development 
as indicated by the arrows coming through to the ‘person’ in Figure 2. “External 
professionals” encompass all those professionals from outside the school who can 
support teacher change through professional development. This is often backed by what 
they term the “public” and includes commercial sources of support that are not a part of 
the government support system. For Millett and Bibby (2004), external “policy” refers 
to what they call an “avalanche” (p. 9) of policies while “public” refers to those who are 
outside the school but are none the less interested in education such as parents and the 
media.  
 In short, this model assumes that the various sources of support that operate within 
the situation will either stimulate a teacher’s “zone of enactment” and lead to reform in 
mathematics or permit inaction and the ultimate failure of the intended reform. 
Developing this thought, Millett, Brown, and Askew (2004) later identify four 
conditions necessary for the development of the PLC and the realisation of the teachers’ 
zones of enactment: time, talk, expertise, and motivation. They argued that it was 
essential for teachers to be given time to talk, to engage with the expertise of others for 
the motivation of teaching mathematics to develop. 
 This paper considers the role of the principal in providing these essential elements 
for successful reform in mathematics by further adapting Blanton et al (2005) adaptation 
of Valsiner’s (1997) lens of the ZFM, ZPA and IZ from looking at teacher actions with 
students and considering Millett and Bibby’s (2004) model by looking at the principal’s 
actions within a PLC. The research question asks, can these models provide insights 
into how principals’ actions impact teacher efforts at reform in mathematics? 

Research methodology 
Consistent with the research question, this case study focussed on the perspectives of 
key personnel involved in the implementation of the reform mathematics syllabus at 
Riverview Primary School (pseudonym), a state school in South East Queensland. The 
leadership team led by the Principal and all 26 classroom teachers (Years 1-7) 
participated in this case study. 
 This study was informed by symbolic interactionism (Blumer, 1998). As 
methodology, symbolic interactionism requires the adoption of two distinct stages 
within the study: “exploration” and “inspection” (Blumer, 1998, p. 40). The exploration 
stage allows the researcher to construct meaning about “what’s going on around here” 
(Charon, 2007, p. 194), as well as to identify issues for further investigation during the 
inspection stage. Reported here is the qualitative data collected that included individual 
and group semi-structured interviews during both stages of the study. In the first stage 
the school’s Principal and Head of Curriculum (HOC) were interviewed. From the 
analysis of this interview data a number of issues then led the investigation into the 
inspection stage of the study. Here, focus group interviews were conducted with each 
year level of teachers. This was followed by further clarification of the issues with 
individual interviews involving each members of the leadership team.  
 This two-stage data collection process was supported by a three step iterative process 
of data analysis termed as first, second and third order interpretation (Neuman, 2007). 
The first-order interpretation is from the perspective of the participants being studied. 
The second-order interpretation stems from the perspective of the researcher, and 
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involves eliciting the underlying coherence or sense of meaning in the data. Third-order 
interpretation involves the researcher assigning general theoretical significance to the 
data.  

Results 
First order interpretation  
During the exploration stage of the study the Principal was interviewed to get a sense of 
‘What’s going on around here. He outlined that the teachers had been given time to talk, 
were provided with PD and resources, and he believed that the teachers were motivated 
about reform, stating that the school PLC had committed to a shared vision of 
implementing reform across all curriculum areas and as a consequence the teachers are 
encouraged to embrace reform in mathematics. He described supports that had been 
provided to achieve this vision. 

I have built structures in the school, having year level coordinators who ... have had 
things explained to them, not just about maths but about all curriculum areas … Every 
other week is the year level specific curriculum meetings … We have now established 
another set of release times for teachers with advanced organisers for moderation. …This 
is not just for the purpose of having results clarified …We have them all annotated and 
they can see them on the web as samples. So that is part of the planning processes across 
the whole school, and obviously those planning processes will be even more developed 
with the mathematics as well.  

When the principal was asked about PD he stated: 

... what we’ve done with outside consultants is say, right, we know what we are going to 
do in this school, we have our curriculum journey mapped out, if we’re looking sensibly 
at mathematics at the moment; we have to acknowledge that’s what we’re doing... We’re 
looking at mathematics, what do we need? … I have PD money, the amount of that PD 
money is determined by us and our School Council, based upon our identifications of 
immediate needs and projections for planning.  

These comments raised questions about how effective the teachers believe these 
structures and PD are for actually supporting planning in mathematics at the year level? 
Do these structures dovetail with whole school planning structures to support the school 
vision? The analysis of these data led the investigation into the inspection stage of the 
study where focus group interviews were conducted with all 26 classroom teachers.  
 When the teachers were asked about the supports provided for reform in mathematics 
at the year level and the whole school level a completely different perspective on the 
actions of the principal was presented.  

[At year level meetings] We normally sort of just keep track of what everyone’s doing. 
Then we see if anyone needs assistance with their teaching, and what problems they’ve 
had with any students.  

and  

When we have these moderation days or we have planning days, we go through all the 
writing tasks and the science etc.; it’s really supposed to be the units we’ve already been 
planning with the HOC [Head of Curriculum], we really don’t give maths much thought. 
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During the discussion with the teachers, it became apparent that a reform textbook had 
been introduced to the school, with no further professional support provided as one 
teacher explains:  

It was just kind of, you know, as we introduced [the textbook] and all the rest of it – 
investigations were kind of encouraged, but there wasn’t any guide as far as kind of 
training and how to do it. 

The teachers explained that following a bad year on state testing the decision was made 
to move away from the reform textbook and instead, adopt a school program from 
another school. This program was a list of content to be taught each year, semester and 
term. 

So we were told, you have to submit to the new program… this is our program, follow it. 
It’s not as prescriptive as [the textbook] but I think I’m getting a bit lost. 

Moreover, the teachers expressed frustration at having to implement the investigative 
pedagogy of the new syllabus with little guidance. The perception being that the lack of 
PD prevented them from appropriately implementing the new mathematics syllabus. 

I think one of the problems right across the board is there hasn’t been any attention given 
to developing skills for teachers to do investigations and develop investigative thinking.  

As a consequence the teachers expressed doubt that they were engaging in mathematics 
reform with one teacher saying: 

I think you still keep failing, even though you try and take on board a lot of the new stuff. 
You still fall back on your strengths and what you know how to teach well, and you do 
try to incorporate the new things or the styles of teaching or content as well, but, you 
know it’s hard to shake 12 years of teaching a particular way - maths in a particular way - 
you can’t just all of a sudden change. 

When these views were presented to the Principal he denied that there was a problem 
with change, or that there was conflict between his views of support for the teachers 
reform efforts and the teachers’ perception of support. He said:  

The teachers here are very, very good. We go to a lot of trouble here pulling units 
together …We hear them saying, ‘Oh, there is too much to do’… I have no drama with 
what we are doing. If we left it to the laissez-faire system we would have anarchy. 

The Principal goes on to explain that for mathematics, the teachers were given the 
school program to support them with implementing the Essential Learnings 
(Queensland Studies Authority, 2007) that superseded the Mathematics Year 1-10 
Syllabus (Queensland Studies Authority, 2004):  

The program must be followed. It is getting tighter and tighter. The Essential Learnings 
makes that quite clear ...There’s nowhere to deviate ... This is what you have got to do 
boys and girls so just do it. How you do it, is up to you. We can sit and whinge and carry 
on but the reality is you’ve got to do it. 

Second order interpretation 
This principal like most principals is under pressure to implement a range of reforms 
and to demonstrate that the students in the school can achieve at state/national averages 
or better. In attempting to achieve these goals, priorities must be set. The priorities for 
this school PLC was to have year level and whole school planning in literacy and 
science as well as professional development in these key learning areas. In this way, the 
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principal had provided opportunities for reform. However, reform in mathematics was 
initially limited to the provision of a textbook that was later removed and replaced with 
a school program that contained a list of content to be covered.  

Third order interpretation 
It is useful to interpret the principal’s actions through the lens of the ZFM, ZPA and the 
IZ to consider the impacts on the PLC. It is clear from the principal and the teachers that 
a range of new structures within the school had been established to support curriculum 
reform. In this way, the ZFM for reform had been set. However, the topics for 
discussion at these meetings did not include mathematics reform, instead English and 
science were the focus at these meetings. Therefore, the ZPA did not include 
mathematics reform. The principal would argue that he had indeed promoted reform in 
mathematics by providing the textbook and then the school program. Yet for the 
teachers, the school program was merely a list of content that permitted the teachers to 
teach in the way they had traditionally taught. It can be argued that the principal’s 
actions for reform were occurring in the IZ where he was not attuned to the teachers 
calls for support with reform in mathematics and as a result continued to convince 
himself that the teachers were implementing reform. These actions had indeed 
prevented reform in mathematics.  

Conclusions 
This research suggests that Valsiner’s (1997) zone theory can be used to interpret the 
Principal’s actions in constraining or promoting teacher action and thinking. The ZFM 
in this case study represents constraints and affordances as directed by the principal in 
relation to reform in mathematics and could be considered to include opportunities for 
whole school and year level planning as well as PD. The ZPA represents the actual 
opportunities that the Principal provided for teachers to engage with mathematics 
reform in the form of time to talk and to access expertise through PD so as to promote 
motivation about the reform within the school’s PLC. In this case study the distinction 
needs to be made about generalised reform across the key learning areas in this primary 
school and reform in mathematics specifically. Here the IZ includes mathematics reform 
as it was not actually promoted by the principal, unlike English and science reform. For 
the interplay of the ZFM and the ZPA to impact on the ZPD, and lead to enhance 
content and pedagogy knowledge of the reform, teachers must perceive that the reform 
is being promoted by the principal i.e., within his ZPA. For this to be achieved the 
teachers would need to perceive that the principal is providing sufficient support for 
them to engage with the reform, and that, once these zones have aligned, the reform 
does in fact respect teachers’ knowledge and beliefs about the teaching and learning of 
mathematics. In this case study, the concerns of the teachers remained unheard by the 
principal as he believed opportunities for reform had been provided. This study 
concludes that by developing a greater understanding of the principal’s ZPA, and the 
possible existence of the IZ, better opportunities to align the ZFM and the ZPA will see 
enhanced potential for teacher ZPD. 
 The findings from this study suggest that Valsiner’s (1997) zone theory can be 
applied to leadership contexts as a way to support understanding why some reform 
measures are successful while others are not. It is also recommended that this theory can 
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be used by school leaders for self-reflection and critique about the level of effectiveness 
in supporting teachers through reform in mathematics. 
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Although preservice primary teachers’ limited mathematical knowledge has been well 
documented, little research has been conducted on programs to improve it. We report on 
first-year, teacher education students’ use of recommended internet resources on different 
mathematics topics. Our findings suggest that many of our preservice teachers had not 
previously used internet resources for learning, except to do research. They also saw 
mathematics learning as occurring only when they are taught by a teacher and so internet 
resources were of limited value. Ultimately these beliefs, if left unchanged, will have an 
impact on their teaching of mathematics to primary school students. 

Background  
In this paper, we evaluate a resource for supporting preservice teachers’ learning of 
primary school mathematics. It was a CD with links to websites and references to the 
textbook on the different topics covered in a test that preservice teachers had to pass in 
their first mathematics education subject. Although some students made use of the CD, 
many expected to have a teacher teach them how to answer each question. This research 
has implications not just for improving preservice teachers’ mathematical knowledge 
but also for their pedagogical understandings about how mathematics is learnt. 
 In recent years, many preservice primary teachers’ (PPTs) limited mathematical 
knowledge has been acknowledged. In Australia, the Senate Standing Committee on 
Workplace Relations and Education (2007) stated “early tests of numeracy conducted 
by education faculties showed that a very large proportion of [teacher education] 
students cannot do grade 5 maths because they never learned a lot of maths at school” 
(p. 58-59). Consequently, government regulatory agencies such as the Office for 
Standards in Education [OFSTED] (1994) in the UK and more locally the NSW 
Institute of Teachers (2006) instituted mathematical requirements for entry into primary 
teacher education courses.  
 However, requirements for PPTs to have high school mathematics qualifications may 
not provide them with the necessary knowledge to teach primary school mathematics 
(Tobias & Itter, 2007; Goulding, Rowland, & Barber, 2002). At Charles Sturt 
University (CSU), a concern about ensuring that PPTs had appropriate mathematics for 
primary school teaching resulted in an assessment being a mathematics test in the first 
mathematics education subject. However, research from 2008 suggested that studying 
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for this test confirmed PPTs valuing of procedural rather than conceptual mathematical 
understandings (Meaney & Lange, 2010). The test reinforced the PPTs’ identities as 
students rather than becoming teachers, so learning was focused on passing the test 
rather than on being able to provide learning opportunities for children. Subsequently, 
the test was changed in 2009. At the beginning of semester, PPTs were given 50 short-
answer questions based on children’s responses to mathematical problems, inspired by 
Hill, Schilling, and Ball (2004). About two thirds of the way through the semester, they 
had to respond to ten of these questions in a formal test environment. PPTs who failed 
this test had a second chance to pass, several months later after they paid a $100 fee. If 
they failed the second test or did not take up this option, they had to re-enrol in the 
subject the following year.  
 Morris (2001) had found that the fail rates of PPTs, taking an audit of their 
mathematical understandings, had reduced significantly in the year when they had been 
provided with a specimen paper at the beginning of their course. Given that we knew 
from our previous research that many students had very spiky knowledge background 
(Meaney & Lange, 2010), in that they knew some things but did not know others, we 
anticipated that giving the students the set of 50 potential questions would help them to 
tailor their learning to the areas that they identified as being difficult. Self-auditing of 
mathematical knowledge for a similar test had been used in other research (Goulding et 
al., 2002; Corcoran, 2005). Nevertheless, we were also aware that preservice students 
could be overly optimistic about their mathematical capabilities, simply because they 
were unaware of the misconceptions that they had (Morris, 2001). Therefore, lectures 
were provided for one hour a week that specifically covered the topics in the test but did 
not provide answers to the specific questions. In a similar vein to Ryan and McCrae 
(2006), we wanted students to use the test questions as a catalyst for learning the 
mathematics that they would be required to teach, rather than seeing the test questions 
as the only mathematical knowledge that they would need.  

Resourcing preservice teachers learning 
We knew that for some students, the lectures would not be sufficient to overcome the 
gaps in their mathematical knowledge. Consequently in 2010, following a model similar 
to that of Lin (2010, see Figure 1), we collated websites for the relevant mathematics 
topics, where the emphasis was on the mathematical concepts, rather than on simply 
learning how to use a procedure. The websites varied from providing text-based 
material on children’s common misconceptions, to videos on YouTube about operations 
with fractions, to simulations/animations to games. Most links had been trialled in the 
lectures for this subject in 2009. Links to these websites were sorted according to topic, 
provided with references to the relevant section of the textbook and organised as a 
website on a CD (see Figure 2, next page). Every student was provided with a CD. 
 We decided to present support material in this way for several reasons. As part of a 
wider initiative to support PPTs gaining knowledge of how to integrate ICT into their 
classrooms, all first-year, primary teacher education subjects at CSU included ICT 
requirements, including engaging with a range of web resources. Although some 
students arrive at university with significantly more ICT skills than their lecturers 
(Barnes, Marateo, & Ferris, 2007), it has been found that graduating teachers feel 
apprehensive about using ICT in teaching (Lin, 2008). 
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Figure 1. Web-based instruction model from Lin (2010, p. 63). 

Recent research suggested that mathematics teachers, when they used the internet, 
predominantly used it for planning and made limited use of learning activities designed 
for students (Moore-Russo, Viglietti, & Bateman, 2009) resulting in a well-funded 
initiative being implemented in Australian universities to improve graduating teachers’ 
“effective and innovative use of ICT in education to improve student learning” 
(Australian Learning and Teaching Council [ALTC] & Australian Council of Deans of 
Education [ACDE], 2011, p. 4). 
 
 

Figure 2. Front page of the CD resource. 

There was also some evidence that suggested that having preservice teachers engage 
with ICT not only made them more enthusiastic about teaching with ICT (Lin, 2008) 
but also was more valuable for supporting their learning than traditional lectures (Lin, 
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2010). Although Lin’s studies were done with small numbers of students, the findings 
were encouraging. However, almost no other studies have investigated PPTs’ use of 
web-based resources for improving mathematical knowledge. It was important to us to 
discover how the CSU PPTs used the CD and how we could improve it so that it was of 
most benefit to our students. Therefore, we wanted to find out what supported and what 

prove their mathematical knowledge. 

terviews were not carried out by lecturers.  

lthough 190 surveys were collected, some questions were not 

 came in relation to a question on whether they would use 
the

g to a 
qu PTs wrote: 

Involves you to be around computers etc which are not always easy to access. (WW) 

 

hindered PPTs’ use of the CD to im

Methodology 
In this paper, we concentrate on information provided by the PPTs. At the beginning of 
the semester 190 PPTs completed a survey about their previous use of web-based 
resources as well as their preferred way of learning for the test. The PPTs were also 
asked to keep a diary of web links from the CD that they used and how useful they 
found them. Only twelve preservice teachers, across the two campuses, handed in these 
diaries after the test was graded and the marks handed out. Of these, only five recorded 
that they used the CD more than once. Following the test, focus group interviews were 
held with a small sample of students. These in

Results and discussion 
In this section, we summarise the results from the data. A chi-square test on the 
numerical data suggested that previous experiences of using web-based resources of the 
two cohorts were different. This suggests that even within CSU, PPTs bring a large 
variety of experiences to their university studies. Consequently in Table 1, we have 
provided numbers of responses from student teachers from both campuses (Bath for 
Bathurst, or WW for West Wyalong). Our data collection methods did not enable us to 
match the surveys to the PPTs involved in the interviews so the differences between the 
cohorts is not explored. A
answered by everyone.  
The results show that most PPTs had some previous experience with using web-based 
resources. Nevertheless, at both campuses at least 15 percent of PPTs had never used 
these resources. One comment from the survey exemplified some PPTs’ lack of 
experience with computers. It

 CD to study for the test:  

If it works in a DVD player because I don’t really know what else it will work in. (Bath) 

Answers to the open-ended questions also suggested that many preservice teachers felt 
that the internet was expensive and computers were difficult to use. In respondin

estion on what they did not like about using web-based resources, P

Money to download, speed of net. I don’t like reading off screen. (Bath) 
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Table 1. Preservice teachers’ previous use of web-based resources. 

Yes No Have you 
used web-
based 
resources for 
learning 
before? WW Bath WW Bath 

 86 65 15 18  

All the time Quite a lot Occasionally Very Rarely a. If yes, 
how often 
did you use 
these 
resources? WW Bath WW Bath WW Bath WW Bath 

 13 4 32 15 33 33 10 17 

Video from sites 
such as You Tube 

Text-based material such 
as explanations 

Animations of 
experiments, etc. 

Games for testing 
skills 

b. What sort 
of resources 
did you use?  WW Bath WW Bath WW Bath WW Bath 

 38 31 79 62 17 12 18 36 

Note: Numbers represent PPTs. 

 
 At both campuses, the most common previous use of web-base resources was 
reading text-based explanations. As well, about a third of preservice teachers had used 
videos from the web and at the Bathurst campus, a similar proportion had used games. 
A relatively small proportion had used animations. These results suggest that even if 
preservice teachers have had experience of web-based resources then it was likely that 
these resources were conceptualised as being similar to book resources. Thus, learning 
through web-based resources was conceived as finding and reading information that 
was laid out in a step-by-step manner. Comments about the advantages of using web-
based resources reflected these beliefs. 

They step things out for you. (Bath) 
There is such a wide variety of resources you can nearly always find relevant 
information. (WW) 

At times, this wealth of information was perceived as being overwhelming and difficult 
to handle because they could not judge its validity. 

Get lost. Too much info. Not easy to direct around Internet. (WW) 

By providing them with the web-links and a short description of what was on each 
website, we had hoped to overcome the difficulties of students finding appropriate sites. 
 Although some PPTs felt that web-based resources allowed them to learn at their 
own pace, there were differences of opinion in whether websites provided the 
interactivity that many viewed as important for their learning. Comments about not 
getting individual help from websites came almost exclusively from Bathurst students. 

Can access them at home, and can target the area I feel I need to work on. (Bath) 
Because it will be like having someone there, I think I will use it all the time. Need a lot 
of help in maths. (WW) 
If you don’t understand, you can’t get instant support. (Bath) 
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However, for some PPTs, their nervousness about having to sit a mathematics test 
meant that any help was welcome. 

All the help I can get. Maths is one of my weakest subjects. (Bath) 

In answering a question about the support that they needed for studying for the Mastery 
Test, some PPTs at both campuses valued support from lecturers or other PPTs. More 
comments of this kind came from Wagga Wagga based PPTs. 

 Teacher support, when I get a clear explanation of a problem. (Bath) 
One-on-one, go through questions in-depth and show me how to get the answer, group 
work. (WW) 

 In responses about the support they needed, previous experiences of learning for 
mathematics tests was evident in how they felt they should learn for this test. Although 
the preservice teachers had been provided with the 50 questions, 27 PPTs at Bathurst 
and 11 at Wagga Wagga requested practice question and previous test papers. The test 
was the focus for preservice teachers and at the beginning of the semester, they did not 
see the need to know material because they would be teachers. 

Need to go over the exam; have someone explain so I understand; write notes over it. 
(Bath) 
Explaining in depth how these questions really need to be answered. (WW) 

 Although almost all students in the initial survey stated they would at least try out the 
CD, in fact very few PPTs used it. Of the comments in the diaries, most indicated that 
PPTs looked for information on specific topics. The following comment about the 
Maths for Kids website illustrates this: 

Didn’t understand long division. So helped lots. (WW) 

For one preservice teacher, there were indications that she saw herself as learning 
because she was to become a teacher, not just to pass a test.  

Helpful in my understanding & a way of teaching it, too. (Bath) 

After the test, the focus group interviews suggested that more PPTs could see links to 
being a teacher and this may well have been connected to another assessment where 
they had to work with primary school children. 

I used that [the CD] for one bit of it, for decimals and how to explain that, but, we 
actually used it for another assignment, the next assignment, for a problem solving 
exercise. (WW) 

However, the availability of a computer and ICT skills continued to be a reason given 
by students for not using the CD. 

I was sweating a bit just to get a pass, I took the CD home and had a look and had a look 
at the links on it and I said you’ve got to be kidding me, I had very little amount of 
internet usage at home, so I wasn’t going to go through all this at home. (Bath) 

For some preservice teachers the CD was useless because it was not how they expected 
to learn.  

Like even having a teacher sitting there drawing on the whiteboard or something and 
showing, and then break it down into stages, because that’s the way I learn, when it’s 
broken down, if it’s just given to me and I see there’s the answer and you’ve got to figure 
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it out, I’m completely lost, but if it’s broken down into different stages and I can see the 
logic, oh okay, so if I was given a similar one, I can probably work that out too. (Bath) 

 Even after completing the test and commenting on the importance of explaining the 
mathematical concepts to their potential students, these preservice teachers still seemed 
to see mathematics learning as involving an expert, such as a teacher, showing a novice, 
such as a student, how to do the problem by breaking it down into stages, in other words 
as procedural understandings of mathematics. In commenting on the test, one student 
said: 

I think it was worse than an HSC [High School Certificate] exam because teachers 
prepare you for HSC. Well the HSC you’ve got questions and teachers like they work 
over the whole broad and we weren’t told really how they wanted us to explain it. (WW) 

These comments, and there were many, showed not just how hard it is to ensure that 
preservice teachers value conceptual understandings of mathematics (Meaney & Lange, 
2010) but that procedural understanding ingrains in them a particular view of what 
learning involves. This has implications for how they see their role as a teacher and 
what they expect from the students who will learn from them: 

Could someone just come up with some sort of handbook or even a CD or something, 
that says, okay, if you are teaching fractions, this is what you say, this is what you write 
on the board? (Bath) 

 Although these PPTs had two further semesters of mathematics education subjects to 
complete their degrees, there is an issue about overturning these ideas about 
mathematics and how it is taught. If this is not recognised and addressed specifically, it 
is likely that even with our best intentions, these preservice teachers will teach 
procedural mathematics from the whiteboard once they have graduated. 

Conclusion 
From this research, it is clear that PPTs arrive at university with a range of different ICT 
experiences, few of which seem to make them inclined to use ICT in their own learning. 
Partly, this has to do with their beliefs about how they learn mathematics.  
 In recent years, the idea of pedagogical content knowledge (Shulman, 1986) has 
enabled PPTs’ lack of content knowledge to be researched in isolation from pedagogical 
knowledge. If pedagogical knowledge is mentioned then it is in relationship to 
mathematically-competent PPTs gaining the most from their mathematics pedagogical 
subjects (Capraro, Capraro, Parker, Kulm, & Raulerson, 2005). Our research suggests 
that this separation is unhelpful. Unless, we as teacher educators recognise that 
preservice teachers expect to learn in the way that their previous experiences suggest 
mathematics must be learnt, then we will struggle to convince them of the need for 
conceptual understanding and that it needs to be gained through active engagement. 
Like the mismatch that Skemp (1976) described between some teachers and their 
students on what ‘understanding’ was, we will continue to work together in our 
mathematics education subjects from non-intersecting views about what mathematics is 
and how it can be learnt. 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

444



LANGE & MEANEY 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

References 
Australian Learning and Teaching Council [ALTC] & Australian Council of Deans of Education [ACDE] 

(2011). Teaching teachers for the future: Institutional guide. Canberra: Author. 

Barnes, K., Marateo, R. C., & Ferris, S. P. (2007). Teaching and learning with the net generation. 
Innovate Journal of Online Education, 3(4). Retrieved March 1, 2011, from 
http://www.innovateonline.info/index.php?view=article&id=382. 

Capraro, R. M., Capraro, M. M., Parker, D., Kulm, G., & Raulerson, T. (2005). The mathematics content 
knowledge role in developing preservice teachers’ pedagogical content knowledge. Journal of 
Research in Childhood Education, 20(2), 102–118. 

Corcoran, D. (2005, September). Mathematics subject knowledge of Irish primary preservice teachers. 
Paper presented at European Conference of Educational Research, UCD, Dublin. Retrieved March 15, 
2011, from http://hdl.handle.net/2428/7880. 

Goulding, M., Rowland, T., & Barber, P. (2002). Does it matter? Primary teacher trainees’ subject 
knowledge in mathematics. British Educational Research Journal, 28(5), 689–704. 

Hill, H. C., Schilling, S. G., & Ball, D. L. (2004). Developing measures of teachers’ mathematics 
knowledge for teaching. Elementary School Journal, 105(1), 11–30. 

Lin, C.-Y. (2008). A study of pre-service teachers’ attitudes about computers and mathematics teaching: 
The impact of web-based instruction. International Journal for Technology in Mathematics 
Education, 15(2), 45–57. 

Lin, C-Y. (2010). Web based Instruction on preservice teachers’ knowledge of fraction operations. School 
Science and Mathematics, 110(2), 59–70. 

Marszalek, J. (2009, May 1). Queensland teachers face competency exam before teaching. Courier Mail. 
Retrieved March 31, 2011, from http://www.couriermail.com.au/news/teachers-face-ability-exam/ 
story-e6freon6-1225705759755. 

Meaney, T. & Lange, T. (2010). Preservice students’ responses to being tested on their primary school 
mathematical knowledge. In L. Sparrow, B. Kissane, & C. Hurst (Eds.), Proceedings of the 33th 
annual conference of the Mathematics Education Research Group of Australia (pp. 415–422). 
Freemantle, WA: MERGA. 

Moore-Russo, D. A., Viglietti, J. M., & Bateman, S. M. (2009, September). Teachers’ use of online 
mathematics education resources: Insights on digital natives and proficient digital immigrants. Paper 
presented at the annual meeting of the North American Chapter of the International Group for the 
Psychology of Mathematics Education, OMNI Hotel, Atlanta, GA. 

Morris, H. (2001). Issues raised by testing trainee primary teachers’ mathematical knowledge. 
Mathematics Education Research Journal, 3, 37–47. 

NSW Institute of Teachers (2006). What qualifications are required for teaching? Retrieved March 15, 
2011, from http://www.nswteachers.nsw.edu.au/What-qualifications-are-required-to-teach-in-
NSW.html. 

Office For Standards in Education [OFSTED] (1994). Science and mathmatics in schools: A review. 
London: HMSO. 

Ryan, J. & McCrae, B. (2006). Assessing pre-service teachers’ mathematics subject knowledge. 
Mathematics Teacher Education and Development, 7, 72-89. 

Senate Standing Commitee on Employment Workplace Relations and Education (2007). Quality of 
school education. Canberra: Commenwealth of Australia. 

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 
15(2), 4–14. 

Skemp, R. (1976). Relational and instrumental understanding. Mathematics Teaching, 77, 20-26. 

Tobias, S. & Itter, D. (2007). Mathematical backgrounds of preservice teachers in rural Australia: A 
comparative study. Paper presented to the 2007 annual conference of the Australian Association for 
Research in Education. Retrieved September 15, 2008, from http://www.aare.edu.au/07pap/ 
tob07424.htm. 

445



MATHEMATICS: TRADITIONS AND [NEW] PRACTICES • © AAMT & MERGA 2011 
 

THE PUBLIC’S VIEWS ON GENDER AND THE 
LEARNING OF MATHEMATICS:  

DOES AGE MATTER?1 

GILAH C. LEDER  
Monash University 

gilah.leder@monash.edu 

HELEN J. FORGASZ 
Monash University 

helen.forgasz@monash.edu 

 
In this study we build on Leder and Forgasz’s (2010) examination of the public’s 
perceptions about the learning of mathematics at school and its role in determining males’ 
and females’ career preferences. Data were gathered at 12 different sites throughout 
Victoria and via an innovative recruitment tool, the social network site Facebook. The latter 
provided a unique opportunity to target a wider audience across Australia. Our finding that 
younger respondents (under 40) were more likely than those over 40 to question girls’ 
aptitude for mathematics is of concern. 

Background to the study 
Leder and Forgasz (2010) argued that “attempts to measure directly the general public’s 
views about mathematics, its teaching and its impact on careers are rare” (p. 329), and 
noted that 20 years had passed since the Maths Multiplies Your Choices media 
campaign, aimed at encouraging parents to consider their daughters’ careers, had been 
conducted.   
 The findings in this paper build on the small study reported by Leder and Forgasz 
(2010), as more data have been gathered. The focus here is on exploring age-related, 
rather than gender-related, differences in respondents’ views. 
 Age as a variable of interest stemmed from trends suggesting that gender equity 
considerations may be less troubling to younger Australians than to those who lived 
through the struggles to achieve equity in the latter part of the twentieth century.  In an 
interview on the eve of International Women’s day (ABC, 2007), Sarah Maddison 
argued that having once been a leader in establishing gender equity, Australia had slid 
backwards, and many gains achieved were now undone.  
 Recent changes in generational differences in views on equity issues have been 
reported. In summarising results from several studies, Powlishta (2002, p. 169) claimed 
that “attitudes become more egalitarian with age” and that in their attributions of 
characteristics to males, females, or both/neither, “adults were less stereotyped in their 
attitudes than were children”. According to Farley and Haaga (2000), however, while 
younger people are generally more liberal than their grandparents, in the US “young 

                                                        
1 We thank Glenda Jackson for gathering the raw data reported in this paper, Hazel Tan for her help in setting up the 
Facebook survey, and Monash University for the financial support provided. 
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people have become more conservative, as has the rest of America” (p. 133). This trend 
is also evident in Australia. In their recent examination of repeated cross-sectional 
surveys (1986–2005) of Australians’ beliefs about family roles and men’s and women’s 
work, van Egmond, Baxter, Buchler, and Western (2010, p.162) reported that: 

… on most of the issues examined here, Australian men and women have become 
increasingly more egalitarian in their views about gender arrangements. But the story is 
not so straightforward. The trends have taken a different direction since the mid-1990s … 
Over the last 10 years attitudes to gender arrangements have shifted and the trend toward 
liberalization has slowed markedly and possibly stalled. 

The study 
In this study we explore whether age-related differences are found in respondents’ 
views on gender issues associated with mathematics learning. 
 Participants were given a brief summary of the study’s aims as part of the 
Explanatory Statement required for obtaining ethics approval. Core elements are 
captured in the excerpt below: 

We have stopped you in the street to invite you to be a participant in our research study. 
...We are conducting this research … to determine the views of the general public about 
girls and boys and the learning of mathematics. We believe that it is as important to know 
the views of the public as well as knowing what government and educational authorities 
believe. 

Data were gathered from 12 different heavy foot-traffic sites throughout Victoria. To 
reach an even more diverse group, participants were also solicited via Facebook. The 
Facebook survey contained the same core items used in the face-to-face survey. Thus 
our data base comprised 13 different sites2.  
 To ensure maximum participation, we limited the survey to 15 core items. These 
covered the learning of mathematics at school, perceived changes in the delivery of 
school mathematics, facility with calculators and computers, and aspects of careers.  

Aims 
In this paper we focus on items concerned with respondents’ beliefs and their 
expectations of parents and teachers – significant figures in the learning environment of 
students – about the learning of mathematics. Whether responses differed by 
participants’ age was of particular interest. Items relevant for this paper are listed in a 
later section.  

Method 
About four hours (morning or afternoon) were spent at each site to gather the face-to-
face data. This yielded around 50 completed surveys per site, exceeding the minimum 
number considered adequate for data to be analysed using chi-square tests (Muijs, 
2004). The procedures followed were described in some detail in Leder and Forgasz 
(2010) and are not repeated here. Instead, we focus on the routes followed in gathering 
the Facebook data.  

                                                        
2 Respondents from various countries participated in the Facebook component. In this paper we restrict the sample to 
those who indicated they were residents of Australia. 
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Consultation with the University’s Human Ethics Committee revealed that Facebook 
has rights to data collected from any applications, including surveys, created within 
Facebook. To avoid possible privacy and ethical issues (Hull, Lipford, & Latulipe, 
2010) the questionnaire used in the larger study was duplicated as an online survey 
using SurveyMonkey (http://www.surveymonkey.com). A link was created to it from 
the advertisement placed on Facebook. Briefly, the procedure used (described in detail 
in Forgasz, Leder & Tan, 2011) was: 
1. Set up a Facebook account. 
2. Design a 110 x 80 pixel image for the advertisement. 
3. Produce a destination URL when participants clicked on the advertisement.  
4. Create a name for the advertising campaign and text. 
5. Decide the target population: individuals aged over 183.  
6. Select a daily budget. 
7. Determine pricing: i. price per click willing to be paid (varied between 60 and 80 

cents) and ii. daily budget (we settled on $60).  
8. Decide the length of the campaign. 
9. Provide additional information e.g., currency to be used and payment method.  
A copy of the Facebook advertisement is shown in Figure 1. 

Figure 1. The Facebook advertisement 

Instrument 
Our discussion is limited to responses to the following questions:  
1. Should students study mathematics when it is no longer compulsory? 
2. Who are better at mathematics, girls or boys? 
3. Who do parents believe are better at mathematics, girls or boys? 
4. Who do teachers believe are better at mathematics, girls or boys? 
5. Do you think that studying mathematics is important for getting a job? 
6. Is it more important for girls or boys to study mathematics? 
7. Who are better at using calculators, girls or boys? 
These items required simple responses: “yes”, “no”, “don’t know”; or “boys”, “girls”, 
“the same”, “unsure”. All participants were invited to explain their answers. The 
comments reported in this paper are from those recruited via Facebook, to offer greater 

                                                        
3 Ethics approval conditions influenced the decision to restrict the sample to participants over the age of 18. 
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insights into the beliefs of this group. Individuals also provided background 
information, including their age which was subsequently categorized as younger group 
(under 40) or older group (40 or older).  

Sample  
The sample comprised 689 (615 face-to-face, 74 Facebook) respondents. Of these, 327 
were males and 362 were females; 361 were under 40 and 328 were 40 or older. As 
comparisons between the responses from face-to-face and Facebook respondents to the 
survey questions of interest revealed no statistically significant differences, the data 
were pooled for the analyses discussed in this paper. 

Results 
Response rate for Facebook participants 
During the Facebook data collection period, we focused on Australia for five days4. 
There were 2,004,460 impressions, that is, the advertisement was shown just over two 
million times. These yielded 339 clicks on the advertisement and 62 (18%) respondents 
to the survey. This response rate is within the limits for mail surveys (between 10% and 
50%) reported by McBurney and White (2004) in their comparison of response rates for 
different methods of survey administration.  

Findings for the questions 
The frequencies (and percentages) of responses to the seven survey items listed above 
are shown in Table 1.  

Table 1. Frequency and percentage responses to survey items. 

Item Yes No Don’t know  
Should students study mathematics 
when it is no longer compulsory? 

436  
64.3% 

160  
23.6% 

82  
12.1% 

 

Do you think that studying mathematics 
is important for getting a job? 

523 
77.8% 

82 
12.2% 

67 
10.0% 

 

 Boys Girls Same Unsure 
Who are better at mathematics, girls or 
boys? 

149 
22.2% 

93 
13.8% 

263 
39.1% 

167 
24.9% 

Who do parents believe are better at 
mathematics, girls or boys? 

156 
23.2% 

90 
13.4% 

161 
24.0% 

265 
39.4% 

Who do teachers believe are better at 
mathematics, girls or boys? 

79 
11.8% 

85 
12.6% 

192 
28.6% 

316 
47.0% 

Is it more important for girls or boys to 
study mathematics? 

24 
3.6% 

9 
1.3% 

610 
90.8% 

29 
4.3% 

Who are better at using calculators, girls 
or boys? 

87 
13.0% 

53 
7.9% 

378 
56.5% 

151 
22.6% 

                                                        
4 Prior to this time, participants resident in many different countries, as well as a small number of respondents from 
Australia, responded to the advertisement. In this paper only data gathered from respondents living in Australia are 
considered.  
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In Table 2 the frequencies (and percentages) of responses by age group are shown. Chi-
square tests were used to determine if the frequency distributions of the responses by 
age group were statistically significantly different; the outcomes of the chi-square tests 
are also provided.  

Table 2. Frequency and percentage responses to survey items by age group, and χ2 significance levels. 

 
Under 40 40 plus 

Sig. 
level 

Item Yes No Don’t 
know  Yes No Don’t 

know   

Should students 
study mathematics 
when it is no 
longer 
compulsory? 

223 
63.7% 

89 
25.4% 

38 
10.9% 

 
213 
64.9% 

71 
21.6% 

44 
13.4% 

 ns 

Do you think that 
studying 
mathematics is 
important for 
getting a job? 

250 
72.5% 

52 
15.1% 

43 
12.5% 

 
273 
83.5% 

30 
9.2% 

24 
7.3% 

 p<.01 

 Boys Girls Same Unsure Boys Girls Same Unsure  
Who are better at 
mathematics, girls 
or boys? 

89 
25.8% 

33 
9.6% 

161 
46.7% 

62 
18.0% 

60 
18.3% 

60 
18.3% 

102 
31.2% 

105 
32.1% 

p<.001 

Who do parents 
believe are better 
at mathematics, 
girls or boys? 

78 
22.6% 

44 
12.8% 

98 
28.4% 

125 
36.2% 

78 
23.9% 

46 
14.1% 

63 
19.3% 

140 
42.8% 

p<.05 

Who do teachers 
believe are better 
at mathematics, 
girls or boys? 

46 
13.3% 

42 
12.2% 

119 
34.5% 

138 
40.0% 

33 
10.1% 

43 
13.1% 

73 
22.3% 

178 
54.4% 

p<.001 

Is it more 
important for girls 
or boys to study 
mathematics? 

11 
3.2% 

4 
1.2% 

316 
91.6% 

14 
4.1% 

13 
4.0% 

5 
1.5% 

294 
89.9% 

15 
4.6% 

ns 

Who are better at 
using calculators, 
girls or boys? 

56 
16.3% 

20 
5.8% 

215 
62.7% 

52 
15.2% 

31 
9.5% 

33 
10.1% 

163 
50.0% 

99 
30.4% 

p<.001 

 
In the subsequent discussion of the findings, all data referred to can be found in Tables 
1 and 2. 

Should students study mathematics when it is no longer compulsory?  

Almost two-thirds (436: 64.3%) of those responding answered this question 
affirmatively, fewer (160: 23.6%) disagreed, and the rest (82: 12.1%) were equivocal.  
A chi-square test revealed no statistically significant differences by respondent age. 
Reasons given for the need to continue studying mathematics included: 

Develops analytical skills and rigorous thought. Gives a deeper understanding in sciences 
and other areas of thought, such as computer science and economics. Suitable also for 
those interested in philosophy and the pure arts, such as music (specifically, musical 
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composition). ...Mathematics is the underlying basis to understanding the modern world, 
on either a physical or social level (for example, in economics). (younger) 
 
Maths is important. But it would be too easy to not do it. A person will always take the 
easy way out if possible. (older) 

Explanations from those who disagreed included:  
Some people don't need it. You don't need maths to become an author. My dad tells me 
that he has learned algebra, yet he thinks he never has used it in his life and he is a taxi 
driver. My mum is a bit crazy over maths, keeps pushing for me to study it ... Why learn 
some maths, like velocity if you won't need it for your career? (younger) 
 
Depends on the level – my attitude is that some math should be compulsory up to year 5.  
After that there would be little point in forcing students to do something they don't like or 
have been failing at. (older) 

Who are better at mathematics, girls or boys? 

Approximately one-third (263: 39.1%) of the sample thought boys and girls were 
equally good at mathematics; a quarter (167: 24.9%) was unsure. Of the remainder,  
149 (22.2%) thought boys were better; fewer believed girls were better (93: 13.8%). A 
chi-square test revealed a statistically significant difference in replies by respondent age  
(χ2 = 37.335, p<.001, df = 3. Effect size (φ) =.24). Almost twice as many older  
(60: 18.3%) than younger (33: 9.6%) respondents thought girls would be better. 
Although more younger (161: 46.7%) than older (102: 31.2%) respondents thought 
there would be no difference between girls and boys, more younger (89: 25.8%) than 
older (60: 18.3%) respondents also thought boys would be better.   
 Reasons given included: 

Same: I have known both girls and boys that are equally good at mathematics. The boys 
tend to use it more and appear to pursue it, but girls can be equally as good. (younger) 
 
Don’t know: Girls tend to do better in the earlier school years but boys do better later so 
by year 6 boys are generally ahead. However some of my female friends have been 
physics lecturers so... (older) 
 
Boys: I've met both males and females who are good at math. Though I have only met 
males who are exceptional at mathematics. (younger) 
 
Girls: Boys tend to have worse concentration than girls (younger) 

Who do parents believe are better at mathematics: girls or boys? 

Most respondents were unsure (265: 39.4%) or thought that parents believed that there 
would be no difference (161: 24%). Almost a quarter (156: 23.2%) thought parents 
assumed boys would be better, while 90 (13.4%) thought parents considered girls were 
better. A chi-square test revealed a statistically significant difference in answers by 
respondent age (χ2 = 8.026, p<.05, df = 3. Effect size (φ) =.11). Older participants were 
less likely to believe that parents would rate them the same (older, 63: 19.3%; younger, 
98: 28.4%) but were more likely to be unsure (older, 140: 42.8%; younger, 125: 36.2%). 
Those answering “boys” or “girls” were more likely to provide explanations:   

Boys get more encouragement and positive reinforcement for achievement in maths. 
(younger) 
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I find this slightly discriminating... but anyway...probably guys.  (younger) 
 
In my experience parents are more willing to think boys are better, even if 
subconsciously. (younger) 
 
Boys: Girls tend to be quiet achievers. (older) 
 

Who do teachers believe are better at mathematics, girls or boys? 

The response pattern to this item was similar to the question about parents’ views. Most 
were unsure what teachers believed (316: 47%) or thought that teachers would consider 
girls and boys to be equally good at mathematics (192: 28.6%). The remainder was 
evenly divided whether they believed teachers thought boys (79: 11.8%) or girls  
(85: 12.6%) were better. A chi-square test revealed a statistically significant response 
difference by respondent age (χ2 = 17.766, p<.001, df = 3. Effect size (φ) =.16). Older 
respondents were most likely to indicate they were unsure (178: 54.4%), while many 
younger respondents (138: 40%) thought teachers believed that girls and boys were 
equally good at mathematics. Few provided reasons for their answers, with several re-
iterating their explanations to the question about parents. 

Do you think studying mathematics is important for getting a job? 

A clear majority (523: 77.8%) answered affirmatively. The remainder disagreed  
(82: 12.2%) or were ambivalent (67: 10%). A chi-square test revealed a statistically 
significant difference in replies by respondent age (χ2 = 11.828, p<.005, df = 2. Effect 
size (φ) =.13). Older participants were more likely to believe mathematics was 
important for getting a job (older, 273: 83.5%; younger, 250: 72.5%) and less likely to 
be uncertain (older, 24: 7.3%; younger, 43: 12.5%). 
 Elaborations on the answer given included:  

Creative reasoning is encouraged in mathematics. A mathematical background assists a 
person to problem-solve on a conceptual rather than specific level, an inherently valuable 
trait to many professions. Employers recognise the ability to think laterally, logically and 
creatively, while developing conceptual and innovative solutions to particular problems; 
mathematics trains the mind to do this. It is, therefore, inherently valuable to attaining a 
job in the field of choice. (younger) 
 
Clearly depends on the job - but in almost every walk of life a better understanding of the 
processes/machinery/product is enhanced by a better understanding and almost inevitably 
some maths is required for that. Even fine arts and music. (older) 

Is it more important for girls or boys to study mathematics? 

Almost all (younger, 316: 91.6%; older, 294: 89.9%) considered it equally important for 
boys and girls to study mathematics. 

There is becoming less of a gap between "male" jobs and "female" jobs. There is no 
reason that it's more important for one gender than another. (younger) 
 
They are quite likely to be going for the same jobs so need the same skills (older) 

Just under half (29: 4.3%) of the remaining 10% were equivocal. Of the rest, a slightly 
higher proportion of respondents considered mathematics more important for boys  
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(24: 3.6%) than for girls (9: 1.3%). A chi-square test revealed no statistically significant 
response differences by respondent age.  

Who are better at using calculators, girls or boys? 

Over half the respondents (378: 56.5%) thought there would be no difference. A chi-
square test revealed a statistically significant response difference by respondent age  
(χ2 = 31.744, p<.001, df = 3. Effect size (φ) =.22). More older respondents nominated 
girls as the better group (younger, 20: 5.8%; older, 33: 10.1%), and more younger 
respondents nominated boys (younger, 56: 16.3%; older, 31: 9.5%). 
 Comments included: 

All gen-y kids are very tech savvy, this is not restricted to one gender. (younger) 
 
I suspect they are both the same. (older) 
 
Boys: Calculator = Machine (somewhat) = Boys will operate it better. (younger) 

Discussion 
Of the seven (out of 15) survey questions examined in this paper, no statistically 
significant differences by respondent age were found on two. About two-thirds of 
respondents indicated that pursuing mathematics beyond the compulsory period was 
important. Almost all believed that mathematics was equally important for girls and 
boys. These are heartening findings.   
 A statistically significant difference by respondent age was found on items regarding 
the importance of mathematics for getting jobs. The older cohort agreed more strongly 
than the younger respondents who were less certain. 
 The four remaining items with statistically significant differences by respondent age 
involved gender-related beliefs. The older group was more convinced that teachers and 
parents would consider boys and girls to be equally good at mathematics, and was less 
equivocal than the younger cohort. Compared to older respondents, the younger cohort 
was more likely to consider boys to be better than girls at mathematics and also better 
with calculators. Collectively these findings suggest that while those under 40 believed 
that parents and teachers were likely to be more egalitarian, they themselves hold more 
strongly than those in the older group to the traditional gender-stereotyped view that 
boys are more suited to and successful in mathematics than girls. These data imply a 
backwards slide in Australians’ views of gender equity in mathematics. Whether the 
findings of this study link to the small but consistent gender gap favouring boys in 
NAPLAN results and the increasing gender gap in Australian results in TIMSS over 
time (see Leder & Forgasz, 2010) needs to be explored further. 
 Reflections at the time of the celebration of the 100th International Women’s Day 
indicate that this “backward slide” is not unique to issues linked to the learning of 
mathematics. As noted by Cox (2011, p. 13), “[T]he F-word [Feminism] is not very 
popular these days with many younger women, who feel it does not relate to their lives.  
Newman (2011) questioned whether schools have a role to play with respect to gender 
issues in schooling. He claimed that “[A]fter more than a century of struggle, feminists 
say gender inequality is alive and well… The extent to which gender-related themes are 
incorporated in lessons remains at teachers’ discretion… (and) the reality remains that 
there is no unit of study in the (Victorian) state secondary curriculum devoted to gender 
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issues” (p. 14). In the past, interventions had a place in raising awareness of gender 
issues in mathematics and science learning but over time funding dried up. The extent to 
which pre-service teacher education programs now incorporate gender-related issues in 
their curricula varies from institution to institution. The findings of the present study 
suggest that some action is again needed to alert the teaching profession and the general 
community that differences remain in perceptions of boys’ and girls’ mathematics 
capabilities and future career potential. 
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Many researchers advocate the use of history of mathematics in education. However, 
empirical research in this area is scarce. To address this issue, a quasi-experiment is used to 
investigate the relationship between the use of history of mathematics, and the attitudes and 
achievement of junior college students in Singapore. Multivariate analysis of covariance 
and analysis of covariance, with pre-test scores as covariates, and post-test scores as 
dependent variables, suggest that history of mathematics can improve students‟ attitudes 
and achievement in mathematics. 

Introduction 
The benefits of using history of mathematics in education have been widely discussed 
by researchers globally. A list of these benefits are summarised in Fauvel and Van 
Maanen (2000). Many researchers have suggested that the use of history of mathematics 
in education are related to positive students‟ learning outcomes (Calinger, 1996; Fauvel, 
1991) and supported its inclusion in national curricula (Fauvel & Van Maanen, 2000). 
However in practice, history of mathematics is rarely used in schools (Fried, 2001), as 
teachers cannot commit the time to prepare the relevant teaching materials (Fauvel, 
1991; Fowler, 1991; Gulikers & Blom, 2001). To reap the benefits of using history in 
mathematics lessons, researchers must first convince education planners and teachers 
that the time spent in preparing these teaching materials can translate to better students‟ 
learning outcomes. One possible way is to provide empirical evidences that 
demonstrates positive relationships between the history of mathematics and desirable 
students‟ learning outcomes. However, such studies are either lacking or dated. Hence 
this study uses a quasi-experiment to investigate the relationship between the use of 
history of mathematics in classrooms, and students‟ attitudes and achievement in 
mathematics.  

Literature Review 
Lim and Chapman (in preparation, a) review definitions of history of mathematics used 
in education by various researchers and suggest that it should include (1) the use of 
anecdotes and biographies of mathematicians (Bidwell, 1993; Wilson & Chauvot, 
2000); (2) the discussion of historical motivations for the development of content (Katz, 
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1993); and (3) the use of original materials from historical sources (Arcavi & 
Bruckheimer, 2000; Jahnke et al., 2000). This study adopted these definitions. 

Theoretical literature review 
Many researchers have argued that the use of history in mathematics lessons can lead to 
better attitudes and achievement in mathematics (e.g., Fauvel, 1991; Gulikers & Blom, 
2001). Firstly, the use of anecdotes and biographies of mathematicians make lessons 
more interesting and dynamic (Perkins, 1991; Siu, 1997). Hence students should find 
their mathematics lessons more enjoyable when history is used.  
 In addition, students are more motivated to learn about mathematics if they are able 
to identify the important role that mathematics play in human culture through history 
(Tymoczko, 1994). In addition, students are able to appreciate the usefulness of 
mathematics in real life through history, as mathematical concepts are often developed 
to solve real-life problems in the past (Burton, 1998). Consequently, the use of history 
in lessons can improve students‟ perception about the value of mathematics to mankind 
and motivate them to learn mathematics.  
 Moreover, learning takes place more effectively when a learner retraces the key steps 
in the historical development of the subject (Gulikers & Blom, 2001). As mathematical 
concepts are often oversimplified in textbooks and by teachers (Freudenthal, 1991; 
Siegel & Borasi, 1994), students may not be able to understand these concepts which 
are often broken up into smaller parts and presented to them from an expert‟s viewpoint 
(Tall & Vinner, 1981). Showing students the historical development of mathematical 
concepts can help them to see the links between the broken parts and improve their 
understanding of these concepts (Furinghetti, 2000), which may translate to better 
achievement test scores. 
 Finally, teachers can better understand the common difficulties faced by current 
students by examining the errors and misconceptions of past mathematicians (Moru, 
Persens, Breiteig, & Ndalichako, 2008; Sierpinska, 1992). They can then take pre-
emptive measures to ensure more effective learning (Sfard, 1994). At the same time, 
when students realise that it is common for mathematicians to commit errors and learn 
from their own or others‟ mistakes, they appreciate that collaboration and perseverance 
are necessary to derive mathematical concepts which they often feel are beyond their 
ability to derive or understand initially. This gives them the confidence to explore and 
participate in mathematical activities (Siu & Siu, 1979). Hence, the use of history in 
mathematics lessons is a feasible technique to improve students‟ attitudes and 
achievement.  

Empirical Literature Review 
Although many articles discuss about the benefits of using history of mathematics in 
education, few empirical studies on history of mathematics have been conducted 
(Gulikers & Blom, 2001). Amongst these studies, most suggest that history of 
mathematics leads to better student learning outcomes. For instance, a qualitative study 
by Ponza (1998) reported that Grade 7 students displayed better attitudes toward 
mathematics after they worked on a project about the life of a French mathematician. In 
another qualitative study (Dittrich, 1973), Grade 11 and 12 participants showed greater 
interest in mathematics after the researcher used biographies of mathematicians and 
historical sources in their lessons. No significant improvement in the mathematics 
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achievement of these participants was observed as improving problem solving skills 
was not one of the foci of the course. These qualitative studies suggest a positive 
relationship between the use of history and students‟ attitudes toward mathematics. 
However, quantitative studies are necessary to further convince educationists of this 
relationship.  
 One of the earliest quantitative studies was conducted by McBride and Rollins 
(1977) who used original proofs by famous mathematicians in a college algebra course 
in the United States. ANCOVA, with initial attitudes scores as covariates, showed a 
significant improvement in the experimental group‟s attitudes toward mathematics.  
 More recently, a quasi-experiment was conducted by Lit, Siu and Wong (2001) to 
examine the effect of using the historical development of the Pythagorean Theorem on 
the attitudes of Secondary 2 (Grade 8) students in Hong Kong. T-test results indicated a 
significant improvement in attitudes toward mathematics. However, the experimental 
group did not display a significant improvement in mathematics achievement. As the 
participants were assessed on different topics for pre-test and post-test, the achievement 
tests used in this study produced questionable results. In addition, t-test does not 
account for initial differences between the experimental and control groups. ANCOVA, 
with pre-test scores as covariates, may produce more meaningful results. 
 Ng (2006) investigated the effects of an Ancient Chinese Mathematics Enrichment 
Program (ACMEP) on the mathematics achievement of 414 secondary two (Grade 8) 
students in Singapore. ANCOVA, with achievement pre-test scores as covariates, 
showed that the experimental group performed significantly better than the control 
group. However, the results need to be interpreted with care as participants could 
choose whether or not to participate in the ACMEP. Students who opted to participate 
in the program might have better attitudes toward mathematics in the first place. Future 
experiments should remove this assignment bias to obtain more conclusive results. 
 Conscious of the dearth of studies on the use of history of mathematics, especially at 
the junior college and polytechnic level in Singapore, Ho (2008) conducted action 
research on the effects of using history of algebra on the attitudes of 102 polytechnic 
students. Participants in the experimental group performed better in two domains of 
attitudes, namely belief and perseverance, than their counterparts in the control group. 
As part of the study, Ho also developed a test to measure attitudes toward mathematics. 
However, the test had not been assessed for reliability and validity. Hence, the results of 
this study may be disputable.  
 In view of the weaknesses in the above-mentioned studies, this study aims to use a 
quasi-experiment to investigate the relationship between history of mathematics and 
students‟ attitudes and achievement in mathematics. This study hypothesizes that 
students who are introduced to history of mathematics in their lessons have better 
attitudes and achievement post-test scores than students who do not, after pre-test score 
differences are statistically controlled using multivariate analysis of covariance 
(MANCOVA) and analysis of covariance (ANCOVA).  

Methodology 
A quasi-experiment in which participants were selected from existing classes in a junior 
college was used in this study.  
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Participants 
Four college year one (Grade 11) classes taught by the same teacher participated in this 
quasi-experiment. Two classes, one with class size 26 and the other 25, were assigned to 
the experimental (history of mathematics) group (total n = 51) and the other two classes, 
each with class size 26, were assigned to the control (no history of mathematics) group 
(total n = 52). The assignment of the classes to the two groups was done randomly. The 
participants had an average age of 17 years. 

Research Design 
Table 1 illustrates the design of this research. The use of history of mathematics is 
denoted by X. The same teacher went through a standard set of tutorial questions with 
both the experimental and control groups. To ensure that the same amount of time was 
spent with each group, the teacher went through the tutorial questions at a slower pace 
with the control group. All participants took three sets of achievement pre-tests and 
post-tests on three calculus topics: (1) techniques of differentiation, (2) applications of 
differentiation, and (3) integration. To minimize carry-over effects, the same set of 
attitudes tests was administered only twice to both groups of participants, once before 
the treatment and once after the last treatment session. 

Table 1. Research design of the study.  

Achievement 
Control (n = 52) O1  P1 O2  P2 O3  P3 

Experimental (n = 51) O1 X P1 O2 X P2 O3 X P3 

Attitudes 
Control (n = 52) A1        A2 

Experimental (n = 51) A1 X   X   X A2 
Legend: 
X: Treatment (history of mathematics)  
Or: Achievement pre-test r, for r = 1, 2 and 3. 
Pr: Achievement post-test on calculus topic r, for r = 1, 2 and 3. 
A1: Attitudes pre-test 
A2: Attitudes post-test 

Variables 
The independent variable in this study is the use of history of mathematics in lessons 
and the dependent variables are students‟ attitudes toward mathematics and achievement 
in mathematics. The confounding variables are pre-test differences between the 
experimental and control groups. Table 2 shows the variables that are held constant 
across both the experimental and control groups.  

Treatment 
The teaching package for the experimental group was aligned with the definitions of 
history of mathematics used in this study.1  For instance, the dispute between Sir Isaac 
Newton and Gottfried Wilhelm Leibniz on who has precedence over the development of 
the fundamental theorem of calculus (Hall, 1980) was used as an anecdote to arouse 
students‟ curiosity and interest. The experimental group was also introduced to the 
                                                        

1 Readers may contact the author for the complete teaching package on history of mathematics that was 
used with the experimental group. 
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motivation behind the development of mathematical concepts in the past, such as the 
development of  differential calculus by Newton to solve physics problems on motion 
(Grabiner, 1983). Furthermore, original materials from historical sources such as the 
proof for Snell‟s law using differentiation was used to illustrate to students the use of 
calculus to prove a formula that they were asked to memorise without understanding 
when they were in lower grades.  

Table 2. List of variables held constant. 

Variables Held Constant Remarks 
Age and year of study  Same age group of 16 and 17 year old college year 1 students taking 

the General Certificate of Education Advanced Level (GCE „A‟ level) 
9740 H2 mathematics examination administered by the University of 
Cambridge-London Examination Syndicate (UCLES). 

Participating school All participants were from the same junior college. 
Number and duration of lessons  All participants attended 16 lectures and 22 tutorial sessions, 

conducted over a period of four months. Each lecture session and each 
tutorial session lasted one hour. History of mathematics was used in at 
least 40% of the tutorial time for the experimental group. 

Teacher and teaching approach All participants were taught by the same teacher using a teacher-
centred approach.  

Students‟ notes and tutorial 
questions 

The same set of lecture notes and tutorial questions without any 
mention of history of mathematics was used for both groups and for all 
topics. 

Instruments 
Mathematics attitudes 

The Attitudes Toward Mathematics Inventory (ATMI) (Tapia & Marsh, 2004) and the 
modified Academic Motivation Scale (AMS) (Lim & Chapman, in preparation-a) were 
used for both pre-test and post-test. The psychometric properties and factor structures of 
both instruments had been established using participants with similar profiles to the 
participants of this study by Lim and Chapman (in preparation-a, in preparation-b).  
 The ATMI consists of 40 items that measure general attitudes toward mathematics 
using four factors, namely enjoyment, general motivation, self-confidence and value, on 
a five-point Likert Scale that ranges from strongly disagree to strongly agree. On the 
other hand, the modified AMS is made up of 20 items that address the question “Why 
do you spend time to study mathematics?” It measures participants‟ motivation toward 
mathematics using five factors that exist on a self-determination continuum (Deci & 
Ryan, 1985). These five factors can be categorised from lower to higher level of self-
determination, into amotivation, external regulation, introjection, identification and 
intrinsic motivation. Each factor consists of four items and is measured on a 5-point 
Likert scale that ranges from “does not correspond at all” to “corresponds exactly”. 

Mathematics achievement 

Three sets of achievement tests which were equivalent in terms of difficulty level and 
content were constructed to measure mathematics achievement. The questions for the 
tests were modified from past years GCE „A‟ level questions. To assess the content 
validity of the achievement tests, a setter of the GCE „A‟ level 9740 H2 mathematics 
paper from UCLES, Dr. Lionel Elliot, was invited to review the test items and mark 
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schemes, and to provide feedback on their validity. He also verified that the content and 
difficulty level of the three sets of tests were similar. All the participants‟ scripts were 
evaluated by the same teacher based on the mark schemes. To assess the alternative 
form reliability (Clark-Carter, 2004) of the tests, a pilot study was conducted on 73 
participants who were similar in profiles to the participants of this study. High 
reliability over a one-month duration for all pre-tests and post-tests was reported 
(average r = 0.87, p = 0.01).   

Results and Discussion 
All results of this study were analysed using SPSS 19 (SPSS Inc., 2010). Table 2 
presents the mean scores and standard deviations of the post-tests scores of the ATMI, 
the modified AMS and the three achievement post-tests. The achievement scores are 
given in percentages. Pre-test scores are used as covariates which are statistically 
controlled using MANCOVA and ANCOVA when comparing the post-test scores of 
the experimental and control groups. All the underlying assumptions of MANCOVA 
and ANCOVA are supported by the data. 

Table 2. Descriptive statistics of ATMI, the modified AMS and achievement test scores.  

  Control (n = 52) Experimental (n = 51) 
 Factors Mean SD Mean SD 
Attitudes Tests 
ATMI Enjoyment 3.31 0.80 3.40 0.75 
 Motivation 3.10 0.86 3.13 0.75 
 Self-confidence 3.54 0.71 3.71 0.84 
 Value 3.65 0.59 3.88 0.45 
Modified AMS Amotivation 1.82 0.89 1.65 0.84 
 Intrinsic motivation 3.00 0.85 3.28 0.75 
 Identification 3.20 0.72 3.42 0.73 
 Introjection 2.72 0.85 3.14 0.99 
 External regulation 2.81 0.67 2.90 0.99 
Achievement Tests 
Test 1 (Techniques of Differentiation) 68.46 18.93 77.16 12.18 
Test 2 (Applications of Differentiation) 53.01 17.90 62.55 14.69 
Test 3 (Integration) 40.77 19.57 56.21 19.70 
 

Results and discussion on mathematics attitudes  
Except for amotivation which contains negatively-worded statements, the experimental 
group reported higher scores for all domains of attitudes in the ATMI and the modified 
AMS.  

Results of ATMI 
There is a significant effect of the treatment variable (history of mathematics versus no 
history of mathematics) on the combined dependent variables of the ATMI,                  
F(4, 94) = 2.70, p = 0.035, partial η2 = 0.103. Analysis of each dependent variable 
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shows that the experimental group performs significantly better in terms of value, at a 
Bonferroni adjusted α level of 0.0125, F(1, 97) = 6.75, p = 0.011, partial η 2 = 0.065.  

Results of the modified AMS 
After reversing the scores for the amotivation items, the results of the modified AMS 
show a marginally significant effect of the treatment variable on the combined 
dependent variables, F(5, 90) = 2.31, p = 0.051, partial η 2 = 0.031. Analysis of each 
dependent variable shows that the experimental group performeds significantly better in 
terms of intrinsic motivation (F(1, 94) = 4.94, p = 0.029, partial η 2 = 0.050) and 
introjection (F(1, 94) = 7.07, p = 0.009, partial η 2 = 0.070), at a Bonferroni adjusted α 
level of 0.01.   

Discussion 
Burton (1998) proposes that history of mathematics allows students to see the 
usefulness of mathematics in real-life. This is supported by the results of this study as 
the experimental group performed significantly better than the control group in terms of 
value. The experimental group is also significantly more intrinsically motivated and 
introjected than the control group after the use of history. This finding is in line with the 
arguments of D‟Ambrosio (1995) who suggests that students are more motivated to 
learn mathematics if they explore mathematicians‟ cognitive activities in the past, as 
this allows them to appreciate the role of human minds in constructing mathematical 
knowledge. 
 Although the experimental group performed better in other domains of attitudes such 
as enjoyment and self-confidence as proposed by Perkins (1991) and Siu and Siu 
(1979), results are not significant. Future research with a bigger sample size may 
produce more conclusive results. In general, the positive results on attitudes after the 
use of history of mathematics are similar to those of previous empirical studies such as 
McBride and Rollins (1977) and Lit, Siu and Wong (2001). Although results are 
significant only for a few domains of attitudes, namely value, intrinsic motivation and 
introjection, these domains of attitudes are positively related to desirable student 
learning outcomes such as high academic achievement, low anxiety and low dropout 
rate from school (Gottfried, 1982; Vallerand et al., 1993). This implies that history of 
mathematics is beneficial to students and should be used by teachers in schools. 

Results and discussion on mathematics achievement 
The experimental group performed better in all three achievement post-tests. ANCOVA 
was conducted on each of the three achievement tests, with pre-test score on the same 
topic as covariate. There is a statistically significant effect of the treatment variable on 
Test 1 (F(1, 100) = 9.72, p = 0.002, partial η 2 = 0.089) and Test 3 (F(1, 100) = 15.78,                        
p = 0.001, partial  η 2 = 0.136).  
 This result affirms Furinghetti‟s (2000) suggestion that learning can be made more 
effective through the use of history. Interestingly, the achievement results by Lit, Siu 
and Wong (2001) are in contrast to the results of this study and Ng (2006)‟s study. As 
the study by Lit, Siu and Wong took place over only three weeks, while this study and 
Ng‟s study took place over four months and seven months respectively, time may be a 
necessary factor to observe better achievement test results after the use of history.  
 However, the improvement in achievement may be a result of better attitudes, rather 
than a direct consequence from the use of history of mathematics. Further research is 
required to investigate the effects of history of mathematics on academic achievement.  
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Conclusion 
This study aims to convince educators about the benefits of using history of 
mathematics in schools through a quasi-experiment. Results show that there is a 
significant and positive relationship between history of mathematics and students‟ 
achievement and certain domains of attitudes that are in turn positively related to other 
desirable students‟ learning outcomes. Hence the use of history of mathematics in 
classrooms is highly recommended. 
 However, this study is not without limitations. Firstly, the experiment involved the 
teaching of calculus topics only. Secondly, the participants of this study came from only 
one junior college in Singapore. Further studies that involve other mathematical topics, 
and more participants from different schools and countries are necessary to generalise 
results. Qualitative data can also be collected through the administration of journals, 
interviews, and recordings of classroom activities to better understand how students‟ 
attitudes and achievement are affected by the use of history in their mathematics 
lessons.  
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Improving numeracy performance of all students across Victoria is a government 
priority. A key element of this initiative lies with tertiary institutions that are 
responsible for adequately preparing pre-service teachers for teaching primary 
mathematics. This paper examines data from a larger, longitudinal study of primary pre-
service teachers‘ mathematical content knowledge and focuses on responses to fraction 
tasks by nine pre-service teachers in the study who are in the final year of their course. 
Two dimensions were used to categorise their responses. The majority of these pre-
service teachers did not demonstrate a fluid and flexible knowledge of fractional 
numbers; half demonstrating a regression in their knowledge of this topic since the 
beginning of the course. These pre-service teachers will be challenged when working 
with students who have a wide range of numeracy experiences and abilities. 

Introduction 
The aim of the larger study is to identify when, what and how primary pre-service 
teachers‘ mathematical content knowledge (MCK) develops during their course as there 
have been few longitudinal studies completed on how teachers‘ mathematical 
knowledge changes over time (Ball, Bass, & Hill, 2004). Teachers need, use and 
develop their MCK to understand mathematical concepts and processes as they teach 
(Chick, Baker, Pham, & Cheng, 2006; Hill, Ball, & Schilling, 2008; Ma, 1999; Rowland, 
Turner, Thwaites, & Huckstep, 2009; Shulman, 1986). Two important dimensions teachers 
need to know in order to teach are foundation knowledge, that is the content primary 
mathematics‘ teachers must draw on, as well as an understanding of how to make 
connections within and between topics (Rowland et al., 2009). It is important to 
examine issues relating to the development of pre-service teachers‘ MCK in order to 
plan and improve pre-service teaching as a means for also improving school students‘ 
numeracy outcomes.  

Background 
Forms of teacher knowledge 
Teachers require a range of knowledge to draw on when teaching. For the past two 
decades research on mathematics teaching has included a focus on the knowledge 
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teachers‘ use and need for their craft of teaching (Grossman & McDonald, 2008). 
Shulman (1986) was one of the first to categorise the characteristics for distinguishing 
teacher knowledge: content knowledge, pedagogical content knowledge (PCK) and 
curricular knowledge. Since then scholars have continued to understand and build on 
this work (Chick, Baker et al., 2006; Hill et al., 2008; Ma, 1999; Rowland et al., 2009).  
 The focus of this study is MCK or content knowledge. Shulman (1986) described 
content knowledge as the amount and organisation of knowledge in the mind of the 
teacher. Later studies have expanded on Shulman‘s definition and unpacked its 
complexities. Ma‘s (1999) study of Chinese teachers identified a form of content 
knowledge as a thorough understanding of the mathematics, having breadth, depth, 
connectedness and thoroughness, referring to this as Profound Understanding of 
Fundamental Mathematics (PUFM). Demonstrating mathematical connections and 
fluency of concepts and procedures is a key feature of PUFM.  
 According to current literature, MCK includes three facets: common content 
knowledge (CCK), specialised content knowledge (SCK) and knowledge at the 
mathematical horizon (Ball, Thames, & Phelps, 2008; Hill et al., 2008). CCK is simply 
when someone is able to calculate an answer and correctly solve a mathematical 
problem whereas SCK is unique to teaching (Ball et al., 2004; Ball et al., 2008). 
Teachers use SCK for identifying a range of solutions and mathematical connections 
when working with students, planning lessons and evaluating students‘ work (Chick, 
Pham, & Baker, 2006; Schoenfeld & Kilpatrick, 2008). Advanced content knowledge is 
evident when the teacher demonstrates a broad understanding of the complexities of 
MCK, for example; how mathematical ideas connect to the mathematics they are 
teaching, demonstrating peripheral vision of the curriculum. When a teacher models this 
advanced knowledge they are said to have an understanding of knowledge at the 
mathematical horizon (Ball & Bass, 2009; Hill et al., 2008).  
 Knowledge of content matters for teaching and excellent teachers of mathematics 
demonstrate a sound, coherent knowledge of mathematics appropriate to the students 
they teach (Australian Association of Mathematics Teachers [AAMT], 2006; Ball et al., 
2004; Ma, 1999; Schulman, 1986, 1987). However, the literature continues to report on 
teachers‘ and pre-service teachers‘ gaps and weaknesses relating to their MCK 
(Fennema & Franke, 1992; Goos, Smith, & Thornton, 2008; Rowland et al., 2009).  
 Newton‘s (2008) review of the literature reported studies of elementary (primary) 
pre-service teachers‘ fraction knowledge to be limited and studies had focussed mainly 
on division, for example Ma‘s study (1999). Her study of 85 American elementary pre-
service teachers‘ included administrating a written test at the beginning and at the end of 
a semester-long course designed to increase their knowledge of fractions. Results 
showed an improved knowledge of the four operations with fractions in the post test 
responses, but there was little flexibility demonstrated in the methods used when 
solving problems in both the pre-test and post-test. Further studies, including 
longitudinal studies could contribute to this gap in research. 

A framework for Mathematical Content Knowledge 
Rowland et al.‘s (2009) The Knowledge Quartet was implemented when working with 
pre-service teachers (trainee teachers) as a tool for identification and discussion of four 
important dimensions for describing the types of MCK required to teach mathematics 
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well: foundation, transformation, connection and contingency (see Table 1). Foundation 
is described as the knowledge possessed and the other three dimensions rely on 
conceptual connections for teaching.   

Table 1. The codes of the Knowledge Quartet (Rowland et al., 2009, p. 29). 

Foundation Adheres to textbook 
Concentration on procedures 
Overt subject knowledge 
Use of terminology 

Awareness of purpose 
Identifying errors 
Theoretical underpinning 
 

Transformation Choice of examples 
Demonstration 

Choice of representation 
 

Connection Anticipation of complexity 
Making connections between procedures 
Recognition of conceptual appropriateness 

Decisions about sequencing 
Making connections between concepts 
 

Contingency Deviation from agenda 
Use of opportunities 

Responding to children‘s ideas 
 

Methodology 
The study and selecting participants 
This paper reports on part of a larger study that includes a longitudinal qualitative 
component that explores the on-going learning of mathematics of 17 pre-service 
teachers in the various settings they encounter during the Bachelor of Education 
programme. This cohort is completing a Bachelor of Education Prep to Year 12 
teaching course and will have qualifications to teach in primary and secondary schools. 
Their secondary qualification is aligned to particular discipline specialisations studied 
during the course and may or may not include mathematics. The 17 pre-service teachers 
had volunteered to participate in this longitudinal study. 
 For this study data collection involved qualitative analyses for nine pre-service 
teachers‘ responses to fraction items undertaken in the second-year of the course and 
again in the fourth-year of the course. Five of these pre-service teachers were not 
Mathematics majors and four were Mathematics majors. This study compared their 
results and responses to fraction items: one question selected from a Mathematical 
Competency, Skills and Knowledge Test (MCSKT) and responses to four items 
answered two years later during an individual interview. The remaining seven pre-
service teachers were not selected for this study because they were studying at a 
different campus and had completed a different MCSKT.  

Instruments 
The pre-service teachers were given two questions, the first during second-year and the 
second at the end of fourth-year of their course. These fraction problems were selected 
to investigate their thinking used to solve two similar but different fraction problems; 
both were ordering tasks.  
 Second-year fraction test question. During the second year of the course all pre-
service teachers (including pre-service teachers in the longitudinal study) completed a 
MCSKT to assess their mathematical knowledge of mainly number topics, for example 
fractions, decimals, percentage and ratio. The MCSKT consisted of 49 questions; pre-
service teachers provided short answers using words or symbols and were encouraged 
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to record their working out. All test items ranged in difficulty examining mainly 
procedural knowledge to a Year 8 standard. No calculator was permitted. For Question 
19 pre-service teachers were asked to order a set of (fractional) numbers (0.42, two 
fifths, 4/9, 0.44 and one third) from least to greatest (Table 2).  
 Fourth-year fraction items. During the fourth year of their course the nine pre-
service teachers in the longitudinal study completed a one-on-one interview with the 
researcher. In order to analyse their development of MCK of ordering and partitioning, 
they answered four items relating to common fractions. Each pre-service teacher was 
given three pairs of fractions and asked to identify the largest common fraction (Item 1: 
3/5 and 2/3; Item 2: 3/5 and 3/4; Item 3: 3/5 and 5/8). For Item 4 pre-service teachers 
were asked to place common fractions (2/3, 3/4, 3/5 and 5/8) onto a number line. For 
each item they were asked to explain their reasoning.  
 Before commencing this interview the pre-service teachers were not aware they 
would have to demonstrate their MCK therefore were not given an opportunity to revise 
their knowledge of fractions. All interviews were digitally recorded and transcribed for 
later analysis.  

Identifying methods and coding 
Correct and incorrect responses for the second-year MCSKT Question 19 were entered 
into a spreadsheet. Table 2 summarises the responses of the nine pre-service teachers 
(their pseudonyms) in this study, listing their responses and an indication of whether the 
answer was correct (tick) or incorrect (cross), a description of the method used, and an 
indication to show whether the pre-service teacher was a mathematics major (tick) or 
not a mathematics major (cross). 
 A second spreadsheet was prepared for the fourth-year pre-service teacher data 
recording the four items, the number of correct and incorrect responses by Mathematics 
majors and non-Mathematics majors. For Items 1, 2 and 3 the method and the total 
number of pre-service teachers who used each method was coded: (known) fact, drew a 
linear (strip) model to compare the two fractions, converted to equivalent fractions in 
order to compare, converted to equivalent decimal and/or percentage to compare 
fractions, used number sense, or made a correct guess (Table 3). For Item 4, the number 
of correctly ordered responses was recorded for Mathematics majors and non-
Mathematics majors. The number of pre-service teachers who demonstrated proportion 
when partitioning and placing the numbers onto the number line are also recorded in 
Table 3. Rowland and colleagues‘ (2009) qualitative framework (Table 1) was then 
used to code strategies and draw conclusions of pre-service teachers‘ MCK for the 
fraction items (Table 2 and Table 3). The aim was to compare the results of second-year 
and fourth-year data to identify foundation and or connections. Contingency and 
transformation were not used for this study as they linked to knowledge in action and 
what a teacher does during teaching. 

Results and discussion 

Table 2. Pre-service teachers’ responses (N=9) to Question 19, Second-year MCSKT. 

Name Response Answer Method Math 
Major 

Lisa One third, 0.42, 4/9, 0.399, x Converted to hundredths incorrectly x 
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two fifths 

Peter One third, 0.399, two fifths, 
0.42, 4/9 

 Converted to decimal x 

Michael One third, 0.399, two fifths, 
0.42, 4/9 

 Converted to decimal x 

Elizabeth One third, 0.399, two fifths, 
0.42, 4/9 

 Converted to decimal and used a 
proportional strategy 

x 

Con One third, 0.399, two fifths, 
0.42, 4/9 

 Converted to decimal  

Kerri One third, 0.399, two fifths, 
0.42, 4/9 

 Converted to decimal  

Janette One third, 0.399, two fifths, 
0.42, 4/9 

 Converted to decimal x 

Sean One third, 0.399, two fifths, 
0.42, 4/9 

 Converted to decimal  

Shelly One third, 0.399, two fifths, 
4/9, 0.42 

x Unable to convert 4/9 to decimal; 
correctly converted others to decimals 

 

 
The responses of Question 19 from a second-year MCSKT indicated that most (7) of the 
nine pre-service teachers could order the numbers correctly: one third, 0.399, two fifths, 
4/9 and 0.42 (Table 2). All correct responses showed some working out and recording, 
converting the fractions to decimals. This method concentrated on procedure and is 
foundation knowledge with some knowledge of the connections between the concepts 
of common fractions and decimal fractions. For example they demonstrated two fifths 
as equivalent to four tenths. There may have been further connected knowledge but 
Question 19 did not provide enough scope to identify this. Interviewing pre-service 
teachers after the test would have provided further probing of MCK. 
 Elizabeth‘s correct solution for Question 19 demonstrated a proportional strategy and 
was coded as demonstrating connection (Rowland et al., 2009). She was trying to make 
sense of the numbers so rather than converting 4/9 to 0.44 she recorded that 4/9 was 
―just under 0.5‖ (Figure 1). She was most likely using half as a reference point and 
knew the other numbers were ―more than just under‖ one half. This example provided 
the most evidence of connected knowledge. However, it did not demonstrate if she 
knew how to change a common fraction (4/9) to a decimal fraction. 
 A range of experiences would have assisted pre-service teachers to prepare for their 
MCSKT contributing to the number of correct responses for Question 19. Before 
completing their MCSKT the pre-service teachers had just completed two education 
units during the second semester of the second year of their course. Both units focused 
on developing understanding of the primary mathematics curriculum as well as teaching 
and learning numeracy. All pre-service teachers had access to a sample MCSKT as a 
method of preparation for this assessment task. They also attended a primary school 
placement where they observed, participated and taught primary mathematics lessons. 
Similarly, they may have brought this knowledge to the course as foundation knowledge 
learnt during first year of the course or from their own mathematics education at 
primary or secondary school. 
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Figure 1. Elizabeth’s response to MCSKT Question 19. 

Shelly, a Mathematics major, was unable to convert 4/9 to a decimal fraction. There is 
evidence of working out which has been rubbed out. Her recording shows 1/9 = 0.102 
which is incorrect. She may have drawn on procedural knowledge to convert two fifths 
to a decimal and used a known fact for one third but lacked procedural fluency by not 
knowing a method for converting 4/9 to . Demonstrating procedural fluency is 
knowing procedures to use and performing them flexibly, accurately, and efficiently 
(National Research Council, 2001). 
 Lisa was one of the other pre-service teachers from the sample who was unable to 
provide a correct response for Question 19 and incorrectly converted the numbers to, 
hundredths. For example she recorded 4/9 as 45/100 and one third as 23/100. It is 
difficult to identify her errors since she did not record her thinking.  
 For Item 1 and Item 2, all responses were correct: 2/3 (Item 1) and 3/4 (Item 2). 
About half the pre-service teachers knew this as a fact because they were able to record 
the answer using quick mental methods. During the interview they explained how they 
knew this by drawing a model or by comparing equivalent fractions, decimals and/or 
percentages. This response was coded as foundation, common content knowledge as 
they could demonstrate an accurate method for ordering common fractions and explain 
their thinking or procedure. 

Table 3. Fourth year pre-service teachers’ responses (N=9) to 4 fraction items1. 

Ite
m

  

Question 
 

Number of Correct 
Responses 

Correct 
proportio
n (N=9) 

Method (N=9) 
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(N=4) 
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(N=5) 
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N
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Se
ns

e 

C
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ct

 
G
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ed
 

 Which one is 
larger, … 
 

         

1 3/5 or 2/3? 4 5  3 2 4    

2 3/5 or 3/4? 4 5  4 1 4  1  

3 3/5 or 5/8? 4 5  0 0 6 1 1 1 

4 Record these 
fractions on a 
number line 3/5, 
2/3, 3/4 ,5/8 

2 2 3       

1 Space does not permit the inclusion of the names of pre-service teachers. 
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Elizabeth drew a linear or strip model for all three items in order to shade and then 
compare these fractions. She did not elaborate on this method and lacked foundation 
knowledge and appeared to have forgotten any methods she had demonstrated two years 
earlier for Question 19 (Figure 2). She said, ―This is the easiest way of me thinking 
about this stuff… obviously if I could do it with a ruler it would be a lot more accurate.‖ 
She correctly guessed the answer for 3/5 and 5/8 because the models looked similar. 
Again, she was not able to change a common fraction to a decimal fraction, as she had 
done two years earlier to compare fractions, or draw on her MCK to seek a suitable 
method. 
 For Item 1 and Item 2, four pre-service teachers chose to convert the fractions to 
equivalent fractions to compare their size. Janette used number sense by looking at the 
numerators and denominators. She selected 3/4 as larger than 3/5 and knew that quarters 
were larger than fifths. Her response was coded as ‗connection‘, making connections 
between concepts. 
 All answers to Item 3 were correct. The most common method used to solve Item 3 
was demonstrated by six pre-service teachers. They drew on a rote procedure, making 
equivalent fractions to compare 3/5 and 5/8 as 24/40 and 25/40. They performed 
procedural knowledge using step by step procedures and thus demonstrated foundation 
knowledge.  
 To compare and order fractions, students should develop a range of strategies (Petit, 
Laird, & Marsden, 2010). Only one pre-service teacher had the confidence to use their 
knowledge of fractions, decimals and percentage that demonstrated extending fraction 
ideas. Con was a Mathematics major and estimated the correct answer using 
connections with rational numbers as well as number sense. For Item 3 he said, ―It is 
close. This [5/8] has to be more than point six [0.6] because one eighth is equal to more 
than ten percent. One eighth has to be bigger than ten percent. Four eighths is 50 
percent or half or whatever and this [3/5] is sixty percent… so 50 plus more than ten 
percent is equal to 61 point 8 [61.8%]. I think it is point 888[0.888%] maybe something 
like that… I just know it is more than ten percent.‖ This explanation drew on extended 
rational number knowledge by partitioning the fraction and breaking the problem down 
into steps that helped him justify the answer and demonstrate ‗connection‘.  
 For Item 4, only four—or less than half the pre-service teachers in the sample 
(N=9)—were able to correctly place the fractions in order on the number line even 
though they all correctly compared pairs of these fractions. Of the four pre-service 
teachers who answer correctly, two were Mathematics majors and two were not. Peter 
who was not a Mathematics major did not place the numbers in proportion on the 
number line. This is Foundation knowledge. 
 Michael, Con and Shelly were able to record their fractions on the number line in 
order and in proportion, using other numbers such as zero, half and one as bench marks. 
Making conceptual connections with the number line and with other representations of 
fractional numbers is evidence of connection or rational number sense (Lamon, 2005).  

Conclusion 
Rowland‘s et al. (2009) framework was useful for identifying foundation knowledge 
when analysing the fraction question and items (tasks), as many pre-service teachers 
drew on known procedures in their responses. However, the items were closed 
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questions. This was a disadvantage in the study when examining connection as most 
responses demonstrated one method of solution making it difficult to identify breadth 
and depth of pre-service teachers‘ MCK. Item 4 provided the best opportunity for 
providing evidence of connection as it was a multi-step problem involving known facts 
and procedures for comparing and ordering and partitioning and sense making strategies 
for representing common fractions with different denominators on a number line. 
 The results for the nine pre-service teachers MCK can be summarised as follows: 

 One pre-service teacher lacked foundation knowledge in both second-year and 
fourth-year as she was unsuccessful with both ordering tasks; further investigation 
is needed to explore why she has not improved her MCK. 

 Three pre-service teachers demonstrated success with Item 4 during fourth-year 
and demonstrated foundation and connection knowledge; they are maintaining 
and/or improving their MCK. 

 Nearly half the sample, four pre-service teachers, could order the fractional 
numbers in second-year but could not order a similar set of common fractions 
correctly in fourth-year, demonstrating less foundation knowledge. This is a 
concern. 

 One maths major demonstrated extended rational number knowledge. Other 
aspects of the longitudinal study will focus on how he transforms his knowledge 
and explains mathematics to primary students. 

These results will be used to provide directions for probing more deeply into these pre-
service teachers‘ MCK. They indicate that there is the need to engage pre-service 
teachers in tasks that promote understanding of specialised content knowledge to foster 
development of mathematical connections and not merely foundation knowledge. Tasks 
should be designed to assess their connection knowledge. Teaching experiences in 
various settings need to be designed to further connect knowledge and the other 
dimensions of specialised content knowledge they need to draw on when teaching. The 
Knowledge Quartet can be used as tool for supporting this development. 
 If the findings of this study are widespread and graduating teachers have gaps in their 
foundation knowledge and demonstrate narrow connected knowledge they will struggle 
when working with students within a classroom. Students have a wide range of 
numeracy experiences and abilities and their teachers need to draw on their MCK to 
build capacity in numeracy teaching and learning.  
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This paper examines the piloting of a Written Strategy Stage Assessment Tool designed to 
identify students‘ ―global‖ strategy stages and provide formative data for teachers. The 
Year 9 cohorts from two schools were assessed at the end of the school year. Numeracy 
experts then interviewed a sample, to identify each student‘s strategy stage, using an oral 
assessment. Results from the written assessment gave relatively consistent measures of 
stages in terms of the criteria set and a relatively close match to national data. Comparison
of the written and oral assessment results showed the stages identified by the two measures 
to be generally consistent.

Background 
The extension of the New Zealand Numeracy Development Projects (NDP) from 
primary into secondary schools, as the Secondary Numeracy Project [SNP], led to a call 
for a written assessment tool to replace the NDP oral assessment tool (NumPA) as the 
main source of initial information about secondary students‘ mathematical knowledge 
and understanding. NumPA information is used to place students initially into stage 
related teaching groups, as promoted in NDP, and new written assessment information 
would need to be able to be used in the same way. 
 A written tool was seen as enabling the initial assessment of whole classes of 
secondary students to be carried out more ―efficiently‖. The use of oral individual 
student assessment, as occurred in primary schools, was seen as an unproductive use of 
teacher time given the larger numbers of students that secondary teachers had to deal 
with due to their taking multiple classes.  
 The use of oral assessment negates the challenge of inadequate student reading 
levels, potentially a major issue with primary school students, whereas reading levels 
were not seen as problematic with secondary school students. Thus, the larger number 
of students in secondary schools who need assessing per teacher and the expectation of 
adequate reading levels were the prime drivers for developing the Written Strategy 
Stage Assessment Tool (WSSAT). 
 An efficient written assessment tool would: 

 reduce the amount of teacher time taken per student; 
 allow a standardised (and objective) marking schedule; and 
 give a written record of students‘ answers (without any working).

473



LOMAS & HUGHES 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

Most importantly it would give appropriate global strategy stages and useful formative 
information, reflecting that from NumPA.  
 The WSSAT, as can be attempted with any written test, was designed to meet the 
three criteria. The time to complete was aimed at about 30 to 40 minutes, which for 
classes of 30 (or whole school cohorts) would use significantly less teacher time than 
individual oral assessments. There was a standardised, straightforward marking 
schedule (correct/incorrect), enabling quick, consistent and objective marking—
particularly by teachers new to SNP or even by a person with little knowledge of 
numeracy, such as a parent helper. The responses on a carefully formatted answer sheet 
allowed for quick marking as well as determination of the strategy stage, while 
providing a clear written record of the students‘ performance. Experience during the 
earlier trials and the pilot in this study have indicated that these efficiency aspects of the 
design have been achieved. 
 In addition, the availability of the written record for evaluation and moderation 
purposes reduces the potential for individual variability that can occur when conducting 
oral assessments. It may also enhance the accuracy of the assessment, particularly in the 
multiplicative and proportional domains, for which Thomas, Tagg, and Ward (2006) set 
the accuracy of various types of existing numeracy assessments at 76%. Thomas et al. 
also found that many secondary teachers ―rated students‘ strategy stages lower than the 
rating of the researchers, explaining their decisions in terms of consolidating students‘ 
understanding at an existing level‖ (p. 101): that is, they rated students at a lower stage 
than NumPA would have assigned if used as intended.  
 The extent to which the WSSAT achieves a reasonably ―useful‖ determination of 
students‘ strategy stages for the initial placement of students into teaching groups is the 
focus of this paper. 

The nature and structure of the written strategy stage assessment tool 
The WSSAT is closely aligned with the NDP strategy and knowledge frameworks, 
which are organised in three and four domains respectively, with a focus on the higher 
stages (5 to 8) dealing with part-whole thinking (Ministry of Education, 2008). It aims 
to identify a global or overall strategy stage (as does the NDP Global Strategy Stage 
[GLoSS] tool) rather than domain-specific strategy stages (as does NumPA), and uses 
some similar items. Other items consist of short-answer and multi-choice questions on 
place value and decimals (Brown, Hart & Dietmar, 1984; Hart, 1981) and on number 
sense (Lomas & Hughes, 2008, 2009; McIntosh, Reys, Reys, Bana, & Farrell, 1997). 
 The focus of the WSSAT is primarily global strategy stage identification rather than 
the identification of specific strategies. There are seven domain specific strategy items 
at each of four stages (5 to 8) assessing a range of strategies and further items assessing 
some knowledge aspects. The knowledge items are a mixture of prerequisite knowledge 
for, and knowledge directly related to, each stage. To achieve a global strategy stage, 
students need to correctly answer four of the domain specific strategy items for that 
stage. Four correct items are used to assign an overall (global) stage as they indicate the 
mastery of strategies, at a particular stage, in some but not necessarily all of the three 
strategy domains (addition and subtraction, multiplication and division, and proportions 
and ratios). That is, there is a range of evidence about strategy mastery that underpins 
the assignment of an overall strategy stage. 

474



LOMAS & HUGHES 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

As with the NDP oral assessments, the highest strategy stage achieved is taken as that 
student‘s stage for teaching purposes. For example, if a student meets the criteria for 
stages 5, 6, and 7, they are classified as being at stage 7, or if they meet the criteria for 
stage 5 and not those for stage 6, but do meet the criteria for stage 7, they are classified 
as being at stage 7. Where the students do not meet the WSSAT criteria for stage 5 or 
higher, they are assigned to a category that covers stages 1–4. 
 The WSSAT as a written assessment relies on the written answers without any 
indication of the process (or strategy) used. This is different from NDP oral 
assessments, in which students give their answers orally and can be prompted to talk 
through the processes they used to arrive at their answers thus revealing the particular 
strategies used. Therefore, using oral assessment to assign strategy stages can relate 
more to process and particular strategies, whereas assigning strategy stages using the 
WSSAT is based solely on outcomes (Lomas & Hughes, 2008). 
 The WSSAT answer sheet has clear directions for the students to follow with space 
for answers only. It was formatted for ease of marking, giving both a quick indication of 
a student‘s strategy stage and more detailed formative data for planning and teaching 
purposes. Calculator use was not allowed, mental working was promoted, and writing 
(―working‖), other than for recording answers, discouraged.  
 The range of items selected for each stage attempted to isolate and encapsulate some 
of the conceptual aspects and strategy elements relating to that stage as per the domains 
in the strategy section of the NDP Number Framework. For example, item 36, ‗Work 
out 5 sixtieths of three thousand six hundred‘ relates to stage 8 of the proportion and 
ratio domain, in which students are expected to use multiplication strategies to solve 
problems with fractions. 
 In addition, the nature of the WSSAT items was designed to reflect elements of 
students‘ understanding that might be present in a dialogue between teacher and student 
but would not always be evident in written work with an outcome focus. Thus, a key 
issue in the WSSAT was to ensure that items used ―forced‖ the student participants to 
use a particular process and restricted their use of any other approach. That is, the 
WSSAT attempts to minimise the number of items that could be answered procedurally 
or answered by less sophisticated strategies. For example, some of the written 
assessment items such as item 3, ‗7 tens + 20 =‘ and item 28, ‗Work out 5 sixths of 42‘ 
use combinations of numbers written as words and digits. Another example is ‗Eleven 
thousandths equals:‘ with four choices offered: ‗A. 0.0011 B. 0.011 C. 0.11 D. 11000‘. 
This format avoids the answer ‗11 over (divided by) 1000‘, which ―side steps‖ the issue 
of understanding decimal fraction notation. The aim is to expose the student‘s in-depth 
understanding by stating material in a way that both limits the use of procedural 
methods and requires more understanding of number structure. This approach was also 
seen as a way of keeping aspects of oral language use within a written format.  
 An example of an item that tries to force a particular strategy is item 14, ‗341 - 
‗what‘ = 299‘. Here, 299 is close to a tidy number, and the most likely NDP solution 
consists of making the 299 up to 300 and increasing 341 to 342, resulting in 42 as the 
answer. The choice of these particular numbers lessens the possibility of students using 
a strategy such as doubling if numbers such as ‗51 - what = 26‘ were used. The extent to 
which this approach has worked will be determined in part by the alignment of the 
stages assigned by the written assessment to the national data and oral assessment. 
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 The sets of items also have the potential to provide a more detailed and standardised 
diagnostic map of students‘ learning needs than an oral assessment. This potential is 
enhanced by the written format, which allows a student to attempt all the items, thus 
demonstrating any pieces of knowledge and strategy understandings that the student 
might have beyond the point where an oral assessment would stop. 

Initial development of the WSSAT 
The WSSAT was trialled twice during the initial development phase giving rise to the 
version examined here. The initial trial demonstrated sufficient internal consistency but 
the assigned stages did not match sufficiently the parallel oral assessment, the national 
curriculum level expectations, or, more specifically, the low-decile1 data (Lomas & 
Hughes, 2008). On this basis, a number of changes were made to the organisation of the 
items within each part of the WSSAT (reflecting a stage), the positioning of items in 
each part, and the style of some items (Lomas & Hughes, 2008). The trial of the second 
version gave rise to further minor revisions to enhance consistency for parts C and D, 
that is, Stages 7 and 8 (Lomas & Hughes, 2009).  

Method 
The revised WSSAT was piloted with two schools, and a parallel oral assessment 
interview was conducted with a sample from one of the schools. Due to the site-specific 
nature of the data collected, this research is a form of case study. Thus, the data is 
unlikely to match the national data sets—particularly the national aspirational 
expectations—too closely, and care must be taken in generalising any findings. 
 The participants in the end-of-year pilot were drawn from two schools in major 
cities: a Year 9 cohort of a large, Auckland, decile 3 (low socio-economic environment) 
secondary school of mixed ethnic composition, excluding some special needs students, 
and the complete Year 9 cohort of a medium-sized Wellington, decile 6 (medium socio-
economic environment) secondary school of mainly New Zealand European students.  
 The written assessment was only given to the students present on the particular day 
for each Year 9 cohort, while the oral assessment was later given to a subset (60 
students) of the Year 9 Auckland students who had responded to the WSSAT. This 
sample was drawn from several classes from the four bands (strands/streams) into 
which the school organised their classes (see Table 1) at the schools convenience. This 
affected the nature of the sample, which is not representative because it was drawn 
equally from upper- and lower-band classes and included no students from the middle-
band classes. 

Table 1. Auckland school classes in bands (high to low), showing student roll numbers and the  
number of students participating in the WSSAT and oral assessment. 

 Class Name (Auckland)  
 P9A1 P9A2 P9B1 P9B2 P9B3 P9B4 P9C1 P9C2 P9C3 P9C4 P9D1 P9D2 Total 

Roll  33 32 33 33 33 32 25 20 27 25 28 27 348 

WSSAT 26 26 28 24 25 22 25 20 23 16 21 24 280 

Oral 10 20 – – – – – – 19 11 – – 60 

                                                        
1 Deciles are measures of socio-economic status. 
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The oral assessment 
The oral assessment research tool was an expanded form of the GLoSS (Lomas & 
Hughes, 2009) and used some of the GLoSS- and NumPA-type items, supplemented by 
other items that gave increased coverage of higher stages. As well as the questions 
being asked orally, a card with the question written on it was placed in front of the 
student as a reference (as is done with GLoSS and NumPA). The oral assessment was 
conducted by external interviewers who had expert knowledge of NDP, NumPA, and 
GLoSS. 

Data collection 
The WSSAT was conducted in each class‘s usual classroom setting, mostly under the 
supervision of the regular mathematics teacher, in the last few weeks of the fourth term. 
Standardised instructions were given explaining how teachers were to conduct the 
assessments (Lomas & Hughes, 2008), and all the answer sheets were marked by one of 
the research team to ensure consistency. Copies of the marked answer sheets were 
returned to the school for potential diagnostic/formative use by the school but what, if 
any, use was made of these is unknown.  
 The GLoSS-type oral assessment was conducted in the two days following the 
written assessment at the Auckland school.  

Analysis 
The results of the written assessments were first analysed for the internal consistency of 
the tool in identifying a student‘s stage, that is, whether a student assigned as being at 
Stage 6 had also been assigned as being at Stage 5, and so on. Then they were analysed 
against three other measures of achievement, one school-based and two based on 
nationally collected data from the NDP, which give measures of global, rather than 
domain-specific, strategy stages. The stages that the students achieved were compared 
with:  

 the banding (where applicable) of the class they were in, to see whether this 
reflected the school‘s placement of students; 

 the national, Year 9, low- or medium-decile stage distribution data from the NDP; 
and 

 the national, Year 9, stage distribution data (the aspirational expectations). 
 The results of the written and oral assessments from the Auckland pilot school were 
compared to establish a relationship between these two forms of assessment. The oral 
assessment was assumed to be the more accurate and was taken as the baseline for the 
comparison due to its alignment with national data collection methods. This assumption 
was based on two main factors. Firstly, the oral assessment was an extension of the 
GLoSS and NumPA tool and thus was collecting some of the same data, although by 
experts rather than classroom teachers. Secondly, the extra questions were provided by 
a numeracy expert with an intimate knowledge of the development and use of both 
GLoSS and NumPA. This connection to these existing and ―proven‖ NDP assessment 
tools provided a basis for comparison of student results arising from the oral tools‘ use 
with the national data sets.  
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Results 
The data for each cohort is analysed separately to allow direct comparison with the 
appropriate decile (socio-economic) level of Year 9 national data. 

Internal consistency of WSSAT 
All the Auckland students assigned as being at Stage 6 had also been assigned as being 
at Stage 5, while of the 84 students who could be assigned as being at Stage 7, 21 (one-
quarter) had not achieved the criteria for Stage 6. Of these 21, 15 had missed the criteria 
by only one correct response. A further two students who achieved the criteria for being 
assigned as being at Stage 7 had not achieved the criteria for either Stages 5 or 6. For 
the 46 students assigned as being at Stage 8, ten (over one-quarter) had not achieved the 
criteria for Stage 7, and one further student had not achieved the criteria for either 
Stages 6 or 7. However, of the ten not achieving the criteria for Stage 7, four had missed 
by only one correct response.  
 All the Wellington students assigned as being at Stage 6 had also been assigned as 
being at Stage 5, while of the 39 students who could be assigned as being at Stage 7, 
eight (almost one-fifth) had not achieved the criteria for Stage 6. Of the eight, three had 
missed the criteria by only one correct response. For the 21 students assigned as being 
at Stage 8, only one had not achieved the criteria for Stage 7.  
 These data suggest that the WSSAT was largely internally consistent in assigning 
stages except at Stages 7 and 8, where a greater level of variation was evident, although 
less variation was evident in the medium-decile Wellington school data. 

Conformity of WSSAT assigned stages with students banding into 
classes 
The Wellington classes were not banded but the banding of classes in the Auckland 
school generally reflected the stages assigned by the WSSAT: classes in higher bands 
achieved more of the higher stages, and classes in lower bands achieved fewer of the 
higher stages (see Table 2). Additionally, in line with the internal consistency of the 
WSSAT the meeting of the criteria for particular stages also aligned with the banding of 
the classes, with fewer lower band students meeting the criteria for each stage.  

Table 2. Auckland school classes in band order, showing the number of students participating and the 
number of students meeting the criteria for achieving a particular stage. 

 Class Name (Auckland)  

 P9A1 P9A2 P9B1 P9B2 P9B3 P9B4 P9C1 P9C2 P9C3 P9C4 P9D1 P9D2 Total 

No. of 
students 

26 26 28 24 25 22 25 20 23 16 21 24 280 

No. ass. 
Stage 5 

26 26 28 23 25 22 25 15 22 15 19 22 268 

No. ass. 
Stage 6 

25 25 21 17 16 16 15 2 15 6 5 4 167 

No. ass. 
Stage 7 

23 20 11 13 14 5 5 5 11 7 2 4 120 

No. ass. 
Stage 8 

16 11 2 6 1 4 4 0 1 0 0 1 46 
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Comparison between oral and written assessments 
The stages determined by the oral assessment of students closely matched the stage 
determined by the WSATT at Stages 7 and 8, but less so at other stages (see Table 3). A 
third of students achieving Stage 5 on the oral assessment achieved Stage 6 on the 
WSSAT, and two-thirds of students achieving Stage 6 on the oral assessment achieved 
Stage 7 on the WSSAT. However, there were no differences of more than one stage, 
unlike the initial trial data (Lomas & Hughes, 2008). This may reflect the more even 
spread across stages achieved by the revisions of the WSSAT. 

Table 3. Stages assigned to Auckland students from WSSAT compared with the oral assessment. 

 Number of students (n = 60) 
 2 1 - 9 5 - 5 9 - 7 1 3 18 
Oral assessment stage 1–4 1–4 5 5 5 6 6 6 7 7 7 8 8 
WSSAT stage 1–4 5 1–4 5 6 5 6 7 6 7 8 7 8 
 

The level of alignment between the two sets of data is 61% with 41 students having the 
same stage for both assessment tools. This is not too dissimilar to the 75% accuracy 
given by Thomas et al. (2006) for secondary teachers‘ assigning of stages. Of the 32% 
of students with different stages, 16 (27% of the total) have higher WSSAT stages 
assigned and 3 (5% of the total) have lower. The higher WSSAT stages could be 
problematic with students being placed in inappropriate teaching groups—particularly 
in light of secondary teachers‘ assigning students lower groups for consolidation 
purposes (Thomas et al., 2006). 

Comparison with New Zealand national aspirational expectations 
The assigning of stages from the WSSAT for the two schools gave rise to a distribution 
reasonably similar to the data for both the medium- and low-decile schools respectively 
and to the national aspirational expectations (see Tables 4 and 5).  
 For the medium-decile Year 9 cohort used in the pilot, the areas of greatest disparity 
(around a 50% difference or more) with the medium-decile data for end-of-year Year 9 
students were the higher number of students achieving at Stage 8 (19% compared with 
10%) and the lower number of students achieving at Stages 1–4 (0% compared with 
6%) (see Table 4).  

Table 4. The percentages of stages assigned to Wellington students from the WSSAT, the medium-decile 
data, and national aspirational expectation data for Year 9 students (end of year). 

 Stages 

 1–4 5 6 7 8 

WSSAT: percentage of students (n = 113) 0 28 19 34 19 

Medium-decile (averaged) percentage (Tagg & Thomas, 2008)2 6 22 32 30 10 

National aspirational expectations percentage (Tagg & Thomas, 2007) 2 14 27 39 18 

                                                        
2 The low- and medium-decile percentages are average figures derived from the respective percentage data for the 
additive, multiplicative, and proportional strategy domain percentage data. 
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The greatest area of disparity for the medium-decile Year 9 students compared with the 
Year 9 national aspirational expectations was the higher number of students achieving 
at Stage 5 (28% compared with 14%). 
 For the low-decile Year 9 cohort, the areas of greatest disparity (around a 50% 
difference or more) with the low-decile data for end-of-year Year 9 students were the 
higher number of students achieving at Stage 8 (16% compared with 5%) and the lower 
number of students achieving at Stages 1–4 (4% compared with 11%) (see Table 5). 
This may partly be explained by the exclusion of a group of lowest performing Year 9 
students from the data collection process. 
 The area of greatest disparity for the low-decile Year 9 students with the Year 9 
national aspirational expectations was the lower number of students achieving at Stage 
5 (28% compared with 14%). This may partly reflect a difference between low-decile 
students and a national norm, although a similar disparity was evident in the comparison 
for the medium-decile data (see above). 

Table 5. The percentage of stages assigned to Auckland students for each assessment tool, the low-decile 
results, and national aspirational expectation data for Year 9 students (end of year). 

 Stages 

 1–4 5 6 7 8 

WSSAT: percentage of students (n = 280) 4 28 23 30 16 

Oral assessment: percentage of students (n = 60) 5 23 23 13 35 

Low decile (averaged) percentage (Tagg & Thomas, 2008)2 11 29 33 22 5 

National aspirational expectations percentage (Tagg & Thomas, 2007) 2 14 27 39 18 

 

The oral assessment‘s assigning of stages to students is reasonably close to the national 
aspirational expectation percentages for all stages except those achieving at Stages 6 
and 7. However, if the sample had been less skewed and included middle band students 
where more students achieved at Stages 6 and 7 there may have been a closer fit overall.  

Discussion 
A factor to consider in comparing the WSSAT and oral assessment stages with the 
national data sets is the degree to which the national data sets accurately represent the 
stages that the students at Year 9 can achieve. The national data is based primarily on 
aggregated teacher gathered data and its‘ accuracy may be variable. For example, 
secondary teachers‘ accuracy of 76% and their assigning of lower stages (Thomas et al., 
2006) would suggest an underestimation of student performance overall, but possibly 
more so at Stages 7 and 8, in which the learning demands are greater. The possibility of 
such a trend is apparent in both the medium- and low-decile cohort data. For example, 
compared with the medium-decile data, there are three times the percentage of students 
achieving at Stage 8 and 50% more students achieving at Stage 7, but only about two-
thirds the percentage figure of students achieving at Stage 6. 
 The WSSAT numeracy stages achieved by the Auckland students reflected their 
placement in ability banded class groups indicating that the WSSAT results paralleled 
other school based measures of students‘ mathematical performance used for student 
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placement. Similarly, the WSSAT assigned stages for the two Year 9 cohorts stage 
distribution were reasonably close to the national aspiration expectation distribution, 
allowing for their decile levels, and to the low- and medium-decile distributions. These 
data indicate that the WSSAT items are measuring strategy (or possibly something that 
gives a parallel measure) to the extent of being able to assign students‘ global strategy 
stages with some accuracy. Thus, the written items appear to access elements of student 
strategy, with the written record allowing later access to explore responses to items 
designed to elicit specific strategies. 

Conclusion 
Overall, the WSSAT has reasonably high levels of internal consistency for Stages 5 -8 
and could be used to assign students a global (numeracy) strategy stage. In addition, 
there is a reasonable congruence of the stages assigned by WSSAT, with both the low- 
and medium-decile school data, the national aspirational expectations, and with the oral 
assignment of NDP stages. Thus, the WSSAT could determine a student‘s global 
numeracy strategy stage with a sufficient degree of accuracy to allow for students‘ 
initial placement into stage appropriate teaching groups. In this sense, WSSAT appears 
to be a potentially useful tool in secondary schools, given its time efficiency. However, 
its potential and usefulness for teachers as a diagnostic and formative planning aid in 
working with their students needs to be explored. 
 WSSAT may also have uses with other groups where the reading level is adequate 
such as Year 7 and 8 (11 and 12 year old) primary students for the assigning of an initial 
global strategy stage, and with pre-service teacher education students and in-service 
teachers for professional development purposes in identifying and addressing 
deficiencies in their mathematical knowledge relevant to teaching.  
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This paper explores the development of young children’s understandings about 
measurement, and the ways in which children represent these understandings. This paper 
presents a selection of data gathered during a three-year study that examined young 
children’s engagements with measurement in prior-to-school and out-of-school contexts. In 
this present investigation, children’s representations in the form of drawings and narratives 
are analysed in relation to a framework of emergent measurement. Initially, this paper 
considers the understandings about measurement which children are demonstrating in 
alignment with the framework, before offering a selection of data which represents a 
disruption to the framework and contests existing ideas about young children’s 
measurement understandings. 

Background 
Clements and Stephan (2004) have suggested that understandings of measurement begin to 
develop in the prior-to-school years. Young children know that continuous attributes such 
as mass and length exist, although they may not be able to quantify or measure them 
accurately (Clements & Stephan, 2004). However, by about four or five years of age, most 
children begin to make progress in reasoning about and measuring quantities by 
overcoming perceptual cues and learning to use words that represent quantity of a certain 
attribute (Clements & Stephan, 2004). Children then learn to compare two objects directly 
and recognise equality or inequality (Boulton-Lewis, Wilss & Mutch, 1996). At this point, 
children are ready to learn to measure by connecting number to quantity (Clements & 
Stephan, 2004). Typically, students first learn to measure using informal units before 
progressing to the use of formal units. Although researchers debate the order of the 
development of these concepts and the ages at which they are developed, they tend to agree 
that these ideas form the foundation for measurement understanding (Stephan & Clements, 
2003).  
 There are many developmental sequences for measurement learning presented in the 
literature, but most are similar in their progression from identification of the attribute and 
use of informal measurement through to the use of formal units. Three examples sequences 
of measurement learning are that of Clements and Stephan (2004); Piaget, Inhelder, and 
Szeminska (1960); and Board of Studies NSW (2002). These three perspectives on the 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES • © AAMT & MERGA 2011 
 

482



MACDONALD 

development of children’s measurement understandings bear noticeable similarities. Table 1 
summarises the key points of each of the three developmental sequences. 

Table 1. Measurement learning frameworks of Clements and Stephan (2004), Piaget et al. (1960), 
 and Board of Studies NSW (2002). 

Clements and Stephan (2004) Piaget et al. (1960) Board of Studies NSW (2002) 

Awareness of continuous 
attributes, but unable to quantify 
or measure accurately. 
 
Use of words that represent 
quantity of an attribute, direct 
comparison, and recognition of 
equality or inequality. 
 
Connect number to quantity, 
identify unit of measure, and 
measure through unit iteration. 

 
 
 
 
 
Not capable of measurement, 
construction of units is 
impossible. 
 
Ability to use a common 
measure, use of unit iteration. 
 
Direct measurement is possible. 

 
 
 
Identifying the attribute and 
comparison. 
 
Informal units. 
 
 
Formal units. 
 
 
Applications and 
generalisations. 

 
When we look at the summary of the measurement learning frameworks of Clements 
and Stephan (2004), Piaget et al. (1960), and Board of Studies NSW (2002), it could be 
said that the framework can effectively be divided into two levels, these being emergent 
measurement and proficient measurement. Emergent measurement encourages children 
to develop an understanding of measurement by using it for their own purposes, talking 
about their measurement ideas, representing measurement processes in ways which 
make sense to them, and becoming more aware of their own measurement thinking 
(Whitebread, 2005). By contrast, proficient measurement requires: comprehension of 
measurement concepts, operations and relations; skills in carrying out procedures 
flexibly, accurately, efficiently and appropriately; ability to formulate, represent and 
solve problems; and capacity for logical thought, reflection, explanation and 
justification (Kilpatrick, Swafford & Findell, 2001). This study explores children’s 
emergent understandings and how these are leading into more proficient 
understandings. 

Research design and methods 
Participants 
The data were collected at two schools in regional New South Wales. The participant 
children had just commenced their first year of formal schooling, known as 
Kindergarten in NSW. Children in NSW commence Kindergarten in late January. They 
“must start school by the time they are 6 years old but they may start in the year that 
they turn 5, provided their fifth birthday is before July 31 of that year. Hence, it is 
possible for a new Kindergarten class to contain children aged between 4 years 6 
months and 6 years” (Perry & Dockett, 2005, p. 65).  
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Data collection  
Data collection took place during February and March 2009, at the start of which the 
children had been at school for approximately two weeks. It was confirmed by all of the 
Kindergarten teachers that no formal teaching about measurement had taken place in the 
classroom up to this point in time, or throughout the data gathering period. The children 
were asked to complete a series of six drawing tasks relating to different measurement 
concepts, and provide a description of each drawing. This description was annotated on 
the drawing, and both the drawing and annotation were considered as a whole. The 
tasks were designed to progress from an open-ended exploration of what children 
themselves considered measurement, through to investigations of specific content areas 
and concepts. The tasks, and the measurement content and concepts they address, are 
outlined in Table 2. 

Table 2. Drawing tasks and the measurement content and concepts they address. 

Drawing task Measurement content Measurement concept 

Task 1: Draw yourself measuring Open-ended Awareness of attributes 

Task 2: Draw something tall and something short Length Comparison 

Task 3: Draw something heavy and something light Mass Comparison 

Task 4: Draw something hot and something cold Temperature Comparison 

Task 5: Draw a ruler Length Unit iteration 

Task 6: Draw a clock Time Unit iteration 

 

Data analysis 
Analysis in this study was based on the common elements across the representative 
developmental progressions shown in Table 1. It can be seen in Table 1 that notions of 
attributes and comparisons are common to both the Clements and Stephan (2004) and 
Board of Studies NSW (2002) progressions, while units are common to all three. Table 
3 provides the resultant framework for analysis of the children’s measurement content 
knowledge. Decisions were made as to which, if any, of these elements and descriptors 
were represented by each drawing and its description, and the data was coded accordingly. 

Table 3. Framework for analysis of emergent measurement understandings. 

Element Descriptors 

Attributes Understanding that objects have attributes which can be measured. 

Comparisons 
Understanding that the key idea is to compare like attributes. 
Comparing objects directly. 
Multiple comparisons of objects. 

Units 
Recognition of units. 
Sequencing of units. 
Equal partitioning of units. 
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Results and discussion 
The three elements of attributes, comparisons, and units—and their corresponding 
descriptors—form the basis of this discussion. Woven throughout the discussion are the 
descriptions of the drawings given by the children. 

Awareness of measurement concepts and attributes 
This section explores the children’s responses to Task 1, the “Draw yourself measuring” 
task, with discussion based on the “Attributes” descriptor of the measurement 
framework. 

Understanding that objects have attributes which can be measured 

With respect to Task 1, the drawings collectively represented the concepts of area, 
length, mass, and temperature. Length was the most commonly represented concept, 
followed by area, mass and temperature respectively. This was not surprising because 
length is the measurement concept most easily understood by young children due to it 
being the most concrete, visual measurement concept for children to perceive (Gifford, 
2005). As a result, the process of length measurement is also the most tangible and 
direct measuring process for young children. Indeed, the majority of the children in this 
study described their drawings as them finding out how “tall” or “long” the object being 
measured was. For example, Imogen described her drawing as “I’m measuring a piece 
of paper. I’m getting a ruler. I’m finding out how long it is”. 
 In addition to this notion of using measurement to “find out” an object’s properties, 
some children described contextualised applications of measurement. These drawings 
were highly personalised, with rich accompanying narratives. For example, Zofi drew a 
picture of herself testing the temperature of the bath water in preparation for a bathing a 
baby: “I’m measuring the bath and the baby’s helping me. I’m checking the water”.  
 Despite the fact that the task asked children to “Draw yourself measuring”, most 
children showed measuring being carried out by others (usually their parents). For 
example, Caitlin drew “A brick wall and my Mum. She’s measuring it to find out how 
big it is, with a measuring tape”. 

Ability to compare measurable attributes 
The comparison descriptions of the emergent measurement framework are organised to 
reflect a progression in understanding about comparison. These comparison skills will 
be discussed in relation to children’s responses to Tasks 2, 3, and 4. 

Understanding that the key idea is to compare like attributes 

With regard to Task 2—”Draw something tall and something short”—almost all of the 
students were able to represent objects relating to the attribute of height and identify 
whether an object was “tall” or “short”. For example, Brodie drew “a short box and a 
tall box”, while Lachlan drew two cars, explaining “This car’s short. This one’s tall”. 
 When considering Task 3, the “Draw something heavy and something light” task, 
children were required to identify the attribute of mass by describing objects as either 
“heavy” or “light”. Most of the children were able to do so, such as Ella who drew “A 
big heavy bookshelf. A feather is light”, and Annabelle, who said “A leaf is light. A 
rock is heavy”. 
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 Finally, Task 4 asked children to compare objects in relation to their temperature, 
describing the objects as either “hot” or “cold”. For example, Angel stated “The sun is 
hot. Snowballs are cold”, while Blake said “The pool is cold. Lava is hot”. 

Comparing objects directly 

As evidenced by the preceding examples, children demonstrate a basic understanding of 
comparison by applying dichotomous descriptors of an attribute to objects. However, 
moving beyond this simplistic understanding is the notion of direct comparison, and the 
use of more sophisticated comparative language. In the case of Task 2, direct 
comparison of height could be evidenced by the positioning of the objects along a 
common baseline. The majority of the children were able to represent objects in this 
manner and state which was the taller/shorter of the two, as did Sarah, who drew a tree 
next to a volcano and stated “the tree is taller”. 
 When considering Task 3, the direct comparison of mass was evidenced by the 
children’s descriptions of comparing the masses of objects by lifting them – a process 
known as hefting. For example, Blake explained “A cat is light and a motorbike is 
heavy. I tried to pick up my cat once and it was light. I couldn’t pick up my motorbike 
because it was too heavy”. 
 Similar to Task 3, direct comparison was evident in responses to Task 4 with the 
children describing “feeling” objects to compare their temperatures. For example, Jurre 
described his drawing as “This is a sun with lots of arms and it is melting lots of ice 
blocks. The sun is hot. The ice blocks are cold. I know that because I feeled them”.  

Multiple comparisons of objects 

When considering progression in understanding about comparison, at the most 
sophisticated level children demonstrate an ability to compare more than two objects. 
The three comparison tasks given to the children did not explicitly ask them to draw 
more than two objects, however many children in fact chose to do so.  
 Task 2 required children to make multiple comparisons of objects on the basis of 
height. It was expected that the children represent their chosen objects in order along a 
common baseline, identifying which was the tallest and/or shortest. For example, 
Chelsea drew four flowers in order of height, and in her description she identified which 
was the tallest and which was the shortest. Similarly, Caitlin drew three mermaids in 
order of height and identified which mermaid was the tallest. 
 When looking at the responses to Task 3, it is interesting to note that—unlike with 
Task 2—very few students extended the task to making multiple comparisons of 
objects. Some of these children drew multiple objects and classified each of them in 
regards to “heavy” or “light” descriptors, while others were able to use more 
sophisticated comparative language relating to the ordering of objects, for example 
Andrew, who drew a cat, a ladder and a person and stated “The ladder is the heaviest”.  
 Similar to the responses to Task 3, there were also very few responses to Task 4 
which represented multiple comparisons of objects. The majority of these responses 
were limited to simply drawing several objects and classifying them as “hot” or “cold”, 
or in some cases, the additional terms of “very hot” and “very cold”. A small number of 
children showed a sense of ordering in their responses, such as Abby who explained 
“This person is hot. This person is hot and cold – autumny. This person is cold. They’re 
outside and they don’t know how to get home”. 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

486



MACDONALD 

Knowledge about unit structure and iteration 
The units component of the emergent measurement framework consists of three 
descriptors which reflect a progression in understanding about units. This progression in 
understanding about units will be discussed in relation to children’s responses to the two 
tasks focusing on units, Tasks 5 and 6. 

Recognition of units 

In relation to Task 5—”Draw a ruler”—at the most basic level of understanding the 
children were able to recognise the units on a ruler by making reference to either the 
numbers or the lines on a ruler. At this level, the children typically did not accurately 
represent the units and instead attempted to show the units by using dots or similar. 
Other children were able to describe their recognition of units but were unable to 
represent this in their drawing, such as Krystal who said “They have numbers. We can 
count them. I don’t know how to make the numbers on a ruler”. 
 Similarly with Task 6—”Draw a clock”—at the most basic level of understanding 
the children were able to describe either the numbers or the lines on the clock, but had 
some difficulty in representing these. For example, Mikayla explained “It has numbers 
but I’m not sure how to draw them”, while Lilli used circles to represent the numbers on 
a clock, stating “It has numbers to see what the time is”. 

Sequencing of units 

At the next level of understanding, the children showed evidence of units with a sense 
of sequencing, but not necessarily evenly partitioned or with numbers in the correct 
order. For example, in her response to the “Draw a ruler” task, Jade wrote numbers at 
one end of her ruler, stating “It has numbers on it to see how much it is. No, how long it 
is”. 
 When looking at the responses to the “Draw a clock” task, the children typically 
attempted to write numbers around the outside of their clock face, but did not accurately 
represent the numbers 1 to 12 with even partitioning, or in some cases, continued 
numbering beyond 12. For example, Hannah wrote numbers halfway around her clock 
and stated “A clock has 10 numbers. The numbers are so you see what time it is”, while 
Makaylee wrote the numbers 1 to 12, but upon discovering that they did not go all the 
way around the clock she continued the sequence of numbers, explaining “It has 
numbers that go all the way around. They don’t stop, they have to go all the way 
around”. 

Equal partitioning of units 

At the most sophisticated level of understanding, the children were able to demonstrate 
equal partitioning of units and represent this is in a spatially appropriate manner, i.e. 
along the full length of the ruler, or appropriately positioned around the clock face. 
Additionally, when the children included numbers as representations of units, typically 
the numbers were placed in the correct order. In response to Task 5, Blake chose to 
represent the units on a ruler by using equally partitioned lines, alternating between long 
and short lines as is often seen on a standard ruler, and he was able to explain that “The 
lines are for the numbers that tell how big the paper is”. 
 With regard to Task 6, many children were able to represent a stereotypical clock 
face with some accuracy by evenly partitioning the numbers 1 to 12 around the clock 
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face in a spatially appropriate manner. Many children also used lines to demarcate the 
units on a clock face, such as Blake who described his drawing as “This is a clock at my 
home. It doesn’t have numbers – it has little lines”. 

Disruptions to the framework 
As the previous data has shown, many of the children in this study were able to 
demonstrate understandings about measurement that aligned to the framework of 
understanding for young children. However, there was a significant body of data from 
both of the participant schools which represented “disruptions” to this framework – that 
is, the children were presenting knowledge and skills which were not in alignment with 
the expected development for children of their age. 
 One such disruption evident in the data was the integration of measurement concepts. 
Rather than understanding measurement concepts such as length, mass, etc in isolation, 
many of the children actually integrated concepts and in this way, used one concept to 
understand another. For example, in her response to the “Draw something heavy and 
something light” task, Annabelle used her understanding of area to contribute to her 
understanding of mass, explaining “Big blocks are heavy. Little blocks are light”. 
Lachlan blended both area and mass in his “heavy and light” drawing, explaining 
“When things are big, they are heavy. The bigger they are, the heavier they are”. 
 Another significant disruption was the children demonstrating an understanding of 
the measurement process at the start of school, far sooner than would generally be 
expected. When the children first completed the “Draw yourself measuring” task at the 
beginning of Kindergarten, it was evident from the children’s drawings and descriptions 
that despite the fact that the children had not engaged in any formal measurement 
learning experiences at this point in time, their personalised engagements with various 
people and in various contexts had contributed to an emerging understanding of the 
measurement process. To begin, many of the children showed an understanding of using 
direct comparison when measuring. Abby (Figure 1) compared the lengths of two 
pencils by placing them side by side with the ends aligned: “I am measuring two 
pencils. I put them beside each other to see which is the longest”. 
 

 
Figure 1. Abby’s drawing. 
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Similarly, Kody was able to compare himself to a big rock, explaining “This is me 
against a big rock. The rock is bigger”.  
 The children also showed more sophisticated understandings of the measurement 
process by moving beyond direct comparison to notions of using measuring tools. Most 
of the children made reference to a generic “measurer”, for example, Emily-Rose 
explained “I’m measuring a house with a measurer. You just put it on something and 
see how long it is”. However, some of the children described using standardised 
measuring tools including tape measurers and rulers, such as Chloe, who described her 
drawing as “I’m measuring a dog with a measuring tape to find out how big it is”. The 
children were also attempting to use notions of quantity and units at this early stage. In 
Chloe’s drawing, it can be seen that her measuring tape has been represented as a 
sequence of numbers, which are equally partitioned. Lara similarly showed a sequence 
of equally partitioned numbers on her measuring tape, used to measure a tree. 
 A number of students were able to show more sophisticated understandings of 
measuring than would be expected by attempting to identify a quantity in relation to 
formal units. For example, Kyra used her understanding of the measurement process to 
articulate a measurement of height: “I am measuring Mrs M. I use a pencil to draw a 
line against a measurer with a giraffe on it – at my house. She is 6 metres tall!”  
 Importantly, there were some children who could demonstrate how their 
measurements were reached. As shown in Figure 2, Jurre was able to line up the end of 
his measuring tape with the end of the car in order to determine a measurement of 15, 
while Brodie was able to articulate a process of counting units, saying that “There are 
33 spaces around my car. I counted the spaces”.  
 

 

Figure 2. Jurre’s drawing 

Interesting applications of formal units included Willis who explained “I am measuring 
a clock tower with a long ruler. It is 16 kilometres”; and William, who described his 
drawing as “I am measuring a clock with a measurer. It is 12 megalitres”. While these 
formal units were, for the most part, used inappropriately, it is important to note that 
even at this early stage of schooling the children could see a need for formal units.  
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Conclusions and implications 
Results in this study have shown that young children have highly sophisticated 
understandings of measurement. These understandings both align with, and challenge, 
extant frameworks for the development of measurement knowledge. Within an 
emergent measurement context, these children have shown understandings about the 
measureable attributes of objects, comparisons of attributes, and the application of units. 
With particular regard to units, it is important to note that the children show a 
remarkable awareness of a range of formal units, including some that they would not 
normally be expected to have an awareness of, i.e. megalitres. It is also important to 
highlight that children have individualised, idiosyncratic ways of understanding 
measurement concepts, such as using one attribute to understand another, i.e. comparing 
areas in order to compare masses. Of crucial significance is that these are the 
understandings which children have developed for themselves in prior-to-school and 
out-of-school contexts, and educators must recognise and build on these existing 
understandings so as to make the in-school measurement learning relevant and 
meaningful. 
 The notion of representing measurement understandings in a visual form has 
widespread classroom applications beyond simply as a data gathering technique. The 
drawing activities described in this paper could easily be adapted to classroom practice, 
and such an adaptation would allow teachers to both recognise and extend the 
understandings about measurement which children possess; assess children’s 
understandings about particular measurement concepts; discover information about the 
contexts and experiences that influence children’s developing understandings; and gain 
insight into the personalised ways in which children construct measurement 
understanding. 
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This paper examines the experiences of teachers seconded as mathematics educators in the 
Faculty of Education at an Australian University. Data were collected from four 
participants who responded to a series of questions derived from an existing framework on 
the transition from teacher to teacher educator. The purpose of the study was to undertake a 
reflective exploration of the major challenges faced by seconded teachers from their 
perspectives, with the findings indicating that participants generally felt they lacked the 
requisite skills and knowledge required to teach in a tertiary environment. The study adds 
to the limited research in this area and has implications for tertiary providers and teacher 
educators. 

Introduction 
While extensive reference is made in the literature regarding the transition from pre-
service teacher to beginning teacher, Badali and Housego (2000) claim that another very 
important transition is that from teacher to teacher educator. The two separate 
transitions, from pre-service teacher to teacher and then from teacher to teacher 
educator should be considered as a continuum of professional development (Badali & 
Housego, 2000).This appears, however, to be an under-researched area, as even within 
the widely researched realm of teacher education there has been relatively little written 
about teacher educators as an occupational group (Martinez, 2008). More specifically, 
research into the transition and experience of secondees from the role of teacher to 
teacher educator in the area of mathematics education appears to be uncharted territory. 
Such arrangements—often referred to as secondments—involve a teacher taking leave 
from a school temporarily to teach at the university in a full time capacity. Secondees 
are usually appointed for one or two years and in this context, undertake an 80% 
teaching load. At the time of writing, the author was in her second year of a seconded 
arrangement. 

Review of the literature 
There has been relatively little research about beginning teacher educators and even less 
about the experience of seconded teachers or seconded mathematics teachers. Some 
recent studies have used self study and reflective narrative to examine the transition 
process and experiences of new teacher educators (Swennen, Shagrir & Cooper, 2009; 
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Wood & Borg, 2010). These studies have recognised that whilst the transition from 
teacher to teacher educator can be rewarding it is also demanding and complex and 
requires supportive systems in place to facilitate the transition. In practice, however, it 
seems that new teacher educators are often given little guidance, with Swennen et al. 
(2009) suggesting that most new teacher educators organise their own induction. 
Zaslavsky (2008), who provides a rare example of research in this area directly related 
to mathematics teacher educators, claimed that teacher educators are essentially ‗self-
made‘. That is, new teacher educators make their own transition from their experience 
as a mathematics teacher and there are few explicit curricula for mathematics teacher 
education. Some research, (e.g., Adams & Rytmeister, 2000; Martinez, 2008; Swennen 
et al., 2009) has attempted to address this through the identification of several key 
activities that could help facilitate the successful transition from teacher to teacher 
educator. These activities include new teacher educators working collaboratively with 
experienced colleagues on developing teaching material, receiving feedback on their 
tertiary teaching from colleagues in a supportive learning environment and creating a 
support group for professional discussion and the exchange of ideas (Swennen et al., 
2009). There is little research, however, on how these ideas are enacted in practice or 
whether or not they make a difference to the experiences of new teacher educators. 
 The work of new teacher educators demands professional knowledge of content and 
pedagogy skills beyond those required by the classroom teacher (Swennen et al., 2009). 
Although new teacher educators may be considered good classroom teachers, they may 
not possess the knowledge and skills to be effective teacher educators. The category of 
teacher knowledge of particular importance for the new teacher educator is pedagogical 
content knowledge (PCK). This category, as conceptualised in the seminal work of 
Shulman (1986), represents the blending of content and pedagogy, and is the category 
most likely to distinguish the understanding of the teacher from that of the student. 
While PCK has been the focus of many studies involving pre-service teachers and 
practising teachers, it appears that research into the type of PCK that might be required 
for a teacher educator is still to be carried out. Murray and Male (2005) address this to 
some extent, in that they distinguish between first and second order teaching, whereby 
the classroom teacher practises first order teaching and the teacher educator practises 
second order teaching. According to them, second order teaching requires more than the 
skills and knowledge to teach particular content; it also involves the knowledge and 
skills about the education of teachers, implying a certain level of PCK. Similarly, Peled 
and Hershkovitz (2004) suggest that whilst there are inherent similarities between the 
learning of teachers and teacher educators, the teacher educators have a greater 
responsibility for connecting theory with practice. Other research (e.g., Guilfoyle 1995) 
highlights the requirement by teacher educators to understand the culture of academia. 
As new teacher educators usually have limited experience in academia, they may have 
difficulty making sense of the complexity of the role. For example, new teacher 
educators can experience conflict between teaching and research responsibilities 
(Adams & Rytmeister, 2000; Martinez, 2008; Wood & Borg, 2010).  
 Martinez (2008) identifies a gap in the field of research in the area of teacher 
education by highlighting a need for more systematic research into the fundamental 
characteristics of teacher educators. Such characteristics include how the work of 
teacher educators is constructed, the competencies relevant to teaching about teaching 
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and the necessary support and professional development required by teacher educators. 
He also identified six challenges for new teacher educators, including the changed 
nature of the learners (from school age students to adults), professional autonomy, 
institutional structures and size, work environment including technology, the modelling 
imperative (practising what we preach) and the research and promotion culture. Of 
particular relevance to this paper are the challenges he identified as being the shift from 
teaching school age children to adults, the need for self-management in an autonomous 
role and coming to terms with the research culture of university. Badali and Housego 
(2000) also constructed a framework for understanding the challenges involved with 
seconded arrangements, but they extended this to include the transition back into the 
classroom. Their framework identified seven phases of secondment: seeking the 
position, preparing for secondment, expressing self doubt, adjusting to tempo and 
workload and working with adult learners, looking for support, and returning to the 
school community. Both frameworks acknowledged the changed nature of the learners 
that the new teacher educator is required to teach, from school aged students to diverse 
adults in a non-compulsory environment. As Martinez‘s framework focused specifically 
on the transition from teacher to teacher educator, it was used as the main theoretical 
framework in the study discussed in this paper.  

Methodology 
Data collection and analysis 
Using the framework devised by Martinez (2008) as a guide, a questionnaire was 
developed and administered to the participants via email. The items were as follows: 
1. How did your past classroom teaching impact upon your tertiary teaching? (For 

example, were there any similarities or differences and what adaptations to your 
practice did you need to make when you began teaching at the university?) 

2. How confident were you with the content that you were required to teach? 
3. Comment on your experience of having to deliver other people‘s prepared 

material as a secondee. 
4. List the top three challenges you faced as a classroom teacher making the 

transition to teacher educator. 
5. What advice, if any, would you give a future secondee in light of your own 

experience? 
The participants emailed their responses to the questionnaire to the author between five 
and ten days after receiving the questionnaire. Each participant answered all questions. 
The most detailed responses were given for the first item on the questionnaire. The 
responses provided for each of the five items were allocated to one or more of the six 
categories identified by Martinez. 

The participants 
The participants were four seconded teachers who were experienced classroom teachers. 
The author is included as one of the participants, with the other three participants being 
teaching colleagues of the author (one on a different campus). Jo, Ann, and the author 
were in the second year of their secondment, while Darryl had several years‘ experience 
as a secondee. (Names are pseudonyms.) Jo and Ann were both from a primary school 
teaching background whereas the author and Darryl were high school mathematics 
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teachers. Darryl and the author taught only mathematics curriculum units whereas Jo 
and Ann were asked to teach into a range of discipline areas including literacy, 
numeracy, and generic Education units. 

Results and discussion 
This section presents the results and discussion, structured around the challenges 
identified by Martinez (2008). 

New learners: Children to adults 

Martinez (2008) acknowledges that a different set of skills and knowledge is required to 
teach a diverse range of adults in a non-compulsory educational setting, and that this 
marks a key transition challenge for new teacher educators. For example, while 
classroom management of challenging behaviour from children is less of an issue in the 
tertiary setting, dealing with older students in a fee paying non-compulsory setting ―can 
be daunting and harrowing‖ (Martinez, 2008, p. 39). The same concern was raised by 
the participants in this study, who commented on the management of adult learners, 
including establishing rapport and communicating expectations (such as mobile phone 
etiquette). Ann and Jo both indicated that they needed to make adaptations to their style 
of teaching at university, from the inquiry-based student centred style in the primary 
classroom, to a more teacher centred delivery of content. ―It was different using power 
points and having to be the leader more; less discovery work than primary school‖ (Jo).  
 Assessment emerged as a strong theme in terms of highlighting the differences 
between teaching children and adults. The process of assessment in the primary setting 
is often ongoing and formative, and influenced by opportunities for sustained 
interactions over a year long period. Assessment of assignments at university, however 
is summative and proved to be challenging for Ann in particular: 

 As the more structured approach was not the main approach used in my primary/learning 
support teaching years, I find the assessment structures and practices frustrating 
sometimes. In the primary setting I was used to ongoing assessment of students that I 
taught daily, allowing me to get to know them well. 

Jo, Ann, and the author saw the marking of assignments for students as an issue, made 
even more challenging by needing to cater for students studying in both online and face-
to-face modes. The issue of providing pre-service teachers with feedback on 
assignments and how much time to spend marking each assignment were common 
themes within the responses given by the participants, with Jo indicating that she was 
challenged with ―knowing what to expect in assignments and to be able to give clear 
feedback‖ The author found the marking particularly challenging at first given that her 
experience with assessment as a high school mathematics teacher involved marking 
mathematical items rather than written assignments: 

The marking is so relentless and I found it a real challenge to mark a written assignment 
of 2000 words as I have been used to marking mathematics problems. Getting used to 
understanding referencing was a challenge. 

It is not surprising that the assessment processes in a tertiary setting proved to be 
challenging in that most of the participants had not undertaken any further academic 
study since receiving their teaching qualifications, nor were they used to marking large 
volumes of material. While moderation processes assisted with establishing 
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expectations, many participants still felt that they lacked the in-depth knowledge and 
skills required to critique tertiary writing.  
 While some contrasts between teaching children and adults were evident, 
interestingly the secondees indicated that they did not tend to change their approach to 
teaching mathematical content. In general, they found that the pre-service teachers 
lacked confidence with mathematics, had poor mathematical content knowledge and 
had similar learning needs to school age students. Ann noted the following: 

Not so much of a big change with the first year students because their needs are quite 
high and I found myself using the strategies I used as a primary teacher to get maths 
concepts across. 

Darryl suggested that the pre-service teachers‘ lack of ―productive dispositions‖ 
towards mathematics presented a major challenge for developing their mathematical 
knowledge for teaching. This point was also raised by the author who indicated that 
some groups of pre-service teachers held the view that mathematics is about knowing 
formulae and following procedures and that they may not be receptive to developing a 
more relational understanding of mathematical concepts. Overall, the participants were 
surprised at the pre-service teachers‘ lack of content knowledge and the extra challenges 
this raised; essentially they were seconded to teach ‗how to teach mathematics‘ but 
instead found themselves teaching mathematics. This issue raises the question as to 
whether or not this challenge is unique to secondees teaching in this particular discipline 
area. 

Autonomy 

In her framework, Martinez (2008) refers to autonomy as the requirement for self-
management by a new teacher educator. Items 2, 3, and 4 from the questionnaire were 
particularly useful in eliciting responses from the participants that were related to this 
category. Three secondees, for example, highlighted the contrast between the regimen 
of the school term and the more flexible working arrangements at the university. Jo, 
Ann, and author commented that this new autonomy made them feel more like trusted 
professionals. ―I have been included as part of the staff, and trusted to act 
professionally, such as being able to work from home‖ (Jo). There were, however, some 
challenges associated with professional autonomy including the issue of self 
management. Jo, Ann, and the author highlighted the need to learn to cope with the 
contrast between relatively ‗quiet‘ times and more hectic periods involving a 
combination of teaching, marking, study, and research. Similarly, Martinez claims that 
new teacher educators‘ autonomy is often accompanied by overwhelming workloads at 
particular times during the academic year.  

Institutional structures and size 

The institutional structures and size of a university are often vastly different to a school. 
According to Martinez (2008) studies have indicated that coming to terms with 
institutional complexities is a key challenge for new teacher educators. Contrary to this 
claim, responses from the participants in this study indicated that this was not a 
particular issue or challenge for them. 
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Work environment (including technology) 

Martinez (2008) highlighted the increasing sophistication of the online learning 
environment and its implications for new teacher educators who may be required to 
teach in this mode. The participants in this study were expected to teach in a variety of 
modes, including online, and to make use of online communication systems. Three 
participants commented on the requirement to grasp the technology associated with 
online teaching; however, they were primarily concerned with the pedagogy of online 
teaching rather than the use of the technology. The participants‘ main concern in terms 
of teaching mathematics was the perceived difficulty in an online environment of 
replicating the types of practical experiences afforded in the face-to-face mode, which 
they were more comfortable with having come from the classroom. The following quote 
was part of Ann‘s response to the fourth item on the questionnaire: 

Online learning is new to me. I have only had one online (maths) unit to teach so far and I 
did not enjoy this compared to face-to-face delivery. In face-to-face tutorials I can give 
instant feedback in many ways: verbally, using a model or diagram and this is much more 
difficult through online delivery  

The modelling imperative 

Martinez (2008) suggests that the modelling imperative is the most challenging aspect 
of the transition of a new teacher educator. ―Practising what [we] preach‖ (Martinez, 
2008, p. 42) involves a very high level of meta-cognition, as the teacher educator must 
be able to explain and justify their teaching practices. Jo and Ann generally felt 
confident with teaching content that was closely aligned with the content of the primary 
school curriculum, but often found the more theoretical aspects of the units challenging, 
as the following quote illustrates:  

In some areas I was confident—curriculum ones especially reasonably confident 
especially with first year pre-service teachers. Less confident in some where there is a 
huge theory base—I needed to read a lot and understand some of the particular theories 
again (Jo). 

Darryl and the author expressed an initial lack of confidence with teaching about 
primary pedagogy, rather than the mathematics itself. Although both had a strong 
mathematics background, they lacked the experience of teaching in a primary setting 
and therefore felt their PCK, particularly in the area of primary mathematics, was 
inadequate. Darryl highlighted the challenges involved, particularly at the beginning of 
the secondment, with understanding the fundamental ideas underpinning a particular 
lecture or tutorial when it was written by someone else, usually an established 
academic. The author experienced similar concerns and had not anticipated the level of 
background reading and thought processing required to make sense of a pre-prepared 
lecture, as the following quote illustrates: 

I felt out of my depth. I had anticipated that teaching a primary mathematics curriculum 
unit would be difficult as I have a high school maths teaching background. Sometimes I 
appeared ill prepared because at times I resorted to reading the slide and the students can 
really see through that. The background reading and mental thought processing that has to 
happen to make sense of one slide is considerable. 

In contrast, Jo and Ann commented that one of the strengths of being a secondee was 
that the pre-service teachers valued their ‗real world‘ classroom teaching. ―The students 
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appreciate what you have to offer and are grateful for your school experience‖ (Jo). It is 
interesting to note that Jo‘s comment was made in relation to her teaching of a generic 
unit on assessment and reporting, rather than mathematics.  

Research and promotion  

A lot of the references to this category came from responses to the fourth item on the 
questionnaire. Although secondees may be encouraged to become involved in research, 
unlike academic appointments they are not required as part of their conditions to do so. 
Ann and Daryl expressed concerns about the pressure to undertake research and the 
negative impact this may have on their teaching. The extent to which all the participants 
perceived this to be a challenge varied. 

As a teaching only secondee, I have limited knowledge of this area. However it appears 
that there is great pressure on and a struggle for academics to meet research deadlines. I 
have decided not to go down this path as it would impinge on the quality of my teaching. 
(Ann) 

This comment tends to suggest that Ann considers teaching and research to be mutually 
exclusive, and that it is not possible to excel at both. Darryl, too, felt strongly about 
what he perceived as conflicting interests between teaching and research: 

I had expected the university to be an intellectually vigorous institution focused on 
producing students who had the capacity to be effective teachers upon completion of their 
degree but I think the University is primarily concerned with research.  

For others, however, the opportunity to become involved in the research culture was 
viewed as stimulating and highly motivating. ―At the start of the secondment, hearing 
academics talk about writing papers or journal articles seemed so new and foreign, 
whereas now it‘s part of working life at university and something I hope to aspire 
towards‖ (the author).  

Summary 
The data provided an insight into some of the key issues with becoming a new teacher 
educator as identified by the four secondees at a particular time during their 
secondment. Whilst many of the responses were able to be categorised into Martinez‘s 
(2008) framework of challenges, some appeared to be more relevant than others, and 
some additional themes arose. One of these relates to the skills and knowledge needed 
to teach teachers. Although the secondees were experienced and competent classroom 
teachers, they felt they did not have the skills and knowledge to effectively link theory 
with practice as required by the teacher educator. While their recent classroom 
experience was unexpectedly advantageous in assisting pre-service teachers with their 
mathematical content knowledge, they were all too aware of a lack of experience with 
teaching in a tertiary environment. Related to this were the additional challenges 
associated with assessment processes, teaching in an online environment, and not being 
part of the research culture. This raises the question of how best to support secondees 
with this knowledge acquisition given that ultimately this knowledge must be actively 
and personally constructed by the individual secondee. Another related theme to emerge 
was the conflicting combination of pre-service teachers‘ low mathematical skills 
proficiency and the secondees‘ developing knowledge for teaching in a tertiary setting. 
Although the secondees aimed to teach the pre-service teachers how to teach the 
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mathematics, they first had to address the content itself because the pre-service teachers 
did not have the foundational content knowledge.  

Conclusions 
This study has added to the limited research on the transition from teacher to teacher 
educator in the area of mathematics education, through providing an account of four 
different perceptions of aspects of this transition. The findings indicate that Martinez‘s 
(2008) framework proved useful in interpreting participants‘ responses, but there are 
indications that the framework could be extended to include other aspects; a future 
study involving in-depth interviewing of secondees‘ experiences may help to inform 
this. The main concern or challenge raised by the participants related to their perceived 
lack of teacher-educator PCK. This raises the question of how best to support secondees 
with this knowledge acquisition, given that ultimately this knowledge must be actively 
and personally constructed by the individual secondee. An unexpected challenge, and 
perhaps one that was unique to mathematics education secondees, was the need to 
address the pre-service teachers‘ lack of mathematical content knowledge. While some 
participants viewed this as an opportunity to capitalise on their recent primary 
classroom teaching, others felt that their secondary teaching background impacted upon 
their ability to do this credibly.  
 While admittedly the study was limited in terms of sample size and data generation, 
it does raise some questions about the preparedness of secondees to teach pre-service 
teachers about teaching, particularly in the area of mathematics education. It was also 
interesting to note that at least two of the participants questioned the value of research, 
leading one to question whether or not the University‘s policy of not requiring 
secondees to research is counterproductive to the research culture it should be trying to 
foster. Overall, however, the participants were positive about their seconded 
experiences and the opportunities to link practice with theory; it is hoped that this 
account will help to inform tertiary providers about the need to foster secondees‘ 
transition from teacher to teacher educator. 
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Student engagement in mathematics in the middle years is consistently reported to 
be a challenging problem. Yet, as this action research study shows, it is possible to 
engage students in meaningful mathematical learning with the use of relevant 
investigations. This project with 14 Year 8 and Year 9 mathematics teachers was 
structured around an action research model with teachers supported to refine 
capabilities and pedagogical processes to implement mathematical investigations 
that ‘make sense’.  Following implementation, teachers reported that students were 
more engaged compared to traditional mathematics lessons and that students 
recognised the value and application of mathematics, which in turn leads to greater 
engagement in mathematics.

Introduction 
The formulation of a problem is often more essential than its solution, which may be 
merely a matter of mathematical or experimental skill. Albert Einstein 

Student disengagement in mathematics is recognised to be a challenge for educators.  
Students continue to reject mathematics when they have a choice, particularly in the 
senior school years and at tertiary levels. “[M]athematics … is perceived to be ‘hard’, 
‘boring’ and ‘useless’” (Brown, Brown, & Biddy, 2008) and of little practical value and 
so many complete their formal mathematics education with poor mathematical 
identities. For instance, in 2009 only 7.5% of Queensland students studied both 
Mathematics B and C in Year 12 but to continue with mathematics it is necessary to 
study both (Queensland Studies Authority (QSA), 2010). 

Making sense of mathematics 
To mathematicians, mathematics is about making sense of the world and seeing the 
connections between mathematics and the world, and the connections between different 
areas of mathematics (Burton, 1995, 1998-1999). This idea of making sense of the 
world provides a possible avenue for increasing engagement in mathematics in the 
classroom. As Schoendfeld (1992, p18) notes, “[C]lassroom mathematics must mirror 
this sense of mathematics as a sense-making activity if students are to come to 
understand and use mathematics in meaningful ways”. Furthermore, the availability of 
technology (calculators, computers etc) has eliminated the need for most pen-and-paper 
calculations (Battista, 1994) yet this is still the focus of many classrooms – teaching 
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children to do things machines are good at which does not make sense to students. If 
computers and calculators were used to do the things they are good at, it would leave 
students with the tasks of problem formulation and interpretation of the calculative 
work of machines. 

By providing students with investigations and problems we give them the 
opportunity to ‘do’ mathematics and to make sense of their world. The goal of these 
tasks is “for students to make sense of a real-world use of mathematics, to get them 
involved in ‘problem formulation, problem solving, and mathematical reasoning’” 
(Battista, 1994, p463). As students solve complex tasks they get opportunities to discuss 
mathematics, to “conjecture, test, and build arguments about a conjecture’s validity … 
and to be encouraged to explore, guess and even make errors “(Battista, 1994, p. 463). 

For students to successfully work with these tasks, they may initially need a 
significant amount of thought to make sense of the task and/or mathematics before they 
can start mathematising. According to Romberg (1994), the steps involved in doing 
mathematics are: 

• initially one needs to formulate the problem and to think about which variables 
are important and which relationships between variables matter and which do 
not;  

• a model then needs to be determined which may be mathematical or physical; 
• numbers can be substituted into the variables and numerical procedures used to 

find a solution of a numerical model. Alternatively students may use the 
physical model or act out the problem to find the solution; and finally 

• the validity of the solution needs to be considered – does it make sense? What if I 
made a minor change here or there? This may necessitate going around either 
the whole cycle or part of the cycle again. 

For the teacher, working with investigations and making sense of the world can be 
much harder than teaching factual information. A focus on pedagogy rather than content 
is a major shift that needs to occur. As Burkhardt (1988) explains, teachers: 

• need to consider the different approaches taken by the students; 
• need to decide when to support students with suggestions or questions that will 

help whilst still allowing the students to be responsible for finding their own 
solution and this is for each student or group of students in the class; and 

• may be put in the potentially uncomfortable position of not knowing all the 
answers. 

Mathematical investigations 
Problems in the real world are ‘ill-structured’ and so it is necessary initially to 

formulate them in a well-structured way (Heylighten, 1988). Problem formulation is 
commonly carried out by the teacher, which leaves the student with the task of applying 
an appropriate algorithm which may be able to be calculated by machine. Taking 
problem formulation from students removes a key opportunity for students to engage in 
sense making using mathematics (Battista, 1994). 

A good investigation has multiple entry points, allowing students to start at their 
own level and to design their own pathway (or pathways) through it. Indeed, 
investigations allow students to undertake activities and thinking that resemble that of 
the practice of mathematicians, and so they can be viewed as authentic mathematical 
tasks (Burton, 1998). In this way, investigations allow for the alignment of teaching, 
learning and assessment. 
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Boaler (2008) demonstrated that it is possible to engage students in deep mathematical 
learning using an investigative pedagogy, particularly those students who have been 
alienated by traditional approaches to mathematics education.  Investigations are open-
ended questions or problems that are set in a range of contexts. By using investigations 
that are directly related to the students’ lives, mathematics becomes no longer ‘useless’. 
To achieve this, teachers need to provide a socially supportive and intellectually 
challenging environment in the classroom (Fredricks, Blumenfeld & Paris, 2004) so that 
students are able to develop strong mathematical identities. When the task is relevant 
and meaningful most students enjoy a challenge (The Centre for Collaborative 
Education, 2000, cited in Hilton & Hilton, 2005). 

Encouraging students to formulate problems is not easy, as the data from this 
small study reported in this paper indicates. The normal routines of teaching 
mathematics are not easily adapted to support a pedagogy that in many instances 
supports a mathematical activity where there is no one right answer. In this study we 
will explore the journey taken by a small number of teachers as they set out to facilitate 
the pedagogy of investigations to enable their students to make sense of mathematics. 

The study 
The aim of this action research project was to improve middle years student engagement 
in mathematics by employing investigations that make sense. A group of Year 8 and 
Year 9 mathematics teachers, comprising eleven female and three male teachers, 
volunteered for the project. There were six state schools each represented by two 
teachers, with two also sending their head of department. 
 The project was funded by Education Queensland with an overall desire to enhance 
pedagogical practices leading to an improvement in numeracy results across the region.  
An understanding about participation in the project was that there would be a 
commitment to support these teachers by allowing them flexibility in their work 
programs to trial some of the initiatives. Teachers were encouraged to attend in pairs 
with their mathematics head of department to enable a continuation of the conversations 
back at school. The project ran during the last term of 2010 and it is important to note 
that because of this timing it was difficult to maintain enthusiasm as teachers had end of 
year pressures. Fourteen teachers from six schools completed the professional 
development and three schools, including Schools A and B that are the focus of this 
paper, chose to replace their final assessment item with an investigation that lasted at 
least four weeks and included in-class teaching. 

Action research process 
Underpinning this study was an Action Research approach. Action research is a well- 
accepted methodology developed by Lewin in the 1940’s that has recurring cycles of 
action and reflection (Dickens & Watkins, 2011).  The model employed in this project 
is adapted from Kemmis and McTaggart (1988) and is summarised as follows: 

 Plan – Priorities for action 
 Act and Observe – Is it working?  How do we know? 
 Reflect – What are the problems? 
 Revise plan – Review plan 
 Act and observe – How is it going?  How do we know? 
 Reflect – Have we got it right? 
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The project was devised to facilitate participants to work through the model at least 
once. 
Fundamental to action research in the planning phase is the provision of information 
and this was achieved through two whole day professional development sessions. 
Discussions initially centred on the needs and interests of adolescents, given the context 
of this project in middle years classrooms. This focus was planned to help participants 
with ways of devising pedagogical approaches to meet student needs. The focus then 
moved to practices for differentiated learning in the classroom. Mathematical 
investigations were then offered as a way to stimulate the interest of the students and 
cater to the diversity within a class. 
 In this planning phase, data were collected in the form of teacher and student 
questionnaires which were adapted from the work of Beswick, Watson, and Brown 
(2006). The questionnaires were constructed to collect data to determine both teachers’ 
and students’ confidence with mathematical concepts, their responses about 
mathematics and numeracy in everyday life and mathematics and numeracy in the 
classroom and the types of activities that were valued. The purpose of the questionnaire 
was to determine if there was a correlation between what the teachers reported and what 
their students thought. Teachers used this information to assist their planning. 
 Teacher participants were asked to provide comments about their experience in the 
action research study. The first data collected was purely to ascertain the reasons why 
the participants volunteered. The following verbatim comments provide an insight into 
the various reasons, which are consistent with the aims of the study: 

• Engaging middle school students without working 60 hour weeks. 
• Better engagement from my year 9s and teaching in a way that is less didactic / 

more student or interaction focussed. 
• I would like to make changes to the current mathematics program to engage the 

lower achieving students. 
• To get some ideas about investigations and reflection. 
• I want to feel confident in my ability to teach maths in a way that is engaging 

and relevant to students. 
• Better ways to engage the middle years teachers and in turn the middle years 

students (maths HoD). 
Following the two day professional development participants devised plans for their 
chosen class to be implemented during the final term at school. They used the action 
research model described above as the basis for their planning. The researchers visited 
the teachers in their schools to provide support and made classroom observations of 
some classes. In this way, both the researchers and the teacher participants were 
engaged in the next phases of the action research project, that is recurrent act and 
observe; reflect; revise plans that took place. After these meetings one of the 
researchers wrote observations. At the end of term the teachers were encouraged to 
again reflect. Finally, they planned the next action cycle for implementation in 2011. 

Results and discussion 
The data reported in this paper came from the reflections of one of the researchers and 
the teachers in two of the schools, identified as School A and B. In school A the 
students were given the ‘ill-structured problem’ of designing a middle years area in the 
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space outside their classroom which then consisted of concrete, grass and a few bench 
seats. In school B the two teachers developed a structured investigation where students 
investigated loans for a car purchase and compared simple and compound interest for an 
investment. 

School A – An ill-structured investigation 
School A was a very large P-12 school with a middle school structure consisting of 
Years 7, 8 and 9. The mathematics head of department was not actively involved in this 
research project. One of the teachers had expressed concern during the professional 
development session that mathematics at her school was “impossible”. She complained 
that she had: no support; a low ability class who were not interested, badly behaved and 
couldn’t cope with the work; and that she wasn’t allowed to adapt the tests so that she 
could reduce the amount of content that she needed to get through. In her responses to 
the survey this teacher had agreed that quantitative literacy was just as necessary for 
efficient citizenship as being able to read and write. She decided to ask her class to 
design a middle years area in the space outside their classroom. The task which was to 
be used for assessment was left open and through class discussions she and her students 
planned how they would approach the task. The students were told at the beginning that 
the Principal would be invited to look at their final models for the middle years area and 
that possibly some of their ideas would be implemented, giving the project a sense of 
authenticity. The class initially discussed what to include in their designs and all ideas 
were noted. 
 The researchers joined the class when they went outside to measure the permanent 
fixtures e.g. chairs, concrete paths etc. The students were excited about the task and 
shared this with the researchers; telling the researchers what they were going to do and 
how they were going to do it. At this stage the students had formulated the problem; 
they knew they had to decide what they were going to include by surveying, they knew 
they had to measure, do a scale drawing and then could make their scale model. There 
were a number of students with poor measuring skills, for example not reading the 
metres on the tape measure only the centimetres and starting at 10cm as they thought 
the stiff part was something to hold onto. The teacher asked questions to enable the 
students to see their errors themselves. For example, when a group claimed the area was 
considerably wider than it was long she said, “Let’s have a look at your measurements,” 
pointing to a 23m length and a 57m width. “What do you think?” and then “What are 
you going to do about it?” when the student asked, “Do we have to do it again?” she 
replied, “What do you think?” With this type of questioning the teacher is forcing the 
students to think about what they are doing and to take responsibility for their learning. 
 Afterwards all of the students in the class went back into the classroom to add these 
extra measurements to their scale drawing. The students were talking about how to do 
the scale drawings, and how they had collected the measurements to remind themselves 
where they had measured from and to and what part of the diagram it was. Sometimes 
they stood up and looked out the window to check where things were outside. The 
students worked slowly but were interested in getting help from the teacher and 
researchers so that they could prepare the drawing. Students told the researchers that 
they had to do the basic scale drawing before they could include their own additions. 
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By the end of the term the students had constructed scale models of their designs. All 
had included extra seating, shade and bins and had included their own ideas such as 
handball courts, basketball rings and palm trees. The teacher’s feedback was that there 
was much improved engagement and learning for most of the students and the hands on 
component was important. She observed that the task couldn’t be too long as the 
students lost focus and that group work was difficult. In her class pairs were more 
successful than trios as when three students were working together one tended to sit 
back and let the others complete tasks. The teacher also observed that she had more 
opportunities to find out what the students actually did know as she moved around the 
room talking to the groups of students. 
 This teacher was enthusiastic about her experiences with the investigation and the 
difference this pedagogy had made to her class. Consequently she has taken on the role 
of Year 7 co-ordinator for 2011with the aim of getting all the Year 7 teachers together 
to plan investigations as part of the assessment and pedagogy for mathematics. 

School B – A highly structured investigation 
School B was a large secondary school (Years 8-12) with a similar clientele to school 
A. In this school teachers did not trust the students to bring their equipment to class so 
the students left their mathematics exercise books in the classroom to ensure they had 
them for every lesson. The two teachers who participated in the study wrote an 
investigation exploring loans and investments, with the support of their mathematics 
head of department who had not attended the professional development. The task 
included comparing two different methods of paying off a car and comparing simple 
and compound interest for an investment. In their response to the survey, the two 
teachers had disagreed with the statement that quantitative literacy was just as necessary 
for efficient citizenship as being able to read and write. 
 The students were given a choice of purchasing five cars or a motorbike. The highly 
structured investigation was outlined on a task sheet that included the price of each 
vehicle, the number of kilometres travelled and the weekly repayments if purchased 
through the dealer’s finance company. The task sheet stepped out what needed to be 
done at each stage of the investigation and supplied the required formulas so that the 
students only had to insert the numbers into the equation and calculate the answer. This 
meant that this group of students missed the opportunity to formulate the problem and 
also make personal choices by allowing them to choose a car for themselves. When the 
researchers went into two different Year 9 classes with one of the teachers and a Year 9 
class with the other teacher only one of the classes were actually working on their 
investigation the other classes were developing the mathematical skills and knowledge 
necessary for the next part of the investigation. The students were doing their own 
individual work, however there were a lot of discussions with their peers. These 
students couldn’t really tell the researchers much about the task, and were not 
particularly interested but when asked did admit that it was a useful assignment as they 
would be buying a car once they left school. 
 When the two teachers from school B reflected on the task they reported that 
students enjoyed the buying the car task and came up with a variety of reasons for their 
choice of which car to purchase, with the comments “[K]ids loved the topic – very 
interested in cars, both the girls and boys. Surprisingly, kids came up with a variety of 
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reasons for buying their cars, and didn’t just go for the one that looked ‘cool’”. The 
teachers reflected that the students had taken ownership of the task and that the students 
appeared to enjoy using the spreadsheets, stating that “[T]eaching focus on kids taking 
ownership of task was very positive. Kids liked making spreadsheet and learning Excel 
tricks”. The students reportedly, were not interested in saving for a house deposit. 
Teachers reported being concerned about the loss of interest towards the end of the task 
and the need to perhaps keep the task shorter, stating that “[T]ime pressure and the fact 
that this was the first time using the task made it difficult to get through the last few 
questions with the same enthusiasm as the first half of the task. Perhaps the task is too 
long?” The teachers also found it difficult to allow the students to take charge due to 
concerns about engagement, as noted in this comment “[I]t was difficult to allow kids to 
take charge of the task due to fear that they would get off-task/waste time”. The 
teachers admitted that the task hadn’t allowed the students enough opportunities to 
demonstrate their ability to reason mathematically. 
 Working through the reflection phase, teachers were planning to introduce more 
investigations into the following year’s work program but were concerned about getting 
the balance between allowing students the opportunity for creativity whilst still being 
practical to mark, stating that the “[T]ask review needs to strike a better balance 
between including creativity in the task and making marking practicable”. 

Conclusion 
By using an action research approach to facilitate the inclusion of investigations as a 
pedagogical practice, the teachers in this study reported that the students appeared to be 
more engaged with the investigation tasks and the learning compared to conventional 
mathematics lessons. By giving the teachers the knowledge and support to implement 
mathematics investigations in an informed way that included reflection and revision, 
these teachers have provided the opportunity for students to make sense of the value of 
and applications of mathematics which in turn has encouraged the students to 
participate and engage with the learning. 
 Perhaps because their teacher values quantitative literacy, the students at school A 
were given an ill-structured investigation which they formulated and worked through 
with the teacher. By contrast at school B, where the teachers did not put such an 
importance on quantitative literacy, the students were given a highly structured 
investigation that did allow for some choice but included the algorithms to use. 
 The biggest increase in engagement, as reported by the teachers and observed by the 
researchers, was with students in school A. This may be because they had more 
opportunity for ownership of the task as they were not just using given algorithms but 
had to formulate the problem themselves. This is something that needs further 
investigation and has implications for engaging adolescents with mathematics. 
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Calls have been made for teacher educators to innovate upon well-established teacher 
education programs. During 2010, a project was initiated that sought to study the impact 
that a school-university partnership had on building preservice teacher capacity for 
effective teaching of mathematics. Early findings suggest that a range of factors including 
observation of lecturers teaching mathematics lessons, and participation with teacher 
educators in lesson planning, team-teaching, and post-lesson reflections can be helpful in 
building capacity for effective mathematics teaching. 

Introduction 
It is generally agreed among classroom teachers and researchers that teaching is 
complex. Indeed, the complexities that the teaching of mathematics poses may be 
challenging not only for novice teachers but also for the more experienced (Kazemi, 
Franke, & Lampert, 2009). As teacher education plays a key role in supporting novice 
teachers for situations they may face in the classroom, it is important to reflect upon the 
nature of preservice teacher education and the opportunities that preservice teachers 
(PSTs) are given to develop their abilities to teach. 
 A recent government report (Hartsuyker, 2007) from an inquiry into teacher 
education in Australia recommended a more collaborative approach to teacher 
education than existed at that time. Most particularly, in discussing practicum and 
partnerships, the need was identified for a stronger sense of shared responsibility 
between all stakeholders, that is, universities, schools and employing bodies, for 
preparing the next generation of teachers. 
 The research reported in this paper relates to a partnership based model being utilised 
to prepare primary school PSTs at Australian Catholic University (ACU) for their future 
work in schools. This partnership focused on building capacity for effective teaching of 
mathematics. The authors sought possibilities to innovate upon current teacher 
education practices that already existed at the university in relation to mathematics 
education. As stated by Kazemi et al. (2009), 

… the future viability of professional teacher preparation requires that we systematically 
pursue appropriate ways to develop, fine-tune and coach novice teachers’ performance 
over a variety of settings. These activities must find their way into university coursework 
rather than be relegated to field placements. (p. 12) 
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Background 
There is widespread concern for good teaching practice for mathematics learning (e.g., 
Australian Association of Mathematics Teachers, 2006; National Council of Teachers of 
Mathematics, 2000). Recent research has provided a range of insights into the practices 
of effective teachers. For example, Brown, Askew, Baker, Denvir, and Millett (1998) 
identified teaching that requires thought rather than practice, emphasis on establishing 
meanings and connections, collaborative problem solving, and autonomy for students to 
develop and discuss their own methods and ideas. Muir (2007) summarised 
characteristics of effective numeracy teachers as related to maintaining a focus on 
mathematical ideas, using a variety of teaching approaches to foster connections, 
encouraging purposeful discussion, and possessing knowledge and awareness of 
conceptual connections. The more detailed list of 25 characteristics of highly effective 
teachers of mathematics identified from case studies of six highly effective early years 
teachers (McDonough & Clarke, 2003), has commonalities with results from other 
studies but also offers insights into additional effective practices. A focus on such 
effective practices may provide an avenue for preservice teacher development, while at 
the same time further developing in beginning teachers an orientation to self-learning as 
called for by Sullivan (2002).  
 Goodlad (1991) defined a school-university partnership as a mutually beneficial 
inter-institutional relationship that is established through planned efforts. Goodlad 
purported that an essential aspect of school-university partnerships lies in drawing on 
the strengths of the parties involved in the partnership to advance the interests of the 
collaboration. Choice in participation is also an important aspect of establishing a 
school-university partnership (Stephens & Boldt, 2004).  
 All stakeholders involved in the school-university partnership have the opportunity 
to benefit from involvement through practices of sharing resources, expertise and 
facilities (Smedley, 2001; Smith & Lynch, 2002). Stronger school and university links, 
development of workplace capacity, and teacher and school renewal have been reported 
as benefits by those involved in successful school-university partnerships (Allen, 
Butler-Mader, & Smith, 2010). The sharing of knowledge and skills between the 
partnership sites (school classrooms and university campuses) is also possible, and this 
allows further opportunities to renew the sites during the partnership process (Stephens 
& Boldt, 2004).  
 Making the commitment to form a school-university partnership means that all 
parties involved in the collaboration also commit to learn together (Stephens & Boldt, 
2004) through an on-going collaborative process of documentation, analysis and 
communication of successes and failures (Goodlad, 1991). However, there is no best 
way of organising school-university partnerships and debate about the most appropriate 
implementation approaches continues (Goodlad, 1991; Smedley, 2001). 
 In response to calls for re-thinking preservice teacher education, and the literature 
related to partnerships and effective teaching of mathematics, new possibilities for 
supporting PSTs for their future work as teachers of mathematics were pondered. 
Inspired by the work of Kazemi et al. (2009), the opportunity of developing school-
university partnerships within the Contemporary Teaching and Learning of 
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Mathematics (CTLM) project1 was identified by the authors of this paper. The CTLM 
project is a professional learning initiative conducted in partnership between the 
Catholic Education Office Melbourne (CEOM) and ACU. Professional learning, aimed 
at developing teacher pedagogical content knowledge of mathematics, took place 
through professional development sessions (including workshops, professional reading 
and discussions) and via in-school classroom visits by the ACU mathematics education 
lecturers who modelled mathematics lessons (Roche & Clarke, 2009).  
 In 2010, the CTLM project provided the opportunity to innovate upon mathematics 
education practices at ACU through the development of the University Partnerships for 
Teaching and Learning Mathematics (UPTLM) project. This partnership model is 
triadic in its nature involving CTLM schools, ACU PSTs (completing their final year of 
a Bachelor of Education) and ACU mathematics education lecturers.  
 The research question for the aspect of the study discussed in this paper was: 

What aspects of University Partnerships for Teaching and Learning Mathematics 
(UPTLM) did the preservice teachers perceive as most helpful in building capacity to be 
more effective teachers of mathematics? 

Method 
In 2010, the study involved 12 volunteer Bachelor of Education PSTs, undertaking a 
university project unit (taught by the authors). Within tutorials, these PSTs chose a 
pedagogical focus, selected from research findings on effective teachers of mathematics 
(McDonough & Clarke, 2003), that acted like a personal goal for further developing 
their mathematics teaching. Examples of pedagogical foci selected by the PSTs were 

 hold back from telling children everything; 
 structure purposeful tasks that enable different possibilities, strategies and 

products to emerge; and 
 draw out key mathematical ideas during and/or towards the end of the lesson.  

Following our partnership theme, during the first half of 2010, the PSTs visited CTLM 
schools where they observed ACU lecturers teach mathematics lessons. During the 
observations, the PSTs recorded evidence of their selected pedagogical focus in 
practice. Following these experiences, the PSTs engaged in focused lesson debriefings 
with CTLM teachers and ACU lecturers. Other UPTLM project practices included the 
planning and team-teaching of mathematics lessons with ACU lecturers in CTLM 
schools. Working with a fellow PST, they went on to “buddy-teach” a number of 
lessons in a CTLM classroom. The CTLM teachers in these classrooms volunteered 
their time and expertise to host the PSTs in their classrooms. The buddy-teaching 
experiences in CTLM schools provided further opportunity to give attention to the 
pedagogical focus and to offer and receive feedback within a collaborative and 
supportive relationship with each other and the CTLM classroom teacher. Tutorials at 
university also provided opportunities for members of the group to share, challenge, and 
support each other. 

In November 2010, data regarding the PSTs’ perceptions of UPTLM were gathered. 
Data were collected through individual written responses and a separate focus group 
semi-structured interview. In reporting data from the study, the authors draw on the 
                                                        
1 The authors acknowledge the support of the Catholic Education Office Melbourne (CEOM) and that of Gerard 
Lewis and Paul Sedunary in particular in the funding of the CTLM project.  
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written responses and on results from a focus group ordering task. During this task, the 
PSTs were each invited to write what they perceived as a component of UPTLM on a 
card individually. These cards were then placed on a continuum from most helpful to 
least helpful. The PSTs involved in this ordering exercise were asked to share their 
insights with the group, identifying similarities and differences, and to develop 
consensus as a group as much as this was possible.  

Results and discussion 
The ordering task allowed access to some important insights into perceptions held by 
the PSTs about practices related to the UPTLM project. These practices are reported 
and discussed below, in order of their perceived helpfulness as expressed by the group 
overall. The two most helpful practices involved opportunities to work with ACU 
lecturers through mathematics lesson planning sessions and opportunities to debrief 
about lessons conducted in CTLM schools. The focused observation of lessons taught 
by ACU staff members was also believed to be a highly helpful practice. 
 The theme of partnerships featured as the next most helpful aspect of the UPTLM 
project. Aspects of the partnerships highlighted by the PSTs included the CTLM school 
communities, specifically opportunities to work with students who attended these 
schools. The PSTs also valued partnerships that developed between themselves and the 
ACU lecturers with whom they worked in primary mathematics classrooms. The PSTs 
saw the “buddy-teaching” experiences as another element of the partnerships forged 
through the project.  
 Team-teaching experiences with ACU lecturers were also reported to be a helpful 
practice. PSTs mentioned that the focused feedback on performance was valuable. 
Deemed as equally helpful by the PSTs were the UPTLM meetings that were conducted 
on campus during the year. It was articulated that opportunities for group reflection on 
UPTLM experiences were helpful in developing deeper understandings of effective 
teaching of mathematics. Feedback from parties involved in the partnerships (ACU 
lecturers, CTLM school teachers and the PSTs themselves) provided an external voice 
that supported critical reflection which was used to challenge current ideas and practices 
related to effective mathematics teaching (Muir & Beswick, 2007). 
 The final most helpful aspect of the UPTLM project, as perceived by the PSTs, was 
the pedagogical focus. This self-selected focus provided opportunities for the PSTs to 
reflect on current practices and it also provided focus for the lesson observations in 
CTLM schools. The role that the pedagogical focus played was also highlighted in the 
written responses by the PSTs.  
 Not surprisingly, time constraints were the least helpful aspect of the UPTLM 
project. The PSTs agreed that there was a greater need for more time and opportunities 
to participate in the UPTLM project, spending more time in the partnership schools. 
When asked to describe the opportunities in which they would engage if they had more 
time, the PSTs identified lesson observation and team-teaching experiences with ACU 
lecturers were deemed as valuable uses of time by the focus group of PSTs. 
 The following brief discussion provides further insights into how the helpful 
UPTLM aspects developed the PSTs’ capacity for effective teaching of mathematics. 
As discussed earlier, the notion of partnerships was central to UPTLM. One PST 
expressed the value of partnership, not only in relation to her attitudes to mathematics 
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teaching, but also for the contribution to the school in which she undertook her “buddy 
teaching”: 

Being part of [UPTLM] made me a more confident and prepared preservice teacher for 
my placement. My teacher was impressed and appreciated the ideas I could bring to her 
class. (McDonough, Sexton, Miller, Mitchell, & Watson, 2010, p. 4)  

Another school contacted the authors stating how impressed they were with the 
contribution by the two PSTs who were buddy teaching at their school. Indeed, they 
asked the PSTs to share their taught lessons with other teachers in the school as they felt 
this could be a valuable learning opportunity for staff. This suggests that UPTLM 
allowed the parties in partnership to draw on each others’ strengths (Goodlad, 1991) and 
share expertise (Smedley, 2001; Smith & Lynch, 2002).  
 Other PSTs also expressed the value in terms of the influence on attitudes to teaching 
mathematics, for example, 

I have become a lot more confident in my teaching of Mathematics, not just in my 
content knowledge, but in my knowledge of what it takes to be an effective practitioner. I 
have also become a lot more enthusiastic about teaching maths. It is a great way to feel 
about a subject I will be teaching every day. (McDonough et al., 2010, p. 5) 

The above quote also indicates the influence on content knowledge, a key focus of the 
CTLM project in which the teachers in the partnership schools were involved, and a 
focus of the preservice mathematics education units at ACU. 
 For these PSTs, having selected a specific pedagogical focus gave direction for a 
range of the UPTLM activities. This is expressed, for example, in the following: 

UPTLM has taught me the importance of focusing one aspect of your teaching. Having a 
pedagogical focus allowed me to really focus on one thing I needed to improve. I found 
this was more beneficial than trying to improve all areas of my teaching practice. … I can 
now effectively draw out the key mathematical understandings towards/at the end of a 
lesson. (McDonough et al., 2010, p. 5) 

The PSTs also saw that by concentrating on one aspect of teaching, links with other 
effective teaching practices (e.g., McDonough & Clarke, 2003) could be seen. They also 
expressed the value of UPTLM experiences for an 8-week extended practicum that 
occurred in the second half of the 2010 academic year. 

Conclusion 
The UPTLM project has provided some insights into possible ways of establishing 
school-university partnerships. Throughout the project, there were opportunities for the 
participants in the partnerships to learn (Stephens & Boldt, 2004), including the authors 
who learned more about their work as teacher educators. The authors have come to 
understand more about ways of building PST capacities for more effective teaching of 
mathematics and exploring these practices in renewed, innovative, and collaborative 
ways (Hartsuyker, 2007; Kazemi et al., 2009; Stephens & Boldt, 2004). The authors 
also believe that they have challenged a model of teaching and teacher education that is 
referred to by Lampert and Graziani (2009) as “closing the classroom door” (p. 491), 
where individual learning is valued but the collective accumulation of knowledge is 
disregarded.  
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It is acknowledged that, in this project, the authors worked with a small number of PSTs 
and had the advantage of drawing on a professional learning project where lecturers 
were teaching in schools. Such opportunities may not be available presently to our 
colleagues in all tertiary institutions. However, the project has allowed a re-thinking of 
preservice teacher education and the value of partnerships in developing capacity for 
effective teaching of mathematics. Whilst respecting traditions, the authors see the 
possibility for this research to stimulate and contribute to dialogue that responds to calls 
for new practices in teacher education including partnership based models and 
approaches.  

References 
Allen, J. M., Butler-Mader, C., & Smith, R. A. (2010). A fundamental partnership: The experiences of 

practising teachers as lecturers in a pre-service teacher education programme. Teachers and Teaching: 
Theory and Practice, 16(5), 615–632.  

Australian Association of Mathematics Teachers. (2006). Standards for excellence in teaching 
mathematics in Australian schools. Retrieved March 1, 2011, from www.aamt.edu.au 

Brown, M., Askew, M., Baker, D., Denvir, B., & Millett, A. (1998). Is the National Numeracy Strategy 
research-based? British Journal of Educational Studies, 46(4), 362–385. 

Goodlad, J. I. (1991). School-university partnerships. The Education Digest, 56(8), 58–61.  
Hartsuyker, L. (2007). Top of the Class: Report on the Inquiry into Teacher Education. Canberra: 

Commonwealth of Australia. Retrieved March 1, 2011, from 
http://www.aph.gov.au/house/committee/evt/teachereduc/report.htm 

Kazemi, E., Franke, M., & Lampert, M. (2009). Developing pedagogies in teacher education to support 
novice teachers’ ability to enact ambitious instruction. In R. Hunter, B. Bicknell, & T. Burgess (Eds.), 
Crossing divides (Proceedings of the 32nd annual conference of the Mathematics Education Research 
Group of Australasia, pp. 11–29). Palmerston North, NZ: MERGA. 

Lampert, M. & Graziani, F. (2009). Instructional activities as a tool for teachers’ and teacher educators’ 
learning. The Elementary School Journal, 109(5), 491–509.  

McDonough, A., & Clarke, D. (2003). Describing the practice of effective teachers of mathematics in the 
early years. In N. A. Pateman, B. J. Dougherty, & J. Zilliox (Eds.), Proceedings of the 27th 
Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 
261–268). Honolulu, HI: College of Education, University of Hawaii. 

McDonough, A., Sexton, M., Miller, J., Mitchell, F., & Watson, S. (2010, December). Learning to teach 
and teaching to learn: Productive partnerships to build teacher capacity. Paper presented at the 14th 
annual primary and secondary teachers’ mathematics conference, Mathematics Teaching and Learning 
Research Centre, Australian Catholic University.  

Muir, T. (2007). Setting a good example: Teachers’ choice of examples and their contribution to effective 
teaching of numeracy. In J. Watson & K. Beswick (Eds.), Mathematics: Essential research, essential 
practice (Proceedings of the 30th Annual Conference of the Mathematics Education Research Group 
of Australasia, pp. 513–522). Hobart: MERGA. 

Muir, T., & Beswick, K. (2007). Stimulating reflection on practice: Using the supportive classroom 
reflection process. Mathematics Teacher Education and Development, 8, 74–93. 

National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. 
Reston, VA: NCTM. 

Roche, A., & Clarke, D. M. (2009). Making sense of partitive and quotitive division: A snapshot of 
teachers’ pedagogical content knowledge. In R. Hunter, B. Bicknell, & T. Burgess (Eds.), Crossing 
divides (Proceedings of the 32nd annual conference of the Mathematics Education Research Group of 
Australasia, pp. 467–474). Palmerston North, NZ: MERGA. 

Smedley, L. (2001). Impediments to partnership: A literature review of school-university links. Teachers 
and Teaching: Theory and Practice, 7(2), 189–209. 

Smith, R. A., & Lynch, D. E. (2002). Bachelor of learning management: A teacher-training course. 
Classroom, 22(5), 26–27.  

513



McDONOUGH & SEXTON 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

Stephens, D., & Boldt, G. (2004). School/university partnerships: Rhetoric, reality, and intimacy. Phi 
Delta Kappan, 85,703–708.  

Sullivan, P. (2002). Issues and directions in Australian teacher education. Journal of Education for 
Teaching, 28(3), 221–226. 

514



LISTENING TO CHILDREN’S EXPLANATIONS OF 
FRACTION PAIR TASKS: WHEN MORE THAN  
AN ANSWER AND AN INITIAL EXPLANATION  

ARE NEEDED1 

ANNIE MITCHELL 
The Australian Catholic University 

annie.mitchell@acu.edu.au 

MARJ HORNE 
The Australian Catholic University 

marj.horne@acu.edu.au 

 
Research has shown that children can offer the right answer but have mathematically 
incorrect reasoning (Clements & Ellerton, 2005). One-to-one task-based interviews enabled 
the researchers to engage in observational listening (Empson & Jacobs, 2008) and uncover 
the mathematical strategies used by Grade 6 students in fraction pair tasks. Some students’ 
answers and initial explanations were similar, but different strategies were revealed by 
further questioning: the correct strategy of benchmarking or the misconception of gap 
thinking. 

Introduction 
Careful listening is essential for good teaching. If we want to know what to teach next, 
we need to know the mathematical thinking of individual students. Teachers cannot 
assume that a correct answer indicates misconception-free thinking. To teach within the 
framework of constructivism, we need  

 specialised content knowledge  
 observational listening skills, and 
 classroom norms that value mathematical explanations 

The analysis of specific strategies for the comparison of the relative size of two 
fractions, 4/5 and 4/7, illustrates the complexity of assessing children’s fraction 
understanding. Two strategies, the gap thinking misconception and the mathematically 
correct strategy of benchmarking both gave the same answer (4/5 is larger) and had 
similar initial explanations. Responsive teachers know that the different strategies exist, 
have the listening skills to determine which is being used, and create classroom norms 
which value explanations from students that enable peers and the teacher to engage with 
their mathematical thinking.  

Review of the literature  
A co-ordinated fraction understanding encompasses several contexts. Kieren’s model 
for understanding rational number knowledge identified four sub-constructs (measure, 

and three underlying concepts (partitioning, equivalence, quotient, operator, and ratio) 

                                                        
1 The authors wish to thank Anne Roche and Doug Clarke for their help in developing tasks and record sheets, and 
double coding the data. 
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and unit-forming) (Kieren, 1988, 1992). These could be engaged with on four levels, 
ethnomathematic, intuitive, technical-symbolic, and axiomatic-deductive. We use the 
term the four-three-four model to distinguish it from Kieren’s five-part model (1980). 
The concepts that concern us in this paper are the measure sub-construct, the concept of 
equivalence, and intuitive understandings.  
 Fraction tasks in the primary school considered part of the measure sub-construct 
include, number lines (Lamon, 1999), area and length diagrams (Kieren, 1992), and 
fraction pair comparisons (Ni, 2000). The relative size of fractions has been called order 
in order and equivalence studies. As many as equivalence, (multiplicative) partitioning, 
is used to generate equivalent fractions. For example, 4/8 is equivalent to 1/2. As much a,s 
equivalence (additive) unit-forming, is used to combine fractions (Kieren, 1992). For 
example, 5/8 equals 1/2 plus 1/8. Intuitive approaches were planned mathematical activity, 
firmly located in a context developed from schooled or taught knowledge (Kieren, 
1988). 
 Strategies for comparing the relative size of fractions include both correct strategies 
and misconceptions. Correct strategies include residual thinking, benchmarking and 
common denominators. Misconceptions, often inappropriate generalisations, include 
gap thinking, higher or larger numbers, and bigger denominator indicates bigger 
fraction thinking. Knowledge of these strategies forms part of a teacher’s specialised 
content knowledge. This knowledge of mathematics and knowledge of students is 
necessary for pedagogical content knowledge (Hill, Ball, & Shilling, 2008). 
 The residual thinking strategy has been observed in the comparisons of fractions, 
such as 5/6 and 7/8 that are both one piece away from the whole (see, for example, Clarke 
& Roche, 2009; Cramer & Wyberg, 2009; Post, Behr, & Lesh, 1986). Students reason 
correctly that an eighth away from the whole is closer than one sixth away from the 
whole and so 7/8 is the larger fraction. 
 Using half as a benchmark was a strategy that children could use when they 
combined the (additive) unit-forming aspect of equivalence, 5/8 is as much as 1/2 and 
another piece, and the (multiplicative) partitioning aspect of equivalence, 4/8 is as many 
as 1/2. Benchmarking had been reported in Australia (Clarke & Roche, 2009), and had 
been called the transitive or reference point strategy in the United States (Behr & Post, 
1986; Post et al. 1986; Post & Cramer, 1987). For example, 5/8 is larger than 3/7 because 
3/7 is less than a half and 5/8 is more than a half.  
 Gap thinking has been observed in Australia (Clarke & Roche, 2009; Gould, 2011; 
Mitchell & Horne, 2010; Pearn & Stephens, 2004) and was one of four whole number 
dominance strategies described by Post & Cramer, (1987) and observed in recent 
studies (Cramer & Wyberg, 2009). Children with this misconception looked at the 
numerical difference between the numerator and denominator and chose the fraction 
with the smallest gap as the largest fraction. For example, in a study of 323 Grade 6 
students, 35.6% of the incorrect answers comparing 3/4 and 7/9 demonstrated gap 
thinking: 3/4 was larger because it had a gap of 1 while 7/9 had a gap of 2 (Clarke & 
Roche, 2009). Nearly 30% of Grade 6 students incorrectly said that 5/6 and 7/8 were 
equivalent because two fractions, both with a “gap” of one, were the same, instead of 
using a correct strategy such as residual thinking (Clarke & Roche, 2009). In a separate 
study, 50% of Grade 6 students used gap thinking on this same pair to conclude that the 
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fractions were the same, and the misconception was shown to emerge at the same time 
as early equivalence understanding (Mitchell & Horne, 2010).  
 In these examples, 3/4 and 7/9, and 5/6 and 7/8, gap thinking gives the wrong answer 
with incorrect reasoning. However, in fraction pairs such as 4/5 and 4/7, gap thinking 
gives the right answer for the wrong answer: 4/5 is larger because the gap of 1 is less 
than the gap of 3 in 4/7. A matrix of answer and explanation types (Clements & Ellerton, 
1995, 2005) has been elaborated as: 

 correct answer, correct mathematical thinking; 
 correct answer, incorrect reasoning; 
 incorrect answer, mathematically correct not fully executed/partially correct 

reasoning; and 
 incorrect answer, incorrect reasoning. 

 

Directive listening by teachers focussed on whether a child’s answer matched an 
expected response (Empson & Jacob, 2008). The term directive listening corresponds to 
the term evaluative listening used by Davis (1997). Teachers who used this type of 
listening in classroom contexts were listening for something, not listening to the 
students (Even, 2005) and this could result in teachers overestimating what students 
knew (Empson & Jacobs, 2008) by assigning understanding to correct answers with 
vague explanations (Even, 2005).  
 Observational listening (Empson & Jacobs, 2008), on the other hand, was a term 
used to describe teachers listening to students and trying to work out what the students 
were actually thinking. Davis had described this as interpretive listening (1997). 
Empson and Jacobs (2008) specified one-to-one task-based interviews as contexts for 
the use (and practise) of observational listening.  
 Responsive listening (Empson & Jacobs, 2008) by teachers encompassed trying to 
understand individual students’ approaches and responding to them individually and 
instantaneously, whilst keeping 25 children engaged and included, in the group dynamic 
of a single lesson. Davis had termed this hermeneutical listening (1997).  
 Calculation explanations described the calculation steps of a strategy rather than 
communicated the purpose of the calculations (Cobb, Yackel, & Wood, 1992). For 
example, when adding three 19s, Grade 2 children used calculation explanations in their 
initial peer conversation “Nine and nine is ... 18 ... and nine more...” (p. 104). They 
assumed they were all using the same strategy (adding ones and then tens). However, 
they did not have equivalent strategies (the same), they had parallel (assumed the same 
when not) strategies because one was adding ones and tens, 27 plus 30, whereas the 
other was adding ones before adding three more ones (incorrectly treating tens as ones), 
27 plus 3. The children did not explain what they were doing mathematically; they 
described the calculation steps that they were using to execute their mathematical 
thinking. In some classrooms, calculation explanations counted as an acceptable 
mathematical argument despite the fact that calculation explanations made it difficult 
for students to recognise whether they had equivalent strategies or parallel strategies 
(Cobb, 2011).  

Methodology 
One-to-one task-based interviews were conducted with 88 Grade 6 students, offering 65 
tasks that assessed their understanding of length and area measurement, dynamic 
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imagery, multiplication, and fraction understanding. Each student was interviewed for 
up to three hours over several sessions. Observational listening and non-directive 
prompts were used to elaborate further explanations. The students’ responses were 
noted on record sheets during the interview, and as two thirds of the interviews were 
video-taped (and all audio-taped) transcripts enabled the classification of their answers 
and explanations. Pseudonyms have been used when quoting the students’ explanations. 
 One question will be examined in detail in this paper. The Fraction Pair task assessed 
students’ understanding of the relative size of fractions. The eight fraction pairs were 
the same as used by Clarke and Roche (2009): 3/8 and 7/8, 

2/4 and 4/8, 
1/2 and 5/8, 

2/4 and 
4/2, 

4/5 and 4/7, 
3/7 and 5/8, 

5/6 and 7/8, 
3/4 and 7/9. The children were shown a card with the 

two fractions (symbolic inscriptions) and were asked, please point to the larger fraction 
or tell me if they’re the same. After they stated or pointed to their answer they were 
asked, and how did you work that out? Two of the fraction pairs are discussed in this 
paper, 4/5 and 4/7, and 5/6 and 7/8. 

Results 
In the present study, Sarah provided an example of residual reasoning when comparing 
the fraction pair 5/6 and 7/8. She chose 7/8 as larger, “because if I imagine a pie cut into 
sixths and you do five of them. And I imagine a pie cut into eight and there’s seven of 
them; that’s a little more.” When prompted, “How do you know?” she elaborated 
correctly, “Because eighths are smaller, and like seven of them would be closer to a 
whole than five sixths.” In contrast, Meg used gap thinking to conclude incorrectly that 
“They’re the same because five sixths has got one more to become a whole. And seven 
eighths it also has one more to become a whole.” In the present study, gap thinking was 
used by 50% of the students for this fraction pair.  
  

Table 1. Answers, initial and further explanations for the comparison of the fraction pair 4/5 and 4/7. 

Strategy   

Gap thinking Lara:  This one [points to 4/5] 
I:  And how did you decide? 
Lara:  ‘Cause it’s only one away from being a whole.  
I:  Mmm? 
Lara:  And this is three away from being a whole 

Benchmarking  
 

Chris:  [points to 4/5] 
I:  How did you decide? 
Chris:  Well, five, ff; four fifths is almost a whole 
I:  Mmm? 
Chris:  And four sevenths is um, a bit higher than half 

Benchmarking  
 

Adam: This one. [points to 4/5] 
I:  And how did you decide? 
Adam: Um four is closer to five. 
I:  Can you tell me a bit more about that? 
Adam: Um. Four. The four and the seven, there’s more less, like, um close to a half, but 

this one’s like almost a whole. 

The fraction pair 4/5 and 4/7 lent itself to the correct strategy of benchmarking because 4/5 
was close to one and 4/7 was just over a half. However, it was difficult to hear the 
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difference between benchmarking (a correct strategy) and gap thinking (a 
misconception) in the students’ explanations (see Table 1). 

Discussion 
In the terms of Kieren’s four-three-four model (1988), Sarah’s explanation using 
residual thinking “Because if I imagine a pie cut into sixths and you do five of them”, 
illustrated her engagement at an intuitive level. The difference between residual 
thinking (a correct strategy) and gap thinking (a misconception) was easiest to hear in 
the explanations of the comparison of the fraction pair 5/6 and 7/8 because residual 
thinking gave the correct answer with correct thinking and gap thinking gave an 
ncorrect answer with mathematically incorrect reasoning. This was because the gap 
nswer was distinctive: “They’re the same”.   

i
a
  In contrast, the correct answer, 4/5 was given by Sarah, Chris, and Adam when 
comparing the fraction pair 4/5 and 4/7 and their initial explanations sounded similar: 

 “ ’cause it’s only one away from being a whole.” 
 “Four fifths is almost a whole.” 
 “Four is closer to five.” 

However, in response to the non-directive prompting, “Mmm?”, Lara elaborated, “And 
this is three away from being a whole” (see Table 1). Lara was using the gap thinking 
misconception, calculating the complement to one for each fraction, by working out the 
numerical difference between numerator and denominator, and choosing the fraction 
with the smaller gap. Lara had the right answer for the wrong reason. 
 In contrast, when prompted, “Mmm?” Chris added, “And four sevenths is um, a bit 
higher than a half.” In Adam’s case, after being prompted “Can you tell me a bit more 
about that?”, he explained that, “The four and the seven, there’s more less, like um close 
to a half, but this one’s like almost a whole.” These further explanations revealed that 
both Chris and Adam had been benchmarking and so had the correct answer with 
correct mathematical reasoning.  

Implications 
The similarity of the initial explanations with the correct answer for the responses by 
students who were benchmarking or were using gap thinking has implications for how 
teachers talk to students and how students explain their thinking to each other.  
 It has been observed that teachers using directive listening interpreted vague 
explanations as correct mathematical reasoning if the answer was also correct (Even, 
2005). Prompting for further elaboration of the students explanations was needed to 
determine whether the students were correct (correct answer and mathematically correct 
strategy) or incorrect (correct answer and mathematically incorrect strategy). The 
relationship of observational listening had to be maintained, without cueing the student 
into a directive listening exchange. Teachers with high specialized content knowledge 
should be alert to this possible confusion and prompt for further elaboration of the 
strategy to specifically establish which strategy is being used by the student.  
 If a teacher were explaining the benchmarking strategy for the fraction pair 4/5 and 4/7 
and said, “Four fifths is nearly a whole”, Adam might hear his benchmarking strategy 
confirmed (four is closer to five) but Lara would also hear her gap thinking strategy 
confirmed (it’s only one away from being a whole). Lara might not experience 
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cognitive conflict between the teacher’s strategy and her own. The difference between 
the two strategies (benchmarking and gap thinking) could not be distinguished by the 
researchers using the students’ answers and initial explanations, so it would also be 
difficult for Lara to hear the distinction between the mathematically correct reasoning of 
the teacher and her own mathematically incorrect reasoning if only an initial 
explanation was offered.  
 It is possible that students participating in peer conversations could react in the same 
way: if the answer was the same as their own and the explanations were similar, they 
would assume their strategy was the same as the other student. For example, let us 
imagine that Lara, Adam, and Chris were working together to solve the fraction 
comparison task 4/5 and 4/7. The terminology of peer conversation would enable us to 
describe their initial explanations as calculational: “‘Cause it’s only one away from 
being a whole”, “four fifths is almost a whole” and “four is closer to five.” All three 
children describe a difference calculation and none explain why they are doing this. At 
this point they might imagine that they are all agreeing on the strategy (that they have 
equivalent strategies). Even if Lara added “And this is three away from being a whole”, 
Adam might not realise that she was not benchmarking like he was, unless he knew to 
listen for gap thinking. Parallel interpretations have the same answer and the same 
initial calculational explanation, but are actually different strategies. Lara and Adam 
have parallel strategies. Adam and Chris who are both benchmarking have equivalent 
strategies.  
 Cobb, Yackel, and Wood’s (1992) examples of calculational, parallel, and equivalent 
explanations were of addition by Grade 2 children. Excellent teaching by the classroom 
teacher in their study enabled students to increase their knowledge of addition 
strategies. Grade 6 teachers have access to a repertoire of descriptions of strategies and 
misconceptions to draw on when responding to student explanations. However, for 
students to recognise parallel explanations, they may need to acquire a similar 
sophisticated repertoire of possible strategies in order to make sense of other students’ 
explanations.  

Conclusion 
A highly detailed knowledge of gap thinking is needed in teachers’ pedagogical content 
knowledge. Observational listening by teachers may require interpretations not only of 
answers and initial explanations but also prompting for further explanations.  
 The students’ responses when comparing the fraction pair 4/5 and 4/7 demonstrated 
that these initial answers were considered acceptable mathematical answers by the 
students in the interview context. If students are to learn through peer conversation then 
teachers must establish the classroom norm that calculational answers are only partly 
acceptable mathematical answers. Acceptable mathematical answers include  

 an answer,  
 an explanation describing the strategy, and  
 a description of the calculational steps used to execute that strategy.  

This means that students will also have to develop their own knowledge of strategies, 
such as gap thinking and benchmarking so that they recognise when they have 
equivalent explanations or parallel explanations. 
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It has often been reported that children of Australian Indigenous background do not 
perform as well as a group as the whole population. This paper addresses the question of 
whether Victorian Indigenous children have different patterns of responses from the general 
population. The analysis compares the responses on each item for Indigenous children with 
the responses for non-Indigenous children both directly and for those who achieved the 
same NAPLAN scores for the 2008 NAPLAN numeracy assessment for years 5, 7, and 9. 
The results indicate trends in the characteristics of items which successes or challenges for 
Indigenous children. 

Introduction 
It has often been reported that Indigenous Australian children do not perform as well as 
a group as their peers (Doig, 2001). Large-scale assessments such as the National 
Assessment Plan - Literacy And Numeracy (NAPLAN), while they may not provide the 
detailed understanding that smaller studies can, complement the findings of smaller 
studies by offering a wider perspective at a population level. This paper addresses the 
question of whether children of Indigenous background in Victoria, Australia, have 
different patterns of mathematical responses from the general population, which may 
have implications for teaching approaches.  
 The literature to date has been principally concerned with the socio-economic and 
environmental factors that contribute to the relatively low performance of Indigenous 
children. This analysis seeks to extend our understanding of the reasons underlying the 
lower performance by identifying differences in facility related to the topics and 
presentation of the mathematical NAPLAN items. This research shows that for items in 
the Space strand of the curriculum, Indigenous children are performing close to grade 
level. This paper seeks to provide a more detailed view of the NAPLAN results by 
examining the difference in facility of the items for the Indigenous children compared to 
the entire population. To ensure that the trends found are not due to differences in levels 
of mathematical understanding, the responses of Indigenous children and non-
Indigenous children who achieved the same NAPLAN scores for the 2008 NAPLAN 
numeracy assessment are also compared. The data consistently show that Indigenous 
children show relatively strong performance on items in the Space strand, and have 
greater difficulty with items which are difficult for the general population.  

523



MORLEY 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

 Figure 1 below presents a visual representation of the relative performance of 
Indigenous and non-Indigenous children. The NAPLAN assessment score is calculated 
as the number of items correct that each child obtained. The box-plots, scaled in width 
to visually indicate relative population sizes, represent distribution the 2008 
mathematical assessment scores for years 5, 7 and 9. The population size represented by 
each box is indicated at the bottom of each box-plot. Because the assessments are not 
directly comparable, either in the number of items or the relative difficulty, the score is 
represented as the number of standard deviations from a mean of zero. 

Figure 1: Distribution of 2008 NAPLAN scores.

Figure 1 shows the extent to which Indigenous children are performing less well as a 
group in comparison to the non-Indigenous population. For each year level represented, 
three quarters of Indigenous children scored in the same range as the lower half of the 
non-Indigenous population. The upper quartile included children who achieved very 
high scores, including one child who achieved a perfect score at the year 5 level. The 
second quartile of children are within the inter-quartile range of the main population, 
and the third and fourth quartiles are in the same range as the lower quartile of the main 
population, showing that although Indigenous children as a group perform less well than 
the general population, a significant proportion of the Indigenous children are 
performing within the main range of the general population, particularly in the earlier 
years.  

Literature review 
Hart (1980) demonstrates the use of results of assessments to obtain insights into 
children’s understanding of mathematics. More recently, international large-scale 
assessments such as PISA and TIMMS have been used to measure and monitor 
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academic outcomes, allowing researchers to gain insights from analysis of large scale 
data sets. One example is Thompson, de Bortoli, Nicholas, Hillman, and Buckley 
(2010) who used the 2009 PISA results to make various inferences about successes and 
challenges within mathematics education in Australia. 
 Some of the issues that affect the learning of Indigenous students that have been 
addressed include issues such as remoteness, attendance, and language (Jorgensen & 
Sullivan, 2010), mismatches between expectations and pedagogies (Cooper, Baturo, & 
Warren, 2005), and aspects such as learning style (Reeve, 2010).  

Methodology 
The data used in this analysis comprise Victorian children’s responses to all multiple-
choice items on the Australian National Assessment Plan—Literacy And Numeracy 
(NAPLAN) 2008 Numeracy assessment for years 5, 7, and 91. Because the capability of 
large-scale assessments to inform the mathematical education community is not fully 
known, an exploratory analysis allows us to detect patterns in the data, thus providing a 
base of knowledge upon which to form and confirm hypothesis in further research 
(Tukey, 1980). Specifically, the exploration focuses on identifying patterns in items for 
which the Indigenous population responds in a different way from the non-Indigenous 
population. The analysis presents an initial overview, using boxplots showing relative 
distributions of performance, scatter plots to show trends in item facility, and Lowess 
curves to show the trends in differences in facility between the two groups for different 
curriculum strands where there are sufficient data points. 
 As a way of getting better insights into the differences between groups, the facilities 
of items for the Indigenous and non-Indigenous children who attained the same score on 
the NAPLAN assessment were compared. The Welch t-test is a variation of the non-
parametric Student t-test which is appropriate when the variances of the populations 
differ, especially when the population size is unequal, as in this case the Student t-test is 
less reliable (Ruxton, 2006). Both of these conditions apply in this case, with the 
Indigenous population being 500, 503, and 440 for the year 5, 7, and 9 cohorts 
respectively. The variance within each population of the total NAPLAN score was 
calculated for the Indigenous and non-Indigenous population, and were found to be 42 
and 49 for the Year 5 cohort, 109 and 147 for year 7, and 155 and 114 for the year 9 
cohort. The Welch t-test was applied for each score level for which there were more 
than 20 Indigenous students. A total of 1288 tests were carried out, and the 150 tests for 
which a p-value of less than 0.05 was obtained were noted. Since approximately 70 of 
these could be expected purely by chance, only items for which the Welch test was 
positive for three or more score levels have been considered. 

Analysis 
The focus of the analysis is to identify trends in the characteristics of items that 
Indigenous children find relatively challenging or have relative success with. Figure 2 
shows, for each item, the proportion of the 55,481 Year 5 children who answered the 
item correctly, or facility, on the 2008 NAPLAN numeracy assessment grouped 

                                                        
1 NAPLAN data are used and reproduced with permission of the Victorian Curriculum and Assessment Authority 
(VCAA). Analysis and findings using that data are not connected with or endorsed by the VCAA. 
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according to Indigenous background. The term facility is expressed here in terms of a 
proportion, rather than as a percentage, but is otherwise identical to the usage as 
introduced by Hart (1980). 

Figure 2. Proportion of Year 5 children who answered item correctly, grouped according to Indigenous
background.

Figure 2 shows that the items are progressively more difficult to complete successfully 
throughout the assessment. The general trend appears to be the same for both groups,
with children of both groups performing well on items at the beginning of the 
assessment, and finding the later items more difficult. The number of missed items is 
small—around 1%, for both Indigenous and non-Indigenous groups—even for items at 
the end of the assessment. The facility of each item is lower for Indigenous children 
than it is for non-Indigenous children, although some items have a smaller difference 
than others. These observations also hold for years 7 and 9 on the 2008 assessments.  
 Examining the magnitude of the difference in item facility provides more 
information. At year 5, the difference in facility between Indigenous and non-
Indigenous children is greatest for the items of moderate facility. The items which are 
relatively easy, with a facility of greater than 0.9, are answered very well by Indigenous
children, showing little difference between the two groups. Items of low facility only 
demonstrate that the items are very difficult for both groups, as the scope for differences 

526



MORLEY 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

in facility becomes smaller. There is no obvious differentiation between curriculum 
strands. Some items pose greater difficulty for Indigenous students relative to non-
Indigenous children, and the analysis of these may be of interest in future research. 
 Figure 3 shows the difference in item facility between the Indigenous and non-
Indigenous populations on the year 7 NAPLAN assessment for each item. The three 
curriculum strands Measurement, Number, and Space are depicted respectively as 
circles, crosses and triangles. A locally-weighted scatterplot smoothing, or Lowess 
curve, has been drawn for each curriculum strand. 

Figure 3. Difference in item facility between the Indigenous and non-Indigenous populations in the year 7 
results.

Figure 3 shows that at Year 7, the differences of facilities between Indigenous and non-
Indigenous children follow a similar pattern to Year 5. While Number and Measurement 
have similar Lowess curves, it is apparent that the Space strand of the curriculum has a 
smaller difference in facility between Indigenous and non-Indigenous groups. Lowess 
curves reflect all of the data, and the pointy peak of the Measurement curve indicates 
something unusual in the data. It draws our attention to the item which had the greatest 
difference in facility (0.3) between the two groups. Item 36 was answered correctly by 
70% of non-Indigenous children, but only 40% of Indigenous children. This particular 
item assessed the ability to calculate the average of a number of items listed in a table. 
The most common error for both groups was to choose the sum of the numbers, rather 
than the average. In this case, the item could be solved by inspection, by eliminating all 
options other than the correct one using the knowledge that the average is in some way 
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representative of a set of numbers. Possible sources of difficulty include the potential 
unfamiliarity of the item context (walking a dog for a certain amount of time); 
unfamiliarity with the term ―average‖; or the number of steps involved in the task. 
Graphs such as this one highlight items that are particularly problematic to students, 
providing teachers with a focus for planning teaching strategies. This particular item 
would suggest that a problem-solving strategy that includes steps for inspecting an item 
before calculating, and afterwards checking if the result is reasonable, may be useful. 
 By year 9, some, but not all, of the items on the Space strand of the curriculum 
continue to be a strength of Indigenous children relative to other strands. The greatest 
difference is found in the Algebra strand, particularly in items of moderate difficulty. It 
is also apparent that some algebra items are more difficult for Indigenous children than 
others, independent of the facility of the item. It remains as a future research project to 
investigate those items to determine if there are identifiable factors that make these 
items relatively more difficult. 

Analysis of items with achievement held constant 
As a way of getting better insights into the differences between groups, the 

facilities of items for the Indigenous and non-Indigenous children who attained 

the same score on the NAPLAN assessment were compared. The items which 
were identified as having different facilities between the two groups on the Year 5 
NAPLAN numeracy assessment are shown in Table 1. The skill is the description of the 
skill assessed by the item as given in the VCAA test answer booklet. The strand 
corresponds to one of the curriculum areas: Number (N); Space (S); Measurement (M); 
Chance and Data (D). 
 Table 1 shows that there are no items from the Measurement strand of the 
curriculum. The Space and Number strands of the curriculum contain some items, 
generally of high overall facility, that Indigenous children perform relatively well on, 
and items, generally of low overall facility that Indigenous children perform relatively 
less well on. These results indicate that the difficulty of the item has a greater impact on 
any difference between Indigenous and non-Indigenous children than the curriculum 
area of the item for children who are achieving the same NAPLAN score. 

Table 1. Items on 2008 Year 5 NAPLAN Numeracy assessment for which Indigenous children and  
non-Indigenous children of the same NAPLAN score had different facilities.  

Item Strand Multiple 
choice 

Facility of 
item for 
Indigenous 
children  

Overall 
facility 

Skill 

1 S Yes Higher 0.97 Identify symmetry in shapes 
3 S Yes Higher 0.95 Compare the size of different angles  
5 N Yes Higher 0.94 Complete number patterns based on 

simple criteria  
6 S Yes Higher 0.93 Identify a 3D model given its 

individual components  
13 N No Higher 0.82 Carry out simple money calculations 
26 N No Lower 0.32 Recognise decimal numbers generated 

by dividing by 10 
32 S Yes Lower 0.37 Identify and recognise properties of 

2D shapes 
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38 N No Lower 0.14 Perform computations involving 
decimals 

40 S Yes Lower 0.16 Recognise perspective in 2D 
representations of a 3D shape 

 

The trend of Indigenous children doing well on the easier items and less well on the 
difficult items that was observed in the year 5 results is also evident in the year 7 data. 
Of the four items identified, only one was a multiple-choice item. Two items had an 
overall difference in facility that was less than chance and so the difference in facility 
can tell us little. Item 59 also had a low facility of 0.34. Item 3, with a facility of 0.83, 
was from the number strand, and asked children to select another way of writing 62 from 
the options 6 × 2; 6 × 6; 6 + 6 and 2 × 2 × 2 × 2 × 2 × 2. Of the 503 Indigenous children 
in this year level, 125 chose the first option, 6 × 2. The correct answer, 6 × 6, was 
chosen by 291 children; only 12 chose 6 + 6, and 67 chose the final option of 2 × 2 × 2 
× 2 × 2 × 2. The remaining 8 children gave no legible response.  
 In the Year 9 data, the Algebra strand accounts for 2 of the 4 items identified as more 
difficult for Indigenous children. Overall, one of the most consistent findings is that 
Indigenous children score highly on high facility items, such as those where 90% or 
more of the population answer correctly. The implication of this finding is that children 
would benefit from increased exposure to more challenging mathematical material. 
 One of the assumptions made in measuring achievement by scores on multiple-
choice tests is that a higher score reflects greater knowledge. As Sadler (1998) points 
out, albeit in the science domain rather than mathematics, this is not necessarily the case 
for difficult questions, where the performance dips from the expected performance level 
achieved by random guessing as the student gains an incomplete understanding of the 
topic being assessed, and is more likely to choose a distractor than the correct answer. 
This is an important issue, as for these very difficult items, the achievement of a higher 
score does not match with the goal of increased understanding of the topic unless the 
individual has achieved sufficient understanding to be able to answer correctly, making 
reliance on scores alone problematic, especially for low facility items. The items that 
fall outside of these patterns are also of interest, because these are the items that reveal 
opportunities to enhance teaching practices. For example, item 3 from the year 7 
assessment, where children were asked to choose the option corresponding to 62, was 
answered correctly by 83% of children generally, but stood out as an item of difficulty 
for Indigenous children even when compared to children who scored at the same level. 
Since powers are an important component of algebra, this item is an early sign of the 
difficulties that Algebra poses for Indigenous children in year 9.  
 The implication drawn from this item, and the Year 7 item on calculating averages 
identified earlier, is that drawing the attention of children to the distinct use of language 
in mathematics, may be of benefit. 

Conclusion 
The exploratory analysis of children’s responses to the 2008 NAPLAN numeracy 
assessment for years 5, 7, and 9 described in this paper confirms and extends previous 
findings in the research literature. The analysis demonstrates that there is wide variation 
in the individual achievement, and that Indigenous children perform well on items of 
high facility, and less well on items of low facility, suggesting that the children may be 
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more familiar with the simpler items. Indigenous children in year 7 have a relative 
advantage compared to their peers of similar achievement levels in the Space strand of 
the curriculum, but this advantage lessens for year 9, and that at the year 9 level, the 
Algebra strand is relatively difficult for Indigenous children, while the Number and 
Measurement strands are relatively difficult for all assessments. The implication for 
teaching is that a detailed analysis of results in large-scale assessments may provide 
insights that may be incorporated into teaching strategies. 
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While extensive reference in the literature can be found in regard to professional learning 
sessions and workshops for teachers of mathematics, relatively little has been reported 
about engaging parents in learning about mathematics and mathematics education. The 
importance of home school partnerships is readily acknowledged, with parents being 
arguably the most influential factor in their children‘s educational success, yet many 
parents feel uninformed about current educational practices and how best to support their 
child‘s learning. This paper reports on an initiative undertaken with the parents from a 
District High School whereby they joined a ―Maths club‖ and attended information sessions 
designed to familiarise them with current mathematical practices and pedagogy. The results 
indicated that parents were appreciative of the opportunities provided to them and that they 
were supportive of contemporary mathematical practices.  

Background and literature review 
Projects designed to engage families in numeracy have provided opportunities for 
families and teachers to work together to enhance children‘s numeracy development 
(e.g., Morony, 2004; Ministry of Education, 2008). Studies have found that parental 
support for education in the home influences students‘ numeracy development 
(Anthony & Walshaw, 2007) and participation in mathematics-focused learning-at-
home activities have been consistently associated with improved student performance.  
 A review of the literature has shown that there are a number of examples of home-
school programs and initiatives designed to encourage numeracy partnerships. Goos 
(2004), for example, identified 606 numeracy programs Australia-wide whose purposes 
were to involve parents in school activities and/or inform them about syllabus changes, 
and to improve children‘s mathematics experiences and outcomes. Two issues which 
arose from her research included the need to forge parental and community involvement 
in mathematics education and change, and a recommendation to improve teachers‘, 
parents‘, and communities‘ understanding of the nature of numeracy and numeracy 
learning.  
 In terms of examples of accounts of particular projects and initiatives, Goos and Jolly 
(2004) describe a school‘s practice of offering ‗take home packs‘ of mathematics 
activities to parents who requested additional materials to use with their children. 
Reinfeld, Lountain and Mellowship (2008) describe an initiative whereby children took 
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home a ‗Maths Monster‘ with whom they engaged in exploring and investigating 
mathematical challenges at home. In an earlier paper (Muir, 2009), the author described 
a project which involved parents engaging in mathematical activities with their children 
at home as part of an ongoing program. Muir (2009) found that while initially only 36% 
of parents indicated that they had a good understanding of how their child was taught 
mathematics, the project was effective in familiarising them with current mathematical 
practices and ways in which they could reinforce these practices at home.
 Although Muir (2009) found that generally parents were willing to be involved in 
supporting their child‘s numeracy learning at home, others have found that parents can 
be hesitant in participating in their children‘s mathematical education (Anthony & 
Walshaw, 2007). This may be attributable to their own personal experiences with 
mathematics, feelings of anxiety and helplessness (Haylock, 2007) and lack of 
confidence in their ability to help their child (Bryan, Burstein & Bryan, 2001 as cited in 
Anthony & Walshaw, 2007; Civil, 2001). A lack of mathematical content knowledge 
can also limit the ways in which parents can be involved in their child‘s mathematical 
education (Peressini, 1998) and as Pritchard (2004) and Muir (2009) found, many 
parents feel uninformed about the mathematics curriculum and how it is enacted in their 
child‘s classroom. 
 Research has also shown that there is a tension between how mathematics is taught 
today compared with how it was learned by parents (e.g., Civil, 2006; Marshall & 
Swan, 2010; Peressini, 1998). According to Civil (2006), this perception is often 
reinforced through the superficial interpretations of reform mathematics education and 
adoption of practices, such as activities, group work and manipulatives, which do not 
necessarily focus on understanding students‘ thinking. Moreover, many parents tend to 
give higher value to their own forms of doing mathematics (Quintos, Bratton & Civil, 
2005), which has implications for influencing the mathematical interactions they have 
with their children. In contrast, Quintos et al. (2005) found that children valued schools‘ 
form of knowledge more often over the parents‘ knowledge, hence demonstrating the 
potential tensions that may arise when engaging in mathematical tasks and assignments 
at home. Although generational differences are perhaps inevitable, Civil (2006) argues 
that parents were more concerned that they were not familiar with the homework tasks 
set, and therefore unsure about the best ways in which to help their children. It would 
seem sensible, therefore, to provide information and engage in dialogue with parents 
about what it means to learn mathematics today, how best to capitalise on the 
knowledge held by parents and how to involve them more actively in the mathematics 
education of their children. In order to inform and engage parents, the author of this 
paper initiated a project whereby parents were encouraged to join a ‗Maths Club‘ and 
attend information sessions designed to familiarise them with current mathematical 
practices and pedagogy. While the project evolved from the original ‗Numeracy at 
Home Project‘ (Muir, 2009), it was distinctly different in nature and involved 
participants that may or may not have been involved in the original project. The project 
helped to address recommendations raised by Goos and Jolly (2004) and Cai (2003) that 
further examination of parental roles is needed. Specifically, the three research 
questions were: 

 What mathematical knowledge, skills and attitudes are held by a selected number 
of parents? 
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 How informed are a selected number of parents about current mathematical 
practices? 

 What are the features of an initiative designed to inform parents about current 
mathematical practices? 

Much of the extended research involving parental workshops has occurred in the United 
States, with Civil‘s research on linking home and school being particularly relevant to 
this paper. Programs such as Math and Parent Partnerships in the Southwest [MAPPS] 
aimed to assist parents to help children with their school mathematics work and to 
develop leadership capital among parents (Quintos, et al., 2005), while Linking home 
and school: A bridge to the many faces of mathematics [Project BRIDGE] focused on 
parents learning mathematics with understanding (Civil, 2001). Workshops encouraged 
the use of non-traditional approaches with a focus on investigation, often presenting a 
contrast with the participants‘ own schooling experiences. In Australia, there are limited 
examples of similar programs, with Marshall and Swan (2010) providing one example, 
involving a series of six workshops conducted with parents that focused on 
mathematical topics, such as place value and fractions. The workshops highlighted for 
them that the language of mathematics was a barrier for many parents and that parents 
were unsure about ―the times tables‖ and confused about some aspects of fractions. The 
workshops proved to be successful in increasing parents‘ confidence about assisting 
their children with mathematics. 
 In summary then, most of the Australasian research involving parents has focused on 
home-school partnerships, with the general consensus being that such partnerships have 
the potential to contribute positively to students‘ educational outcomes. Other research 
(e.g., Civil, 2001) has involved parents in workshops that are aimed at increasing their 
own mathematical content knowledge and that of mathematics educational practices. 
The study discussed in this paper adds to the limited research in this area through 
providing an account of a parental involvement initiative and the feedback received 
from parents as a result of this. 

Methodology 
The participants were parents from a local district high school who received an open 
invitation to join the ―Maths Club‖. Three workshops were offered over five months 
and the number of participants varied from six to eighteen. Each sixty-minute workshop 
had a different topic and some parents attended all sessions, while others attended one 
or two. The ages of their children varied from pre-school to middle school. At the 
beginning of each workshop, parents were asked to complete an ‗Anticipation Guide‘ 
(Tierney & Readance, 2005), which varied in nature, but usually included levels of 
agreement responses to a number of statements and completion of some mathematics 
problems. A summary of the workshop topics, dates, participant numbers, and 
anticipation guide overview is presented in Table 1.  
 Because the attendance varied at each session and not all parents attended every 
session, it seemed sensible to evaluate and seek feedback on each individual session, 
rather than attempt to evaluate the effect of being a member of the maths club in 
general. Qualitative data analysis commenced during the data collection process and a 
frequency count was conducted for the survey items and levels of agreement statements. 
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Table 1. Overview of the workshops. 

Date No. of 
participants 

Topic Description of workshop Anticipation Guide 
overview 

3/5/10 18 Helping your 
child with 
numeracy at 
home 

Powerpoint presentation 
involving responses to 
statements (e.g., there is one 
right way to do a maths 
problem; calculators make you 
lazy) and interactive activities 

Circle level of 
agreement to 8 
different statements 
(e.g., Maths is about 
learning the correct 
procedures to solve 
problems) 
3 open-ended 
questions 
(e.g., Were any of your 
ideas challenged as a 
result of this session?) 

23/8/10 6 Algorithms: What 
are they? How are 
they taught? 

PowerPoint presentation, 
including alternative algorithms 
and traditional algorithms; 
demonstration; reading article 
(Clarke, 2005) 

Questionnaire (21 
Likert scale items; e.g., 
I am confident with 
my own mathematics 
ability); 4 open-ended 
questions (e.g., Why 
did you decide to join 
the maths club); 6 
maths problems (e.g., 
300 – 124) 

11/10/10 7 Tables and mental 
computation 

Hands-on activities and games; 
reference to Mental 
Computation: A strategies 
approach and Turn the Tables 
(De Nardi, 2004) 

10 multiplication facts; 
confidence rating 
scale;  
3 open-ended 
questions (e.g., Are 
you familiar with how 
children are taught 
multiplication today?) 

Results and discussion 
Parental mathematical knowledge and skills 
Data obtained from the anticipation guides administered in the second and third 
workshops were used to determine some of the mathematical knowledge held by this 
group of parents. At the beginning of the second workshop, for example, the parents 
were asked to solve the following four problems and to provide a preferred method, an 
alternative method, and a child‘s method (if appropriate or different): 
1. Susan has $5.80 and John has $6.35. How much more money does John have then 

Susan? 
2. 300 – 124 
3.   
4. 2.06 + 1.3 + 0.38 
In addition, Question 5 required them to order three different fractions and Question 6 
asked them to circle the bigger decimal number.  
 All six participants provided the correct response for Questions 1 and 2, and all 
provided a preferred method of solution. Two participants used a traditional algorithm 
for each of the problems, while the other participants either solved the questions 

534



MUIR 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

mentally or informally (e.g., ―I added 20 cents to get $6.00, then added 35c). Two child 
solutions were provided which were ―counting on fingers‖ and ―the same as myself‖ 
[round up to $6.00 and then add 35 cents].  
 Question 3 posed problems for all but one participant who achieved the correct 
answer by using the following method: . Incorrect answers included  

(provided by two participants) and  (also provided by two participants). Not 
surprisingly, these results indicate that parents may hold similar misconceptions about 
fractions as do students and pre-service teachers (e.g., Ball, 1990; Siemon, Virgona & 
Corneille, 2001). A preferred solution, which resulted in , was achieved by ―adding the 
bottom figure, then the top‖. Interestingly, there were no attempts to show how a child 
may attempt the question, with one response being, ―not sure at this age‖. This could be 
attributable to the age of the participant‘s child, or unfamiliarity with observing or 
discussing fraction situations with their child. Five participants could correctly order 

, with one participant identifying as smaller than . In contrast, only one 
participant recorded an incorrect response to question 4 (3.17) and all participants 
correctly identified 2.46 as being larger than 2.3489. 
 The results from this set of questions indicate that this admittedly small selection of 
parents could add and subtract 3 digit numbers, calculate with and order decimals, but 
had less success with adding simple fractions. There is scant evidence in the literature 
related to parental mathematical knowledge, but extensive research conducted with 
teachers, pre-service teachers and students (e.g., Ball, 1990; Siemon, et al., 2001) 
indicate that similar problems with fractions exist elsewhere and further exploration into 
parental knowledge of fractions and other mathematical areas needs to be undertaken. It 
would also be interesting to further explore the reasons for the general lack of response 
to recording children‘s solution methods. This may indicate that the participants did not 
engage in doing these types of questions with their children and could not therefore 
record what their likely response would be, or they simply may not have had the 
opportunity to do this as they may have been parents of younger children. 
 At the beginning of the third workshop on tables and mental computation, the parents 
were asked to complete 10 multiplication questions (e.g., 6 × 7). They were timed and 
then asked to circle their level of confidence in completing the task. All but one 
participant (n=7) correctly answered all 10 questions, with the one error being an 
answer of 63 for 7 x 7. This participant indicated that they were ‗not confident‘ with 
completing the task, while the other participants all circled ‗quite confident‘. The results 
indicated that this selection of parents at least had the knowledge and skills to be 
reasonably confident with recalling multiplication tables. 
 Table 2 provides a summary of the data that was obtained from the Likert scale items 
(ranging from Strongly Disagree to Strongly Agree) that particularly relate to parents‘ 
mathematical knowledge, skills, and attitudes. Percentages have been used for ease of 
comparison. 
 The table shows consistency with the results obtained from the number questions, in 
that most participants indicated that they preferred to do most calculations mentally and 
that they knew their multiplication tables. 
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Table 2. Summary of parents’ perceptions of mathematics knowledge, skills, and attitudes. 

Statement SD D N A SA 
I prefer to do most calculations mentally 0 0 0 83 17 
I understand what algorithms are 50 33 17 0 0 
I know my multiplication tables 0 0 0 67 33 
I get confused with different words and terms used in 
mathematics 

0 0 0 83 17 

I am confident with my own mathematics ability 0 17 0 66 17 
There is a ‗correct‘ way to do any maths problem 0 33 33 33 0 
I think rote learning is a good way to learn your 
tables 

0 33 17 17 33 

 

Not surprisingly, many participants agreed that rote learning is effective and all 
participants indicated that this was how they had learnt their multiplication tables. As 
Marshall and Swan (2010) found, one of the common themes that emerged from the 
workshops, and a topic that parents wanted further information about, was the use of 
mathematics terminology. There was 100% agreement with the statement that this was a 
source of confusion for parents. (A maths glossary of terms was provided to parents in a 
subsequent session.) 
 There was a mixed response to the open-ended question ‗How did you feel about 
mathematics when you were at school?‘ Although some responded positively (e.g., 
―Loved it! Found it easy), others indicated that they ―didn‘t feel comfortable with it‖ 
and ―I didn‘t enjoy it because I wasn‘t very good at it, with the impression there was 
only one correct way to answer a problem‖. 

Parental understandings about current mathematical practices 
In order to answer the second research question, items from the anticipation guides 
distributed in the first two sessions were analysed, along with parents‘ responses to 
open-ended questions from all sessions. In the first session, parents were asked to circle 
their level of agreement (agree, disagree, unsure) with eight different statements. 
Following the session, they were then asked to review their responses and identify 
whether or not any of their ideas were challenged as a result of the session. The results 
showed that eight of the 18 participants indicated that they no longer agreed that 
―Chanting is an effective way to learn tables‖, and while initially five people agreed that 
―There is a correct way to do a maths problem‖, all of these changed their opinion at the 
end of the session. While no claims can be made as to the sustainability of these results, 
it is encouraging that the sessions did result in positive changes in some of the parents‘ 
beliefs. The following comments are illustrative of the changes in responses received: 

Most maths calculations can be done a number of ways 
 
I had the impression that maths was more recall than process. I have noted processes that 
I can now discuss with children. 

The parent questionnaire referred to in Table 2 also contained items that were 
particularly related to parents‘ knowledge of current mathematical practices and their 
confidence in helping their children with mathematics at home. Table 3 shows the items 
and levels of agreement received for these aspects. 
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Table 3. Parents’ understandings of current mathematical practices. 

Statement SD D N A SA 
Mathematics teaching today is different to when I 
went to school 

0 0 33 33 33 

I am confident with helping my child with 
mathematics homework 

0 0 0 50 50 

I am confident with helping my child with the 
following specific maths topics: 

 

Addition and subtraction 0 0 0 50 50 
Multiplication and division 0 0 0 67 33 
Place value 0 33 0 50 17 
Fractions 17 33 0 50 0 
Multiplication tables 0 0 0 83 17 
Decimals 0 17 0 66 17 
Algebra 17 66 0 0 17 

 

When interpreting the responses in relation to confidence with helping with specific 
maths topics, it must be remembered that many of the parents had young children and 
may have subsequently interpreted their confidence with younger grade levels, rather 
than the topic itself. Similarly it is difficult to conclude whether levels of agreement or 
otherwise relate to parents‘ own personal knowledge and confidence, or whether they 
are referring to their ability to ‗help‘ their child. 
 Qualitative comments revealed that the parents were not familiar with current 
mathematical practices and were concerned that they ―would teach them the wrong 
way‖. Although this issue was challenged at the workshops, parents still indicated that 
―I am not familiar with current practices‖ and ―I‘m not sure how it is taught‖. This is 
consistent with Muir‘s (2009) findings whose survey revealed that only 36% of parents 
agreed that they had a good understanding of how their child was taught mathematics. 

Evaluation of workshops 
The results indicated that the parents in this study were willing to participate in their 
child‘s mathematical education and appreciated the opportunity to become more 
informed about current mathematical practices. Furthermore, as Civil (2001) found, 
parents were also appreciative of the opportunity to engage in discussions about 
mathematics teaching, enjoyed doing mathematics, and were keen to improve their own 
mathematical content knowledge, while gaining a better understanding of reform 
mathematics. 
 The workshops were designed to be informal, with some information sharing, 
opportunities to interact with the presenter and each other, participation in hands-on 
activities and provision of resources. In the second workshop parents were asked to give 
their reasons for joining the maths club and what they hoped to get out of it. 
Interestingly all reasons given referred to the benefits they saw for their children, rather 
than themselves. ―To get a better understanding of teaching methods to help kids at 
home‖ was typical of the comments received. Parents also identified that they would 
like future workshops to include fractions and ideas for extending children who are 
confident and helping those who are not. 
 As Table 1 shows, the numbers attending the workshops varied, with some parents 
attending all sessions and others attending one or two. The high numbers at the first 
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workshop were attributed to it being conducted at the same time as another initiative, 
which involved the taking home of numeracy packs in the early grades and which was 
very actively promoted with the parents. Informal feedback received from parents 
indicated that the sessions were valuable, with one parent expressing, ―That was 
fantastic‖, and there was overwhelming support for the sessions to continue in 2011. 
The success of the workshops could also be attributed to the support of the school‘s 
teachers and senior staff, who prepared fliers, advertised in the newsletter, and 
personally approached parents to attend. 

Conclusions and implications 
There is still more to be done in terms of finding out the knowledge and skills held by 
parents and what their perceptions of mathematics are. Many parents in this study 
indicated that they did not have a good understanding of how their children were taught 
mathematics, which can be a source of tension when trying to help children with 
mathematics at home. More research needs to be undertaken into the reasons for these 
tensions – it may be because mathematics is taught in a different way to years ago, or 
even that parents see teachers as having the responsibility for mathematics education 
(Civil, Diez-Palomar, Menendez-Gomez & Acosta-Iriqui, 2008). Nevertheless, parental 
workshops such as the one described in this paper, and programs such as Maths for 
Parents (Civil, 2001) may help to address these concerns. 
 This study has also added to the literature in relation to highlighting the 
mathematical knowledge held by parents—such as indicating that some of the 
misconceptions held by pre-service teachers, teachers, and students are also held by 
parents. It is recommended that parental workshops should therefore address 
mathematical content, along with familiarising them with current mathematical 
practices. As Marshall and Swan (2010) found, these parents also indicated that there 
were mathematical topics that they would like further information about, including 
fractions and place value. In addition, Civil (1999) recommends that a two-way 
dialogue needs to be established, whereby parents are seen as intellectual resources and 
provision made for their beliefs, ideas and concerns to be heard. 
 The next phase of the study will examine ways in which to empower parents to 
contribute more to their child‘s mathematical education, particularly in the higher 
grades, and to explore different models or approaches to help parents understand the 
mathematics teaching that occurs in today‘s classrooms. It is hoped that the 
documentation of such programs will assist teachers and educators with recognising the 
importance of parental influences and the difference they can make to their child‘s 
education.  

References 
Anthony, G., & Walshaw, M. (2007). Effective pedagogy in mathematics/Pangarau. Wellington, NZ: 

Ministry of Education. 
Ball, D. L. (1990). The mathematical understandings that prospective teachers bring to teacher education. 

The Elementary School Journal, 90(1), 449–466. 
Cai, J. (2003). Investigating parental roles in students' learning of mathematics from a cross-national 

perspective. Mathematics Education Research Journal, 15(2), 87–106. 
Clarke, D. M. (2005). Written algorithms in the primary years: Undoing the good work? In M.Coupland, 

J. Anderson, & T. Spencer (Eds.), Making mathematics vital (Proceedings of the 20th biennial 

538



MUIR 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

conference of the Australian Association of Mathematics Teachers, pp. 93–98). Adelaide: Australian 
Association of Mathematics Teachers. 

Civil, M. (1999). Parents as resources for mathematical instruction. In M. van Groenestijn & D. Coben 
(Eds.), Mathematics as part of lifelong learning. Proceedings of the 5th International Conference of 
Adults Learning Maths: A research forum, Utrecht, Netherlands, July 1998 (pp. 216–222). London: 
Goldsmiths College. 

Civil, M. (2001, April). Redefining parental involvement: Parents as learners of mathematics. Paper 
presented at the NCTM research pre-session, Orlando, FL. 

Civil, M. (2006). Working towards equity in mathematics education: A focus on learners, teachers, and 
parents. In S. Alatorre, J. L. Cortina, M. Sáiz, & A. Méndez (Eds.), Proceedings of the Twenty Eighth 
Annual Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education (Vol. 1, pp. 30–50). Mérida, Mexico: Universidad Pedagógica Nacional. 

Civil, M., Díez-Palomar, J., Menéndez-Gómez, J. M., Acosta-Iriqui, J. (2008, March). Parents’ 
interactions with their children when doing mathematics. Paper presented at the Annual Meeting of 
the American Educational Research Association (AERA), New York, NY. 

De Nardi, E. (2004). Avanti mental maths. Tuggerah, NSW: Elite Education. 
Goos, M. (2004). Home, school and community partnerships to support children‘s numeracy. Australian 

Primary Mathematics Teacher, 9(4), 18-20. 
Goos, M., & Jolly, L. (2004). Building partnerships with families and communities to support children's 

numeracy learning. In I. Putt, R. Faragher & M. McLean (Eds.), Mathematics education for the third 
millenium: Towards 2010. Proceedings of the 27th annual conference of the Mathematics Education 
Research Group of Australasia, Townsville (pp. 279–286). Sydney: MERGA. 

Haylock, D. (2007). Mathematics explained for primary teachers (3rd ed.). Thousand Oaks, CA: Sage 
Publications. 

Marony, W. (2004). Numeracy: Families working it out together. Australian Primary Mathematics 
Teacher, 9(4), 21-23. 

Marshall, L. & Swan, P. (2010). Parents as participating partners. Australian Primary Mathematics 
Teacher, 15(3), 25–32. 

Ministry of Education. (2008). Home-school partnership: Numeracy. Wellington, NZ: Learning Media 
Limited. 

Muir, T. (2009). At home with numeracy: Empowering parents to be active participants in their child's 
numeracy development. In R. Hunter, B. Bicknell, & T. Burgess (Eds.) Crossing divides (Proceedings 
of the 32nd annual conference of the Mathematics Education Research Group of Australasia, pp. 395-
402). Wellington, NZ: MERGA. 

Peressini, D. D. (1998). The portrayal of parents in the school mathematics reform literature: Locating the 
context for parental involvement. Journal for Research in Mathematics Education, 29(5), 555–583. 

Pritchard, R. (2004). Investigating parental attitudes and beliefs in mathematics education. In I. Putt, R. 
Faragher & M. McLean (Eds.), Mathematics education for the third millenium: Towards 2010. 
(Proceedings of the 27th annual conference of the Mathematics Education Research Group of 
Australasia, Townsville, pp. 478–485). Sydney: MERGA. 

Quintos, B., Bratton, J., & Civil, M. (2005, February). Engaging with Parents on a Critical Dialogue 
About Mathematics Education. Paper presented at the 4th Congress of the European Society for 
Research in Mathematics Education, February 17–21, 2005, Sant Feliu de Guíxols, Spain. 

Reinfeld, B., Lountain, K., & Mellowship, D. (2008). Maths monsters, learning trails, games and 
interventions: Some of the teaching and learning resources developed by teachers in the mathematics 
for learning inclusion program. Australian Primary Mathematics Teacher, 13(4), 28-32. 

Siemon, D., Virgona, J., & Corneille, K. (2001). The Middle Years Numeracy Research Project: 5–9. 
Bundoora, Victoria: RMIT. 

Tierney, R. J. & Readence, J. E. (2005). Reading strategies and practices (6th ed.). Boston: Pearson, 
Allyn & Bacon. 

539



MATHEMATICS: TRADITIONS AND [NEW] PRACTICES • © AAMT & MERGA 2011 
 

TEACHING MATHEMATICS IN THE PAPUA NEW 
GUINEA HIGHLANDS:  

A COMPLEX MULTILINGUAL CONTEXT 

CHARLY MUKE  
Australian Catholic University 

charly_muke@yahoo.com.au 

PHILIP CLARKSON 
Australian Catholic University 

Philip.Clarkson@acu.edu.au 

 
The classrooms of Papua New Guinea are multilingual. For many years only the official 
language of education, English, was permitted for teaching. In the mid 1990s the 
curriculum changed to declare that multiple languages would be used in teaching in the first 
three years of schooling. In the next year English is introduced, and gradually over the next 
few years becomes the dominant language of teaching. This paper examines how eight 
teachers in the crucial transition year 3 use their multiple languages to teach mathematics, 
although they seem to use their other available languages to privilege English learning. 

Introduction 
Papua New Guinea (PNG) has the most languages per head of population in the world. 
With a population of about six and a half million people there are some 820 living 
distinct languages. Situated on the eastern half of the island of New Guinea, the people 
of tropical PNG live in many coastal villages through to villages in the deep valleys in 
the highlands that make travel from one valley to the next difficult at the best of times. 
Clearly the many languages spoken have always impacted on the education system. The 
first schools were founded by Christian missionaries in the late 1800s in coastal areas.  
 The highlands were so inaccessible that westerners thought they were largely 
uninhabited until they were reached by Australian „explorers‟ in the early 1950s. In fact 
the majority of the population has always lived in the highlands. It was only then that 
the colonial Australian government began the extension of the school system into the 
high valleys. The missionaries had favoured the use of indigenous languages in 
schooling, with the better students who reached the later years of primary school being 
taught English.  
 With the coming of a whole country colonial policy in the late 1940s, an English 
only policy was imposed for teaching in all schools. The first author can remember 
sitting during his early years of school wondering what was going on, since he as a little 
boy never experienced the language of English until he went to school at age 7. The 
second author has photographs from the early 1980s of „classroom rules‟ and „school 
rules‟ insisting that non English languages should not be used in class or the 
playground, with various reprimands detailed if students were caught disobeying these 
rules. 
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The school curriculum mirrored one from the colonial power Australia. With 
independence gained in 1975, gradually elements of the curriculum drew more and 
more on PNG cultures, although as in many ex-colonies, the impact of the western 
curriculum is still very obvious. Teaching too is still heavily influenced by western 
ideas with Australia regularly providing „aid money‟ to „upgrade‟ the quality of teachers 
and their preparation (Clarkson, Hamadi, Kaleva, Owens, & Toomey, 2004). There is a 
growing voice however that such aid money is perpetuating the global education 
hegemony, and it is time for PNG to develop its own style of teaching (Nongkas, 2007), 
which indeed is emerging (Pickford, 2008). But one far ranging decision made in the 
late 1990s that saw a definite break with much western education practice was for the 
early years of schooling in PNG schools to become multi lingual.  
 The PNG mathematics curriculum has also been impacted by the various general 
trends in the school curriculum. Some use has been made of indigenous mathematics 
(Lean, 1994; Muke, 2001), although there is much scope for more of this to take place. 
It has been recognised for many years that the mathematics performance of PNG 
students in part relies on their language abilities (Clarkson, 1983), but more their 
performance on a variety of mathematics tests, and indeed on system examinations 
covering language and general studies as well, is in part dependent on their competence 
in their various languages (Clarkson, 1992; Clarkson & Clarkson, 1993). Such results 
are mirrored by other studies elsewhere in the world (Barwell, 2008). However these 
early research projects in PNG only studied urban students, and only looked at the 
interplay of two of the multi lingual students‟ languages; Pidgin (the common lingua 
franca in the northern parts of PNG) and English (the language of schooling and the 
dominant language of commerce). However, most school students attend rural schools, 
and know three or four languages, but rarely English, when commencing school. The 
early studies also did not analyse the teaching of mathematics but concentrated on 
students‟ learning and understanding of mathematics. 

The present study 
The study describe in this paper focuses on the teaching of year 3 mathematics in four 
PNG rural primary schools. The year level is important. In the new curriculum the first 
three years of schooling is undertaken in Elementary Schools (Prep, years 1 and 2). In 
these schools the curriculum indicates that local languages should be used for teaching, 
although some schools in urban areas do opt to use English. After year 2, students move 
to primary schools which span years 3 to 8. Year 3 is marked as the „bridging year‟ in 
teaching. During this year it is anticipated that the language of teaching will be a 
mixture of the languages used in the Elementary school, with a lingua franca if not 
already used in year 2, and the gradually introduction of English. It is expected that by 
year 5 all teaching will be in English, although the curriculum documents suggest use of 
other languages if the teacher gauges that would help the learning of students. This 
situation applies to all curriculum areas including mathematics. 
 Potentially, there are a number of possibilities for teachers teaching in a multilingual 
context to pursue. They could just decide on the simplest approach to stay with the 
dominant teaching language. On the other hand they may decide to use other languages 
available, but only switching from the dominant teaching language when students are 
having difficulties in understanding mathematical concepts, or an indigenous language 
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may be called for when analysing a problem drawn from the local culture. The context 
becomes more complex if the teacher takes seriously the progression from using the 
everyday language of the students through to formal mathematical language, Some of 
this complexity has been portrayed diagrammatically elsewhere (Clarkson, 2009). For 
this study the work by Setati and Adler (2001) was important. They mapped out 
possibilities for teachers‟ use of language in multi lingual mathematics classroom in 
South African classrooms on a number of dimensions. One dimension was the 
possibilities available as teachers and students moved from the informal to the needed 
formal mathematical language. Another was moving between the various vernaculars 
spoken by teachers and students. A third was moving back and forth between 
managerial and conceptual teaching discourses. 
 The authors were aware that many teachers in PNG also believe that the learning of 
mathematics has little to do with student language competencies. Moreover we were 
cognisant of the fact that teacher college educators did not believe that the notions of the 
„bridging year‟ had implications for how mathematics was taught in year 3, since 
mathematics was a language free zone (Clarkson et al., 2004). Nevertheless anecdotal 
evidence was available to both authors from their own observations of PNG classrooms 
that occasionally good teachers of mathematics, even before the change to the 
curriculum, would switch languages when teaching mathematics, if they felt the need to 
do so. However why they did so to our knowledge has never been explored. Thus the 
focus for this study became: 
1. Did the teachers use a variety of languages when teaching mathematics and if so 

was there a consistent pattern to this usage for individual teachers and/or topic? 
2. If teachers did use multiple languages in their teaching, why did they? 

Methodology 
This study was conducted in four primary schools in the rural Wahgi Valley of the 
western Highlands of PNG. All schools are some days‟ travel from the main town of the 
province Mt Hagen. The eight year three teachers were all fluent English and Pidgin 
speakers, and all knew the local vernacular Wahgi, and could speak other languages as 
well. The year 3 students were for their age fluent in Wahgi, Pidgin, knew some 
English, and often knew some other language(s) as well. The schools by western 
standards had few resources, but by PNG standards had normal resources to draw on. 
They certainly had dedicated teachers. 
 The first author observed a number of classes taught by the teachers. Although it had 
been planned to observe three classes for each teacher, each separated by a six month 
interval, because of logistic difficulties this did not occur (Valero & Vithal, 1998). As it 
turned out three teachers were observed for three lessons, two for two lessons, and the 
remaining three teachers for a single lesson giving 16 observed lessons in total. Each 
lesson was video and audio recorded. Teachers were interviewed briefly before each 
lesson, and a post lesson interview of some 60 minutes was conducted on the day of the 
lesson. All recordings of the lessons were transcribed as were the interviews. During 
each lesson the first author also completed field notes, concentrating particularly on the 
language of the teacher, the context in which that language occurred, the segment of the 
lesson, and content of the teaching. The video recording of the lesson was available 
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during the interview, and if it helped the discussion, segments were often replayed at 
either the author‟s or teacher‟s instigation.  
 The transcription data from the lessons were analysed by sentence for the types of 
languages used during the lesson, and at what points the teacher switched between 
languages. The author made a judgement of language use on the basis of semantics and 
syntax of the sentence. For the vast majority of sentences this was clear cut. The 
instances of using an isolated borrowed word (often a formal mathematical term in 
English) were noted, but did not impact on the decision of language categorisation. The 
interviews were analysed to find the perception of the teachers as to why they used 
multiple languages in their teaching, and why they switched between languages when 
they did (Gee, 1999). 

Results 
Research question 1  
In the 16 observed lessons, instances of the use of Wahgi, Pidgin and English were all 
noted except for two lessons when Wahgi was not used and one lesson when English 
was not used. As shown elsewhere (Muke & Clarkson, in press) about half the teachers‟ 
language use was in Pidgin with the remainder divided about equally between Wahgi 
and English. The same pattern of language use was not consistent from lesson to lesson 
for teachers who gave multiple lessons. Nor did the mathematical topic of the lesson 
seem to be the determinant of language usage.  
 It has been noted above that sentences were the unit used to estimate the frequency of 
„language use‟. However many formal mathematical terms/phrases expressed in English 
were borrowed even though the overall sentence was in one of the local languages. 
Table 1 shows the topics taught by the teachers and the specific terms borrowed into 
Wahgi and Pidgin. One feature of this listing is the variety of terms borrowed. The 
higher frequency of terms borrowed into Pidgin is probably just a function of the greater 
use made of Pidgin by teachers. 

Research question 2  
One way to explore why teachers switched languages in their teaching is to look at the 
types of language switches Setati and Adler (2001) referred to as code-borrowing and 
code-mixing. Both were observed in this study.  Code-borrowing refers to a switch that 
involves borrowing either a term or a phrase from a different language and using it in a 
sentence constructed in another language.  Similarly code-mixing refers to a sentence 
made up of two languages, where one language is used to start the sentence and the 
other completes the sentence. 
 First, code-borrowing that involved a single term in another language and used 
within a sentence constructed in another language will be considered, followed by that 
of borrowing a phrase. In this study, most terms that were borrowed by teachers were 
from a mathematical register, and the overwhelming majority of these terms were from 
the mathematical English register. As Skiba (1997) noted, one of the skills of a bilingual 
or multilingual speaker is to use such borrowed terms within the grammatical rules of 
the sentence, which is in the other language.  The two main parts of most sentences are 
a noun phrase and a verb phrase (Skiba, 1997). Teachers observed in this study always 
used terms from the formal mathematical English register as a noun. This meant that the 
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verb phrases, the rest of the sentences, were commonly in one of the local languages. To 
illustrate this, an excerpt from the transcription of one of the three lessons given by Mr. 
W will be examined. 

Table 1. English formal terms borrowed when using Wahgi or Pidgin. 

Teacher / 
Lesson no. 

Lesson topics English mathematical terms borrowed into: 

Wahgi Pidgin 
Mr M / L1 
Mr M / L2 
Mrs K / L1 
Mrs K / L3 
Mr J / L1 
Mr J / L2 
Mrs T / L1 

Number 
operations  

a groups of b, carry, 
division, group, 
multiplication, multiply, 
names of place columns, 
number names, multiples 
of  x, number, plus, 
subtract, times table, times 

a groups of b, a × b equals, addition,  
all together, carry, count, divide, 
divided, division, equals, groups of, 
multiples, multiplication, multiply, 
names of place columns, number 
names, number, place value, plus, put 
down, subtract, takeaway, times 
table, times, zero 

Mr M / L3 
Mr W / L2 
Mr A / L1 

Fraction  half, quarters, one whole, 
quarter 

whole, half, quarter, number names, 
fraction, one whole, parts, one fourth, 
two thirds,  three fourths, one sixth, 
four sixths, fractions, square  

Mrs K / L2 
Mr D / L1 
Mr D / L2 
Mr K / L1 
 

Measurement guess, measurement, 
meter, perimeter, meters, 
number names, weight, 
length, units, grams, 
kilograms, tonnes, true, 
false,  units of measuring, 
weight  

measurement, millimetres, 
centimetres, meters, kilometres, 
10mm = 1cm, 100cm = 1m, 1000m = 
1km, meter ruler, number names, 
guess, weight, grams, kilograms, 
perimeter, shapes, metres, number, 
milligrams 

Mr W / L1 Number   number chart, numbers, words, 
objects, number names 

Mr W / L3 Shape   shapes, kite, corner, rectangle, 
measurement, triangle, square, 
oblong, angle,  rhombus, trapezium, 
diamond, pentagon, number names 

 
An examination of the transcriptions of Mr W‟s overall language combinations in these 
three lessons showed that he responded to the language need of each lesson without 
using a particular language combination. The topic for this lesson was fractions, and Mr 
W is asking students what a fraction is: 

Mr W: Lesson 2, Paragraph 17 & 18 (original in Pidgin & English) 
17. Mr W:     Okay, what is a fraction? … Fraction, em wanem samting? …Meaning 
bilong em olsem … a small part of a thing. A small part of a … 
18. Children: Thing 
 
English Translation  
17. Mr W: Okay, what is a fraction? … Fraction, what is it? The meaning belongs to 
it/him/her is… a small part of a thing.  A small part of a … 
18. Children: Thing 

The language combination Mr W used in lesson 2 was 78% of Pidgin and hence the 
leading language for this lesson, with 16% of English as the first supportive language, 
and 2% of Wahgi as the second supportive language. The two languages used in 
paragraph 17 by Mr. W were Pidgin and English. The first sentence is a question in 
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English, asking for the meaning of the term „fraction‟. Although in this lesson English 
was used far less often than Pidgin, the teacher felt the need to ask the question in 
English at the beginning of this paragraph. Later analysis showed that Mr W had a 
desire to model English, particularly so that students could listen to questions in English 
and hence be more prepared for test situations where items were always written in 
English. The second sentence of the excerpt is in Pidgin and repeats the question first 
asked in English. What is of immediate interest here is the code-borrowing occurring in 
the second sentence with the word „fraction‟. The sentence is constructed in Pidgin in 
such a manner that enables the borrowing of mathematical term in English, but uses 
correct grammar for Pidgin. The question asked in Pidgin is; “Fraction, em wanem 
samting?” and when translated word for word; “fraction; it (em) what (wanem) thing 
(samting)‟, which is understood as; fraction, what is it? The word „em‟ in Pidgin is a 
pronoun and it is used as „it‟ to refer to „fraction‟ as a thing. It is common in Pidgin to 
use the pronoun immediately after the name of a thing is used. Such an expression in 
this type of sentence shows that in this case the term fraction was used as a noun phrase, 
and the rest of the sentence in Pidgin formed the verb phrase. This means that the local 
language, in this case Pidgin, was used as a verb phrase, promoting the noun. The 
implication follows that for this sentence the local language took up a supportive role to 
the promotion of English. 
 The third sentence in the above excerpt involved code-mixing. Code-mixing is where 
a single sentence is completed by two different languages.  In this case, the first part of 
the sentence is in Pidgin and the second part is in English. As translated, Pidgin was 
used to introduce the formal meaning of fraction. In Pidgin, the teacher said; “meaning 
bilong em olsem” which means the definition belongs to it, where the word em used as 
„it‟ in Pidgin referring to the term fraction, and then switched to English to actually say 
the formal meaning in English; „a small part of a thing‟. The way Pidgin, the local 
language, is used here is that it is used as a pointer; directing students to be aware of the 
coming of an important thing. In this case it is not only the formal definition that is 
pointed to, but coincidentally this definition is expressed in English, and this language 
switch becomes part of the important designation of which students are to take note. 
Hence the students‟ fluently spoken local language is used to help students be aware of 
the formal mathematical concepts expressed in English. Therefore, the local language is 
given only the supportive role in this not unusual switching incident.  
 Another example will elaborate this issue further. One lesson given by Mr K was 
observed in this study. In this lesson Mr K used nearly the same amount of Wahgi 
(46%) and English (43%) with only very few sentences in Pidgin (5%). The following 
excerpt from the transcription of the lesson shows how Mr K borrowed a phrase in one 
language, a formal mathematical expression in English, but used this in a grammatically 
correct sentence constructed in Wahgi. The topic of this lesson was measurement and 
Mr K is singling to the class a new direction that the lesson will take: 

Mr K: Lesson 1, Paragraph 13 (original in Wahgi & English) 
13. Mr K:  kinim ya units of measurement, ah units of measuring weight kanamin 
eh. Kanamin eh, mi mene units kembis woi kan wo ep mine units okma kanamin eh.   
 
English Translation 
13. Mr K: We will now look at „units of measuring weight‟. We will look at the 
smallest unit to the biggest units. 

545



MUKE & CLARKSON 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

The sentence is constructed in Wahgi and the borrowed mathematical English terms and 
phrase are borrowed and inserted within the sentence. The phrase borrowed here is 
„units of measuring weight‟ and the word borrowed is „unit‟. Both are examples of 
formal mathematical language, but both are expressed in English. The way this was 
expressed in Wahgi was, „we will look at units of measuring weight, from smallest to 
the biggest units‟. Both the borrowed formal mathematical English term and phrase 
acted as nouns in each sentence. The rest of the sentences were in Wahgi, and formed 
verb phrases. In the first sentence, Wahgi is used to say that they (the class as a whole) 
were going to do the „looking at‟ or studying. As the teacher continued he said that the 
looking at or studying was going to involve the „units of measurement‟. This indicated 
that the teacher used the fluently spoken local language to inform the students what they 
would be doing, which is obviously forming the verb phrase, to the unit of measuring 
weight, the noun phrase.  In the second sentence, the teacher becomes more specific 
regarding what they will be looking at or studying in the lesson. In Wahgi the teacher 
explains that they will be looking at or studying the smallest to the biggest, and this will 
involve the units, the core term which forms the noun phrase but again expressed in 
English.  
 These two examples show common constructions of teachers observed in the study. 
Often teachers used the local languages to construct grammatically correct sentences, 
but inserted borrowed formal mathematical terms using English. In doing so the 
mathematical terms and the language in which they were expressed, English, became 
the focus of the discourse, with the local languages playing supportive roles only. 

Summary 
After more than a century since schooling was introduced to PNG the indigenous 
cultures are starting to impact on teaching. Although the results noted in this paper are 
from only a limited number of teachers, their purposeful use of the variety of languages 
available to them and their students we suspect is mirrored in many classrooms 
throughout PNG. We note that although research for some years has suggested that 
multilingual students gain cognitive advantage if they are encouraged to use all their 
languages, this was not a factor for the reasons given by teachers for their exploiting of 
the multiple language environment. A key finding which would be well worth exploring 
with many more teachers is the way Wahgi and Pidgin were used, not to explore the 
nuances of the languages, but to learn the dominant language of English. It would be 
interesting to know whether this is an indication of the hegemonic impact of 
globalisation, even in the remote villagers of the western highlands of PNG. 
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This paper reports a 2-year longitudinal study on the effectiveness of the Pattern and 
Structure Mathematical Awareness Program (PASMAP) on students’ mathematical 
development. The study involved 316 Kindergarten students in 17 classes from four 
schools in Sydney and Brisbane. The development of the PASA assessment interview and 
scale are presented. The intervention program provided explicit instruction in mathematical 
pattern and structure that enhanced the development of students’ spatial structuring, 
multiplicative reasoning, and emergent generalisations. This paper presents the initial 
findings of the impact of the PASMAP and illustrates students’ structural development.  

 
Mathematics learning that focuses on pattern and structure can not only lead to improved 
generalised thinking but can create opportunities for developing mathematical reasoning 
commensurate with the abilities of young learners. Pattern has been described as any 
predictable regularity involving number, space or measure; and structure, as the way in 
which various elements are organised and related (Mulligan & Mitchelmore, 2009). 
Over the past decade a suite of studies with four- to nine-year olds has examined how 
children develop an Awareness of Mathematical Pattern and Structure (AMPS), found 
to be common across mathematical concepts (Mulligan, 2011; Mulligan, English, 
Mitchelmore, & Robertson, 2010). An assessment interview, the Pattern and Structure 
Assessment (PASA) and a Pattern and Structure Mathematics Awareness Program 
(PASMAP) focuses on the development of structural relationships between concepts. 
Tracking, describing and classifying children’s models, representations, and 
explanations of their mathematical ideas—and analysing the structural features of this 
development—are fundamentally important.  
 Our goal is a reliable, coherent model for assessing and describing structural 
development with aligned learning and pedagogical frameworks. In this paper we focus 
on the development of the Pattern and Structure Assessment (PASA) interview and a 
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Rasch modelled scale for measuring student growth over time. An exemplar of the 
qualitative analysis of structural development is provided. 

Background 
Previous studies have examined independently, counting, grouping, unitising, 
partitioning, estimating, and notating as essential elements of numerical structure 
(Thomas, Mulligan & Goldin, 2002); multiplicative concepts (Mulligan & Mitchelmore, 
1997); combinatorial thinking (English, 1993); and spatial structuring in geometric 
figures and arrays (Battista, 1999). Recent studies of young children’s mathematical 
reasoning have provided complementary evidence of the importance of early patterning 
skills, analogical reasoning and the development of structural thinking (Blanton & 
Kaput, 2005; English, 2004; Papic, Mulligan, & Mitchelmore, 2011).  
 There is also increasing evidence that early algebraic thinking develops from the 
ability to see and represent patterns and relationships such as equivalence and functional 
thinking in early childhood (Warren & Cooper, 2008). Recent initiatives in early 
childhood mathematics education, for example ‘Building Blocks’ (Clements & Sarama, 
2007; Clements & Sarama, 2009), ‘Big Maths for Little Kids’ (Greenes, Ginsburg, & 
Balfanz, 2004), and ‘Curious Minds’ (van Nes & de Lange, 2007) provide research 
frameworks to promote ‘big ideas’ in early mathematics education. Papic’s assessment 
of preschoolers using an Early Mathematical Patterning Assessment (EMPA) show that 
children are capable of abstracting complex patterns before they start formal schooling 
(Papic et al., 2011). Thus in designing PASMAP and an accompanying assessment, we 
focussed on the relationships between children’s patterning skills, structural 
relationships and the big ideas in mathematics. 

Method 
A purposive sample of four large primary schools, two in Sydney and two in Brisbane, 
representing 316 students from diverse socio-economic and cultural contexts, 
participated in the evaluation throughout the 2009 school year. At the follow-up 
assessment in September 2010, 303 students were retained. Two different mathematics 
programs were implemented: in each school, two Kindergarten teachers implemented 
the PASMAP and two implemented their standard program. The PASMAP framework 
was embedded within but almost entirely replaced the regular Kindergarten 
mathematics curriculum. The program focused on unitising and multiplicative structure, 
simple and complex repetitions, growing patterns and functions, spatial structuring, the 
spatial properties of congruence and similarity and transformation, the structure of 
measurement units and data representation. Emphasis was also laid on the development 
of visual memory and simple generalisation (for details see Mulligan et al., 2010). A 
researcher/teacher visited each teacher on a weekly basis and equivalent professional 
development for both pairs of teachers was provided. Incremental features of PASMAP 
were introduced by the research team gradually, at approximately the same pace and 
with equivalent mentoring for each teacher, over three school terms (May-December 
2009). Implementation time varied considerably between classes and schools, ranging 
from one 40-minute lesson per week to more than 5 one-hour lessons per week. 
Students were pre- and post- tested with I Can Do Maths (ICDM) (Doig & de Lemos, 
2000) in February and December 2009 and September 2010; from pre-test data two 
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‘focus’ groups of five students in each class were selected from the upper and lower 
quartiles, respectively. These 190 students were interviewed by the research team using 
a new version of a 20-item Pattern and Structure Assessment (PASA1) in February 
2009, a revised 19-item PASA2 in December 2009 (n=184), and the PASA2 and 
“extension” PASA in September 2010 (n=170). 
 Focus children (n=190) were monitored closely by the teacher and the research 
assistant collecting detailed observation notes, digital recordings of their mathematics 
learning and work samples, and other classroom-based and school-based assessment 
data. These data formed the basis of digital profiles for each student. 
 In summary, the qualitative analysis of the focus students’ learning is complemented 
by the quantitative analysis of the ICDM and the PASA data presented here as a scale 
(see Figure 1). Further analysis of students’ level of structural development at the three 
assessment points on selected PASA items supports the quantitative analysis. (For 
methods see Mulligan, 2011). For example, 190 students drawn representations for 
selected items were systematically coded for one of five levels of structural 
development. This enabled the description of developmental features (see Mulligan & 
Mitchelmore, 2009). Other evaluation data includes the implementation of PASMAP 
and teachers’ views of the impact of the program on student learning and their own 
professional learning. 

The development of the PASA assessment items 

The assessment interview sought to complement interview-based numeracy assessment 
instruments such as the SENA (NSW DET, 2002) by extending counting and arithmetic 
strategies (addition and subtraction) to multiplicative reasoning. Our earlier studies 
highlighting the relationship between multiple counting and patterning, the development 
of composite units and unitising, base ten structure, partitioning and multiplicative 
reasoning influenced the design of the items [Items 4, 5, 6, 9, 10, 11, 12, (Mulligan & 
Mitchelmore, 1997; Thomas, Mulligan & Goldin, 2002)]. This included the work of 
English on combinatorial thinking and problem solving (English, 1993). Particular 
attention was paid to representations of 2-dimensional and 3-dimensional arrays (Items 
7, 8, 18) and understanding the relationship between unit size and number of units 
(Outhred & Mitchelmore, 2000). The patterning tasks (Items 1, 2, 15) were based on 
our earlier studies with Kindergarten and Year 1 students and Papic’s studies with 
preschoolers. These were extended to include an item integrating multiple counting and 
emergent functional thinking (Blanton & Kaput, 2005; Warren & Cooper, 2008). The 
ability to subitize was considered fundamental in developing visual memory and pattern 
recognition (Bobis, 1996; Hunting, 2003; Wright, 2003). The subitizing tasks extended 
those in the Schedule for Early Number Assessment 1 (SENA 1) (NSW DET, 2002) as 
it was considered important to compare responses on this item with those elicited on 
other patterning items. The inclusion of items on analogical reasoning (Item 13) and 
transformation (Item 14) was inspired by the work of English (2004), based on the 
notion that there were strong links between analogical reasoning and spatial patterning. 
As well Item 14 served to inform our assessment of students’ transformational and 
sequencing skills. Further, several items required students to draw and explain 
representations such as the structuring features evident on a clockface. We included this 
item and another on drawing a ruler (in the extension PASA) based on our previous 
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analyses of structural development (Mulligan & Mitchelmore, 2009). Additional items 
such as composite units in 2- dimensional shapes, the structure of ten frames, hundreds 
charts and counting patterns, the pattern of squares, equivalence and commutativity, and 
unitising length were formulated as an extension PASA.  

The development of a PASA scale 

Although the project focused on descriptive analyses of students’ structural 
development, we complemented these by producing measures of students’ ability that 
could define and assess growth (growth is defined as the difference between a student’s 
performances at two points of time). The PASA data was analysed to construct a 
unidimensional scale that incorporated graded items along a continuum, for students 
aged 4.5 to 7.5 years. In order to establish the integrity of these items within a single 
construct, ‘Pattern and Structure’, it was advantageous to conceptualise these items on a 
linear scale. The main advantage of using Rasch analysis for constructing the PASA 
scale was that it could be used to link different versions of the PASA containing 
different subsets of items (see Looveer & Mulligan, 2009). As well students’ 
performance on the ICDM, also using a Rasch scale, could be later integrated into the 
one scale to give a broader view of mathematical growth across the three assessment 
points. In order to measure this growth, ability estimates of students’ location on the 
continuum could be determined and changes in students’ ability locations could provide 
measures of growth. Rasch Unidimensional Measurement Models (RUMM) computer 
software (Andrich, Lyne, Sheridan & Luo, 2001) was used to generate scale scores for 
PASA items and student measures for the construction of the PASA scale. Item analysis 
was used to discard items not functioning well in PASA1 to reformulate PASA2 and the 
extension PASA. Following this, a separate Item map produced for the ICDM scores 
was integrated into the PASA scale (each scale can be viewed separately). 

Results 
Figure 1 shows an integrated ICDM and PASA scale. The distribution of ICDM (code 
I), PASA2 (code P) and extension PASA (code E) items and students. The right-hand 
side of Figure 1 shows 73 item locations; Item P3b (PASA2) is the hardest item and 
Item I2 (ICDM 2) the least difficult. (The PASA 3b item was difficult because the 
students were required to visualise and calculate the number of items in 5x5 array from 
memory; the ICDM item 2 required students to indicate the longer of two lines.) On the 
left-hand side of Figure 1, each o represents 2 students. The scale extends from -3 logits 
to 6 logits, representing students’ ability measured in March of Kindergarten to 
September of Year 1. The item map indicates that the items and the students were 
reasonably well matched; the PASA and extension PASA together performed reliably 
with several items challenging students beyond 2.0 logits. In comparison, the ICDM 
items at the lower end of the scale did not sufficiently challenge the majority of 
students, although some more difficult ICDM items fill a gap in the scale between 3.0 
and 4.0 logits. Taken separately, the extension PASA also performed reliably.  
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Figure 1. Item map of integrated PASA and ICDM scale. 

 The scale’s order of item difficulty on PASA items provided a measure of pattern 
and structure that reflected the students’ overall level of AMPS. For example, items that 
challenged the most able students (Items P14 and P8) clearly assessed their visualisation 
and spatial structuring; and discrimination between simple repetition and recognition of 
a transformational (rotational) pattern respectively. (Item 14: Provide a net of an open 
box (2cm x 2cm x 2cm) and one multilink cube. Imagine this shape folded up to make a 
box. How many cubes like this would fill the box without any spaces left? Item P8: 
Show three arrows in a sequence (pointing upwards, sidewards, and downwards). Show 
the way you think the arrow will go next? And which way after that? Tell me why you 
think that?). Thus a conceptual analysis of the item and its position on the scale 
reflected the complexity of the task in terms of pattern and structure as well as the 
reasoning required to complete it successfully. What we aimed to achieve with the scale 
was an indicator of AMPS aligned with student ability.  
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We now present some general findings from the quantitative analysis to date. The 
ICDM scores were analysed as a standard measure of mathematical competence for all 
students at each assessment point. We did not expect ICDM to provide evidence of 
students’ development of pattern and structure. Rather the ICDM served as a measure to 
validate the sample with Australian norms for Grade 1 (Doig & de Lemos, 2006) and to 
assign students initially to ‘high-achieving’ or ‘low-achieving’ ability focus groups. 
Figure 2 indicates that the sample’s mean ICDM scores were slightly above the ICDM 
norms. There were no significant differences found on ICDM scores between PASMAP 
and regular students at any of the three assessment points but there were significant 
differences found between states.  

Figure 2. ICDM norms compared with the sample (n=316). 

Both groups of students made substantial gains on the ICDM and the PASA1 across the 
three assessments with PASMAP students’ overall mean scores consistently higher than 
the regular group (see Table 1). However, these were not significant (p=0.105). An 
analysis of variance revealed significant differences between states (p=0.035) and 
between schools (p=0.040) with NSW students outperforming Queensland students at 
each assessment point.  
 

   
PASA1 

 
n 

2009 
PASA2 

 
n 

2010 
PASA2 

 
E-PASA 

 
n 

NSW PASMAP 9.40 40 15.05 38 14.14 9.09 35 

 Regular 9.74 50 14.66 50 12.19 7.79 42 

QLD PASMAP 11.25 51 14.42 50 12.00 7.45 47 

 Regular 10.94 49 15.67 46 10.80 7.07 46 

Table 1. Mean scores for all PASA assessments. 

Discussion 

Clearly these data showed consistently that NSW students were more advanced in their 
general mathematical competencies than the Queensland students. Queensland students 
had not necessarily experienced a preparatory curriculum and 2009 was the first year of 
a formal mathematics curriculum for 5 year olds. Nevertheless PASMAP students in 
Qld demonstrated growth in structural development in similar ways to the NSW 
students once they participated in the PASMAP program. Although we found 
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consistently higher mean scores for PASAMP students, we expected that this finding 
may not necessarily prove to be statistically significant. We interpreted these findings in 
light of one confounding factor; the amount of time that individual PASMAP teachers 
devoted to the program implementation which had differential effects on students’ 
learning outcomes. The time devoted to PASMAP ranged between one 40-minute 
lesson to more than 5 x 1 hour lessons per week. Some PASMAP teachers completed 
only half of the program components while others completed almost the entire program 
and revisited concepts regularly. Qualitative analysis of the NSW students’ profiles and 
the classroom observation data showed stark differences in the way that the PASMAP 
students developed their knowledge and reasoning skills. Because the program focused 
intently on developing structural relationships, only the PASMAP students made direct 
connections between mathematical ideas and processes, and formed emergent 
generalisations. For example students began to link simple multiple counting to more 
complex multiples, arrays and multiplicative structures through their experience of the 
notion of unit of repeat in patterning, partitioning, in spatial tasks and in measurement 
contexts. Able students used particular features of pattern and structure to build new and 
more complex ideas. Regular students could also solve tasks requiring multiplicative 
thinking but these were considered as separate mathematical ideas, i.e., these students 
could not explain what was similar or different, what was the connection between ideas, 
or form simple generalisations. 

Categorising responses for stages of structural development 

The analysis of PASA assessment interviews indicated marked differences between 
groups in students’ levels of structural development (AMPS) at the second and third 
assessments. Students participating in the PASMAP program showed higher levels of 
AMPS than the regular group, made connections between mathematical ideas and 
processes, and formed emergent generalisations. Students’ drawn responses and their 
explanations, at the three assessment points, were categorised using the levels of 
analysis from previous studies (Mulligan & Mitchelmore, 2009) as follows:  

 Pre-structural: representations lack evidence of numerical or spatial structure 
 Emergent (inventive-semiotic): representations show some relevant elements but 

numerical or spatial structure is not represented 
 Partial structural: representations show most relevant aspects but are incomplete 
 Structural: representations correctly integrate numerical and spatial structural 

features 
An independent coder categorised each response for level of structural development 
with reference to each interview script (reliability of 0.91). We present an exemplar of 
the analysis of structural development drawn from 600 responses for Item 15 including 
approximately 10% as “second attempts”. The coding was consistent with that used in 
previous studies but allowed for comparison of more challenging items.  
 Figures 3 to 8 show typical examples of developmental features of students’ AMPS 
in response to Item 15. Figure 3 presents a circular border of dots and a random 
formation in the centre. There is some perception of outer and inner dots but it is largely 
idiosyncratic and depicts a ‘crowded’ image. Figures 4 and 5 show some awareness of 
triangular formation but there is little structural extension of the pattern. Figures 6, 7, 
and 8 represent the correct formation but vary in structural complexity. Note that Figure 
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7 depicts a simple repetition rather than a growing pattern. In Figure 8, the student 
explains the growing pattern numerically and as a simple generalisation. 
 

 

 
 

 

 
 

 

Figure 3.  
Pre-structural  

Figure 4. 
Emergent  

Figure 5. 
Emergent  

Figure 6. 
Partial  

Figure 7.  
Structural features  

Figure 8. 
Advanced  

Conclusions and Implications 
The study produced a valid and reliable interview-based measure and scale of 
mathematical pattern and structure that revealed new insights into students’ 
mathematical capabilities at school entry. Clearly young students were able to solve a 
broad range of novel mathematical tasks, including repetitions and growing patterns, 
and multiplicative problems, not usually asked of students of this age. Generally all 
students were able to construct and use counting and arithmetic strategies up to 20 and 
beyond. About 25% of PASMAP students recognised complex number patterns 
effectively on a hundreds chart in Kindergarten. The ICDM measures could be 
integrated with the new PASA scale to provide a comparative measure, although it 
assessed numeracy in traditional ways and did little to complement the PASA data. 
 PASMAP explicitly focused on the promotion of students’ awareness of pattern and 
structure (AMPS): the analysis of students’ learning showed that it had achieved its 
aims. Particular gains were noted in the related areas of patterning, multiplicative 
thinking (skip counting and quotition), and rectangular structure (regular covering of 
circles and rectangles). As expected, a focus on pattern, structure, representation, and 
emergent generalisation advantaged the PASMAP students. However, students in the 
regular program were also able to elicit structural responses but had not been given 
opportunities to describe or explain their emergent generalised thinking that may have 
been developing. Thus, it was not possible to determine whether more advanced 
examples of structural development could be directly attributed to the program or innate 
developmental advances of more able students. One of the most promising findings was 
that the focus students categorised as low ability were able to develop structural 
responses over a relatively short period of time. Further analysis of the impact of 
PASMAP on structural development must consider individual teacher effect and school-
based approaches to evaluate the program’s scope and depth of achievement. 
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This paper presents results from the Resourcing Talking in Maths project. The project 
aimed to review the resourcing, management and orchestration of collaborative 
mathematical tasks with young children (6 years old) and to examine the tensions involved 
in developing tasks that are accessible but also provide a challenge. It was found that the 
level of explicitness of the attended focus of the task needed to be balanced and that this 
balance was informed by the precision of the teacher’s explanations and the definition of 
the mathematical relations as presented in the use of resources. 

Introduction 
The Resourcing Talking in Maths project, funded by the National Centre for Excellence 
in Teaching Mathematics (NCETM) in England, built on previous work that has shown 
the effectiveness of pupil-pupil talk on attainment in mathematics (Mercer & Sams, 
2006; Murphy, 2011). It also acknowledges the difficulty teachers face in presenting 
tasks that encourage engagement and talk with younger lower-attaining children. 
Although rich problem solving tasks can overcome barriers to mathematical learning 
(Sullivan, 2003; Lubienski, 2000), it is seen that the ‘richness’ of a task depends on the 
teacher’s management and orchestration, and that there is little guidance for teachers on 
this.  
 The project was based on a collaborative classroom teaching experiment involving 
two primary school teachers over one term. Classroom experiment is seen as one type of 
setting for a design experiment methodology (Cobb, Confrey, diSessa, Lehrer, R & 
Schauble, 2003) in which the researcher collaborates with the teacher to investigate 
instructional design. In this way pedagogical design is used to inform theory within a 
specific domain. Results are presented from two groups of three children (6 years old), 
where each group is engaged in three mathematical tasks. These six tasks and are used 
to develop a framework to support the development of effective collaborative tasks. 
Although based within a specific domain it is hoped that the framework is useful in 
supporting teachers in developing collaborative tasks more generally.  
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Background to research aims 
The research is based on the assumption that children’s engagement in collaborative 
mathematical tasks will enable children to participate actively in learning arithmetic. 
From a social constructivist perspective transmission of knowledge is seen to happen in 
the context of solving a problem where solutions are proposed and responded to (Wells, 
1999). Barnes (1976) had proposed that encouraging children to talk in an exploratory 
way allowed them to use language as a way of thinking aloud. Exploratory talk has been 
further typified as “a way of using language effectively for joint, explicit, collaborative 
reasoning” (Mercer, Wegerif and Dawes, 1999, p. 97). The development of such talk 
would seem to support children’s collaborative exploration of ideas and discussions 
within mathematics. As children engage in pupil-pupil talk they test out their 
understanding and applications of procedures in key mathematical ideas. 
 Encouraging young children to work in this way requires a different pedagogy and 
for teachers this may mean learning new skills. The development of exploratory talk 
through explicit teaching strategies has been seen to be effective in supporting 
children’s use of talk as well as helping teachers to change their practices. The teachers 
involved in this study had participated previously in research on the introduction of 
explicit talk strategies and the children were familiar with this approach to mathematical 
tasks. A further element to consider is the task that the children are engaged in. 
Blatchford, Kutnick, Baines and Galton (2003) have suggested that in developing 
strategies for effective group work the learning task is a critical factor. If tasks are 
simplified they do not necessarily lead to success (Houssart, 2002). The difficulty 
would seem to be in developing rich, problem solving tasks that are accessible but also 
provided a challenge. 
 A key aim of the project was to examine the effective management of learning tasks 
and, in particular, to examine the balance between the precision of the explanations 
given by the teacher and the definition of the mathematics represented in the use of the 
resources. Developing the tasks within a classroom-based experiment required the 
teachers to be reflective and innovative and it was anticipated that the teachers’ 
involvement would support professional development.  

The study  
The study involved a series of three workshops interspersed with the trial of group tasks 
in the teachers’ classrooms. Each of the group tasks were videoed and observed in the 
workshops by the teachers in collaboration with the researcher. The workshops were 
used to analyse the way the children negotiated ideas and the way they engaged with the 
mathematical relations intended in the task. This analysis was used to identify the next 
step in instructional design. Final analysis was carried out using the video data from the 
group tasks to inform a theoretical framework.  
 Based on Nunes, Bryant and Watson’s (2009) studies on key understandings in 
learning mathematics, the tasks aimed to help children connect their understanding of 
quantity with their knowledge of counting. It was decided to look at comparison as a 
mode of enquiry in order to make distinctions and to sort representations with regard to 
equivalence as a mathematical relation. The tasks were based on a type of rich task 
identified by Swan (2006) as comparing representations, in this case to make 
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connections between quantities and numbers. The teachers developed tasks that 
involved sorting and matching representations that included both quantities and 
numbers. The learning intention was that children worked with the mathematical 
relations rather than perceptual differences and similarities in order to find equivalent 
quantities (Nunes et al., 2009). Although the key purpose of each task was the same, the 
teachers took different approaches in resourcing, managing and orchestrating the tasks.  
 In this paper, six of the tasks are presented (3 tasks across 2 groups of 3 children). 
The tasks were developed by the two teachers, Teacher 1 and Teacher 2, and carried out 
with a group of three children in each of their classes. In the first task the teachers used 
cards with pictorial representations such as stars, cars, blocks and number lines as well 
as numerals (figures 1 and 2), and the children were asked to sort the quantities in 
relation to operations on numbers. In the second task the purpose was to find matching 
pairs of quantities or quantities and numbers. Teacher 1 used the same resource as task 
1. Teacher 2 used cards with different calculations showing commutative pairs (figure 
3). In the third task, both teachers used money to represent quantities and children were 
asked to find representations of equivalent amounts (figures 4 and 5).  

Results 
Task 1. Sorting representations  
Teacher 1 gave the children a set of cards that provided a wide range of representations, 
each totalling 15 (figure 1). The teacher gave no initial explanation other than to sort the 
cards. The children negotiated ideas but sorted by perceptual similarities such as shape 
and colour. The teacher gave prompts such as “Why do you think some are split into 
two colours?” but the children did not notice the mathematical relations. Teacher 2 
limited the range of representations (figure 2) on the cards that she gave the children. 
She did not include the number line and used fewer representations. She also gave the 
children cards in stages as sets according to the representations. The teacher provided a 
grid for organising the resources. The teacher modelled how she would sort the cards 
and asked questions such as, “Why have I put these two together?” The children 
focused on the mathematical relations but there was limited negotiation of ideas.  
 

 

Figure 1. Task 1and task 2, Teacher 1: Sorting representations and matching pairs. 
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Figure 2. Task 1, Teacher 2: Sorting representations. 

Task 2. Matching pairs 
Teacher 1 used the resources from Task 1 but with representations totalling 12. Again 
she did not model what to do and gave no initial explanation other than to sort the cards. 
As the children started to sort by perceptual similarities the teacher prompted the 
children to find pairs, “Are there any you could match together as a pair?” The children 
negotiated ideas and with further prompts in finding matching pairs they sorted 
according to mathematical relations. Teacher 2 provided three calculations; 4+5, 5+4, 
5+3, and asked for the ‘odd one out’. There was limited negotiation in this initial task. 
Then the teacher provided a wider range of calculations to find other ‘odd one out’ 
calculations (figure 3). The children engaged in negotiation in this subsequent task and 
the teacher questioned the children after they had completed the task, “6+6; would that 
have a partner?”  
 

 

Figure 3. Task 2, Teacher 2: Matching pairs. 

Task 3. Money representations 
Teacher 1 modelled to the children how she would find equivalent solutions for making 
10p. The children were then asked if she had found all the ways. The children were 
given blank cards to record further solutions (figure 4). As the children investigated 
other equivalent solutions the teacher prompted the children in working systematically, 
“Where do you think that would go in your order?” and in recognising equivalence, “Is 
this one different, why is it different?” The children noticed the mathematical relations 
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and negotiated ideas. Teacher 2 gave the children a set of cards with different amounts 
of money to put into pairs and a grid to organise the pairs (figure 5). The teacher 
allowed the children to decide how they would use the grid. The children noticed the 
mathematical relations and negotiated ideas. At the end of the task the teacher supported 
the children’s organisation of the pairs on the grid.  
 

 

Figure 4. Task 3, Teacher 1: Money representations. 

 

 

Figure 5. Task 3, Teacher 2: Money representations. 

Analysis and discussion 
Sfard and Kieran (2001) identified different components that children focus on as they 
work together on mathematical tasks; the attended focus, the intended focus and the 
pronounced focus. The attended focus relates to an individual pupil’s focus as they 
attend to the process of a task. The intended focus is mainly private and relates to the 
experiences evoked by the other focal components. The pronounced focus is the 
publicly agreed focus. The relationships between these different focal components are 
seen to have an effect on collaboration. 
 The attended focus mediates between the public pronounced focus and the private 
intended focus. It is how the children attend to the process of the task and share their 
own private intended foci. In other words, how the private intended focus becomes 
pronounced or public. This mediation is influenced by the explicitness of the attended 
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focus. Various pedagogic strategies, such as scaffolding the tasks, questioning and 
prompting, and repetition of similar formats can make the attended focus more explicit. 
Also, the resources used can more or less define the mathematical relations and hence 
make the attended focus more or less explicit. The pedagogic strategies, along with the 
use of resources, can help the children attend to the process of the task, to share private 
intended foci and make them public. In this way the level of explicitness is related to the 
teacher’s presentation and orchestration of the task, and how her intended focus is made 
sufficiently public. If the teacher’s presentation is prescribed, her intended focus is 
made public in a precise way.  
 In relation to these focal components the tasks are analysed according to two factors: 

1. Level of precision provided by the teacher in their explanations and 
organisation. This is determined by how the teacher prescribes the task.   
2. Level of definition of the mathematical relations presented in the resources 
used in the task.  

Task 1. Sorting representations  
Teacher 1 did not provide any precise explanations nor did she define the use of the 
resources, so the attended focus was not explicit. The children may have negotiated 
ideas but they did not notice the mathematical relations as expected. On the other hand 
Teacher 2’s explanations were precise and she defined the use of the resources. In this 
case the attended focus was very explicit. The teacher’s intended focus was made public 
in a precise way. The children did notice the mathematical relations as expected but 
they did not need to negotiate ideas and there was little collaboration.  

Task 2. Matching Pairs 
Teacher 1 repeated the format of the previous task and in this way the use of resources 
became more defined. The prompts and questions focused the children on the process of 
finding pairs and the teacher’s intervention was more precise. In this way the children 
were able to attend to the mathematical relations as expected but there was still a need 
for the children to negotiate ideas. In Teacher 2’s initial task the use of resources was 
clearly defined, the presentation was prescribed and the attending focus was very 
explicit. The children did not need to negotiate ideas. However this initial task helped to 
define the use of the resources in the wider subsequent task and the attended focus was 
sufficiently explicit for the children to focus on the mathematical relations as expected 
and also to negotiate ideas.  

Task 3. Money representations 
In this task, Teacher 1 provided an initial stimulus that made her intended focus precise 
and defined the use of resources. This then informed the subsequent task as the children 
found all the solutions. The attended focus was sufficiently explicit. The children 
negotiated ideas and focused on the mathematical relations as expected. Teacher 2 gave 
no precise explanations but the resources were defined through the repeated format of 
finding pairs. The attended focus was sufficiently explicit to enable the children to 
negotiate ideas and focus on the mathematical relations as intended.  
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 Level of Precision 
(provided by the teacher in explanations and orchestration) 

 
                           High                                              Low  

Attended focus is too explicit. Task 
completed individually with no need 
to negotiate 

Attended focus is sufficiently 
explicit. Children negotiate ideas and 
interpret the intended focus of the 
task as expected 

        High  
 
 
 
Level of definition 
(provided by  
use of resources) 
 
 
 
         Low 

 

Attended focus is sufficiently 
explicit. Children negotiate ideas and 
interpret the intended focus of the 
task as expected 

 

Attended focus is not explicit. 
Children negotiate ideas but do not 
interpret the intended focus of the 
task as expected 

 

Figure 6:  Balancing the level of explicitness in the attended focus of a task. 

It would seem that the level of explicitness requires a critical balance in order to enable 
children to engage collaboratively in a task and also to focus on the mathematical 
relations as expected. If the mathematical relations are very well defined in the 
resources and the teacher’s explanations are prescriptive, the intended focus of the 
teacher is made public in a precise way and the attended focus is very explicit. There is 
little need to engage in discussion or share ideas. If the resources are ill defined, and the 
teacher’s explanations are not precise, the attended focus is not sufficiently explicit. The 
children may not be able to negotiate ideas, or they may negotiate ideas but interpret the 
teacher’s intended focus in an unexpected way. Tasks that had a balance between 
precision and definition seemed to encourage talk and collaboration. This is summarised 
in Figure 6. 

Conclusion 
A key aim of the research was to investigate the development of mathematical tasks that 
encouraged talk and collaboration with young children. It was hoped that such tasks 
could be used to help children see the relations between number and quantity as a key 
understanding in arithmetic. The tension was seen to be in developing tasks that were 
accessible but that also provided a challenge.  
 The learning task was seen to be a crucial factor in enabling collaboration and talk to 
happen. From the analysis of the six tasks it would seem that the effectiveness of a task 
is determined by the explicitness of the attended focus, and that this explicitness is, in 
turn, determined by the precision of the teacher’s intended focus through the level of 
prescription and the definition of the mathematical relations in the use of resources 
(Table 1). If the attended focus is sufficiently explicit the children are able to negotiate 
ideas and focus on the intended mathematical relations. This enabled the children to see 
the relationships between number and quantity as expected. Using this theoretical 
framework it would seem that the tasks that were accessible but that also provided a 
challenge were those tasks that had a balance between the precision of the teacher’s 
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explanations and the definition of the intended mathematical relations as presented in 
the resources.  
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Mathematics pupils in Singapore are not performing to expectation. Pupils fail to apply 
learnt concepts, and new concepts are learnt in isolation instead of through a ‗build-up‘ 
based upon known older ones. This ongoing study investigates relating students‘ prior 
knowledge of the topic Ratio to new concepts. Case Based Reasoning and Cognitively 
Guided Instruction are used in this research. Their frameworks are combined, creating 
‗categorisation‘ where items are grouped, based on the concepts.  

Introduction  
Ratio is taught in Primary 5 and 6 in Singapore. The Curriculum Planning and 
Development Division (CPDD, 2007), has spelt out justifiable expectations, but these 
and assessment do not meet. Many pupils are unable to apply what they have been 
taught to solve new problems, while others are unable to reason logically or use 
information correctly, possibly because of the lack of effective problem solving 
strategies. The study reported in this paper was designed to investigate the use of 
categorisation and its effectiveness in solving ratio problems. Tied to categorisation is 
the use of solving strategies that are based on the concepts studied. In order to provide a 
focus for these objectives, the following research questions were formulated.  
1. Does categorisation of problems result in meaningful differentiation of student 

thinking about ratio? 
2. Does categorisation of problems result in meaningful differentiation of student 

performance about ratio?  
3. What kinds of informal strategies do children use to solve ratio problems before 

and during instruction? 
4. What instructional implications (teachers‘ and children‘s) can be drawn from 

children‘s pre-instructional knowledge in relation to problem categorisation? 

Literature review  
The Singapore Mathematics Framework (Ministry of Education, 2006) considers 
mathematical problem solving to be central to mathematics learning. Students are to 
attain and apply the mathematics concepts and skills in a wide range of situations, 
including non-routine, open-ended and real-world problems; however evidence has 
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shown that problem solving is not well developed in our pupils. Kaur and Yap (1999) 
reported that when students were given concepts in unfamiliar situations, many did not 
perform as well as expected. There is a need to address the gap between students‘ initial 
ability to understand concepts and the new concepts they are to learn. To achieve this 
goal, the principles of Cognitively Guided Instruction (CGI) (Carpenter, Fennema, 
Franke, Levi & Empson, 1999) and Case Based Reasoning (CBR) (Kolodner, 1997) 
were adopted for the study. CGI aims for teachers to ―work back from errors to find out 
what valid conceptions students have so that instruction can help students build on their 
existing knowledge‖ (Carpenter, Fennema & Franke, 1996, p.14). In CGI, the emphasis 
shifts from teachers finding ways to teach mathematical knowledge to students 
constructing their own knowledge based on their intuitive problem solving strategies. 
Supporting CGI is the idea of CBR, based on previously acquired experience.  
 Kolodner and Guzdial (2000) explained that the process of carrying out CBR 
includes: using case libraries (in this study, a collection of similar word problems) as a 
resource; indexing problems (identifying and classifying questions that are similar, or 
questions with a common concept); retrieval processes (recalling previously done 
questions to help solve current ones) and partial matching processes (matching similar 
questions to existing ones). One major issue with CBR involves the process of indexing 
problems. This means identifying old situations that are relevant to a new one. Suitable 
cases can be recalled if they are indexed well. Good indexes and the ability to apply 
knowledge or skills from one situation to another different situation are critical in CBR. 
 CGI (use of categorisation) is tied together with the CBR (instructional process flow) 
framework to bring about optimum learning. In the CGI framework, there are three 
main components: problem types, pupils‘ informal knowledge of strategies, and 
pedagogy concerns. This study focuses on only one component of CGI, namely problem 
types, as the ability to solve word problems depends so much on pupils‘ ability to 
recognize the differences among the problem types (Carpenter et al., 1999). 
 CGI therefore involves examining the various structures of problems. In ratio, 
problems are placed in various categories based on the distinctive feature each structure 
offers. Each category influences the strategies that pupils use to solve the problem. 
Hence, these categories are tagged not only based on their structure of questions but 
also on the concepts used to solve problems. There are seven categories in all. In order 
of increasing difficulty they are:  

 (Category 1): Ratio with Values assigned. Example: The sides of a triangle are in 
the ratio of 2:3:4. The longest side is 68 cm. Find the perimeter of the triangle. 

 (Category 2): Ratio with one quantity remaining the same: Example: The ratio of 
the number of Lynette‘s stamps to Joel‘s was 5:4 at first. After Joel collected 
another 58 stamps, the ratio became 15:14. How many stamps did Lynette have? 

 (Category 3): Ratio with a constant difference: The ratio of Jessie‘s age to her 
father‘s age is 3:7. 12 years later, the ratio will be 3:5. How old is Jessie now? 

 (Category 4): Ratio with a fixed total. Example: Ron and Kat shared some 
mangoes in the ratio 3:8. When Kat gave 48 mangoes to Ron, the new ratio of 
Ron‘s mangoes to Kat‘s was 9:2. How many mangoes did Roland have at first? 

 (Category 5): Fractional Parts of a ratio. Example: Mark and Sean shared some 
marbles in the ratio 5:4. After Mark gave half

half

 of his marbles to Sean, Sean had 96 
more marbles than Mark. How many marbles did they have altogether? 
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 (Category 6): Ratio with changing quantities. Example: The ratio of the number 
of men‘s watches to the number of ladies watches in a showcase was 4:1. After 
putting another 48 men‘s watches and 36 ladies watches into the showcase, the 
ratio became 8:4. How many watches were there at first?  

 (Category 7): Ratio of a ratio. Example: At a party, the ratio of the number of 
boys to the number of girls is 3:2. If each boy and each girl is given stickers in the 
ratio 2:3, a total of 1992 stickers are needed. How many boys and girls are there? 

Recognizing the differences among the problems alone is insufficient – pupils must be 
able to apply the correct strategy to solve the problem. Applying the correct strategy 
comes about from being able to identify the concept within the problem. To apply the 
correct strategy, pupils must first overcome conceptual difficulty. Lo and Watanabe 
(1997) claimed that technical difficulties usually are not the main obstacle in curtailing 
students‘ solving process. Conceptual difficulty apparently is much greater and more 
complicated. Categorisation can solve this problem of conceptual difficulty, as it trains 
pupils to identify concepts involved in a particular question. Lamon (1993) believed that 
there is a need to move beyond identifying the litany of tasks variables that affect 
problem difficulty, toward the identification of components that offer more explanatory 
power for children‘s performance. That is, there is a need to do more than just look into 
pupils‘ cognition. Combining frameworks of CGI and CBR could eliminate a litany of 
tasks variables.  

Research method  
Sample: Thirty-two Primary 6 pupils from a primary school in Singapore were selected 
to form the non-random purposive sampling group. A teacher also participated. The 
school was co-educational, with the ratio of boys to girls being approximately 1:1. Most 
of the students‘ mathematics ability met the nation‘s national average. None of the 
pupils had been exposed to problem categorisation. In Primary 5, these pupils used 
various heuristics such as model drawing, listing, and guess and check to solve ratio 
problems—part of the heuristics package used by the school. Categorisation was a 
newly developed process and had not been tried with these pupils before. 
 Research Design: Mixed methods were adopted where quantitative and qualitative 
data were simultaneously collected and merged. Creswell (2008) believes that the 
strengths of one data form offset the weaknesses of the other form. Both forms of data 
were collected at the same time and the results were used to validate each other.  
The research was carried out in three phases: 
 Phase 1 (Categories 1, 2 and 3): A pre test was administered before the start of 
phase 1. This phase dealt with pupils‘ first interaction with ratio and only basic ratio 
categories were covered. New concepts were built on the old ones using the CBR lesson 
flow framework. In this phase, the effectiveness of categorisation for the basic ratio 
problems was being investigated. Strategies used were being considered in order to 
determine if pupils were able to move away from model drawing to using ratio 
concepts. Difficulties and misconceptions pupils faced were also examined. To do this, 
the use of voice recording with MP3 players was adopted. Pupils recorded their thought 
processes into the device and the recording was played for the whole class to listen to. 
This is where students‘ peers, the teacher, and researchers heard their thought processes 
while solving ratio problems. Discussion was opened for all to comment constructively 
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on what they heard. Misconceptions that arose at that point of time were rectified, so 
pupils were made aware of the correct concepts and approaches to solving ratio 
problems. 
 Phase 2 (Categories 4 and 5): This intermediate phase was one where pupils had 
become familiar with the lesson structure. The teacher used questioning more in this 
phase in order to probe thinking at a deep level and to delve beneath the surface of 
ideas.  
 Phase 3 (Categories 6 and 7): Strategies applied (from simple model drawings/guess 
& check/listing→ Ratio concepts→ algebra) were expected to be more sophisticated as 
students moved away from their initial (informal) strategy. A post test (7 questions) was 
administered in this phase. MP3 recording, written formative tests (4 questions each), 
interviews (with the teacher and 4 – 5 pupils) and journal writing were carried out in all 
three phases.  

Data collection 

(i) Classroom observations: Classroom observations were conducted, where the 
researcher/observer blended into the setting, ‗becoming a more or less ‗natural‘ part of 
the scene‘ (Bogdan & Biklen, 2003). Pre and post lesson discussions were carried out to 
probe the teacher‘s personal opinions and pupils‘ conceptual understanding of each 
lesson.  
(ii) Student interviews: Interviews generally allow for open-ended responses and are 
‗flexible enough for the observer to note and collect data on unexpected dimensions of 
the topic‘ (Bogdan & Biklen, 2003). Pupils were interviewed to bring out their 
knowledge of ratio. All interviews were tape recorded and transcribed. 
(iii) Journal Writing: This process, as mentioned by Yazilah & Fan (2002), is a good 
avenue for pupils to provide feedback on mathematics teaching and learning (Fan, 
2006). In this form of assessment, questions were asked in written form to determine 
factors such as students‘ feelings, difficulties, discoveries, and thoughts.  
(iv) Performance Test: A written test measured pupils‘ explicit understanding and 
performance of ratio concepts through problem categorisation. Making them solve 
problems in a pen and paper test served as reaffirmation of their understanding. This 
way, there was a basis for determining whether an individual‘s ability had changed 
(Malone, Douglas, Kissane & Mortlock, 2007) and whether problem categorisation was 
effective in developing ratio concepts. Two forms of written tests were given: formative 
and summative (in the form of a post test). A scoring scale on marking and measuring 
problem solving (Malone et al., 2007) was used.  

Findings 
Changes in student thinking 
Voice recording through MP3 player: When transcripts of pupils‘ thought processes 
during pre and post test were compared, it was found that there was a noticeable change 
in student thinking. In the post test, pupils were able to reason logically and correctly, 
hence they were able to categorise questions correctly. By doing so, pupils get to the 
concepts tied to the category identified. One example follows (Figure 1). 

568



MUSA & MALONE 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

The figure is made up of a rectangle and a square. The ratio of the area of the square to 

the area of the rectangle is 1 : 3. A shaded area of 20cm² is being cut out. The ratio of 

the area of the unshaded square to that of the unshaded rectangle is now 2 : 7. What is 

the length of each side of the square? 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Pre- and post-test solutions to question 3 

Pupil C12 : Transcript for Pre-Test question 3 
7 – 3 because they are the two parts for rectangle. One is before cutting and the other 
after. So I minus them to get the shaded area that has been cut. Then the answer is equal 
to the shaded area which is 20cm². I find 1 part first and then multiply it by 7 parts to get 
the unshaded area. Answer is obtained by adding the cut part to the unshaded part. This 
gives me the area. Then I divide by 2 to get each side.  

Pupil C12 : Transcript for Post-Test question 3 
The same parts are taken away. So, this is constant difference. I must make the difference 
between the before and after ratio to be the same. Then I can see that the old part for 
rectangle is 15 and the new part is 14. So the difference is 1. The old part for square is 5 
and the new part is 4. The difference is also 1. Now, the difference is the same. So, 1 part 
is 20cm². Then I find the unshaded part of square, 4 parts and multiply it by 20 cm². This 
gives me 80 cm². I must add 20cm² to 80 cm² to give the area of a whole square. To find 
the length, I divide the area by 2.  

Based on the thought processes revealed, all students (32/32) managed to reason 
correctly, placing problems in the correct categories 1 to 3 and obtaining correct 
solutions. The reasons used to identify the three categories were also correct.  
 In category 4, 93.75% of the pupils (30/32) managed to identify the category for the 
given problem. One pupil said that he knew the concept after reading the question, but 
found the headings to the categories difficult to recall.  
 In category 5, pupils‘ reasoning was very good, with almost everyone doing well in 
this category. In the MP3 recording every pupil mentioned the use of ‗lowest common 
multiple‘. One pupil (C6) actually made a comment that category 5 (fractional parts of 
ratio) is usually tied to another category. The following describes his experience. 
 
 

             Pre-Test 

(7 – 3) parts → 20cm² 

       1  part   → 20cm² ’ 4  

                     =   5cm² 

        7 parts → 5cm² × 7 

                     =   35cm² 

35cm² + 20cm² = 55cm² 

55cm² ÷ 2 =  27.5cm 

 

Post-Test 

[Constant difference because equal parts are taken away] 

             Before           After 

             S  :  R               S  :  R      (5 – 4) parts → 20cm² 

              1  :  3              2  :  7      1  part  → 20cm² 

              5  :  15          4  :  14       4 parts → 20cm² × 4  =  80cm² 

                                    80cm² + 20cm² = 100cm² 

100cm² ÷ 2 =  50cm                  

 

          

          

 

 

 

                     

 

Note: Pupil had a 
misconception in area and 
this misconception was not 
corrected because the focus 
of this study was on ratio.    

Mark and Sean shared some marbles in the ratio 5:4. After Mark gave half of his marbles to Sean, Sean 
had 96 more marbles than Mark. How many marbles did they have altogether? 
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Pupil C6 : Transcript for Pre-Test question 5 

I get half of 5 and add it to 4 to get 6½. This leaves Mark with…2½. Then I minus 6½ 
with 2½ to get 4 parts. This 4 parts is the ―more‖ parts which is the same as 96. Then I 
find 1 part and multiply it by 9.  

Figure 2: Pre- and post-test solutions to question 5 

Pupil C6 : Transcript for Post-Test question 5 
I must find a common multiple of 2 and 5 first. It is 10. Then I must multiply 2 to 5 to get 
10 parts. I must also multiply 4 by 2 to get 8 parts. So, the new ratio is 10:8. Now, half of 
10 is 5 parts. This 5 parts must be given to Sean. Now, he has (5 + 8) parts …. 

The pupil worked quietly and started to complete the solution. Later during an 
interview, both solutions (pre and post tests) were put to him (Figure 2) and he was 
asked which of the two he preferred. He quickly pointed to the post test and said that he 
did not like to work with fractions. He added that sometimes, when he had to divide the 
value (points to 96) by a fraction, he usually ‗messes up‘ his answer by getting it wrong. 
With this new approach of categorisation, he felt that he did not have to work with 
fractions at all. Also, he commented that this problem can also be a Cat 4 (total before = 
total after) problem. He noticed that category 5, fractional parts of ratio, usually comes 
accompanied by another category.  
 In category 6, 75% (24/32) of the pupils were able to identify the correct category 
and 62.5% (20/32) managed to obtain the correct solution. One particular reason for this 
was because the category involves the use of algebra. Those who managed to get this 
completely correct used basic algebra to solve this. The rest did it by algebra too, but 
were stuck halfway through the working. When MP3 recordings of 12 pupils who failed 
to get this question correct were played, it was discovered that all of them could identify 
the correct category and the concept, but were stuck when it came to the technical part 
of algebra where they could not manage when they transposed to the other side of the 
equation. They worked through the equation using their understanding of equivalence 
and constructed their knowledge based on their intuitive problem solving strategies.  
 In the last category, pupils were able to identify this category as the only one with 
two given ratios that do not refer to the same thing (Figure 3, example 1). In the post 
test, pupils were able to get through this problem easily. All of them managed to get this 
correct as they were quick to notice two given ratios that represent different items; 
pupils and stickers. However, in the formative test that was given at the end of the third 
phase, pupils were not able to solve a particular question (Figure 3, example 2). 
 

In the MP3 recording, most of them could not find the other ratio; G : B : T = 10 : 5 : 
100. It did not cross their minds that the amount of money donated can be written as a 

                                     Post Test 

Before                After 

M  :  S                M  :  S 

 5  :  4              ?  :  ? 

10 :  8              5  :  13 

 

                 

 

 

                               Pre Test 

Before             After 

 M  :  S             M  :  S 

  5   :   4         2
2

1
 :  6

2

1
           

 

                 

 

 

4  parts   → 96 

1 part  → 96 ’ 4 =  24 

(5 + 4) parts → 24 × 9                                  

                   =  216 

 

(13 – 5) parts → 96 

1 part  → 96 ’ 8 = 12 

(5 + 13) parts → 12 × 18 

                       =  216 
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ratio. Because of this, the class was not able to obtain a solution. More scaffolding was 
done to help address the gap between students‘ initial ability to understand concepts and 
the new concepts they had to learn in category 7. From then on, pupils were more aware 
(as found in the transcripts) of the ‗other ratio‘ in category 7.  

Figure 3: Examples in Category 7 

Interviews: Five pupils who were interviewed said that learning where new concepts 
were built on old ones made learning ratio easy. These pupils were able to link new 
knowledge to the old. This is important as proportional reasoning becomes more 
complex and detailed as pupils go deeper into the categories of varying content. To 
overcome this, each category must scaffold the next. This way, pupils are able to see 
that all ratio problems are connected, and that concepts build from prior knowledge 
instead of new ideas, thus encouraging a transfer of knowledge between categories.  
 It was noticeable that pupils began to apply analogical reasoning that focused on 
reasoning based on previous experience in category 3. They were able to explain, 
correct and engage the teacher during lessons and had cultivated the habit of reading a 
question seriously as they realised that each question contained clues to the answer. 
They were now more conscious than before of the importance of reading to understand. 
When asked if they faced any difficulties, two felt that the headings of each category 
were difficult for them to recall. Another two felt that category 5 was very difficult, but 
were quick to say that if they could overcome that, they would be able to solve more 
ratio questions. All of them agreed that categorisation should be practiced in other 
topics, especially in fractions.  
Journal writing: In this qualitative aspect of the study the three items discussed were:  
(i) student thinking, then and now, (ii) preference; categorisation versus current 
heuristics, (iii) confidence in solving ratio questions. 
 (i) Student thinking, then and now: Pupils were asked if there were changes in the 
way they thought when solving ratio questions before and after categorisation. 
Everyone agreed that there was a change after the categorisation intervention. Unlike 
before, when they attempted ratio questions after the intervention, they first read before 
deciding on the category. They realised that they were indirectly ‗forced‘ to read the 
question. Also, the availability of a strategy (that comes from the concept) was a plus 
for them. This way, time spent deciding on a strategy was saved and put to better use. 
Six pupils (18.75%) commented that before, the given information meant very little to 
them and they did not know what to do with it. The reason for this was that the pupils 
did not understand the question, hence the information was not fully and correctly 
utilised. Now, with categorisation, pupils were starting to read the question for 
understanding first. Twenty-eight pupils (87.5%) agreed that categorisation also helped 
them give structure to their thinking and made the solving process easier.  

At a party, the ratio of the number of boys 
to the  number of girls is 3 :2. If each boy  
and each girl is given stickers in the ratio  
2 : 3, a total of 1992 stickers are needed.  
How many boys and girls are there? 

 

The ratio of the number of girls to the number of  boys to  
the number of teachers in a school is 5 : 6 : 1. Each girl  
donates $10, each boy donates $5 and each teacher  
donates $100 in a fund-raising event. If a total of $27000  
is donated, how many pupils are there in the school? 

 

Example 1 Example 2 
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 (ii) Preference – categorisation versus current heuristics: In the journal entries 
collected, everyone agreed that categorisation helped them solve ratio questions better 
than the usual heuristics. The features each category contained [e.g. receiving the same 
amount → constant difference (cat 3), A shares with B → total before = total after (cat 
4)] made it easy for them to identify questions and match them to the respective 
categories. Each category had a concept that led to a solution. The pupils felt that 
knowing what strategies to use and how to use them gave them the confidence they 
needed to solve the questions. This addressed the issue of how learning was facilitated. 
 (iii) Confidence: It was found that all pupils were more confident in solving ratio 
questions. With categorisation, pupils did not have to worry about finding the right 
strategy as this was tied to the categories. Pupils became more confident as they had to 
only focus on getting to the correct category. Pupils were able to communicate their 
solutions clearly and logically. It was noticeable that the high performers‘ explanations 
were very short and to the point, mentioning only the relevant points, whereas the 
average performers were very detailed and systematic in their explanation. The low 
ability students struggled to explain their steps and they took longer to record their 
thoughts.  

Changes in student performance 
On the whole, pupils‘ performance in the post test improved, especially in categories 6 
and 7 (Table 1). 

Table 1: Student performance on pre and post-test 

 Pre-test Post-test 
Categories Number of pupils % Number of pupils % 
Category 1 32 100 32 100 
Category 2 25 78 32 100 
Category 3 19 59 32 100 
Category 4 13 41 30 94 
Category 5 15 47 30 94 
Category 6 0 0 20 63 
Category 7 0 0 32 100 

Strategies used 
Most pupils started ratio using model drawing; something they have been taught to do 
since primary 1. Therefore, it was not surprising that most pupils used model drawing in 
the pre test. Those who were neither good nor confident in model drawing used guess 
and check and listing as alternatives. These pupils usually fall in the group of low 
performers in mathematics. As opposed to the post test none of the 32 pupils solved any 
of the pre-test questions using ratio. Surprisingly, no model drawings were used in the 
post-test. Listing, and guess and check were heavily used by the low performers in 
categories 4, 6 and 7. These pupils managed to apply the ratio concepts learnt to solve 
categories 1, 2, 3 and 5. It was noticeable that these pupils reverted to their old 
strategies when they were faced with either an unfamiliar or difficult question. A big 
shift in strategy was seen in the average performers. These pupils were able to move 
away from direct modelling to writing it out. They found category 6 very challenging as 

572



MUSA & MALONE 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

they struggled with the use of algebra. The use of negative numbers and the 
transformation of the operations were the reasons why they were unable to solve 
category 6 questions, but the concept in that category was fully understood as shown in 
the post test.  

Implications 
Pupils gave positive feedback on learning ratio through categorisation. The results of 
the post-test confirmed the value of this approach. Through the journal entries, it was 
clear that pupils hoped to have more learning conducted this way. 
 From a pedagogical point of view, the teacher participant felt that it was easier to 
teach ratio this way and thought that it would be good to extend this approach to other 
topics in mathematics. One particular aspect she liked was the construction of new 
knowledge from old. She felt that this form of learning was effective and it formed a 
strong foundation in pupils‘ learning of ratio. She also noticed that her pupils were 
beginning to read the questions, something she had been asking the pupils to do with 
little success. In addition, she found the environment in her class more active as, unlike 
before, pupils were participating in the discussions. She also noticed a positive change 
in pupils‘ reasoning skills. 
 Resources used were carefully selected and studied before the categories were 
decided on. Obtaining questions was easy, but identifying the concepts in the questions 
was not. Concepts identified had to be vetted to ensure that they could be applied to all 
questions in that category. In short, considerable effort went into planning the resources 
in order to achieve the desired outcome.  
 Pupils do not have to worry about coping with new information regardless of their 
readiness when using the approach described in this paper. CBR relies heavily on prior 
knowledge and appears to work well with CGI problem categorisation and shows 
promise for assisting students towards a better understanding of learning the 
mathematics of ratio.  
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This paper provides a critical analysis of the probability questions in the 2009 & 2010 
NAPLAN numeracy tests for Years 3, 5, 7, and 9 from a number of perspectives. The 
analysis revealed that probability is under-represented in recent NAPLAN tests, with only 
one probability item included in each year level in the 2010 test. The items reveal a limited 
focus regarding type of task and response method. There is poor coverage of the National 
Statements on Learning in Mathematics, and weak alignment with the constructs in the 
Probabilistic Reasoning Framework (Jones et al, 1997). 

Introduction 
In Australia, schools now have to provide evidence to the community that their students 
perform to ‘acceptable standards’. In particular, in 1997 the Australian Federal 
Government adopted compulsory national testing of literacy and numeracy to (a) 
identify students at risk, (b) conduct intervention programs, (c) assess all students 
against national benchmarks, and (d) introduce a national numeracy reporting system 
(Department of Education, Training, & Youth Affairs, 2000). Since 2008, the writing of 
the numeracy tests has been done nationally, and the test items have been based on the 
National Statements of Learning for Mathematics (Curriculum Corporation, 2006). The 
tests are currently conducted in all schools in May, yearly.  
 The introduction of state and national testing has not been supported widely in the 
educational community in Australia. Nisbet & Grimbeek (2004) found that many 
Queensland teachers had very negative attitudes to state tests. They did not believe the 
tests were valid, and hence the results of the tests did not influence their teaching 
practices. Nor did the teachers use the test results to any great extent to inform their 
planning, apart from some identifying gaps in their schools’ programs. National testing 
has limited validity considering (i) the accepted definitions and purposes of assessment 
and (ii) the nature of large-scale tests. First, assessment can be defined as the 
comprehensive accounting of a student’s knowledge and a means to achieve educational 
goals, and not the end of an educational experience (Webb, 1993). The purposes of 
assessment according to Clarke, Clarke, and Lovitt (1990) are to: (i) improve instruction 
by identifying sources of error; (ii) improve instruction by identifying instructional 
strategies that are successful; (iii) inform the learner of strengths and weaknesses;  
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(iv) inform subsequent teachers of students’ abilities; and (v) inform parents of their 
child’s progress. The National Assessment Program—Literacy and Numeracy 
[NAPLAN] can only provide a ‘snapshot’ of students’ achievements and satisfy these 
purposes to a limited extent. 
 Second, large-scale numeracy testing brings with it a number of logistical 
limitations. For instance, the methods of students’ responses adopted in the NAPLAN 
tests are limited to just two types: (i) multiple choice (“Colour in the bubble”); and (ii) 
single numerical answers (“Write the number in the box”); that can be marked by 
computer scanning. These limit the questions and tasks that can be included in the tests. 
It is commonly accepted that through assessment, teachers communicate to students 
which activities and learning outcomes are valued, so that assessment should be 
comprehensive and give recognition to all valued learning experiences (Clarke, Clarke, 
& Lovitt, 1990). Thus national testing brings limitations including a bias towards 
mechanical processes, and away from problem solving and creativity.  
 It is known that items in a related area, statistics, in traditional pencil-and-paper 
mathematics tests have shortcomings; in that they test skills in isolation from the 
problem context, they do not test whether or not students understand how statistical 
measures are interpreted, and they fail to assess students’ ability to communicate using 
statistical language (Garfield, 1993). More recent research by Nisbet revealed that the 
statistics items in NAPLAN were limited in type of tasks, and related to just one aspect 
of the requirements stated in the National Statement of Learning: Mathematics 
(Curriculum Corporation, 2006), namely, analysing data, and ignored data collection, 
representation and interpretation. Similarly, most of the statistics items (94%) aligned 
with just one construct of the Statistical Thinking Framework (Jones et al, 2001), and 
disregarded the other three constructs. 
 National testing programs have tended to result in classroom assessment moving 
away from authentic formative practices and towards techniques closely aligned to the 
national test format (Stiggins, 1999). Teachers feel compelled to spend time preparing 
their students to master the skills included on the tests. It is against this background that 
this analysis has been conducted. 

NAPLAN numeracy tests 
The Australian national numeracy tests are based on a broad definition of numeracy, 
viz. “Numeracy is the effective use of mathematics to meet the general demands of life 
at school, at home, in paid work, and for participation in community and civic life” 
(MCEETYA Benchmarking Task Force, 1997, p. 4). Hence the tests cover the strands 
of mathematics which most people would meet in daily life; i.e., number, measurement, 
geometry, chance, and data. The Year 3 test usually contains 35 items, and the Year 5 
test 40 items. There are two tests at the Year 7 level, one done without a calculator (32 
items), and another where a calculator is allowed (also 32 items). Similarly, there are 
two tests at the Year 9 level, one with and one without calculators (each 31 items in 
2009, and 32 items in 2010). The methods of response to the test items vary across 
items; some items are answered by multiple choice, in which students have to colour in 
with pencil one of the small ‘bubbles’ placed under four alternatives, and some items 
are open response, in which students write their numerical answers in a small box 
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(30mm x 12mm) provided on the page. Each paper has a set of three practice items to 
assist students become familiar with how to answer the questions. 
 Another feature of the tests is the use of ‘link items’, i.e., items that are common to 
two year levels. These are inserted to compare performance across grades levels. Seven 
of the 32 items in the Year 7 non-calculator test are linked to the Year 5 test, and 
another seven items in the Year 7 non-calculator test are linked to the Year 9 calculator 
test. Typically, the percentage of students who answer a link item correctly in Year 7 is 
greater than the percentage of students who answer it correctly in Year 5.  

Analysis of probability items in 2009 and 2010 tests  
This paper provides an analysis of probability items with respect to the following issues: 
number of items included, definition of numeracy and use of real-world contexts; type 
of stimulus material; type of task; alignment with the National Statements of Learning 
[SOLs] for Mathematics for Years 3, 5, 7, and 9 (Curriculum Corporation, 2006); and 
alignment with the Probabilistic Reasoning Framework (Jones et al, 1997). Joliffe 
(2005) argues that it is useful to compare assessment tasks with curriculum goals and 
teaching and learning frameworks “to check what dimensions are being assessed” (p. 
328).  
 In comparison with other topics in the mathematics syllabus, probability is under-
represented in the NAPLAN tests, with respect to number of items included. In 2010, 
there was only one Chance item in each year-level test (approximately 3% of the items). 
In 2009, there was only one Chance item in each of the Year 3 and Year 5 tests (also 
3%), two items in the Year 7 test (6%), and four items in Year 9 (6.5%).  
 The definition of numeracy underlying the Year 3, 5, 7, & 9 numeracy tests was 
adopted by the Australian Ministerial Council on Education when national benchmarks 
were set in 1997, and reads as follows: ‘Numeracy is the effective use of mathematics to 
meet the general demands of life at school, at home, in paid work, and for participation 
in community and civic life’ (MCEETYA Benchmarking Task Force, 1997, p. 4). All 
chance questions in the 2009 and 2010 tests referred to various types of hands-on 
materials, namely, spinners, dice, coins, marbles, jelly beans, and polyhedral blocks. 
However, such contexts may not be authentic for some students, as the authenticity of 
the contexts depends on the students’ varied personal backgrounds and experiences, and 
even the extent to which their teachers had included activities utilising such materials in 
their classroom mathematics programs. The stimulus material for each item was a 
statement about particular concrete materials, mainly spinners and jelly beans. Other 
materials were dice, coins, marbles and blocks. Six out of 12 of the items (50%) 
included a drawing of the materials (e.g., a spinner), and three out of the 12 items (25%) 
included a table of results from a Chance experiment.  
 The items required the students to do one of the following tasks: (i) identify an 
outcome which is impossible to occur; (ii) identify an outcome which is most likely to 
occur; (iii) identify the most likely set of results; (iv) identify a situation or concrete 
material that optimises a particular outcome; (v) calculate the probability of an event 
occurring based on a diagram of particular concrete materials (e.g. spinner); and (vi) 
calculate the probability of an event occurring based on a given table of results. Only 
one item (out of the 12 items in total) required the students to write an answer after 
performing a calculation. The other 11 questions were multiple-choice items, which 
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allowed students to guess rather than think about the item. Research has shown that it is 
possible to get multiple-choice items correct without knowing much or doing any real 
thinking (Northwest Regional Educational Laboratory, 1988). A student may pick the 
correct response by either knowing or calculating the correct answer, making an 
informed guess, or just guessing wildly (Parkes, 2010).  
 The Year 3 Statement of Learning relating to probability (Curriculum Corporation, 
2006) is as follows: ‘[Students] make simple statements, including predictions about 
likelihood, what is possible and what is not.’ (p. 6). The test item given in 2009 asked 
the students to identify which colour marble was impossible to pick from a box of 
coloured marbles (with information given about numbers of each colour), so it aligns 
with the SOL. The item given in 2010 asked the students to identify which spinner from 
a group of four spinners (illustrated) was most likely to stop on ‘white’, so it aligns with 
the SOL also. Hence it is concluded that the Year 3 test items addressed the Year 3 
SOL, albeit it in a limited way, with only one item included each year.  
 The Year 5 Statement of Learning (Curriculum Corporation, 2006, p.  10) refers to 
students: 

 identifying and describing all possible outcomes for familiar chance events;  
 making judgments about their likelihood; 
 predicting whether some outcomes are more likely than others;  
 using suitable language including most unlikely, never, probably;  
 collecting data from experiments to justify or adjust these predictions; and  
 distinguishing situations that involve equally-likely events from those that do not. 

The probability item included in the Year 5 test in 2009 asked the students to identify 
“Which jar gives Annie the best chance of taking a black jelly bean?” so it aligns with 
the third dot point. The item in 2010 asked “On which number on a spinner was the 
arrow most likely to stop?”, so it aligns with the third dot point also. It is concluded that 
the Year 5 test items assessed just one out of the six aspects of chance referred to in the 
Year 5 SOL. This seems unsatisfactory, but is not surprising considering that the tests 
contained only one item on probability each year. 
 The Year 7 Statement of Learning refers to students doing the following: 

 comprehending that many events have different likelihoods of occurrence;  
 making and interpreting empirical estimates of probabilities;  
 comparing experimental data for simple chance events with theoretical probability 

obtained from proportions expressed as percentages, fractions or decimals; and  
 distinguishing events that are equally likely from those that are not. (p. 7) 

There were two probability items in the Year 7 test in 2009. The first asked the students 
“What is the chance that a jelly bean (drawn from a tin) is red?” so it aligns with the 
second dot point. The second item showed a spinner with unequal sectors and asked 
“Which table is most likely to show the results of spinning it 100 times?” It aligns with 
the first and fourth dot points. The only chance item in the 2010 test asked the students 
to identify which “On which number on the spinner is the arrow most likely to stop?” so 
it also aligns with the first and fourth dot point of the Year 7 SOL. Hence it is concluded 
that the Year 7 test items assessed only two out of four aspects (dot points) of the Year 
7 SOL.  
 The Year 9 Statement of Learning refers to students doing the following: 
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 using a variety of sources, including surveys, data-bases, experiments and 
simulations to estimate probabilities associated with events;  

 assigning or making estimates of probabilities based on personal experiences;  
 specifying sample (event) spaces for single and straightforward compound events 

using a variety of suitable representations; 
 determining corresponding probabilities by counting, measure and symmetry; and  
 being familiar with the notion of equally likely events; and  
 being familiar with the use of random event generators, including technology. (p. 

11) 
There were four probability items included in the Year 9 test in 2009. The first item 
asked the students “What the probability is of rolling a 3 on a standard six-sided die?” 
This aligns with the second dot point. The second item asked “What is the chance that a 
jelly bean (drawn from a tin) is red?”, so it aligns with the fourth dot point. The third 
item showed a spinner with unequal sectors and asked students to indentify “Which 
table is most likely to show the results of spinning it 100 times?” It aligns with the 
fourth dot point of the Year 9 SOL. Item 4 said “Calculate the probability of getting 2 
tails and 1 head in any order when a coin is tossed 3 times.” It aligns with the third and 
fourth dot points. It is concluded that the Year 9 test items in 2009 assessed four out of 
six aspects of the Year 9 SOL. The only Chance item in the 2010 test required the 
students to calculate the probability of rolling a 2 on a non-regular hexahedron block, 
given the frequency results for it being thrown 1000 times, so it also aligns with the first 
and fifth dot point of the Year 9 SOL. Hence it is concluded that the Year 9 test item in 
2010 assessed two out of six aspects of the Year 9 SOL. A summary of the aspects of 
the Year 3, 5, 7, & 9 SOLs covered by NAPLAN is shown in Table 1. 

Table 1: Aspects of National Statements of Learning covered in NAPLAN tests by Year level. 

Year level Year of test 

Year 3 Year 5 Year 7 Year 9 

2009 1 out of 1 
(100%) 

1 out of 6 
(16.7%) 

2 out of 4 
(50%) 

4 out of 6 
(66.7%) 

2010 1 out of 1 
(100%) 

1 out of 6 
(16.7%) 

2 out of 4 
(50%) 

2 out of 6 
(33.3%) 

 

Analysis in relation to the Probabilistic Reasoning Framework  
The Probabilistic Reasoning Framework (Jones, Langrall, Thornton, & Mogill, 1997) 
was developed after research and validation with elementary school pupils. Its purpose 
is to describe students’ probabilistic reasoning skills. It consists of six constructs that 
are described at four levels (Level 1, Subjective; L2, Transitional’ L3, Informal 
quantitative; & L4, Numerical). The construct Sample Space refers to students being 
able to list the outcomes of one- and two-stage experiments. Experimental probability 
involves recognising the role of the number of trials, and calculating probability values 
from data. Theoretical probability involves being able to predict least likely and most 
likely events in one- and two-stage experiments, and assign numerical values to 
probability situations. Probability comparisons involve reasoning to distinguish ‘fair’ 
and ‘unfair’ probability situations. Conditional probability relates to how probability 
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values differ in replacement and non-replacement situations. Finally, the construct 
Independence refers to students being able to distinguish between independent and non-
independent events, and understanding the independence of consecutive trials. 
 In the Year 3 tests, only two out of the six constructs were assessed (Sample Space in 
2009 and Probability comparisons in 2010). In the Year 5 tests, only one construct was 
assessed (Probability comparisons in both years). In Year 7, two constructs were 
assessed in 2009 (Experimental & Theoretical probability), and only one construct 
(Probability comparisons) was assessed in 2010. See Table 2.  

Table 2: Probability constructs tested and levels of thinking required according to year level. 

Test items and levels of thinking required 

Construct Year 3 Year 5 Year 7  Year 9 Totals 

Sample Space 2009, Q15: L2     1 

Experimental 
Probability 

  2009, Q17: L4 2010, Q16: L4 2 

Theoretical 
Probability 

  2009, Q12: L4 
 

2009, Q2: L4 
2009, Q 10: L4 
2009, Q28: L4 

4 

Probability 
Comparisons 

2010, Q7: L2 2009, Q29: L2 
2010, Q  7: L2 

2010, Q  3: L2 2009, Q 15: L4 5 

Conditional 
Probability 

    0 

Independence     0 

Total items 2 2 3 5 12 

 

Overall the majority of the test items (9 out of 12 or 75%) were limited to two of the six 
constructs (Theoretical probability and Probability comparisons). Two of the 12 items 
related to Experimental Probability, and one item related to Sample Space. Two 
constructs (Conditional Probability & Independence) were not tested at all over the two 
years.  
 Despite the inadequate coverage, the levels of thinking expected of students followed 
a reasonable progression from Year 3 to Year 9.  

Conclusion 
The probability questions in the 2009 and 2010 tests relate to the MCEETYA (1997) 
definition of numeracy to a limited extent only, because of the variable levels of 
authenticity of the item contexts. There is also the potential for language or cultural 
bias, as has been noted in research concerning multiple-choice questions (Parkes, 2010). 
Further, the probability items are limited in the type of task required, with most being 
multiple-choice items in which students select a spinner, choose an outcome, or pick a 
probability value. The multiple-choice items are fundamentally recognition tasks, where 
students identify the correct response (Parkes, 2010). The test results do not indicate 
whether the students knew the answer, or made an informed or blind guess (Gronlund & 
Linn, 1990).  
 This analysis reveals that the National Statements of Learning (Curriculum 
Corporation, 2006) relating to probability are poorly served by recent NAPLAN tests. 
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Probability deserves to have more than one item included in the tests each year, and the 
items should cover more aspects of probability in the statements than those covered in 
the 2009 and 2010 tests. The current situation promotes a limited view of probability 
that may be noted by teachers and students and lead to a down grading of the topic in 
class.  
 The probability items in the 2009 and 2010 tests relate to a minority of the constructs 
defined by the Probabilistic Reasoning Framework (Jones et al, 1997). With no items 
on sample space, independence, and conditional probability the tests imply that these 
constructs are not important, and teachers may omit reference to them in their teaching. 
As noted by Sadler (1998), when narrow tests define learning, instruction often gets 
reduced to “drill and kill”— practice on questions that look like the test. If schools place 
emphasis on the content and style of items contained in NAPLAN tests, and teachers 
teach to the test (Stiggins, 1999), there will be an unfortunate narrowing of the enacted 
curriculum and students’ knowledge and understanding of probability will suffer. 
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Goldin (2003) and McDonald, Yanchar, and Osguthorpe (2005) have called for 
mathematics learning theory that reconciles the chasm between ideologies, and which may 
advance mathematics teaching and learning practice. This paper discusses the theoretical 
underpinnings of a recently completed PhD study that draws upon Popper’s (1978) three-
world model of knowledge as a lens through which to reconsider a variety of learning 
theories, including Piaget’s reflective abstraction. Based upon this consideration of 
theories, an alternative theoretical framework and complementary operational model was 
synthesised, the viability of which was demonstrated by its use to analyse the domain of 
early-number counting, addition and subtraction. 

Introduction 
An alternative theoretical framework has been proposed (Nutchey, 2011) that explicitly 
differentiates, and is thus able to describe, the knowledge shared in the learning 
community and each learner’s idiosyncratic understanding. This proposition is an 
attempt to address the perceived challenges of reconciling student-centred, 
constructivist learning and the state-able, objective structure of mathematics shared by a 
community of mathematicians. In this paper, literature substantiating this need is first 
identified, and then key theoretical constructs that inform the proposed alternative 
theoretical framework are summarised. The proposed theory is complemented by an 
operational model, of which a significant component is a graphical language for 
describing the organisation of a domain of mathematical knowledge shared by a 
community. This language is introduced, and then its viability is illustrated by applying 
it to the analysis and description of one perspective of early-number counting. A 
broader discussion of the viability and significance of the alternative theoretical 
framework, operational model and graphical language is then provided. 

Background 
Various theoretical bases are promoted for the teaching and learning of mathematics. 
Objectivist theories are often criticised for not taking into consideration the learner’s 
prior experience (Lesh, 1985). Despite these criticisms, objectivist-based practice 
remains prevalent in many of today’s classrooms (Falk & Millar, 2001) and computer-
mediated learning environments (McDonald et al., 2005). Constructivist-based 
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reformists argue for the development of experientially-based richly connected schemas 
of understanding. However, such practice is often stymied by the difficulties 
encountered when attempting to translate the constructivist theory into classroom 
practice (Baroody & Dowker, 2003; Scardamalia & Bereiter, 2006; Simon, Tzur, Heinz, 
& Kinzel, 2004; Steffe, 2004). Some of these difficulties have been attributed to the 
lack of focus upon the highly structured nature of mathematical domain knowledge 
(Kirschner, Sweller, & Clark, 2006; Mayer, 2004). The often occurring polarisation of 
these two theoretical viewpoints has been criticised (Goldin, 2003; McDonald et al., 
2005) as having a deleterious effect on mathematical education practice. Instead, such 
critics argue that each viewpoint has its associated strengths, and that these should be 
drawn upon to develop effective educational practice which recognises both learner 
idiosyncrasy and the state-able and thus objective nature of mathematical domain 
knowledge. Through the development of such a consilience (Goldin, 2003) of learning 
theory, contemporary mathematics education practice may be advanced. 
 Popper’s (1978) three-world model of knowledge and understanding has been 
adopted as a lens through which to re-consider the objectivist and constructivist 
theories. Popper’s three-world model permits the explicit differentiation of World 3 
knowledge shared in a community from the unique, experience-based World 2 
understanding of that knowledge held by each community member. In this model, 
World 2 understanding mediates between the World 3 knowledge of the community and 
the individual’s physical actions of World 1. That is, if the organisation of mathematical 
ideas that define the shared World 3 knowledge of some mathematical domain can be 
described, then the individual learner’s idiosyncratic and experientially developed and 
demonstrated World 2 understanding can then be mapped against this description of 
knowledge. This differentiation and modelling of both World 3 knowledge and World 2 
understanding is at the core of the proposed alternative theoretical framework. 
 Piaget (1977/2001) proposed reflective abstraction as a process of accommodation 
by adaptation that is sufficiently powerful to describe a learner’s entire conceptual 
development in mathematics. Five specific processes, or transformations, of reflective 
abstraction are noted in Piaget’s work (Dubinsky, 1991): interiorisation, coordination, 
encapsulation, generalisation and reversal. Interiorisation involves the internalisation 
and then re-presentation of some phenomena in a de-contextualised, more abstract way. 
Coordination involves the composition of two or more existing processes to form a 
more complex process. In a related way, encapsulation involves the bringing together of 
what were previously independent parts into a manipulable whole. This whole may 
represent the abstraction of a commonality between a set of concepts or the abstraction 
of a detailed process into a single object. Generalisation is the broadening of 
understanding by the application of existing processes and structures to a wider 
collection of problem phenomena. Finally, reversal involves the consideration of the 
differences between concepts and the subsequent abstraction of inverse or ‘undoing’ 
relationships. 
 Reflective abstraction is typically associated with the cognitive processes by which 
individuals construct idiosyncratic understanding. However, when Popper’s three-world 
model is adopted and World 3 knowledge is defined as the expression and thus sharing 
of idiosyncratic mental thought and cognitive process (i.e., World 2 understanding), 
then the description of shared World 3 knowledge will reflect these transformations of 
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reflective abstraction. Thus, reflective abstraction forms the basis of the proposed 
graphical language for describing mathematical World 3 knowledge. 

The graphical language 
The graphical language for describing World 3 knowledge is a major element of the 
proposed operational model that embodies the alternative theoretical framework. The 
graphical language is used to create genetic decompositions, a term borrowed from the 
work of Dubinsky (1991). A genetic decomposition is a network-like structure of nodes 
and links, and is in keeping with the notion of schema discussed in constructivist 
literature. Each node in a genetic decomposition is referred to as a knowledge object, 
and these knowledge objects are linked by one or more knowledge associations. Each 
knowledge association in the genetic decomposition describes some reflective 
abstraction-based relationship between the knowledge objects involved. In the 
following sub-sections, these constructs of the graphical language are discussed in 
greater detail. 

Knowledge objects 
Knowledge objects form the nodes in the network-like genetic decomposition, and of 
these there are three different types. At the core of learning in mathematics is the 
solution of problems, and so one type of knowledge object is the problem object. To 
form solutions to such problems, conceptual knowledge (i.e., principles, facts) may be 
drawn upon as well as procedural knowledge (i.e., skills and processes). Considering 
Baroody’s (2003) suggestion that to foster adaptive expertise conceptual and procedural 
knowledge should be integrated together, the second type of knowledge object is the 
concept object. Central to mathematical activity is the use of language to express the 
problems and concepts of the domain. To this end, the third type of knowledge object is 
the representation object, which is used to identify the different signs and symbols of 
the domain. The three knowledge object types are denoted in the graphical language 
using three different icons, as shown in Figure 1. 

Figure 1. Knowledge objects. 

Knowledge associations 
To organise the knowledge objects in a genetic decomposition, six different knowledge 
associations have been derived from Piaget’s reflective abstraction: inheritance, 
aggregation, solution, inversion, formalisation and expression. These associations are 
discussed in the remainder of this section: the syntax of each in the graphical language 
is shown in Figure 2, and then each of the associations and their derivation from 
Piaget’s reflective abstraction are summarised. 
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Inheritance – the Parent concept (or problem or representation) is a 
super-class, of which Child 1 and Child 2 are more specific sub-
types. 

 

Aggregation – the Aggregate concept (or problem or 
representation) is composed of Component 1 and Component 2. 

 

Solution – the Problem can be solved using the coordination of 
Concept 1 and Concept 2. 

 

Inversion – the Normal and Complement concepts (or problems) 
have differences.  

Formalisation – the Formal representation is a de-contextualised 
representation compared to the Informal representation. 

 

Expression – the Concept (or problem) is expressed using the 
Representation. 

 

Figure 2. Knowledge associations. 

Derived from Piaget’s encapsulation, the inheritance association describes either 
problem, concept or representation objects that share a super-ordinate relationship: The 
child objects are sub-types of the more abstract parent object. Inheritance is denoted by 
an open triangle attached to the parent, from which two or more lines connect the parent 
to each child. 
 The aggregation association is derived from Piaget’s coordination, and is used to 
describe the coordination of several component parts to form a more complex aggregate 
whole. Aggregation may be applied to either problem, concept or representation objects. 
The association is denoted by an open diamond attached to the aggregate, from which 
one or more lines connect the aggregate to each component. 
 The solution association defines the relationship between a problem and the concepts 
used to solve it. This association is derived from Piaget’s coordination and 
encapsulation (i.e., the use of two or more concepts in a coordinated manner to solve a 
problem) as well as generalisation (i.e., since a problem may be solved using several 
different co-ordinations of concepts, or a set of coordinated concepts may be used to 
solve a range of different problems). The solution association is denoted using a closed 
diamond attached to the problem, from which one or more lines connect the problem to 
each concept. 
 The inversion association is derived from Piaget’s reversal, and is used to describe 
two knowledge objects (either problems or concepts) that are in some way 
complementary to each other. The two knowledge objects are referred to as the normal 
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and complement objects. The association is denoted by a line connecting the two objects 
that is terminated by open and closed circles. 
 The formalisation association describes the increasingly abstract signs and symbols 
used in mathematics. Derived from Piaget’s interiorisation, formalisation captures the 
relative degree of de-contextualisation between two representation objects, which are 
referred to as the informal object and the more de-contextualised formal object. The 
formalisation association is denoted by a line connecting the informal and formal 
representation objects which is terminated by open arrow-heads. 
 The expression association describes the various ways by which a problem or 
concept may be represented, that is, how the signs and symbols of the domain may be 
used. This association is also derived from Piaget’s interiorisation, since when 
considered in combination with formalisation, the expression association suggests 
opportunities for interiorisation to occur. The expression association is denoted by a line 
connecting a representation object to a problem or concept object which is terminated 
by closed arrowheads. 

Application 
To demonstrate the viability of the proposed alternative theoretical framework, 
operational model and graphical language, literature regarding the domain of early-
number counting, addition and subtraction was analysed and described (Nutchey, 2011). 
In this section, a summary of the analysis and description of Gelman and Gallistel’s 
(1978) work on children’s counting is provided to demonstrate the use of the proposed 
graphical language. 
 Gelman and Gallistel (1978) theorised that a child’s ability to count is based on the 
coordination of five principles: the one-one principle, the stable-order principle, the 
cardinal principle, the abstraction principle, and the order-irrelevance principle. A 
genetic decomposition summarising this organisation of counting principles is presented 
in Figure 3 (next page), which is then explained. 
 Gelman and Gallistel discussed a stage-like development of a child’s counting 
ability; this has been described by the use of solution associations to describe the use of 
increasingly complex pre-counting, simple counting and counting concepts to solve the 
problem of single collection counting. 
 Pre-counting is described by the aggregation of the one-one principle and the stable-
order principle. The stable-order principle aggregates the concept of the numeron 
sequence, itself aggregating the notion of no tag repetition. An inheritance association 
describes two more specific types of numeron sequence: the conventional sequence and 
the un-conventional sequence. The difference between these two numeron sequences is 
highlighted by an inversion association. The conventional sequence is described by the 
aggregation of conventional numerons, whereas the un-conventional sequence is 
described by the aggregation of numerons, and thus the more specific conventional 
numerons or un-conventional numerons. The numeron sequence is also a component of 
synchronous tagging, which is in turn aggregated along with the skill of set partitioning 
to define the one-one principle. 
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Figure 3. A genetic decomposition of Gelman and Gallistel’s counting principles 

The more complex concept of simple counting is described by the aggregation of pre-
counting and the cardinal principle. The order irrelevance principle aggregates the 
concepts of the one-one principle and the notion of any-order. The abstraction principle 
aggregates the notion of countable entity. Together, the order irrelevance principle and 
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abstraction principle are aggregated along with simple counting to describe the most 
complex counting concept.  
 Gelman and Gallistel’s work focussed on children’s counting of perceptual objects, 
as described by the expression association that indicates the problem of single collection 
counting may be expressed using perceptual objects. The perceptual objects have two 
more specific forms, concrete and iconic, as described by the inheritance association. 
Similarly, perceptual objects may be used to express pre-counting, simple counting and 
counting. 

Discussion 
Using the proposed alternative theoretical framework, operational model and graphical 
language, other early-number literature has also been analysed and described (Nutchey, 
2011), including early-number word problem classification (Carpenter & Moser, 1983; 
Fuson, 1992), the development of number-word and number-sequence meaning (Fuson, 
1992; Olive, 2001; Steffe & Cobb, 1988) and the strategies used to solve early-number 
word problems (Carpenter & Moser, 1983; Fuson, 1992). The resultant genetic 
decompositions were then synthesised together to form a composite description of 
early-number; a process that revealed similarities, differences and sometimes 
discrepancies in the literature. The resulting complex genetic decomposition, presented 
in Nutchey (2011), includes 56 problem objects, 49 concept objects, three 
representation objects, and over 200 associations to organise these objects. This activity 
of analysis and description has demonstrated the viability of the proposed graphical 
language as a tool with which to characterise World 3 mathematical knowledge. In the 
future, further analysis and description activity should extend the composite description 
to include the various representations commonly used in early-number, in particular 
those that scaffold the development of counting, addition and subtraction strategies. 
 The composite description of early-number may provide a basis for the analysis and 
description of an individual learner’s World 2 understanding. A mechanism has been 
proposed (Nutchey, 2011) which suggests that World 2 understanding can be described 
(and thus analysed) in terms of a chronological sequence of images – collections of 
problem, concept and representation objects that each describe an activity in the 
learner’s conceptual development. Guided by the notion of reflective abstraction, the 
analysis of an image sequence may lead to the assessment of a learner’s understanding 
and the identification of future activities that may enhance their understanding. 
 The alternative theoretical framework, operational model and graphical language 
may potentially advance mathematics teaching and learning practice in several ways. 
The modelling technique may form the basis of computer-mediated learning 
environments that are responsive to learner’s mathematical conceptual development. 
The graphical language, when used to express the highly connected nature of 
mathematics, may support a teacher’s development of learning activities that scaffold 
students’ constructive exploration of this organisation of mathematical ideas. This 
potential for theory to impact practice will be the topic of future research and 
development activity. 
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University students’ evaluations of mathematical presentations are examined in this paper, 
which reports on part of a pilot study about different types of presentations, regarding 
different topics, formats (oral or written), and discourses (process- or object-oriented). In 
this paper focus is on different formats; oral lectures and written texts. Students’ written 
comments about what is good or bad about given presentations are analysed in order to 
examine what students focus on when evaluating the quality of presentations. In addition, 
evaluations given about written and oral presentations are compared in order to examine 
if/how format affects students’ evaluations regarding quality. 

Introduction 
The topic in the present paper relates to questions asked by other researchers regarding 
student perspectives on lectures in mathematics courses at university level. In particular, 
results have revealed why students attend lectures, for example for enjoyment, finding 
out what is central and important in the course/unit, and getting notes for later study 
(Hubbard, 2007) or due to interest, enjoyment, and good lecturers (Hunter & Tetley, 
1999). What students see as a good lecture has also been examined, which for example 
includes aspects of the lecturer, such as pedagogical awareness (clarity, good language, 
structure, suitable pace etc.) and charisma (inspiration, engagement, humour etc.), and 
the possibility to get good lecture notes (Bergsten, 2011). These prior studies do not 
focus on students’ comments about specific lectures but on their more general 
conceptions about attending lectures and the quality of lectures. The data described in 
the present paper consist of students’ evaluations of specific presentations given to 
them. The results from analysing these data are in this paper also compared to results 
from previous studies mentioned above. 
 In addition, focus of the present paper is not only on oral lectures but on 
mathematical presentations more generally, by including a comparison between oral and 
written presentations. The interest of comparing these different types of presentations is 
related to the question why students attend lectures, in particular in relation to reading a 
text that presents the same topic. In my previous studies about students’ reading of 
mathematical texts, a common comment from students was that it is essentially 
impossible to learn something from reading a text (Österholm, 2006), that is, they were 
asking for something more or different. At the same time, a common purpose of 
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attending lectures seems to be to get the notes from the lecture (Hubbard, 2007; Hunter 
& Tetley, 1999), that is, students want a written text. This conclusion is in line with the 
results from another study where students preferred written lecture summaries when 
they had access to both audio recordings of lectures and text-based lecture summaries 
(Grabe & Christopherson, 2008). Since students seem to prefer the written text 
produced from a lecture compared to a written text from a textbook, there seems to be 
something about an oral presentation that is favoured among students, besides such 
things that can only be given orally, such as the opportunity to ask questions and have a 
dialogue. In general, there can be differences between oral and written presentations 
regarding aspects of grammar, for example that “the textbook uses more of the standard 
conventions of mathematical writing” (Wood & Smith, 2004, p. 11). This type of 
difference could perhaps make students prefer notes from an oral presentation over a 
“purely” written presentation. Students participating in the study by Bergsten (2011) say 
they prefer intuitive descriptions over formal definitions and proofs in a lecture, which 
could be seen as a confirmation that students want something different than what is 
usually given in textbooks, in particular regarding aspects of grammar and the type of 
language used. However, could there also be something else that is relevant from a 
student perspective when comparing different formats of presentations? This question is 
examined in the present paper, by reducing the affect of type of language usually used 
for different formats, and focusing on the effect of format per se. 

Purpose 
As outlined in the introduction, the study described in this paper focuses on students’ 
perspectives on the quality of mathematical presentations of different formats, regarding 
oral and written presentations. The main interest in the present paper is the following 
two questions: 

• What do students focus on when giving qualitative evaluations of presentations? 
• What differences exist between different formats regarding students’ qualitative 

evaluations? 
In this paper, focus is on students’ evaluations of specific presentations that they are 
exposed to, where the aim of the first question is to create a structured description of 
different quality aspects mentioned by students. The created description is also 
compared with results from other similar studies that have examined students’ more 
general conceptions of lectures, in order to investigate if such different types of studies 
yield different types of results. 
 The main purpose of comparing different formats of presentations is to examine a 
possible more “pure” effect of format than described in other studies. In particular, the 
aim is to avoid comparing different types of descriptions, such as intuitive or formal, 
and instead primarily examine an effect of format per se. 

Method 
A total of 22 Swedish university students voluntarily participated in this study, all 
enrolled in a calculus course. The procedure consisted of mostly individual tasks, but 
some parts they did together with another student, according to the following six steps: 
1. Listen to a pre-recorded oral presentation (16–17 minutes long) or read a written 

presentation (approximately four pages long). 
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2. Give written comments about the presentation, including multiple-choice and 
open-ended questions about evaluating the presentation. 

3. One student gives an oral description of the content of the presentation to another 
student (who had not the same topic in her/his presentation). 

4-6.  Repeating steps 1–3 with new presentations. For each student, the new 
presentation covered the same topic as the first presentation but had different 
format and/or different discourse. 

This data collecting procedure was used in order to fulfil several different purposes, for 
example to examine students’ discourse when describing the presentations and to 
examine students’ preferences for different types of presentations through quantitative 
analysis of answers to multiple-choice questions. However, for the purpose of the 
present paper, focus is on students’ answers to six open-ended questions given as 
evaluations of the presentations. For each presentation, students answered two questions 
as parts of both step 2 and step 5: 

• What made you think this presentation was good or bad? 
• What made you think this presentation was clear or unclear? 

A reason for asking specifically about the aspect of clarity is to try to trigger some more 
specific comments than only saying that the presentation was clear or unclear, which 
otherwise was believed to become a common answer. After both presentations, as the 
last part of step 5, the students also answered two questions about direct comparisons 
between the presentations: 

• What made you think one presentation was better than the other? OR What made 
you think that they were equally good (or equally bad)? 

• What did you think was the most important difference between the two 
presentations and why? 

In this study, mathematical presentations of different kinds are used, with variations 
regarding topic (sequences or Maclaurin polynomials), discourse (process- or object-
oriented), and format (oral or written). The students were randomly assigned to receive 
certain types of presentations with respect to these variations. 
 The content of the presentations were scheduled to be covered within a few weeks in 
the students’ calculus course, therefore judged to be suitable for use in this study, as 
presenting something new but relevant for the students. 
 For the analysis in this paper, focus is not on different discourses (different ways of 
describing), but nonetheless I have included variation of discourse in the data collection. 
This variation is included partly because it is focused on in other analyses not discussed 
in the current paper, but for the purpose of the paper this variation is included primarily 
because there is empirical evidence that different discourses are more or less commonly 
used for different formats. In particular, aspects of nominalisations are more common in 
written than in oral format (Einarsson, 1978). Thus, if I would choose a certain type of 
discourse with respect to aspects of nominalisations, this could be seen as more suitable 
for a certain format and resulting in analysing an effect of discourse and not format. 
Therefore, I choose to use a variation of discourse for the presentations used in the data 
collection, so that both oral and written presentations are given in different versions 
regarding discourse. 
 The oral and written presentations are similar word by word (when the same 
discourse is used), in order to pinpoint a potential specific effect of format. The 
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wordings of all presentations were created by first recording and transcribing a 
spontaneous oral presentation of each topic. Two written versions of each topic were 
then created; one process-oriented version and one object-oriented version. Finally, oral 
presentations were recorded using these written versions as manuscripts. 
 The differences between the types of discourses are here shortly characterised 
through an imaginary change from process- to object-oriented discourse. In this change 
things are described as objects and properties of such objects instead of processes, 
activities or events of some kind, in particular through the following types of changes 
into more object-oriented discourse: 

• Nominalisations: Using nouns or adjectives instead of verbs, e.g., “the usage of 
symbols is the same” instead of “we use the same symbols”. 

• Structuralisations: Using structural types of verbs instead of process types of 
verbs, e.g., “it is the same” instead of “we do the same”. 

• Change of voice: Using passive verbs instead of active verbs, e.g., “this can be 
calculated” instead of “we can calculate this”. 

Data analysis 
There are two main parts in the data analysis: A bottom-up type of analysis regarding 
what types of aspects are commented on in students’ evaluations, followed by a 
comparative analysis of the types of comments given about different formats. 
 In the first main part of analysis, all answers from all six open-ended questions are 
used. All comments are divided into smaller units of analysis so that only one aspect is 
included in each unit. For example, the comment “I understand more if I can see things 
and not only hear things” is divided into three parts; “I understand”, “see things” and 
“hear things”. Thereafter, a recursive procedure is performed: A structure of a few 
categories is created that seems to describe some central aspects in the data. All data are 
then categorised using the created categories, during which the (description of) 
categories also can be altered to better fit the data. Within each category, this process is 
repeated to create a more fine-grained structure of categories. 
 In the second main part of analysis, the categories created in the first part are used as 
a tool for comparing different formats. The comparison is done firstly by a quantitative 
analysis, using a chi-square test with significance level 0.05, of the proportions of 
students who commented on each aspect. In the statistical analysis, three partly 
overlapping student groups are compared; students who commented on oral 
presentations, students who commented on written presentations and students who 
compared presentations with different formats. Those aspects showing significant 
quantitative differences are then compared in a qualitative manner regarding what is 
commented on with respect to the aspect in question. Thus, the results consist of what 
aspects are primarily focused on for different formats and when directly comparing 
formats, and also what is commented on regarding these aspects. In this part of the 
analysis, data from all questions and all students are not used. When a specific format is 
analysed, answers to questions about the second presentation are not used when this 
presentation had a different format than the first presentation. This limitation is used in 
order to analyse answers that focus on one format and avoid getting comments about 
comparisons between formats triggered by the exposure of different formats. When 
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explicit comparisons between formats are analysed, answers to questions about explicit 
comparisons are used only from students that have been exposed to different formats. 

Results 
The structure in this section corresponds to the two main research questions: First, the 
different aspects focused on by students are described through a created structure of 
categories, which is also compared to similar structures from other studies. Second, the 
comparisons between formats are discussed. 

Aspects of quality 
In the process of analysis, three main categories were first noted, which distinguish 
between some aspects of ontology; whether comments focus on the student, the lecturer 
or the presentation. Within these categories, sub-categories were created as described in 
Table 1. 

Table 1. Structure of categories describing aspects of quality mentioned by students. 

Ontology Category Description/exemplification 
Prior 
knowledge 

Relating to the content of the presentation, e.g., that the student did 
not know what a certain word meant or had studied similar things 
before. 

Preference Expressed opinion that one thing is better than another, either in 
general or for the student personally, e.g., that it is more difficult or 
easier to listen to something than to read about it. 

Student input 

State of mind For example tired. 
Reading For example the possibility to read several times. 
Listening For example not have to write and listen at the same time. 

Student 
activity 

Writing For example the difficulty to take notes at high speeds. 
Student 
output 

Cognition Some aspect of understanding or learning, e.g., that something was 
difficult to follow or that the student could grasp what was presented. 

White board If/how the white board is used, e.g., that more should be written on 
the white board. 

Talking For example regarding the tone of voice. 

Lecturer 

Pace For example that everything was too quick or that the lecturer 
behaved calmly. 

Thoroughness That some certain things do exist or do not exist, e.g., the use of 
examples or that some part could have been explained more. 

Structure Relations between different parts of the presentation, e.g., good 
mixture between descriptions and examples. 

Language Choice of wording, e.g., that a certain phrase sounded strange or a 
certain word was used too much. 

Presentation 

Descriptions Type of residual category for presentation, regarding good/bad 
aspects of the way of describing/explaining something, but 
characterised only by singular words, e.g., methodical, (un)clear, 
fuzzy or messy. 

 
Complete statements from students are often not located in only one category, as some 
examples above also show, but it is common that students connect different aspects, 
also in a logical manner (i.e. that some aspect is a cause of another). However, due to 
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space restrictions, it is not possible to analyse these types of comments in the present 
paper. 
Comparisons with structures from other studies 

An affective dimension (regarding enjoyment and interest) is included in the study of 
Hunter and Tetley (1999) as a high-ranked reason for students to attend lectures. An 
affective aspects is also included in the studies by Hubbard (2007), but this time not 
ranked very high as a reason to attend lectures. Students in Bergsten’s (2011) study also 
mention affective aspects, regarding inspiration and humour, as important parts in a 
good lecture. 
 In my own data, no clear affective aspects exist in the students’ evaluations, but 
could fit as a category under student output (e.g., enjoyment) or as a category under 
student input (e.g., interest). The lectures used in this study did not use humour in any 
way and was probably not very inspiring, in particular since they were recorded using a 
manuscript. Perhaps the students did not want to be negative in their comments about 
the lecturer or perhaps this result shows a difference between describing a good lecture 
more generally and evaluating a specific lecture. In particular, it could be that affective 
aspects are not always important, but that this dimension adds something when it do 
exist; that it is not directly negative if it does not exist, but it is positive when it does 
exist. 
 To get the notes from a lecture is stated as important by students in several studies 
(Bergsten, 2011; Hubbard, 2007; Hunter & Tetley, 1999). Comments about notes are 
also part of my data, where some students mention the importance of having the time to 
take notes during the lecture, and that the pace needs to be adjusted for this. Some 
students also mention that the lecturer should write much/more on the white board, and 
not just talk, in order to be able to take notes on what is being said. 
 Other common types of answers from students in Bergsten’s (2011) study are also 
present in my data, primarily regarding what I have labelled as the main category of 
presentation and what Bergsten describes as aspects of pedagogical awareness of the 
lecturer. For example, students in Bergsten’s study mention good explanations to 
support understanding; aspects of clarity, including not skipping details and structure; 
pace; coherence; and a good mixture between theory and method. 

Comparisons between formats 
The data in Table 2 describe how frequent different types of comments are in three 
different situations: When students evaluate only one format, either written or oral, and 
when students compare presentations of different formats. Statistical analyses of these 
data using a chi-square test with significance level 0.05 show that: 

• Aspects more frequent for written format than for oral format are structure and 
descriptions. 

• Aspects more frequent for oral format than for written format are all specific to 
oral format; white board, talking and pace. 

• Aspects more frequent for comparisons than for the other two situations are 
preference, reading and listening. 

Regarding structure and written format, students comment on the connection between 
examples/calculations and parts describing/explaining something, and they also note 
that different parts are building on each other. For the oral format, the describing parts 

595



ÖSTERHOLM 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

of the presentation were given only orally and calculations were written on the white 
board (and read out loud), which could be a reason for this aspect not being commented 
on in the same way for the different formats. It could be that for oral format 
relationships between oral and written parts of the presentation are more in focus than 
the content of the presentation, which is more in focus for the written format. 

Table 2. Proportion of students (in percent) that have commented on a certain aspect. 
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Written 
(N=11) 

27 0 0 9 0 0 64 0 0 0 82 36 27 91 

Oral 
(N=11) 

18 9 18 18 18 27 91 91 36 64 82 0 0 55 

Compare 
(N=18) 

17 50 6 78 56 28 89 11 0 39 17 0 0 39 

 
 Regarding descriptions, the comments given for the different formats are very 
similar, where something usually is described as being (un)clear, messy or well/badly 
described/explained. Thus, this difference is not of a qualitative kind but can be 
interpreted as a shift in focus, away from the content of the descriptions in the 
presentation for oral format compared to written format. The same tendency exists for 
the category of language, although the quantitative difference is not statistically 
significant. 
 Regarding white board, talking and pace, these aspects can be connected to the need 
of taking notes. Several students make the explicit connection to taking notes, while 
others only state that more should be written on the white board and the pace should be 
reduced (or is good), which can be assumed to relate to taking notes. However, such 
comments can also relate to the wish to have the time to understand, which some 
students also mention, but such comments are not as common as those relating to taking 
notes. 
 Regarding preference, some students express only an opinion (e.g., that it is better 
with an oral format) while others connect this opinion logically to another aspect (e.g., 
that some format is better because learning is better with this format or that written 
presentations are better since you then can read several times). In addition, some 
students describe the preference as highly personal and that different persons can have 
different preferences regarding which format is best for them. 
 Regarding reading and listening, for oral format some students express a wish that 
more should be written on the white board so that you can both read and listen. For 
written format, the possibility to read the same thing several times is mentioned. For 
comparisons, the same things are mentioned as for the different formats, but then 
usually expressed as a preference. 
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Conclusions 
When comparing students’ comments about specific presentations in my study with 
results from other studies, where focus has been on students’ general conceptions about 
lectures, a great similarity can be noted regarding aspects of quality included in the data. 
However, one aspect that could need further attention is an affective dimension, 
including what Bergsten (2011) describes as teacher immediacy, which is commented 
on by students in several other studies but not at all in my study. Is this because students 
do not focus on this dimension when evaluating specific lectures or is this aspect only 
noted when a lecture do include some affective aspect? Further studies are needed to 
decide on this issue, regarding how important affective aspects really are for students. 
 When I used presentations of different formats but with the same type of descriptions 
and type of language/discourse, the results show that depending on which format is 
evaluated, there is a shift in focus among the students: There is a tendency for students 
to reduce the attention on aspects of content and instead direct the attention on the 
lecturer when evaluating oral presentations compared to written presentations. 
 This shift in focus seems at least partially to be about an effect of interactions 
between oral and written parts of oral presentations. Several students comment on such 
an interaction, often in connection with taking notes, for example that the lecturer 
should write more on the white board and not only talk, in order to have time to take 
notes. Pace is also often mentioned by students in relation to this; that it should be 
suitable in order to have time to take notes. This focus on taking notes in lectures is 
similar to what has been observed in several other studies (Bergsten, 2011; Hubbard, 
2007; Hunter & Tetley, 1999). Other researchers have characterized this focus on note-
taking as a pedagogical problem, and have developed alternate ways of structuring 
lectures in order for students not only to focus on taking notes or to be totally passive if 
complete notes are given in advance. Tonkes, Isaac and Scharaschkin (2009, p. 496) 
utilise what they call partially populated lecture notes, which is “pre-printed paper notes 
with carefully selected sections left empty for students to write during lectures”. In the 
authors’ evaluations, students have been positive about this alternate method. 
 When students in my study directly compared different formats, they focused more 
on themselves compared to when they commented on only one format. This focus is 
expressed through preferences regarding reading and listening, where students state that 
they prefer one format over the other, usually either expressed without any further 
explanation or elaboration, or that one format is better for comprehension or learning. 
Any other aspect or property of the presentations is seldom referred to, making this 
aspect primarily about a personal preference regarding format per se. This result could 
possibly be related to aspects of learning style, which can include many dimensions but 
where auditory and visual are sometimes included as different styles (e.g., see 
Honigsfeld & Dunn, 2003), which perhaps could be relevant to the preference for oral 
or written presentations observed in the present study. 
 In summary, the differences that have been noted when students evaluate different 
formats of presentations are that more focus is on the content of the presentation for 
written formats, more focus is on the lecturer for oral formats, and more focus is on the 
students’ preferences and activities when directly comparing different formats. 
 The results in the present paper are primarily descriptive regarding observed 
differences, making it interesting as a next step to try to further explain the observed 
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differences. One aspect of explanation could be regarding what is primary in the process 
of making evaluations about mathematical presentations among students, which can 
relate to the ontological aspects in the main categories in the present paper, for example: 

• That different specific criteria, regarding properties of presentations, perhaps are 
used for different formats, i.e. that there is a direct focus on different aspects. 

• That the feeling of understanding or not perhaps is primary, which can be 
different for different formats (perhaps due to a specific learning style), and based 
on this feeling, other properties of a presentation could possibly be related to. 

• That a general conception about one’s own preference for a certain format perhaps 
is primary, which is independent of the specific situation, thus always causing a 
certain format being evaluated as better than the other, and based on this general 
evaluation. Again, other properties of a presentation could possibly be relevant. 

These issues can be related to more general aspects and theories of metacognition, 
which can include both a more static component of metacognitive knowledge and a 
more dynamic component of metacognitive control processes (Schraw & Moshman, 
1995). Different types of criteria and conceptions about one’s own preference can then 
be described as parts of metacognitive knowledge while the feeling of (i.e. evaluation of 
one’s own) comprehension is a part of metacognitive control processes. A question for 
future studies can then be if/how students primarily rely on different parts of meta-
cognition, in general or specifically when evaluating mathematical presentations. 
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This paper describes how one teacher‘s attempts to promote powerful positive affect in her 
mathematics classroom gave rise to concerns and tensions related to her practice. The paper 
shows how using a combination of Activity Theory and the Stages of Concern provides a 
helpful lens for researchers to understand the challenges of change and professional 
development. It is argued that the identification and resolution of these tensions is crucial to 
understand and facilitate the efforts of sustainable pedagogical change. 

Introduction 
Researchers such as Goldin (2000) and Epstein et al. (2007) have identified a need for 
teaching strategies that incorporate the affective domain into the mathematics classroom 
to promote powerful positive affect (PPA), or ―patterns of affect and behaviour that 
foster children‘s intimate engagement, interest, concentration, persistence and 
mathematical success‖ (Alston, Goldin, Jones, McCulloch, Rossman, & Schmeelk, 
2007, p. 327). The use of PPA is proposed in response to suggestions that essential 
affective elements are often considered to be an incidental ‗add-on‘ to mathematics 
learning (Goldin, 2007).  
 Affective elements are commonly defined as encompassing feelings, emotions, 
attitudes, beliefs, and values attached to a subject or object (Leder & Forgasz, 2006). 
Challenges arise as teachers attempt to implement new teaching strategies and tools that 
reveal the affective dimensions of students‘ thinking, perhaps because teachers perceive 
these to be additions to their existing practice rather than integral aspects of student 
learning. Currently, tools include student surveys (Fennema & Sherman, 1976) and 
journaling activities (Jurdak & Zein, 1998; Scott, 2007), but there is a need for 
professional development (PD) and strategies that involve teachers‘ own perspectives 
and experimentation with tools (Flack & Osler, 1999; Smiles & Short, 2006).  
 This paper argues that developing teaching strategies that promote PPA requires a 
research approach that is sensitive to the affective dimensions of teachers‘ perspectives, 
professional development, and learning. According to Hall and Hord (2006), teachers 
approach PD and classroom change with many thoughts, feelings, and concerns due to 
the affective dimensions of change. Change implementers do not simply ‗do‘ the change 
but are constantly thinking about how the process is unfolding. This research explored 
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whether it is helpful to refer to stages along a developmental continuum and sought to 
identify the characteristics of each stage as teachers attempted to modify their practice. 
The identification of teacher‘s individual concerns and the resolution of tensions related 
to the promotion of PPA in their mathematics classroom were fundamental. 
 This study is part of a doctoral research project that has adopted a critical 
ethnographic case study approach to examine how teachers promote PPA over a six-
month period. While descriptive, ethnography essentially means ―learning from people‖ 
(Spradley, 1980, p. 3), and was chosen for two reasons: (a) teachers are the key to 
teaching and learning processes in mathematics; and (b) their perspectives and 
knowledge are often neglected in education research. In this study, the participants were 
empowered through valuing their voices in the analysis and presentation of the results 
(Kincheloe & McLaren, 2005). The researcher explored and acknowledged the ―self-
other interaction‖ (Foley & Valenzuela, 2005, p. 218) and was self-aware of her role. 
Her positioning in the research was upfront and acknowledged (Kincheloe & McLaren, 
2005).  
 This paper highlights the tensions and concerns of one participant as she attempted to 
promote PPA. The participant worked collaboratively with the researcher over a six 
month period to contribute to the theorising about her work by focusing on the 
interaction between her thoughts, affect, and actions and the factors that facilitate and 
constrain pedagogical change (Mahn & John-Steiner, 1998).  

The theoretical framework: Activity Theory and Stages of Concern 
This paper specifically reports on the use of Activity Theory (AT) and the Stages of 
Concern (SoC) to investigate one case study. The essence of these theories is presented 
below. 
 

 Activity Theory. Activity Theory provides a versatile tool to inquire into aspects of 
mathematics education, and its value is well documented (Daniels, 2001; Fai-Ho, 2006; 
Hardman, 2006). The main unit of analysis in AT is the activity system (Engeström, 
1999). A model of the Third Generation Activity System, which is intended to develop 
conceptual tools to understand dialogues, multiple perspectives, and networks of 
interacting activity systems, is represented in Figure 1.  

 

Figure 1. Third generation Activity Theory (Engeström, 1999). 

The Subject node refers to the individual or group whose point of view is taken in the 
analysis of the activity. The identity and activity of the Subject is directed towards the 
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Object node or goal and is transformed into Outcomes with the help of physical and 
symbolic external and internal Tools that mediate the Object into an Outcome 
(Engeström, 1993). Thus, the Object embodies the meaning, motive, and purpose of the 
system. The base of the triangle represents the contextual characteristics of the activity 
system. The Community node refers to the participants who share the same general 
Object with the Subject. The Division of Labour node refers to how tasks are divided 
between community members. Rules are explicit or implicit regulations, norms and 
conventions that constrain actions and interactions within the activity system (Centre for 
Activity Theory and Developmental Work Research, 2003). Boundary Objects operate 
at the interface of different activity systems. For example, if teachers engage in 
discussion, debate and reflection whilst participating in professional learning groups, 
then their learning may be expanded beyond what is possible within their own 
classroom activity systems (Russell, 2002).  
  

 Stages of Concern. The Stages of Concern is a helpful construct to monitor, describe, 
and quantify the emotional part of change that is often neglected, with resulting arousal 
of unnecessary resistance to an innovation (Hall, 2010). The SoC describe a predictable 
pattern of developmental stages that teachers move through as they become increasingly 
sophisticated and skilled in using new innovations. The seven stages are: (0) 
Awareness, (1) Informational, (2) Personal, (3) Management, (4) Consequence, (5) 
Collaboration, and (6) Refocusing (Hall & Hord, 2006). The first stage typifies little 
concern or involvement in an innovation. The second and third stages involve ―self‖ 
concerns that focus on teachers‘ personal feelings of uncertainty and a need to find out 
more about the innovation such as its general characteristics, effects, and demands. The 
third stage is ―task‖ oriented, where attention is focused on the processes and tasks of 
using the innovation and issues related to efficiency, organisation, management, and 
time. The last three stages are ―impact‖ related concerns that deal with teachers‘ 
external concerns about how the innovation may affect students, colleagues, and future 
work. At the final stage, individuals have definite ideas about major changes or 
powerful alternatives to the existing form of the innovation (Hall, 2010; Hall & Hord, 
2006). It is noteworthy that progress through the stages is not guaranteed and is not 
necessarily in one direction.  

Methodology 
Data were collected using two individual interviews at the commencement and one at 
the conclusion of the study, three to five classroom observations interspersed 
throughout the six months, reflective journals, and eight group interviews as part of a 
Professional Learning Group (PLG)—a process of collective and collaborative learning 
with people ―who share a concern or passion for something they do and learn how to do 
it better as they interact regularly‖ (Wenger, 2004). The PLG was a safe and supportive 
environment, meeting approximately every three weeks. It provided participants with 
opportunities to engage with current literature and to develop and reflect on tools to 
promote PPA.  
 Data analysis was a cyclic process involving both AT (Engeström, 1987) and SoC 
(Hall & Hord, 2006). AT focused on the identification of attempts to change behaviour 
in the activity system, whilst the SoC focused on identifying the affective aspects of 
change. All data were transcribed and coded into themes based on the nodes from AT 
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using NVIVO7, a computer software program. The data were first analysed using AT 
and then again using the SoC. There was movement back and forth between the two 
theoretical lenses.  
 The use of AT and SoC complimented each other in two main ways. Firstly, the SoC 
was useful for refining the analysis of tensions identified using AT in the first round of 
analysis, by providing further detail about the affective aspect of change related to how 
participants felt about the implementation of a particular PPA innovation. Secondly, 
data analysis using the SoC provided more description of the tensions and in many 
cases highlighted tensions, which had not been revealed by using AT alone. This 
prompted further analysis using AT to analyse the transcripts and individual nodes 
related to the new tension to confirm if this tension was associated with attempts to 
change behaviour and teaching practice.  
 The SoC lens is used first in the following discussion of the case, to understand and 
describe the participants‘ concerns and affective aspects of change. Then AT is used to 
refine and theorise attempts to change behaviour and teaching practice in the activity 
system to promote PPA.  

Theoretical analysis and discussion 
―Leonie‖ has been teaching for 17 years in various school settings, and at the time of the 
study was a contract teacher at ―Hillsview Primary School‖ located in Adelaide, South 
Australia. Leonie taught a Year 3 class in tandem with her colleague, Violet. In her first 
interview, Leonie portrayed strong images of not being ―good at maths‖ and described 
that her learning of mathematics ―didn‘t come easy‖. These negative perceptions and 
experiences resulted in a lack of confidence, which appeared to contribute to her many 
concerns as well as tensions within her mathematics teaching practice. Leonie identified 
the use of concrete materials, reflection and mathematics story books as useful 
innovative tools for promoting PPA in her mathematics classroom. Leonie appeared 
enthusiastic about experimenting with different tools to promote PPA. However, she 
also raised concerns about making changes to her practice: lack of time to accommodate 
new tools into the school day and a need to maintain classroom order. 
 
 Leonie’s First Dominant Concern: Lack of time for implementing new tools being 
shared at PD sessions. Leonie explained this concern at the beginning of the study 
during her second interview: 

How do we bring it [new tool] in? We‘ve got to let something go and it‘s making those 
choices about what we let go in order to fit this into our day because everything we‘re 
doing is really important … but this new bit of information is important, really important 
as well, so how do you make those choices within the time constraints?  

This suggested that Leonie is struggling to prioritise the teaching strategies and tools 
she needs to use, as ‗everything is important‘. At this stage, Leonie is attempting to 
promote PPA by using new tools in addition to her existing practice. This is causing a 
tension related to a perceived lack of time to ‗fit‘ everything in. This aligns with Dennis 
and O‘Hair (2010) who suggest perceived time constraints are a significant concern that 
influences the use of teaching strategies. However, the results of the study presented in 
this paper suggest that a PLG can support individual teachers in overcoming concerns 
about time because the PLG responded to Leonie‘s concerns about time constraints. The 
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PLG discussions revealed this concern was not just individual, but collective. 
Connections across the curriculum were suggested by participants as a potential 
solution. In particular, the use of mathematics story books and journaling were 
considered to have strong connections to literacy activities, thus relieving timetabling 
tensions with a lack of time to fit ‗everything‘ into the school day. The PLG supported 
Leonie in meeting her individual PD needs according to her concerns. 
 
 Leonie’s Second Dominant Concern - Maintaining a high level of order within the 
classroom. During a PLG meeting there was a discussion about the use of dialogue to 
enhance student learning and reflection in mathematics and the problems Leonie had 
encountered when implementing this tool. Leonie stated: 

Talking is crucial, but how often do we let them talk about maths and their learning? We 
often say as teachers that the classroom is too noisy. People are coming into the school 
and we want to keep the students settled – we don‘t want them talking. We have that 
constant struggle with our identity as teachers, you know, we want them to talk but we 
want them to be quiet, we want them to be hands-on and explore things but we want them 
to stay in their desks and not to touch or annoy other people. There‘s always that 
contradiction in teaching … it‘s not always easy as a teacher … especially when we have 
people walking into the room – it looks like total chaos (PLG2). 

Leonie seemed concerned about how this tool would affect her personally and her 
reputation as a teacher. Her use of the pronoun ―we‖ suggests that she believed that 
others shared her concern. She did not want her classroom to look chaotic even if it was 
for the benefit of her students. In fact, Leonie‘s concerns about a perceived need to 
maintain order remained evident at the conclusion of the study but it appeared that she 
felt that a lack of order was acceptable at times. Leonie explained in her final interview: 

There‘s a fair bit of pressure from parents and staff … especially in maths – that it is done 
in a particular way. … Now having been through this process, it‘s ok to have lots of 
noise. … You feel that pressure to have kids quiet because you might walk along the 
corridors and all the other classes are quiet. I think: Why is my class so noisy? There‘re 
other classes that are probably noisy but I just don‘t walk past them when they are. 

As discussed in the PLG, the importance of social interactions and talking are 
emphasised in policy documents and mathematics education research: for example, the 
Learner Wellbeing Framework for Birth to Year 12 (Department of Education and 
Children's Services, 2007) and the Aspects of Working as a Mathematician model 
(Grootenboer & Jorgensen, 2009). By the end of the study, Leonie was aware of the 
value of social interactions and dialogue and this influenced her valuing of these aspects 
in her classroom, even if this meant that her classroom appeared chaotic at times. The 
quotation above suggests that Leonie was approaching a resolution to the tension related 
to the need to maintain order in her classroom by coming to terms with her personal 
concerns about the expectations of others.  
 Applying the lens of the SoC (Hall & Hord, 2006) to the case study of Leonie, it 
appeared that Leonie‘s concerns were characteristic of Stage 3 Management and Stage 2 
Personal concerns. Specifically, Leonie‘s first dominant concern related to a perceived 
lack of time to accommodate new tools or strategies to promote PPA into the school day 
was characteristic of Sage 3 Management concerns from the ―task‖ area, as Leonie 
focused on implementing a range of tools, teaching strategies and issues related to 
efficiency, organisation, management, and time to ‗fit‘ them into the school day. 
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Leonie‘s second dominant concern suggests a Stage 2 Personal concern that involves 
personal feelings of uncertainty and a need to find out more about the innovation: the 
value of social interaction and talking, as identified in policy documents and research. 
Later, there was evidence that this concern transformed into Stage 3 Management 
concerns where she was focused on managing the learning environment and accepted a 
noisy and chaotic classroom at times. Throughout the study, Leonie expressed 
inconsistent glimpses of Stage 4 Consequence, focused on the effects of new tools or 
teaching strategies on her students. These Stage 4 Consequence concerns were evident 
in some PLGs as well as a journal entry where she wrote: 

The impact the PLG meetings are having on my mathematics teaching is significant; 
especially in the way I view the children in the mathematical process. I reflect on, and try 
to pick up on, how they are feeling. It has made me realise how important the reflection 
process is for all students and myself and not only in mathematics but all [learning] areas 
(Journal 5).  

However, higher-level concerns appeared inconsistent and not representative of the 
majority of concerns evident in her interviews, PLG sessions or classroom observations.  
 In summary, overlaying the theoretical lens of AT to the case study of Leonie and 
her two dominant concerns, revealed how Leonie‘s engagement in discussion, debate, 
and reflection whilst participating in the PLG supported her to expand her teaching 
practice in her mathematics classroom. In particular, rather than simply identifying the 
stage of concern, the use of AT enabled the researcher to analyse and theorise the 
related tensions that may extend beyond the direct control of teachers in their classroom. 
From this position, the focus could turn to investigating with participants the possible 
ways to resolve these tensions and facilitate further insights and improvements to 
teaching practice. The addition of AT with the SoC was very powerful and valuable 
during the data analysis and discussion as it revealed new insights into promoting PPA 
and challenges that would not have been possible without the use of the two lenses in 
combination. The SoC provided ways to identify concerns that were associated with 
tensions in teachers‘ practice and the use of AT enabled the exploration of the nature of 
these tensions. AT enabled the researcher to customise the PLG meetings to meet the 
individual needs of the group as a collective. 

Tensions in Leonie’s Activity System 
There are three tensions evident in Leonie‘s Activity System related to the two 
dominant concerns identified above.  
 The first dominant concern has two related tensions in Leonie‘s Activity System. The 
first tension in Leonie‘s Activity System is between Leonie (the Subject of her activity 
system), the Tools and the Object of promoting PPA (Figure 2, Tension 1). This tension 
originates from the agreement of the PLG about the shared Boundary Object. As a 
consequence, Leonie struggled to use different tools in ways that could achieve the 
Object but ‗fit‘ within the time constraints of the school day. The implications of this 
tension suggest that Leonie would benefit from support to identify which aspects of the 
school day and activities need to be her priorities and which aspects she could combine 
or remove. Alternatively, there may be aspects in her practice that could be better 
organised and managed to make it more time efficient. For example, time taken for 
journaling and the use of story books to promote PPA in mathematics could also be 
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considered literacy activities. This is not an aspect that is currently addressed in the 
existing range of tools recommended to teachers, however it is a topic well suited to PD 
and PLG discussions located at the school level.  
 The second tension in Leonie‘s Activity System related to the same concern is 
between the Subject, Tools and Boundary Objects for both Leonie and the PLG (Figure 
2, Tension 2). The PLG discussions were often guided and informed by teaching 
strategies or tools recommended in the literature. This tension suggests that the tools 
identified in the literature to reach the Object of promoting PPA (including surveys and 
journals), were designed by researchers for teachers, resulting in teachers being 
consumers of the tools. This resulted in some teachers feeling uncomfortable in their 
use of the tool resulting in some resistance to adopt and ‗fit‘ the tools designed by 
others into their classroom teaching or their individual activity system. This suggests 
that further research is needed to investigate if PPA tools created by teachers for 
teachers would be more readily adopted in classroom practice. 
 The third tension in Leonie‘s Activity System relates to the second dominant 
concern, and it is between the Subject and the Community (Figure 2, Tension 3). As 
Leonie attempted to change her mathematics teaching practice, this tension appeared to 
have originated from outside of her classroom. Specifically, Leonie (Subject) was aware 
of expectations from parents and staff (Community) for mathematics to be ―done in a 
particular way‖ and for the classroom to appear well managed with students seated 
quietly at their desks. Yet Leonie explained that in her view, there is benefit for students 
to make ―noise‖ because dialogue and talking are important affective elements to 
include in the mathematics classroom. The identification of this tension suggests there is 
an opportunity for parents and staff in general to review and challenge the perceptions 
of the characteristics of learning environments that promote PPA. Again, this aspect is 
not currently addressed by the tools recommended to teachers. It is a well suited topic 
for investigation as part of teacher PD and PLG discussions at the school level. 
 The three tensions in Leonie‘s Activity System are represented in a Third Generation 
Activity System in Figure 2. The first tension is labelled with a number 1, the second 
tension is labelled with a number 2 and the third tension is labelled with a number 3. 
 

 

Figure 2. Leonie’s activity system and tensions. 

In combination, the use of the theoretical lens of AT and SoC reveals how Leonie‘s 
engagement and participation in the PLG supported her to address her concerns and 
expand her teaching practice in her classroom. In particular, the SoC provided a lens to 
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understand where these concerns were situated in the change process when attempting 
to implement a new innovation and make a change in practice. The use of AT focused 
the researchers‘ attention on tensions within and beyond the direct control of the 
research participant in their classroom. 

Implications and conclusion 
The addition of the SoC with AT proved to be a powerful and valuable combination 
during the data analysis and discussion stage of this research as it revealed unexpected 
insights and challenges related to the promotion of PPA that may not have been possible 
with the use of only one theoretical construct. Specifically, the SoC served as a valuable 
construct to monitor, describe, and quantify the affective part of teachers‘ 
implementation of tools for promoting PPA while AT facilitated the examination of the 
promotion of PPA in terms of a complex system. Together, these constructs supported 
the researcher to look beyond a narrow focus on tools used by teachers in classrooms 
and to value teachers‘ voices to theorise the dialectical relationship between teachers‘ 
perceptions, affective responses, motives and actions that support and constrain 
pedagogical change. This paper has drawn attention to the value of the SoC and AT as a 
combination of theoretical tools with which to understand and analyse teachers‘ 
concerns and tensions in relation to the promotion of PPA in mathematics classrooms.  
The use of the SoC and AT in combination together with PLGs has potential use in 
further research as a means of investigating and understanding teachers‘ tensions and 
concerns related to teachers implementation of tools and innovations towards the 
promotion of powerful positive affect in the mathematics classroom.  
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Using children’s literature in mathematics is not a new idea. Although resources have been 
produced to support teachers in using literature in their mathematics programmes, there is 
little research to show this approach is successful. One debate associated with using 
children’s literature in mathematics teaching/learning is how much support is required for 
children to recognise the mathematics in the literature. The research that is available has 
focused on very young children interacting with stories being read to them or identifying 
adaptations needed to the text and/or illustrations to allow children to recognise the 
mathematical information inherent in the story. This paper presents the results of a study 
that used book reviews as a tool to identify the extent Year 7 students could identify the 
mathematics in children’s literature.  

 

Background 
The use of children’s literature1 in mathematics is an idea that has been promoted since 
the 1970s (Whitin & Wilde, 1992). This combination of reading and mathematics 
allows children to use their strengths in one subject to support their learning in the other 
and worthy of including in classroom programmes (Thraikill, 1994). In integrating 
literature and mathematics, the challenge is in keeping the integrity of both curriculum 
areas (Perger, 2004). The ability to focus on the mathematics without losing the 
enjoyment of stories would seem to depend on the skill of the reader and the extent to 
which the mathematics can be identified. To support this, books have been published to 
aid teachers in identifying the mathematical possibilities within specific examples of 
children’s literature, for example Books You Can Count On (Griffiths & Clyne, 1988). 
Reference to children’s literature can also be found in teacher publications such as The 

hers of Mathematics’ (NCTM) Teaching Children 
e teacher’s edition of some mathematics textbooks. Here 

National Council of Teac
Mathematics journal and in th
                                                        

1 Note: The definition of children’s literature used in this paper is that of Anderson 
(2006). She identifies children’s literature as all books written for children excluding 
comics, joke and cartoon books as well as non-fiction or reference books that were not 
intended to be read from cover to cover such as dictionaries or encyclopaedias. 
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the children’s literature is used to support the mathematical learning focus of the 
chapter, for example Elementary and Middle School Mathematics: Teaching 
Developmentally (Van de Walle, 2004).  
 With a renewed focus on literacy and numeracy, publishers have produced books 
linked to both curriculum areas (e.g., the MacMillan Side-By-Side series). These books 
are often levelled to children’s reading ability, yet they rely on children using their 
knowledge of mathematics to gain meaning of the story. Although there are a variety of 
resources available that encourage teachers to use children’s literature in their 
mathematics programmes there is little research that identifies the benefits of combining 
children’s literature and mathematics (Anderson, Anderson & Shapiro, 2005; Hong, 
1996). 
 One issue relating to the use of children’s literature in mathematics is the extent to 
which the mathematics needs to be outlined for it to be a useful tool for mathematical 
learning. Whitin and Whitin (2004), although supporters of using children’s literature in 
mathematics programmes, considered the task of identifying the mathematics a time 
consuming one for teachers. To help teachers with this process they developed a set of 
criteria for teachers to use when assessing the quality of children’s stories they may 
wish to use. The criteria they developed identified four aspects they consider 
mathematics related children’s literature book should demonstrate. The four aspects are 
“mathematical integrity”, a “potential for varied responses”, an “aesthetic dimension”, 
and “ethnic, gender, and cultural inclusiveness” (2004, p. 4). In developing these criteria 
Whitin and Whitin referred to the NCTM’s Curriculum and Evaluation Standards for 
Mathematics (1989) and the Principles and Standards for School Mathematics (2002) 
as well as standards set by the National Council of Teachers of English (NCTE) and the 
International Reading Association (IRA). The development of these criteria would 
indicate the responsibility for identifying the mathematics is that of the teacher. Whitin 
and Whitin believed that when teachers choose children’s books carefully and introduce 
them effectively not only will mathematics learning be enriched but there is the 
potential for learning in other curriculum areas as well. 
 Schiro (1997) also recognised a benefit in using children’s literature in teaching 
mathematics, although he believed that the mathematics could easily be missed or 
appear confusing to the reader if not made explicitly obvious. In a study to identify 
literature appropriate for mathematical learning, Schiro (1997) developed a criterion for 
assessing children’s literature. This criterion differed from Whitin and Whitin’s (2004) 
in that it focused on how explicit the mathematics was presented rather than the quality 
of the mathematics and the story. His explanation required the mathematics to be made 
explicit in both illustrations and text if it were to benefit mathematical learning. He 
considered the responsibility of making the mathematics clearly that of the author and 
illustrator. Schiro recommended that algorithms be included in text and that numerals be 
presented in digit form to support the mathematical word. Schiro stated that 
mathematical information also needed to be incorporated into the illustrations if the 
reader is to understand the mathematics inherent in the story. For example the 
illustrations for the story Ten in the Bed should include the mathematical equation 10 – 
1 = 9 written on the end of the bed. In the story One grain of Rice (Demi, 1997), for 
example, tables could be incorporate into the illustrations so as to demonstrate the 
increasing value of the numbers. This inclusion of numeral data into texts and 
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illustrations would seem to indicate that the reader needs this support to identify the 
mathematics within children’s literature. Yet in doing so is the opportunity for 
mathematical thinking being taken away from the reader? 
 Perkins (2001) states that if we believe mathematics is everywhere we should be able 
to easily find it represented in children’s literature, whether the books have been written 
with a mathematical focus or not. Supporting this idea, young children have been 
observed using mathematical language when discussing a story being read to them (Van 
den Heuvel-Panhuizen & Van den Boogaard, 2008; Anderson et al., 2005). Van den 
Heuvel-Panhuizen and Van den Boogaard’s (2008) study in The Netherlands showed 
that young children are able to identify the mathematics in children’s literature without 
the need for adaptations or teacher direction. They identified examples of mathematical 
related thinking during the reading of a picture book to four young children. They found 
that five-year old children used mathematical language during discussing the 
illustrations with peers. When analysing the children’s talk they discovered that half 
their utterances were mathematically related.  
 The importance of illustrations in promoting mathematical discussion when children 
are read to was also identified in a Canadian study. Anderson et al. (2005) used videoed 
sessions of 39 parents reading specific examples of children’s literature with their four-
year old children. During these sessions parents and children were viewed engaging in 
mathematical dialogue to co-construct the meaning of the text. Size, number, and shape 
were the concepts discussed, in order of frequency. Many of these discussions were 
child initiated. The evidence of these studies would indicate that even young children 
are able to recognise mathematics within children’s literature without the adaptations 
Schiro (1997) considered necessary. 
 Using children’s literature in a mathematics programme can enhance the learning of 
mathematical concepts through giving children the opportunity to talk about 
mathematics. Van den Heuvel-Panhuizen and Van den Boogaard (2008) found that 
providing an opportunity to talk about a story not only contributed to the understanding 
of mathematical concepts but also helped develop a positive attitude towards 
mathematics. Griffiths and Clyne (1991) recognised that children’s literature was able 
to play a larger role in mathematical learning as it provided a model, illustrated a 
concept, posed a problem or stimulated an investigation.  
 In summary, the effectiveness of using children’s literature as a tool for 
teaching/learning mathematics would seem to hinge on the reader identifying the 
mathematical possibilities within the story, but the extent to which the mathematics 
needs to be made explicit to the reader is debatable. At one end of the argument Schiro 
(1997) states mathematical information needs to be presented to the reader in digit 
and/or equation format in both text and illustrations. At the other end of the scale Van 
den Heuvel-Panhuizen and Van den Boogaard (2008) believed that young children are 
able to identify the mathematics even when the teacher has given no clear indication 
that it is present.  
 Given this debate as to how much support is required for readers to be able to 
identify the mathematics, a group of Year 7 students were asked to complete two tasks. 
These tasks were designed to allow students to demonstrate the extent to which they 
could recognise the mathematics in children’s literature. This paper presents the 
findings of that study.  

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

610



PERGER 

This study 
This study focused on two questions: 

 Could students identify the mathematics in a storybook without being given any 
indication that mathematical concepts / opportunities where present? 

 What mathematics do students identify in a story, when there is no indication of 
mathematical content, and when they are told mathematics is present? 

To answer these questions, a group of Year 7 students (11 year olds) approaching the 
end of their first year at intermediate school were given two tasks. Tasks were 
completed as part of their normal class programme separated by an interval break. 
Students had been exposed to a variety of children’s literature throughout the year 
although never in their mathematics programme. Thirty books were provided for 
students (see Appendix A) to choose from. These all contained opportunities for 
mathematical learning although in some the mathematics was more obvious than others. 
There was a range of instructional reading and mathematical concept levels. Each 
student chose a different book to review for each task. 
 The first task students completed was to select a book and write a book review. 
Added to the book review, students were asked to identify how a teacher might use the 
book in their classroom programme. Students were not given any indication which areas 
of the curriculum or age level the books could be used for. All students present in the 
class at the time the task was presented participated. 16 students of mixed ability (in 
both mathematics and reading) completed a book review.  
 The second task was set once students returned to class after a twenty-minute interval 
break. This time, 19 students participated, again of mixed mathematics and reading 
ability. They included 16 students who completed the first task and 3 others. The same 
selection of books was used. For this task students were informed that the books they 
could choose from were purchased to be used in a mathematics programme. The task 
required students to identify the mathematics that children could learn from reading or 
being read the books. Each student chose one book and listed the mathematical learning 
that could be achieved through the use of the book selected.  

Results and discussion 
Book review task (Task 1) 
Like the children in Van den Heuvel and Van den Boogard’s (2008) study the majority 
of Year 7 students in this study were able to identify the mathematics even when not 
altered to its presence. 13 of the 16 students recognised mathematical learning 
possibilities for a teacher using the book they had reviewed (see Table 1) 
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Table 1: Mathematical concepts identified in book review task 

 Number Measurement Geometry 

C
on

ce
pt

s 
Id

en
tif

ie
d Counting 

Place Value 
Addition 
Multiplication 
Division 
Knowledge of Numbers  

Length (cm, m) 
Weight 
Angles - degrees 
Time 
Area of a Circle 
Size 
 

Shape 

 

As in Anderson et al. (2004) number, measurement (size) and geometry (shape) were 
the areas of mathematics identified. The students noted that angles (degrees) and the 
area of a circle could also relate to concepts in the geometry. 
 When presenting learning possibilities students stated the mathematics clearly and 
concisely. For example, 

If I were a teacher, the children in my class would learn how to divide in half.  
(The Great Divide, Dodds, 2000) 

If I were a teacher children will learn how to multiply, add and learn more about maths.  
(Anno’s Mysterious Multiplying Jar, Anno & Anno, 1982) 

If I were a teacher the children would learn how to find the area of a circle and how to 
measure.  (Sir Cumference and the Dragon of Pi, Neuschwander, 1999) 

Two students elaborated further on the mathematics children could learn if a teacher 
used the book they had reviewed by listing the concepts children could learn in more 
detail. For example, 

Children could learn how zero’s make a number even bigger and numbers never end. 
They could also learn how to count from one to a googol; which has 100 zeros! You can 
also learn the names of other huge numbers. 

(Can You Count to a Googol? Wells, 2000) 

Another student included detail of a task he would set the class. 

If I were a teacher I would get my students to find out how many humpback whales and 
dogs would fit in the class room and how many peas would fit in a bowl. The students 
would learn about measurements like metres, centimetres, and weight. 

(Counting on Frank, Clement, 1990) 

These students recognised only mathematical learning possibilities in the books they 
reviewed. The mathematics identified by these students in their book review task 
indicated that they were able to recognize mathematical possibilities within children’s 
literature. The specific links to the mathematics and/or detail they were able to provide, 
as to the learning possibilities, indicates that the mathematics was neither obscure nor 
confusing. The adaptations to text and illustrations Schiro (1997) recommended were 
not required for these children to recognise the mathematics inherent in the books they 
reviewed.  
 When identifying mathematical possibilities for a teacher, four students were 
confident enough to also recommend an age group for the book they reviewed. All the 
age levels identified were appropriate for the story and the mathematics they had 
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selected. Three of these students justified the age group through links to other 
curriculum areas or interests. These justifications included an interest a child at that age 
group might have, i.e. cats for the story Six Dinner Sid (Moore, 1990), or other learning 
such as learning to read which they saw as focus of year level. The ability for books 
with a strong mathematical content to enrich learning in other curriculum areas was 
something Whitin and Whitin (2004) and Griffths and Clyne (1991) stated to be an 
advantage of using children’s literature in a mathematics programme. Five students in 
this study identified learning in both mathematics and other areas of their lives. These 
areas included other curriculum areas such as reading, language (narrative text), and 
science. Students also made links to real life learning that could eventuate from the 
story reviewed such as “love and romance” and “wisdom”. Here students identified the 
links Griffths and Clyne, as well as Whitin and Whitin, had assigned to teachers. The 
students’ ability to identify mathematical learning, specific concepts, possible activities 
and learning in other curriculum areas, and as well learning associated with real life, 
would support Griffths and Clyne’s (1991) observation that children’s literature is able 
to play a role in mathematical learning.  
 Three students failed to identify any mathematics. Two of these students had chosen 
books where the mathematics was not obvious, although these books could have 
provided motivation for mathematical investigations. One example of children’s 
literature where obvious mathematics was not identified was a counting book. Of 
course, the inability to identify the mathematics may relate to an individual’s 
mathematical or reading ability, but individual participant’s ability in reading and 
mathematics was not identified in this study. 

Identifying the mathematics (Task 2) 
The second task students were assigned a more mathematics-focused task. It was to list 
possible mathematical learning in a book chosen from the same selection as in task one. 
For those students who completed both tasks, a different book from the one they had 
used for task one was chosen for task two. For this task students were alerted to the fact 
that the books had been purchased for use in mathematical programmes. No information 
about what mathematics the books contained was given.  
 All students were able to identify appropriate mathematical learning possibilities. 
Once again students identified mathematical concepts associated with number, 
measurement and geometry. See Table 2 for mathematical concepts identified during 
Task 2, in order of frequency mentioned.  

Table 2: Mathematics identified in children’s literature 

 Number Measurement Geometry 

C
on

ce
pt

s 
Id

en
tif

ie
d Division 

Multiplication 
Addition 
Subtraction 
Counting  
Reading Big Numbers 
Place Value 

Volume/Capacity 
Weight 
Distance 
Height 
Area of a Circle 
Time 
Cooking 

Shapes 
Tangrams 
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The Year 7 students in this study linked 11 books to number, 7 to measurement and 3 to 
geometry. The frequency of mathematical concepts has changed from the measurement 
(size), number, and geometry (shape) noted by Anderson et al (2004) in that the 
identification of number has overtaken that of measurement. This could be due to a 
stronger focus on number as students reach higher levels of the school curriculum.  
 The mathematics identified in this second task was more detailed than in the first. 
For example, in the first task when no indication of mathematical content was given, the 
mathematics associated with the book The Dot and the Line (Juster, 1963) was noted as 
“some mathematics shapes”. In the second task when students are altered to the 
mathematical content the specific mathematical learning was identified as “children 
could learn shapes—squares, triangles, hexagons, parallelograms, rhomboids, 
polyhedrons, trapezoids, decagons, tetragrams as well as angles”. The two books where 
students failed to identify the mathematics in Task 1 (one where the mathematics was 
not obvious) had appropriate mathematical content identified in this second task. This 
difference could be attributed to different students completing the book review. This 
would indicate teachers could play an important role in enhancing the mathematics in 
examples of children’s literature through the way they introduce it the story (Whitin & 
Whitin, 2004).  
 Although students were only asked to identify mathematics in the second task, some 
students made links to other learning as well. These included riddles and rhymes, 
history, reading and science. One student also made links to more general aspects of 
mathematics such as problem solving (“being able to answer mathematics problems”). 
Another student who seems to agree with Perkins’ (2001) belief that if mathematics is 
everywhere we should be able to find it represented in children’s literature linked 
mathematics to everyday life. In reference to the book Maths Curse (Scieszka, 1995) 
she concluded her list of possible mathematical learning with the sentence “Children 
can learn that maths is all around us and mathematics has real life applications and is 
very important”.  

Conclusion 
The year 7 students in this study showed that they could identify opportunities for 
mathematical learning in samples of children’s literature. Mathematics was the 
predominant curriculum area identified even when no indication of mathematical 
possibilities was provided. Without adaptations to text or illustrations, or teachers’ 
input, these students identified appropriate mathematical learning, often linking it to a 
wider field of knowledge— both other curriculum areas and life skills. It is possible that 
if the adaptations recommended by Shiro (1997) had been evident in the text or 
illustrations of these books, the mathematical opportunities may have been limited to 
those of the author and students may not have made the wider links to other curriculum 
areas or the life skills they did. When altered to the presence of mathematical content 
the student’s descriptions of the mathematical possibilities was even more detailed. This 
would indicate that although students can independently identify the mathematics in 
children’s literature, the input of a teacher could further enhance learning opportunities. 
With a student’s ability to recognise the mathematics and a teacher’s careful selection 
and introduction of books, the use of children’s literature could be a powerful tool in 
both motivating and consolidating mathematical knowledge. 
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During 2009-2010, the South Australian Department of Education and Children‘s Services 
implemented a mathematics learning and teaching program for educators in preschools and 
the first year of school in response to national curriculum agendas. The Early Years 
Numeracy Pilot Project (EYNPP) used an inquiry model of professional education led by 
early childhood educators who were designated as numeracy leaders. This paper analyses 
the impact of EYNPP on the knowledge, skills, confidence, and pedagogical approaches of 
these numeracy leaders and on the development of powerful mathematical pedagogy in 
their own settings and those of the colleagues whom they were leading. 

Introduction 
Evidence of the importance that the Australian government sees for the mathematics 
education of young children can be found in the injection of $540 million from the 
National Partnership Agreement on Literacy and Numeracy (Council of Australian 
Governments [COAG], 2008) and the development of both the Early Years Learning 
Framework (Commonwealth of Australia, 2009) and the Australian Curriculum—
Mathematics (Australian Curriculum, Assessment and Reporting Authority [ACARA], 
2010).  
 Within this context, the South Australian Department of Education and Children‘s 
Services (DECS) implemented the Early Years Numeracy Pilot Project (EYNPP) to 
enhance mathematics outcomes for children and educators in preschools and the first 
years of school. This paper reports outcomes from the 2009-2010 implementation of 
EYNPP. In particular, it considers the professional learning of four ‗numeracy leaders‘ 
who were integral to the project and the impact of this learning on the development of 
powerful mathematical pedagogy in their own settings and those of the colleagues 
whom they were leading. 

                                                        
1 I wish to acknowledge the following people who have inspired me to write this paper and without whom it would 
not exist. In very many ways they are co-researchers in EYNPP and co-authors of the paper. They are: 
Di Hogg, Tammy Mann, Tanya Pojer, Sandy Warner, Elspeth Harley, and Noel Thomas. 
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Background 
Early childhood mathematics 
Recognition of the importance of mathematics in the early years of children‘s lives is 
well recognised (Hunting et al., 2008; Kilpatrick, Swafford, & Swindell, 2001; Lee & 
Ginsburg, 2007; Perry & Dockett, 2008; Sarama & Clements, 2009; Thomson, Rowe, 
Underwood, & Peck, 2005). The Australian Association of Mathematics Teachers 
(AAMT) and Early Childhood Australia (ECA) state that  

… all children in their early childhood years are capable of accessing powerful 
mathematical ideas that are both relevant to their current lives and form a critical 
foundation to their future mathematical and other learning. Children should be given the 
opportunity to access these ideas through high quality child-centred activities in their 
homes, communities, prior-to-school settings and schools (AAMT & ECA, 2006, p. 1). 

The Early Years Learning Framework for Australia (Commonwealth of Australia, 
2009) provides a list of what these powerful mathematical ideas are:  

Spatial sense, structure and pattern, number, measurement, data, argumentation, 
connections and exploring the world mathematically are the powerful mathematical ideas 
children need to become numerate. (p. 38) 

Early childhood educators 
Educators‘ mathematical knowledge and dispositions are key to effective mathematics 
learning in early years settings (Anthony & Walshaw, 2007; Sarama & Clements, 
2009). However, it is often clear that ―low levels of content knowledge and the resulting 
lack of confidence about mathematics limit teachers‘ ability to maximise opportunities 
for engaging children in the mathematical learning embedded within existing activities‖ 
(Anthony & Walshaw, 2007, p. 47). The need for ongoing professional learning in 
mathematics education for early years educators is emphasised by Perry & Dockett 
(2008): 

At this time when children‘s mathematical potential is great, it is imperative that early 
childhood teachers have the competence and confidence to engage meaningfully with 
both the children and their mathematics. (p. 99) 

Professional learning and mentoring 
The concept of mentoring has been applied to professional learning in many different 
walks of life, including education where ―[t]he central premise of mentoring as a form 
of professional learning stems from the belief that individuals may best learn through 
observing, doing, commenting and questioning, rather than simply listening‖ (Nicholls, 
2002 cited in Onchwari & Keengwe, 2010, p. 312). Landry, Anthony, Swank, and 
Monseque-Bailey (2009, p. 449) suggest that ―[a]n advantage of mentoring is its ability 
to individualize professional development to the needs of the learner, which may be 
particularly important for early childhood teachers who vary in education and training‖.  
 Recently, the mentoring approach has been applied in Australia with the advent of 
‗numeracy coaches‘ in many jurisdictions. Initial findings concerning the learning needs 
of these coaches suggest the need  

… to include a focus on developing knowledge for teaching mathematics, including 
content and pedagogical content knowledge (Ball, Thames, & Phelps, 2008). It is 
important that coaches have strong mathematics content and pedagogical content 
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knowledge to support teacher development and ultimately achieve the policy imperatives 
of improving student learning. (Anstey & Clarke, 2010, p. 51)  

The Early Years Numeracy Pilot Project 2009–2010 
The EYNPP was undertaken during 2009–2010. It was designed to: 

 build on previous work that had led to the development of a numeracy matrix 
linking powerful mathematical ideas to developmental learning outcomes (Perry,
Dockett, & Harley, 2007); 

 develop and trial reflective continua2 based on the numeracy matrix and the use of 
learning stories (Carr, 2001) to guide mathematics teaching and learning in the 
early years (children aged 3–8 years);

 develop mathematics content knowledge and pedagogical content knowledge 
among early childhood educators and numeracy leaders; 

 enhance the knowledge and skills of a small number of numeracy leaders so that 
they could lead their colleagues to improve young children‘s mathematics
learning outcomes; and 

 ensure that all material and learning emanating from EYNPP reflected the 
philosophy, approach and content of the Early Years Learning Framework 
(Commonwealth of Australia, 2009). 

Methodology 
Participants 
The participants in EYNPP were 45 early childhood educators from prior-to-school 
settings and schools in four clusters in South Australia. In each cluster, one educator 
was chosen to act as a Numeracy Leader/Mentor. Three of these Numeracy Leaders 
(NLs) were early primary school years teachers and one was a preschool educator. All 
had more than 10 years of teaching experience. 

Professional development for Numeracy Leaders 
From July, 2009 until December, 2010, regular professional learning meetings were 
held for the four NLs. These meetings were led by two university-based researchers and 
covered mathematical content knowledge such as the powerful mathematical ideas and 
links to both the South Australian Curriculum, Standards and Assessment Framework
(Department of Education, Training and Employment, 2001) and the Early Years 
Learning Framework (Commonwealth of Australia, 2009). Input concerning
pedagogical content knowledge centred on the previously developed numeracy matrix
and the development and implementation of the reflective continua for each of the 
powerful mathematical ideas3.
 Material was also provided concerning the role of numeracy leaders and the 
development of collaborative partnerships with colleagues. The task of the NLs was 
challenging, as each was responsible for engaging and guiding both prior-to-school and 

                                                        
2 The Reflective Continua highlight progression and engagement with the relevant powerful mathematical ideas. Four 
levels of development are used. Student‘s work samples are provided to illustrate how each level might present in 
preschool and the first years of school. 
3 While the numeracy matrix and reflective continua are major artefacts arising from EYNPP, the focus of this paper 
is on the professional learning of the NLs. Hence, these artefacts are not described in this paper.
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school educators in their clusters. This involved NLs working with colleagues at each 
site to identify an inquiry learning project and associated inquiry questions, and 
supporting staff as they implemented and evaluated this project. Ongoing support from 
each other and the research team were critical elements of the NLs‘ program.  

Professional development for site participants 
Each of the NLs devised a collaborative approach to working across the sites in their 
cluster. In most cases this involved regular weekly or fortnightly meetings with 
colleagues on each site. As well, meetings at the cluster level and across clusters were 
held. The final professional learning experience for all participants in EYNPP was a 
Celebration Day, where each site outlined their learning journey to their colleagues. 
 Data gathered in EYNPP derive from a number of separate sources, including 
questionnaires completed by participants, presentations from each site team and reports 
of the impact of the project from participants, NLs, and leaders in the prior-to-school 
and school settings in which the project was implemented. As the aim of this paper is to 
report the impact of EYNPP on the knowledge, skills, confidence, and pedagogical 
approaches of the NLs and their influence on the development of powerful 
mathematical pedagogy in their own settings and those of their colleagues, data used in 
this paper are drawn from reports prepared by the NLs, a focus group interview 
conducted with the NLs at the conclusion of the project, and interview data from prior-
to-school and school leaders. 

Results and discussion 
Knowledge, skills, confidence, and pedagogical approaches of the 
Numeracy Leaders 
One of the aims of EYNPP was to develop the NLs as genuine leaders in both 
mathematical content knowledge and pedagogical content knowledge. There are many 
examples in the data that point to such growth. 
 One NL listed the following outcomes in her final report: 

 having the opportunity to build leadership skills in a supported program; 
 improved ability to speak in front of large groups and facilitate training sessions; 
 enormous learning in the area of mathematics education through the opportunity to work 

with so many educators and professionals in this area; 
 improved numeracy education practice; 
 using more authentic assessment methods; 
 a hunger to learn more about the development of children‘s mathematical thinking skills;

and 
 improved communication skills. 

Another suggested that as well as learning about talking with educators from both 
preschool and school levels, she ―was inspired and stimulated to change my pedagogy 
... and I have been teaching for longer than 20 years‖. The principal of the school at 
which another NL was based commented on the impact of EYNPP: 

She recognises considerable growth in her own understanding of working in a leadership 
role and working to organise things for other staff and other schools, acknowledging 
different cultures in other sites, acknowledging that people come with various levels of 
defensiveness about exposing their practice or working on their practice with other 

620



PERRY 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

people. ... She has spoken of enormous growth in her understanding of numeracy and also 
in her conviction that the [reflective] continuum ... does have a great deal to offer 
teachers.  

The preschool-experienced NL was enthusiastic about her involvement in EYNPP:  
[It‘s] sharpened me up again and given me a new passion about my teaching. The old 
reasons are still there—the children come first and all that sort of stuff—but now I‘ve 
really got bones to actually articulate that which I never had before to the degree I‘ve got 
now. 

The following comments from the NL focus group highlight some of the growth the 
NLs themselves had achieved in both mathematics content and pedagogical content 
knowledge. 

It was really positive for me because it did raise my thinking about mathematical theory, 
about what numeracy was and what it meant for me. 
 
We just got to know so much more about how to help these students and what they were 
doing and where they were working. 
 
I‘ve done things that I never would have done before and would never have felt 
comfortable doing before. It‘s put me right out of my comfort zone and I‘ve really loved 
it. I‘ve loved the challenge. 

All of the NLs reported that they were using the artefacts of EYNPP, particularly the 
numeracy matrix and the reflective continua in their own settings. As well, they 
transferred the inquiry approach advocated by EYNPP for professional learning to their 
own teaching.  

In order to promote the real-life links, we planned a maths trail around the community, 
ensuring the tasks we designed were open-ended and involved working through 
problems. We really promoted it with the children as a way of sharing their maths 
learning and encouraged all family and community members to attend—parents, 
grandparents, aunties, uncles, siblings, neighbours, etc ... 
On the day of the Numeracy Trail, the children were buzzing with excitement. Including 
the children in the two classrooms, we had over a hundred people embark on this trail, 
ranging from age 3 months to 74 years—it was amazing! Groups worked solidly for over 
two hours and most groups ran out of time to complete all problems.  

All other numeracy leaders had similar stories about how their involvement in EYNPP 
had resulted in their reflecting on their teaching practices and changing where they felt 
it was needed.  

In my class now, because you know we had that whole argumentation thing at the 
beginning and that really stuck in my head. ... We were going through some stuff and I 
was asking them ‗What answer did you get‘ and the kids would say what the answer is. 
Except now they say the answer and then they go ‗And I know that because …‘ and then 
they just start with the whole explanation of what they did. And then someone else will 
put their hand up and say ‗Oh I got the same answer but I did it this way‘ and whatever. 
[A visitor who was in the class said] ‗Far out, like these kids are really good at talking 
about what they know!‘ 
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Powerful mathematics pedagogy, cluster colleagues, and children 
Cluster colleagues benefited from the collaborative learning experiences that were 
established by the NLs. For example, in one cluster, the participants suggested that, as a 
result of their participation in EYNPP, they were now: 

 developing new techniques for assessing the children and extending their 
mathematical thinking;

 taking risks with the children in a positive environment;
 letting children solve problems without intervening too quickly;
 recognising the value of modeling to the children that it‘s OK to make mistakes;
 recognising the importance of making connections between home and centre; 
 recognising the importance of using correct mathematical language and 

terminology with children; and 
 providing an environment in which parents and other family members feel 

comfortable and valued. 

In another site, educators listed the following child outcomes resulting from the 
educators‘ participation in EYNPP:

Observations of our children at our site have shown that students now; 
 have strategies to work together; 
 can break down problems; 
 know how to express how they worked it out; 
 are questioning; 
 are using collaborative strategies and are more accepting of each others‘ input; 
 are valuing and encouraging each others‘ opinions; 
 are spending more time working through problems; and 
 can recognise that there is often more than one way to get to an answer and each 

should be valued. 

Conclusion 
The EYNPP NLs have built positive relationships with their colleagues; modelled, 
observed, commented, questioned, and collaborated in the development and 
implementation of inquiry-based pedagogies; and introduced and explained the artefacts 
of EYNPP. The data presented in this paper demonstrate that EYNPP has had a positive 
impact on the NLs as well as on the other participants, including the children in the 
participants‘ learning groups. Key aspects of EYNPP—especially the inquiry and 
reflective approaches—have provided much impetus for change. This is epitomised by 
the following unsolicited note from one of the EYNPP participants. 

I just wanted to thank you sincerely for the opportunity to be involved in the Early Years 
Numeracy Pilot Project. For many years I have craved the opportunity to be challenged in 
my thinking and professional practice. I have been constantly trying to do this myself but 
it is difficult without a structure and time for reflection and professional dialogue. This 
project, and in particular the reflective continua have provided the most wonderful 
opportunity for me to receive this challenge to my professional practice. It has been 
wonderful to receive positive feedback on what we are doing but more importantly it has 
been an awesome scaffold for that professional dialogue and also that self/professional 
reflection. I believe that I am a better practitioner as a result and will continue to strive to 
better myself. 
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After an introduction to the current conceptions of play in early childhood settings, we 
consider what The Early Years Learning Framework and the Australian Curriculum say 
about play and mathematics learning in the home and preschool, and the early years of 
school. We analyse similarities and differences in the two documents with regard to their 
philosophies about play as pedagogy for the learning of mathematics. We use the construct 
of a Numeracy Matrix to illustrate how playing with mathematics can be utilised to provide 
curriculum and pedagogical continuity between preschool and school. 

Introduction 
The current context of early childhood education in Australia is one of social, political, 
and educational change. At a time of unprecedented political focus on early childhood 
education and growing awareness of the importance of high quality early childhood 
education for children, their families and communities, two national curriculum 
documents that will shape the nature of early childhood education for some time to 
come have been introduced.  
 Early childhood education in Australia has recently embraced Belonging, Being and 
Becoming: The Early Years Learning Framework for Australia [EYLF] (Department of 
Education, Employment and Workforce Relations [DEEWR], 2009). The EYLF 
advocates play-based learning, supported by quality teaching, as the basis for promoting 
children’s learning and development. At the same time, a national school curriculum, 
the Australian Curriculum, is being developed and implemented (Australian 
Curriculum, Assessment and Reporting Authority (ACARA, 2010). This curriculum is 
organised across distinct subject areas, and has a focus on curriculum content, rather 
than pedagogy.  
 Both documents emphasise the importance of children’s learning and note some 
specific outcomes for learning in the early childhood years. However, each document 
reflects a different focus on that learning. The EYLF, in keeping with the consideration 
of young children aged birth to five years, reflects a holistic approach to learning and 
development, embedded within play-based environments and includes broad learning 
outcomes. The Australian Curriculum is focused much more on specific learning 
outcomes, associated with discrete subject areas and definite years of schooling. Partly, 
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this relates to the purpose and intention of each document: the EYLF is a curriculum 
framework, with emphasis on pedagogy, principles, and practice; the Australian 
curriculum is much more focused on the curriculum content.  
 Clearly, the documents serve different purposes and reflect the different nature of the 
educational settings for which they are designed. However, educators across early 
childhood settings and schools are required to work with both documents, and the 
associated expectations, in order to promote continuity of learning and positive 
educational outcomes for all children. This paper explores one means of facilitating 
such continuity in the area of mathematics, through pedagogy based on contemporary 
conceptualisations of play. It provides a summary of current conceptualisations of play 
and links these to learning through the construct of a Numeracy Matrix. This matrix and 
the data reported in the paper are drawn from the Early Years Numeracy Pilot Project, 
conducted with a total of 130 preschool and school teachers in South Australia (Perry, 
Dockett, & Harley, 2007; Perry, Dockett, Harley, & Hentschke, 2006) as they explored 
ways to enhance the mathematical opportunities and experiences for their students.  

Play-based pedagogy 
Early childhood education has a long tradition of play-based pedagogy. Play has been 
regarded as both a vehicle for learning and as an opportunity for children to demonstrate 
their knowledge, skills, and understandings (Johnson, 1990). Traditional approaches to 
play have emphasised the child-initiated and directed nature of play, relegating adults to 
the roles of stage managers and onlookers (Bennett, Wood, & Rogers, 1997). Recent 
reconceptualisations of play have moved away from these notions, referring instead to 
the social nature of play and the opportunities afforded through play for children to 
engage with important others in many of the routines and interactions important within 
their social and cultural contexts (Rogoff, 2003). Rather than casting play and learning 
as opposite elements of children’s lives—where play is something that is child-initiated 
and learning is adult-initiated (Pramling-Samuelsson & Asplund Carlsson, 2008)—
recent critiques of play note the importance of adult and child interaction within play, 
particularly in situations of sustained shared thinking (Siraj-Blatchford, 2009) and 
scaffolding (Arthur, Beecher, Death, Dockett, & Farmer, 2008). Current play-based 
pedagogy recognises the complexity, as well as the potential of play to contribute to 
learning. It also acknowledges that not all play is either productive or likely to lead to 
positive learning outcomes. Along with this, it emphasises active roles for participating 
adults as they co-construct meaning through strategies such as inviting children to 
elaborate on their ideas and play, clarifying ideas, offering alternative views, 
speculating and modelling thinking (Siraj-Blatchford, 2009).  
 Young children’s play often includes a great deal of mathematics (Greenes, 
Ginsburg, & Balfanz, 2004; Seo, 2003). Sometimes, this is identified and extended by 
educators; at other times educators’ own understandings of mathematics may limit the 
identification and response to mathematics within play (Sarama & Clements, 2009). The 
potential of play to facilitate children’s mathematical thinking depends largely on 
educators’ ability to “seize on the teaching opportunities in an adequate way” (van Oers, 
1996, p. 71). This ability requires mathematical knowledge; understanding of the nature 
of children’s play, particularly the characteristics of play that promote mathematical 
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learning and thinking; and awareness of the role of educators in promoting both play 
and mathematical understanding.  

What about mathematics?  
Preschool educators tend, at least in Australia, to reject the divided, content-based 
approach to mathematics curriculum that is often used in schools (Australian 
Association of Mathematics Teachers and Early Childhood Australia, 2006). There is, 
however, general agreement that all children in their early childhood years are capable 
of accessing powerful mathematical ideas that are both relevant to their current lives 
and form a critical foundation for their future mathematical learning, and that children 
should be given the opportunity to access these ideas through high-quality child-centred 
activities in their homes, communities, and preschool settings (Lee & Ginsburg, 2007; 
Hunting et al., 2008; Perry & Dockett, 2008).  
 Recognising young children’s competence may mean that educators introduce a 
range of curriculum content and promote children’s learning around a set of agreed 
learning outcomes. Both the EYLF and the Australian Curriculum adopt such an 
approach. However, there is tension between the two documents around both the nature 
of mathematics curriculum for young children and appropriate pedagogies to deliver 
this. Part of this tension involves resistance to ‘push down’ academic curricula from 
preschool educators, who argue strongly for early childhood curriculum that is play-
based and child-centred, rather than curriculum that is subject driven. Also contributing 
to the tension are moves for greater accountability for teachers and schools, and 
growing emphasis on national and international testing. While children in Australia do 
not engage in national testing until Year 3, there is certainly anecdotal evidence that 
teachers in the first year of school, and even preschool, feel pressure to start preparing 
children early for such assessments and that this influences their pedagogy. In this 
context, how can educators work together, utilising the curriculum documents that are 
prescribed for their settings, to build on children’s existing understandings and promote 
positive learning outcomes for all children?  

Connecting curricula 
The EYLF outlines five broad learning outcomes, each with several key components. 
While it is possible to align these outcomes with broad curriculum areas, it is argued 
that they represent integrated, rather than subject specific, learning outcomes. These 
outcomes are: 
1. Children have a strong sense of identity. 
2. Children are connected with and contribute to their world. 
3. Children have a strong sense of wellbeing. 
4. Children are confident and involved learners. 
5. Children are effective communicators. 
There is potential for mathematics to be an integral part of each of these outcomes. 
However, the last two are particularly relevant for addressing mathematics learning.  
 Material developed to support the implementation of the EYLF includes reference to 
a recent survey of Australian early childhood educators which concluded that young 
children were capable of working with mathematical ideas that could be attributed to the 
areas of number, algebra, geometry, measurement, data analysis, and probability 
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(Hunting et al., 2008). While these terms are not used in the support material, the 
importance of mathematical thinking for young children is reflected in the inclusion of a 
range of these same areas within the EYLF, which refers to the importance of sharing 
and clarifying thinking and ideas, developing understanding of measurement and 
number, experimenting with ways of expressing ideas, recognizing patterns and 
relationships, and using symbols to represent meaning. The Australian Curriculum for 
the Foundation Year of school also reflects these areas, although it formalises them into 
the content strands of number and algebra, measurement and geometry, and statistics 
and probability. These strands include a number of powerful mathematical ideas 
identified in mathematics teaching and research (see, for example, Greenes et al., 2004; 
National Council of Teachers of Mathematics [NCTM], 2000; Perry & Dockett, 2008).  

Continuity in pedagogy 
In a quest for pedagogical continuity across preschool (represented by the Early Years 
Learning Framework for Australia) and early school (represented by the Australian 
Curriculum—Mathematics) settings, the construct of a Numeracy Matrix linking the 
two curriculum documents has been explored. The current version of the numeracy 
matrix (DEEWR, 2010) provides direct links between the learning outcomes from the 
EYLF and these powerful mathematical ideas, many of which match closely the strands 
of the Australian Curriculum. The links are made through ‘pedagogical inquiry 
questions’ that ask educators in both settings what they might do to promote both the 
learning outcomes and the powerful mathematical ideas. These ‘pedagogical inquiry 
questions’ are about pedagogical approaches designed to lead educators to reflect on 
their pedagogical practice based on knowledge of their children’s learning and the 
mathematics that they are endeavouring to develop in these children. Hence, the 
Numeracy Matrix provides a guide to the mathematics that might be developed by 
preschool educators—which is not highlighted in the EYLF—and a guide to the 
pedagogies which might be developed by early years of school educators—which are 
not highlighted in the Australian Curriculum. 
 Tables 1 and 2 illustrate the nature of the numeracy matrix and its potential to link 
the EYLF and the Australian Curriculum through pedagogical inquiry questions.  

Table 1. Numeracy Matrix Cell—Example 1. 

 Australian Curriculum—Mathematics 
Number and algebra 

Early Years Learning Framework 
Children are confident and 
involved learners 
 

What opportunities do we provide for each child to accept new 
challenges, make new discoveries and celebrate effort and 
achievement? 
What do we do to encourage children to use symbols and different 
representations of their mathematics? 
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Table 2. Numeracy Matrix Cell—Example 2. 

 Australian Curriculum—Mathematics 
Statistics and Probability 

Early Years Learning Framework 
Children are effective 
communicators 
 

How do we encourage children to collect, analyse and represent 
data? 
How do we encourage children to begin to recognise, discuss and 
challenge unfair attitudes and actions? 

The Numeracy Matrix can be used to link approaches taken in the preschool settings 
and the early years of school by having the early childhood educators in both of these 
sectors ask the pedagogical inquiry questions. While the answers may be quite different 
in each of the sectors, the asking of similar questions can provide opportunities for 
continuity across the transition to school, something which is known to benefit children 
in the early years of school and later (Wood & Bennett, 1999).  

Using the Numeracy Matrix to promote pedagogical continuity 
As part of the South Australian Early Years Numeracy Pilot Project, early childhood 
educators from both preschools and schools have developed a collection of work 
samples that illustrate each of the cells of the Numeracy Matrix. These work samples 
show how the same pedagogical inquiry questions can be used in both preschools and 
schools to help children develop their mathematical ideas through play.  
 For example, consider the Numeracy Matrix cell details in Table 1. Figures 1 and 2 
below provide examples from children in the first year of school who were answering 
the question “How many legs do 10 chickens have?” in the context of farmyard play.  
 

 

Figure 1. Tracey’s justification of her solution to the challenge and use of symbols.  
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Figure 2. Emily’s response to the challenge and use of patterning. 

 

There are many ways in which young children might be challenged in number and 
algebra to demonstrate their use of symbols and show that they are confident and 
involved learners. Blair (Figure 3) is a 4-year old preschooler, and his preschool 
educator wrote the learning story. 
 
 
Blair was sitting playing at the play dough table and I went to have a chat with him about making a 
number game. Blair said to me, ‘I know a really big number—a million.’ I asked Blair if he knew how to 
write one million in numerals and as he didn’t I showed him. After briefly looking at the numbers I had 
written down (1,000,000) Blair said, ‘Now I get it, a million is six zeros. A thousand is a one and three 
zeros. A hundred, one and two zeros. If you took three zeros away (from a million) it would be a 
thousand.’ I asked Blair what the number would be if I replaced the one with a six and he told me it 
would be six million. Blair then said that he knew an even bigger number, a fillion! I said that there was 
not a number called a fillion but there was a billion (with nine zeros) and a trillion (with twelve zeros). He 
was very impressed by the number of zeros in these numbers. 
Following our conversation Blair decided to paint a picture. He painted numbers from zero to fourteen on 
his paper. I asked Blair why he had stopped at number fourteen and he said that fourteen was his favourite 
number, he just likes the four. 
 
Blair is able to initiate, explore, listen, and respond. He is curious and can classify and order, having a 
wonderful understanding of numeracy concepts. He uses language to express his thoughts and 
understands the function of print. 
 

Figure 3. Blair knows a big number. 

Conclusion  
Clearly, the Australian Curriculum and the EYLF differ in the ways that curriculum is 
organised and delivered. Partly, this is related to the different philosophies and 
approaches underpinning the different documents and sectors. Early childhood 
educators who work across the sectors, including those involved in transition programs, 
need to be aware of these differences and the ways in which they can be navigated. 
While the children will not be aware of the pedagogical continuity provided by the 
Numeracy Matrix, it does provide educators in the preschool and school settings with a 
common language and format that can be used to discuss the children’s learning and the 
educators’ pedagogy. Educators who have used the Numeracy Matrix have been able to 
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provide such guidance through the linking of the learning outcomes from the EYLF and 
the content strands in the Australian Curriculum—Mathematics. 
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As part of an investigation into statistical literacy for the teaching workplace, this research 
paper uses a framework for professional statistical literacy to examine teachers’ perceptions 
of the complexity and value of such reports. Although teachers identified aspects of the 
data as useful for their work, many features were described as being difficult to understand. 
Even tertiary educated adults may not be well prepared for dealing with quantitative data in 
their workplace. There are lessons, too, for the presentation of statistical information. 

Introduction 
Since the 1990s there has been increasing recognition of the importance of statistical 
literacy, or the statistical understanding needed for everyday life as an informed citizen. 
However, statistical literacy for the workplace may mean more than this. The project 
reported here focuses on the needs of the education workforce and presents some 
preliminary work examining teachers’ perceptions of the complexity and value of one 
statistical report of the kind received by teachers. The report was chosen because it has 
elements typical of those prepared by the Victorian NAPLAN Data service and 
provided to schools. In reporting our findings we will first review key literature related 
to statistical literacy and then propose a framework for “professional” statistical 
literacy. This is followed by details of the current study and the results for the chosen 
data report. Finally we consider the implications of these findings for both school 
mathematics and for pre-service and in-service teachers’ professional learning. 

Background 
In education—as in other workplace sectors—quality control, accountability, and 
forward planning are informed by statistical data. The technological revolution has 
supported the collection, analysis, and sharing of vast quantities of data. Australia, for 
example, has developed a Measurement Framework for National Key Performance 
Measures (Ministerial Council on Education, Employment, Training and Youth Affairs, 
2007) to monitor and advance outcomes from school education. Governments expend 
significant resources on collecting such data from the education sector via, for example, 
the National Assessment Program: Literacy and Numeracy (NAPLAN) involving 
students in Years 3, 5, 7, and 9 from all states and territories, with these intended to 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES • © AAMT & MERGA 2011 
 

631



PIERCE & CHICK 

inform planning and practice. In Victoria the Victorian Curriculum and Assessment 
Authority (VCAA, n.d.) provides reports to schools. Despite the expectation that 
performance data be used to improve teaching and learning (e.g., Boudett, City, & 
Murnane, 2005), the extent to which this occurs is not clear. A pilot survey of Victorian 
mathematics teachers (Pierce & Chick, in-press) found low engagement, but never-the-
less an expressed desire for guidance on using data well.  

Statistical literacy for the workplace 
Reading and interpreting statistical reports requires more than conventional literacy: it 
requires statistical literacy. Analysing and interpreting quantitative data in the context of 
a school setting—or any workplace—is not a trivial task. The concept of statistical 
literacy has been well encapsulated by Gal (2002) as the ability to interpret and evaluate 
statistical information from diverse contexts, and discuss the meanings of, implications 
of, and concerns about such data and conclusions. For the education workplace this 
definition encompasses the expectation that teachers should be able to interpret national 
testing data (being data “encountered in diverse contexts”).  
 Issues surrounding teachers’ capacity to interpret and use statistical reports have been 
noted internationally, as illustrated by three examples. Matthews, Trimble, and Gay 
(2007), writing from their Georgia, United States experience, expressed concern that 
teachers need to be able to interpret data in terms of the local context. An Organization 
for Economic Cooperation and Development (2004) report on the improvement of 
education in Chile discussed the introduction of national testing in that country. It also 
found that constructive use of data seemed to be restricted by teachers’ lack of capacity 
to interpret the reports they received. Finally, and locally, a pilot study with junior 
secondary mathematics teachers and junior secondary English teachers (Pierce & Chick, 
in-press) suggested that some of these Victorian teachers felt that Australian testing data 
were difficult to understand.  

Framework 
In order to analyse “professional statistical literacy” generally, and for education 
settings in particular, we propose a framework for considering the elements of statistical 
thinking that are important for those who must engage with workplace data. Other 
frameworks already exist that address parts of the issue, but they are focused on 
children’s learning rather than the tasks faced by professionals. Curcio’s 1987 study of 
graph comprehension in Year 4 and Year 8 students highlighted the ideas of “reading 
the data” (read direct factual information on the graph), “reading between [or within] 
the data” (attend to two or more data points on the graph, often for comparison), and 
“reading beyond the data” (extend, predict, and infer from the data). More recent work 
of Shaughnessy and colleagues (1996, 2007) suggests an additional category, “reading 
behind the data”, which addresses the context from which the data arise. Watson (2006) 
also emphasised the place of context in the interpretative process. The first tier of her 
three-tiered statistical literacy hierarchy involves understanding of basic terminology, 
and then the second tier requires “an understanding of probabilistic and statistical 
language and concepts when they are embedded in the context of wider social 
discussion” (p. 16). The third tier concerns the ability to challenge and question 
statistical claims. The statistical knowledge base posited by Gal (2002, p. 10) also 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

632



PIERCE & CHICK 

indicates the importance of knowing why data are needed, having familiarity with basic 
terms, and understanding how statistical conclusions are reached. 
 Our proposal for a framework to encapsulate professional statistical literacy is shown 
in Figure 1. The professional—the teacher in the case of this study—needs to be able to 
examine the data at several levels, each more complex than and dependent on the lower 
levels (indicated by overlapping circles). Reading values requires a technical 
understanding of labels, scale, data type (e.g., numerical, categorical) and things like 
percentage versus percentile. Comparing values requires an awareness of relative and 
absolute differences, early informal inference, and low-level statistical tools. Analysing 
the data set involves being able to consider the data as a whole: observing and 
interpreting variation, observing and interpreting trends, observing and interpreting 
changes with time or other variables, and attending to the significance of results.  
 All statistical data are numbers in context, represented here by the surrounding 
context that impacts on the data and which should be considered in the teachers’ 
interpretation of the outcome of their examination of the data. First, the Professional 
Context involves knowledge of information recognised within the whole profession and 
needed for the data set (e.g., meaning of special terms such as “band”, “like schools”, 
“VELS level”). Finally, the Local Context comprises contextual understanding that may 
be known by individuals about the specific data set but is not evident in the data set 
alone (e.g., knowledge of local school situation, knowledge about timetabling issues 
affecting class composition). The boundary between the two context components may 
not be distinct, as indicated by the dashed line. 
 

 

Figure 1. A framework for considering professional statistical literacy. 

The study 
This study was conducted with teachers from Victorian government schools. The 
Department of Education and Early Childhood Development (DEECD) operates 
through a structure of regions. A cluster sample of 20 schools—10 primary and 10 
secondary—was obtained by first randomly selecting one network from each of the 4 
metropolitan and one of the 5 non-metropolitan regions, then randomly selecting 2 
primary and 2 secondary schools from those networks. The school principal (or their 
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“data expert” nominee) together with 7 randomly selected teachers from each school 
were asked to participate by completing a questionnaire. The first part of the 
questionnaire probed demographic background, information about the use of statistical 
reports in each school, and attitudes and beliefs about statistical reports. The second part 
examined statistical literacy.  
 This paper reports data from part of one item in the statistical literacy section of the 
questionnaire, concerning the NAPLAN report shown in Figure 2. It was chosen for this 
study because it presents both graphical and tabular information, showing school, state, 
and national data. Three prompts (see Figure 3) probed teachers’ affective and cognitive 
responses by asking about the aspects of the report that teachers thought they would 
make use of and those that were hard to make sense of. These prompts focus on 
teachers’ perceptions of the usefulness and difficulty of the NAPLAN report; the 
resulting data set provides indirect information about the teachers’ statistical literacy. 
 

Figure 2. Victoria College’s School Summary Report created by VCAA for NAPLAN Data Service. 

A. Please identify any aspects of this report which you think might be of use to you as a teacher by circling 
it/them and annotating the relevant aspects to indicate what is helpful and why. 

B. Please identify any aspects of this report which you think are hard to make sense of by drawing an arrow 
to it/them and annotating the relevant aspects to indicate what may cause difficulties and why. 

C. Any other comments about this particular report: 

Figure 3. Excerpt from survey questions.  

The teachers’ responses were pooled, with annotations in some cases to capture key 
points and any highlighted material, and the resulting data were examined to identify 
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major themes associated with the teachers’ views of the value and accessibility of the 
statistical information in Figure 2. The themes were analysed in the light of the 
“professional statistical literacy framework”. Although statistical skills were not directly 
examined by prompts A to C, the data provide evidence of how the participants’ 
statistical literacy might drive their reactions about the usefulness of the data. For the 
purposes of this analysis, no distinction is drawn between principals (or nominees) and 
teachers. 

Results 
Data were received from a total of 150 teachers: 41 males and 109 females. The 
professional and statistical backgrounds of those in the sample were diverse. The 
secondary teachers came from the full range of disciplines and the primary teacher 
participants included language and music specialists. Subject, year level, curriculum, 
and student welfare co-ordinators were also present in the sample. The teachers’ mean 
number of years of teaching was 13.7 (SD=11.2). Their statistical backgrounds also 
varied widely, with 23.3% claiming never to have studied statistics formally as a subject 
or topic, 13.3% only having such study prior to or in Year 10, 26% having studied some 
statistics at Year 11 or 12, and 37.3% having done statistical study beyond Year 12. 
Sixty percent of respondents indicated they had attended professional learning 
program(s) related to student achievement data/school system data.  
 There were two versions of the questionnaire, the second reversing the order of most 
of the statistical literacy items. This structure meant that our focus report (Figures 2 and 
3) was one of the last items on the questionnaire for about half of the teachers, and so 
not all teachers may have had time to attempt it. Of the 150 teachers in the study, 143 
responded to at least one part of the item that included three statistical literacy questions 
and prompts A, B, and C (Figure 2). Thirty-eight teachers did not respond to any of the 
A, B, and C prompts, so the data here are from 112 primary and secondary teachers. 
 Four major themes emerged from the data: (i) technical, statistical issues related to 
tables; (ii) technical, statistical issues related to graphs; (iii) knowledge or 
understanding of statistical terms and measures (notably lack of knowledge of “bands”, 
“scaled scores”, and “se(mean)”); and (iv) reactions based on personal preferences. The 
first two themes relate largely to reading and comparing values; the third theme relates 
largely to the professional context, but also incorporates understanding of the more 
advanced statistical skills required to analyse the data set; and the fourth theme is 
influenced not only by technical issues but also by local context. Rather than organise 
the discussion by the themes themselves, we have incorporated them within the 
categories of the framework for professional statistical literacy, along with a section on 
“reactions”. The details will be discussed below, illustrated by quotes from the teachers’ 
responses to prompts A, B, and C. In general it will be clear from the content of the 
quote whether the teacher was responding to A (useful aspects of the NAPLAN report) 
or B (difficult aspects of the NAPLAN report). 

Reading and comparing values — Dealing with graphs and tables 
First, it was clear from the data that the teachers wished to be able to read the data to 
gain some idea of the spread or variation in the scores of the students they need to cater 
for in teaching. Many of them wrote about the school data and what that meant for the 
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individuals within the school’s classes. Second, it was evident that they wished to make 
at least broad comparisons in order to assess their school’s results with those of the state 
and note differences in the students’ performances on different tests.  
 Turning now to specific aspects of the report deemed useful or difficult, the graphs 
were commonly mentioned as helpful and easy to read (e.g., quotes 1-3) while the table 
was more commonly associated with difficulties (e.g., quotes 4-8)  

1. [Graph] Graphical representation [is helpful]. It’s good to be able to compare the 
different areas and see the spread of results. 

2. [Graph] Boxplots makes it much easier to make comparisons when compared to 
tables. 

3. [Graph] Easy to compare school with state and national results; mean as well as 
“spread” of student results. Easy. 

4. [Table] Hard to make sense of — too many numbers, don’t understand layout. 
5. [Table] Unsure of 10th, 25th etc [percentiles]; too many figures. 
6. [Table] I could not understand the table. I would need someone to explain it to me. 
7. [Table] Too many figures and comparisons. 
8. [Table] These statistics don’t make sense to me. 

However, these views were not held by all respondents. In contrast, some found graphs 
difficult (e.g., quotes 9-10) or tables helpful (e.g., quotes 11-13). 

9. [Graph] Hard to read this type of graph [boxplot]. I don’t get it. 
10. [Graph] I find this report a bit difficult to interpret as I struggle to decipher 

boxplots. 
11. [Table] Good for specific info [Graph] Quick. 
12. [Table] Good to show mean here where it is not shown in the graphs below. 
13. [Table] The median and mean scores are helpful for determining how our school is 

performing in comparison to other schools. 

There were two difficulties related to reading values that were commonly mentioned, 
associated with not understanding a specific technical term. The standard error of the 
mean (appearing in the table of Figure 2 as se(mean)) was specifically highlighted by 17 
of the teachers in response to prompt B (e.g., quotes 14–15), and the “scaled scored” or 
“bands” on the graphs were also mentioned frequently (e.g., quotes 16–18). Although 
se(mean) is a standard statistical term, it is a concept that might not be considered a 
necessary part of statistical literacy for good citizenship and is not covered in the 
compulsory years of schooling. Here, however, understanding se(mean) is necessary for 
these teachers’ “professional statistical literacy”. The “scaled scores” and “bands”, in 
contrast, are not so much technical statistical terms, but arise from the professional 
context of the way in which the NAPLAN test results are processed. This will be 
discussed further below.  

14. [se(mean)] Not sure what this column is? 
15. What is se(mean)? 
16. Scaled scores or bands - these numbers mean nothing to me. 
17. “Bands” aren’t descriptive. What classifies a band? 
18. [Scaled scores] I’m not exactly sure what these scores mean. 

Other issues related to reading the data were noted by the researchers but not by the 
teachers, and reveal aspects of the teachers’ statistical literacy. It is of concern that, 
while many teachers noted that having a key was useful not all teachers noted the details 
in the key. The boxplot, as is usual and as the key states, shows the median, not the 
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mean mentioned by some teachers (see quote 19). The key also reveals that the boxplots 
being used in the graphs are not typical of most boxplots, with the whiskers truncated at 
the 10th and 90th percentiles. Consequently it does not show the top or bottom students’ 
results (see quotes 20 and 21). Some teachers also have difficulty understanding that 
boxplots represent percentiles of the student cohort not numbers of students (22). 

19. [Graph] The means and range of student outcomes in all graphs gives me a general 
whole school indication. 

20. The whisker showing how top and bottom students are performing [is useful]. 
21. [Graph: top and lower tails] Highest 10%, lowest 10%, tell us they may need 

support ... 
22. [Graph - school writing] the long tail means that there is a big group of students 

who need extra support. 

Analysing the data set 
Most analysis was at the simple level of noting the variability or spread of students’ 
results. Several teachers commented that they would like to be able to see trend data, 
with one teacher actually trying to get a better picture of the whole data by deriving 
some additional information (quote 23). 

23. [The teacher created a new row in the table noting increased differences between 
the school and state results for the 10th, 25th, etc., percentiles] As we went up the 
scale the difference between us and the state became greater—weaker children 
catered for, top half not? 

One teacher wondered if the size of the school group should be taken into consideration 
when analysing the data. While the teacher’s question highlights some lack of statistical 
literacy, it also reveals appropriate thinking about issues that may need to be considered 
when analysing the data. 

24. Do the huge difference in numbers for each group skew the results? How can 
251353 [State] be compared to 47 [School] as sample numbers?  

Considering local and professional contexts 
Some teachers expressed difficulty or lack of familiarity with details that are part of the 
Australian education context, i.e., their own professional context. The vertical scales on 
the graphics show “bands” at the left and the related “scaled scores” on the right. The 
table shows statistics (to one decimal place) based on “scaled scores”. These scores, 
scaled in theory from 1 to 1000, are produced by the Australian Curriculum, 
Assessment and Reporting Authority (ACARA), which then divides these scores into 
“bands” and sets national minimum benchmarks for each year level tested. It is a 
complex process but it is part of teachers’ “professional” statistical literacy to at least be 
familiar with the parts of the scale that apply to their students (see quote 25). Several 
teachers commented on the confusion between “bands” and the more familiar numbered 
levels associated with the Victorian Essential Learning Standards (VELS) (e.g., quotes 
26 and 27). Some teachers were not familiar with the acronyms ATSI (Aboriginal or 
Torres Straight Islander) and LBOTE (Language Background Other Than English) 
(quote 28), despite the fact that these are now standard acronyms used in schools. 

25. Scaled scores or bands - these numbers mean nothing to me.  
26. I don’t believe anyone understands national benchmarks or its comparison to 

VELS. 
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27. Suggest a graphic indicating comparison to VELS levels would be more useful. 
28. [Points to the acronym ATSI] What does this mean? 

Local context requires knowledge of details of the school and student cohort referred to 
in the report. This was impossible since the report summarises data from a fictitious 
school, so teachers made little attempt to explain the findings but suggested generic 
responses that would be appropriate (quotes 29–32).  

29. [Circled sections on school boxplots below the median] What can be done to 
improve the results; targeted intervention. [Referring to numeracy plot] As a year 7 
teacher you would plan to go back to the primary curriculum to give students a 
greater understanding.  

30. [Grammar & Punctuation plot] Why are the scores so high at the top compared 
with state/national top? 

31. [School writing plot] Why such a spread? [Top whisker of Grammar & 
Punctuation plot] Why so well? [Numeracy plot] Why so low? 

32. School appears to be focusing on Reading and Writing but little focus on 
maths/numeracy. – Hard to judge without previous years’ figures to see changes. 

Reactions 
It was clear that some teachers were overwhelmed by what they perceived as the 
complexity of the report (e.g., quotes 33-39). Some teachers expressed the view that 
they did not intend to engage with such reports for a variety of reasons (e.g., quotes 40–
42), including sheer cynicism regarding statistics (quote 43). 

33. I found this whole sheet confusing. 
34. This would be useful if I knew what it referred to. 
35. … not keen on tabled data—prefer visual. I would prefer one system:VELS. I don’t 

believe everyone understands national benchmarks or its comparison to VELS. 
36. Too many figures and comparisons. 
37. Top half of the report: figures don’t make sense to me. 
38. I need some PD on how to interpret box-and-whisker. 
39. This only works for colour photocopiers. 
40. I would not use this report to inform my teaching. 
41. As the LOTE teacher in the school, I don’t feel that this data does a great deal for 

me. 
42. As an English teacher I don’t respond well to numbers and tend to dismiss them. 
43. ... Still one can make stats say anything, can’t one. 

 Implications and conclusions 
The results provide an important snapshot of the way that teachers might respond to the 
school assessment data that they receive. Their reactions range from those verging on 
the statistics-phobic (e.g., responses 33 and 42), through to deep engagement with the 
issues. The contrasts in the reactions of teachers to different types of representations of 
data (tables versus graphs) was interesting, and has important consequences for those 
who prepare data for schools. Although there was a marked preference for graphical 
representations, these were still problematic for some, and others appreciated the detail 
provided within the tables. Many teachers reacted strongly about the overwhelming 
complexity of the data, with quotes 33–37 being but a sample of the 50 or so teachers 
who expressed uncertainty or confusion over some or all aspects of the data.  
Although this part of the research project did not target specific skill-based competence 
within statistical literacy, the teachers’ responses to prompts A, B, and C still revealed 
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specific areas of difficulty, particularly with general boxplot reading skills. The non-
standard presentation of the boxplot data may contribute to this, especially since other 
reports (not shown here) are different again. 
 The results point to a strong need for professional development in the area of 
professional statistical literacy, and also has implication for pre-service courses. They 
also alert us to important issues related to teaching statistics at the secondary level, such 
as preferences for graphical or tabular presentations of data, and difficulties with 
reading, comparing or interpreting data. Although boxplot representations provide a 
concise summary of data, many teachers appear to be in need of more experience with 
interpreting data in this form. The extent of teachers’ difficulties and ways of 
developing their fluency in interpreting such data is an issue for future research. 
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This paper investigates students’ emerging inferential reasoning about samples and 
sampling through observation of 13- to 14-year-olds, challenged to infer aspects of an 
unknown population in an inquiry–based environment. This paper reports on how students 
working with TinkerPlots focus on changing aspects of the samples as the sample size grew 
larger. Students made connections to key statistical concepts during the process of growing 
samples and quantified the level of confidence about their informal statistical inferences. 
They generally recognized the relationship between the sample size and the confidence 
interval for a given confidence level. 

Introduction 
Over the past decade there has been an increasingly strong call for statistics education to 
focus more on statistical literacy, reasoning, and thinking. The Australian Curriculum 
and Reporting Authority [ACARA] (2010) advocates the broadening of probability and 
statistics in the school curriculum. “Statistics and probability initially develop in parallel 
and curriculum then progressively builds the links between them” (p. 2). In particular, 
these two topics are connected in the study of inferential statistics, in which one makes 
inferences that are based on data and qualified using probability. The curriculum 
anticipates that “students recognise and analyse data and draw inferences. They develop 
an increasingly sophisticated ability to critically evaluate chance and data concepts and 
make reasoned judgements and decisions, as well as building skills to critically evaluate 
statistical information and develop intuitions about data” (p. 2).  
 Related to this, by the end of primary school students are expected to “develop an 
understanding of sampling” (p. 32) and “consider the need of sampling and recognizing 
when a census of an entire population is not possible or necessary, and identifying 
examples of sampling in the media” (p. 33). Year 10 students are expected to be able to 
“evaluate the appropriateness of sampling methods and sample size in reports where 
statements about a population are based on a sample” (p. 48).  
 Developing a sophisticated reasoning about sample data, and sampling “may be 
associated with developing literacy and social reasoning skills rather than developing 
numeracy skills” (Watson, 2004, p. 279) because the target reasoning is the cornerstone 
of drawing conclusions about populations in our society. Such reasoning is embedded in 
decision-making under uncertainties in different contexts and fields.   
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Literature review  
Selecting samples of data and using samples to draw inferences about unknown 
populations lie at the heart of statistics. The concepts of “sample” and “sampling” are 
structurally complex and require the coordination of several concepts including graph 
interpretation, spread, distribution, randomness, and likelihood (Ben-Zvi, Makar, 
Bakker, & Aridor, 2011).  
 Although, literature is replete with research on college students’ conceptions of 
sample size and representativeness (Tversky & Kahneman, 1971), limited research was 
undertaken until recently on school students’ conceptions of samples and sampling.  
 Research on students’ conceptions of sampling by Watson and Moritz (2000a, 
2000b), has shown that children as young as 8- and 9-years-olds have relatively naïve 
conceptions about samples. According to Watson and Moritz, the children of this study 
were typically comfortable drawing conclusions about a population based on small 
samples without recognizing any potential problems of bias. Early middle school 
students (age 13–14) understood the concept of samples in real world situations, but 
they had difficulties making the transition to the formal statistical meaning and using 
appropriate associated terminology. Watson and Moritz (2000b) showed that older 
students (age 14–15) were concerned about potential errors arising from small samples. 
The observations in the research study of Watson and Moritz show the importance of 
making explicit the differences between taking a small sample from a homogeneous 
entity (for example, a small sample of blood) to make generalisations about the larger 
entity from which it was drawn, with taking a sample from a heterogeneous population 
that has much variability (for example, a sample from a population of students) to 
estimate a specific characteristic such as weight. The ideas inherent in sampling from 
homogenous entities do not generalize to the notion of sampling variation and the need 
for large samples in making inferences from data. Watson and Moritz have also 
emphasized the importance of the notions of variation and representativeness when 
students engaged in a sampling related task.  
 Watson (2004), who summarizes outcomes of research on reasoning about sampling, 
notes that students often pay attention to fairness and distrust random sampling methods 
as a process producing unbiased samples. According to Watson, students prefer biased 
sampling methods, such as voluntary samples. Other researchers have documented that 
students and teachers often have difficulties in distinguishing samples from populations 
when working with data (Pratt, Johnston-Wilder, Ainley, & Mason, 2008; Pfannkuch, 
2008). In response, there has been a recent research effort to understand how better to 
approach the topic from a pedagogic perspective. One response has been informal 
statistical inference, characterised as a process of drawing generalised conclusions 
expressed with uncertainty from data, which extend beyond the data collected (Makar & 
Rubin, 2009). Two international research forums on statistical reasoning, thinking and 
literacy (SRTL-5 and SRTL-6) have been dedicated to the study of how students might 
make sense of informal inferential processes and reason about inference related tasks. In 
particular, the definition of informal inferential reasoning provided for SRTL-6 in 2008 
was “the cognitive activities involved in drawing conclusions with some degree of 
uncertainty that go beyond the data and having empirical evidence for them”. Three 
fundamental principles of informal inference were provided: generalising beyond data, 
using data as evidence of generalisations, and expressing the degree of certainty (due to 
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variability) for the generalisation. The main types of generalisations indicated were 
predictions, parameter estimates, and conclusions. Making such inferences informally, 
gives students the sense of the power of statistical techniques in making reasoned 
judgements and decisions about data from real-world contexts.  
 Another response has been Growing Samples─an instructional idea suggested by 
Konold and Pollatsek (2002), but then developed by Bakker (2004) and used by Ben-
Zvi et al. (2011). Bakker helped eighth grade students who engaged with a sequence “of 
growing samples” activities to see stable patterns generated by larger samples, thus 
students understood that larger samples are less variable and better represent a 
population. Bakker suggested that asking students to make conjectures about the 
growing samples build students’ reasoning about sampling in the context of variability 
and distribution. Such an approach is helpful in supporting coherent reasoning, based 
exclusively on the integration of key statistical concepts such as sampling, data, 
distribution, variability, and tendency. Ben-Zvi et al. used data from a design 
experiment in Israeli Grade 5 classrooms to show how 11 year-olds develop inferential 
reasoning about sampling while working with TinkerPlots. This research was in line 
with the literature of growing samples beginning from a sample of size eight from their 
class (including themselves), and moving to a bigger sample (a whole class) and then to 
the whole grade in the school. The students not only experienced the limitations of 
small samples when making inferences about a larger population, but also an emerging 
quantification of confidence in making such inferences, interconnections of concepts of 
sampling, and informal statistical inference with key concepts such as spread, 
distribution, likelihood, randomness, average, and graph interpretation  
 In this paper, the focus on informal statistical inference and children’s reasoning 
about sampling, emerges out of aspects of the work of Ben-Zvi et. al (2011). Two of the 
questions for future research as suggested by Ben-Zvi, et. al guide this research study. 
First, this research investigates how ideas about sampling in relation to informal 
statistical inference can be further developed in the next stage. It is expected through 
asking this question that some insights might be gained into the conceptual struggle that 
needs to take place for 13- to 14-year-olds to engage in inferential reasoning about 
samples and sampling. In doing so, a constructivist stance is used to search for naïve 
conceptions that might serve as resources in deploying more sophisticated strategies. 
Second, this might shed some light on how the instructional idea of growing samples 
can be further improved and used.   

Method 
This research study falls into the category of design experiments (Cobb, Confrey, 
diSessa, Lehrer, & Shauble, 2003). Typically, design experiments require several 
iterations. This article reports on a pilot study that examined students’ exploration of a 
dataset using TinkerPlots (Konold & Miller, 2005).  
 The learning sequence was built around two sessions of extended data investigations 
of a student-administered survey from Years 7−9 in the previous school where the 
researcher taught. The survey gathered information about students’ weight and weight 
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of students’ backpacks1. Afterwards, the weight of a student’s backpack was divided by 
the student’s weight, and the calculated percentages were compared with the doctor’s 
recommendations.  
 Students used TinkerPlots to analyse the data collected from the student-
administered survey for approximately two hours. Sliders and filters which control the 
increase and decrease of the sample size and formula-defined attributes were 
implemented in order to allow the students to have more control over the sample size 
that they select from the dataset. During the activities, students observed how the 
animated plots they were studying varied when the sample size slider was used to add 
cases to the graph.  
 The design of activities evolved around the idea of growing samples, starting from a 
sample of size 10, moving to about 30, then 100, and finally the entire population. 
Using a sequence of “growing sample” activities was a pedagogical design conjecture to 
help students understand that larger samples better represent the population, 
progressively developing their inferential reasoning about samples, and a level of 
confidence students place in their inference.  
 The researcher conducted clinical interviews with small groups 13- to 14-year-old 
students, in Year 8 of an Australian secondary school. The researcher worked with 
students from one class, covering a range of attainment. Students worked in pairs.  
 While the students were working, Camtasia software was used to video record the 
computer screen output and audio record the students’ voices. The data collected were 
analysed using progressive focusing (Robson, 1993). At the first stage, the audio 
recordings were simply transcribed and screenshots were incorporated as necessary to 
make sense of the transcription. Subsequently, the transcript was turned into a plain 
account with no explicit interpretation other than through selection of the most 
promising sections. The less interesting sections were replaced with discursive 
descriptions of what happened. At the third stage, an interpretative account was written. 
Episodes were selected to illustrate students’ evolving informal reasoning when making 
inferences about samples and sampling.  
 The findings are presented below through the case of Rafael (Ra) and Gina (G). 
Analysis of the data from other students is ongoing.  

Results 
Stage 1: First investigation with 10 data points  
Rafael and Gina expressed dissatisfaction with working from only ten data points 
(Figure 1) and formed an initial reaction:  
 

1The activity was inspired by a report written by students at Hermantown academy, available at www.ga.k12. 
pa.us/Academics/LS/5TH/Backpck/Index.htm 
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Figure 1. Distribution of 10 data points. 

1. G: I don’t think we can draw any conclusions about this data because we do 
not have enough data.  

2. Ra: The data we have are too spread out to make inferences about all the 
students’ backpacks.  

 The students then began to look more closely at the distribution of the data trying to 
identify an apparent pattern. Rafael characterised the data as too spread out to make 
inferences about all the students’ backpacks (line 2).  
Rafael and Gina organised the ten data points to spread across eight categories of 
backpacks weights, with most categories having zero to three points (Figure 2).  

 

Figure 2. 10 data points spread across 8 categories. 

When exploring more carefully the weights of backpacks: 
3. Ra: I can see just two packs weighing 3 lbs, one 4 lbs, one 5 lbs, three 7 lbs, 

three 8 lbs… Most of the packs are 7-8 lbs. 
4. Re: Do you think if we weight all the backpacks from all the students from 

Years 7−9, we will be able to draw this conclusion? 
5. Ra: I do not think so. Maybe.  
6. Re: Can we talk about all the backpacks from looking only at this data? 
7. G: No, there are not enough backpacks to say this represents the entire 

school.  
I want to see the weights of more backpacks.  

 Rafael seemed to be able to draw conclusions from numerical data (line 3). The 
relatively high frequency of backpacks weighing seven to eight lbs attracted Rafael’s 
attention but he seemed to be uncertain whether he could base any inferences about the 
weights of all the backpacks of all the students from Years 7−9 upon the current sample 
of ten (lines 2, 5). Similarly, Gina appeared to be reluctant to draw any conclusions 
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about the population from this sample size (line 7), so she suggested investigating the 
weights of more backpacks.  

Stage 2: Second investigation with 30 data points 
Students were given data for a class from Year 7 (30 students). Gina and Rafael’s 
immediate reaction was to engage enthusiastically with the investigation of the data 
points (Figure 3).  

 

Figure 3. Distribution of 30 data points. 

8. Ra:  My initial observation still seems true. Most of the packs are heavy. 
There are more packs weighing seven to eight lbs then there are three-six 
lbs. I see that most of the boys carry packs that weigh seven to eight lbs. 

9. G:  This is interesting. We can see clearly that most of the packs are still on 
the heavy side. We only have one boy that his backpack weighed nine 
lbs. But we have two girls that carry pack weighing nine lbs…  

 Rafael’s immediate reaction was one of “surprise” when he realised that the 
prediction he made earlier for the sample of ten hold true more broadly (line 8). A 
recurring feature of students’ investigation was their focus on the changes or similarities 
that occurred in the appearance of the distribution of data as they compared the new 
data (sample size 30) with those from the previous investigation (sample size 10).  
 On the one hand, Rafael did not seem to experience any kind of conflict when 
drawing conclusions from a small sample. The researcher wished Rafael could see that 
the small sample size was a flaw in the validity of his inference due to the vagaries of 
sample variability. On the other hand, Gina found it “interesting” because she did not 
anticipate that her conclusions would be similar to those she made for the sample of ten. 
Even though Gina recognised the unexpected similarities (line 9), she did not seem to 
understand the reasons underlying them.    

10. R: Do you think that in general the boys carry heavier packs which weigh 7 
to 8 lbs more than girls? 

11. Ra: I guess so. 
12. G: I cannot tell. The backpacks of 30 students cannot represent all the 

backpacks of students, but we can better draw conclusions now about 
bigger samples than when we were given the data for a sample of 10.  

 Rafael seemed to be more certain than Gina (line 11). On the contrary Gina 
expressed her lack of confidence in drawing conclusions from only 30 data points 
although she recognised that the increase of the sample size gave a better basis for their 
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inferences (line 12). When asked to informally quantify their level of confidence about 
their conclusions from the current sample of thirty:  

13. R: Can you give me an interval from 1 to 10 how certain you are the 
distribution of the data points will remain the same if we carry out the 
investigation with more data? 

14. Ra: 7 to 9. 
15. G: This is too high. I’m giving 5 to 6. 

 Rafael’s confidence in his inferences was stronger than Gina. Gina’s expressed a lack 
of confidence in making inferences about the population because she was expecting to 
observe even small changes on the distribution of data.  

Stage 3: Third investigation with 100 data points 

 

Figure 4. Distribution of 100 data points. 

In the third investigation, students were given data for the entire Year 7 and Year 8.  
16. Ra:  The data points are spread out from four to ten lbs, the data points for 

Year 7 are closer together, between 4–11 lbs and Year 8 is spread out 
evenly from 8–14 lbs 

17. R:  So, do you think these results shows what is happening in the whole 
school? 

18. Ra:  Yes. I am giving an 8–9 interval of how certain I am.  
19. R:  Why not 9-10? 
20. Ra:  I can not be so sure. You see … The more backpacks we weigh, there 

will be less room for mistakes or unknown backpacks weights.  
21. G:  I’m not quite sure too, it is better than what it was before, but I’m not 

sure if I can talk about all the students in the school. The bigger the 
sample is, the better the results are. 

 The students engaged in interpreting the graph (line 16) and tried to focus on even 
small changes. Of course the process of growing samples produced consecutive images 
of the distribution of data points that allowed Rafael and Gina to gain some sense of the 
sample/sample size and population relationships (lines 18-21). Rafael articulated that 
“the more backpacks we weigh, there will be less room for mistakes or unknown 
backpacks weights”. He seemed to acknowledge the importance of large samples and 
the uncertainty caused by unexplained variation in the weight of backpacks (line 20).   
 However, there is perhaps another way to think about what the students were 
expecting to experience: that is the idea of an ideal sample that can perfectly represent 
the parent population. This might have proved very convincing, regardless of the size of 
the sample. Gina suggested:  

22. G:  Why don’t we try something else? 
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23. R:  What do you want to try? 
24. G:  I want to see how many students’ backpacks we need to weigh in order to 

decide the size of the sample upon which we can draw valid conclusions.  
25. R:  What do you want to try? 
26. G: I want to gradually move the slider of the sample size from 0 to 180 (size 

of the population) and then move it back from 180 to 0.  
27. R:  Why do you want to do with that? 
28. G:  I want to see how spread out the data are for Years 7−9 and how their 

distributions change as more data values are added or taken out.  

 The students then spent time adjusting the slider, moving it forward and backwards 
and looking simultaneously at the representations of data. As they progressed, they 
expressed their preference to engage in data investigations that involved activities of 
growing and reducing the size of samples (lines 26–28).  

Discussion 
The above analysis of students’ excerpts sheds some light on the developmental process 
of students’ inferential reasoning about samples and sampling issues. The findings 
demonstrate that the two students placed highest emphasis on the distribution of sample 
data to make inferences about the population. It is also evident that students forged new 
connections about the interplay of sample size and population, and they further linked 
those concepts to other statistical fundamental concepts during their investigations, such 
as spread, distribution, (explained) variation in data, unexplained variation, uncertainty, 
randomness and graph interpretation.   
 In this paper, there is evidence that the students perceived the importance of large 
samples (line 21). It is likely that they had a global resource such as the Law of Large 
Numbers available to them. Nevertheless, students felt comfortable to explore the 
impact of the sample size on data representations when they engaged in data 
investigations which involved activities of growing and reducing the size of samples. 
This shows that the students needed to have a broader experience of the 
interrelationship of sample size and data representation. The emergent new idea of 
“reducing the size of samples” or “shrinking the size of samples” needs to be further 
improved and elaborated.  
 This paper gives some light into students’ emerging quantification of confidence 
intervals in making informal inferences. The above activity demonstrates students’ 
changes in thinking towards a situated abstraction, which was schematised as “I am 
giving an 8–9 interval of how certain I am … I can not be so sure … The more 
backpacks we weigh, there will be less room for mistakes or unknown backpacks 
weights” (lines 18–20). Rafael seemed to acknowledge how variation (in the weights of 
backpacks) arises, and the uncertainty caused by unexplained variation in the weight of 
backpacks (line 20) such as measurement errors. Such understanding of variation in a 
real situation is prerequisite in making informal statistical inferences.   
 As mathematics educators, we need to ask ourselves about the level of confidence 
students place in their informal inferences. It would be interesting to explore the level of 
confidence students place in drawing informal conclusions about a population based on 
sample data. Should we be satisfied with increasing our understanding of how such 
decisions are made or should we consider this evidence as a pedagogic challenge to find 
ways to support changes in our students’ thinking towards an abstraction, which might 

647



PRODROMOU 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

be schematised as “the bigger the sample we have, the more confidence we could place 
in our informal inferences”? This is potentially an unusual question for the mathematics 
curriculum.  
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The relationship between the development of the teaching of mathematics and the 
classroom teaching of mathematics is of considerable interest to teachers and university 
academics. This article reflects upon the nature of the participation of teachers and 
university academics as they participate in research communities of practice that use 
inquiry as a tool to engage with change and development. Conclusions are drawn in terms 
of the nature of the relationship of university academics to classroom teachers within a 
research community of practice. 

Introduction 
For decades educational researchers such as Brown and Duguid (2000) have maintained 
that the professional development of teachers is best situated within their own practice 
and best supported by local communities of practitioners. In this paper we critically 
reflect on this claim by examining the shifting identities of a teacher of mathematics and 
a university academic as they participate together in different communities of practice – 
a local research community of practice composed mainly of classroom teachers and an 
international research community of practice composed mainly of university academics. 
We suggest that the differences and tensions created by maintaining membership in 
both these communities create possibilities for professional growth and new insight in 
mathematics education that transcend the local community level.  
  The notion, ‘community of practice’, has been described as “a set of relations among 
persons, activity, and world, over time” and as being “an intrinsic condition for the 
existence of knowledge …” (Lave & Wenger, 1991, p. 98). It is through participating in 
the practice of the community that members learn what it means to be a competent 
practitioner and how they can contribute to emerging practices (Brown & Duguid, 
2000). 
 The notion of ‘participation’ that is deployed in this paper arises from the work of 
Vygotsky and contemporary sociocultural theorists. According to Vygotsky (1987), 
learning has its origins in mediated social action and the deployment of tools such as 
language and other mnemonic systems. Learning results from ongoing engagement in 
social contexts and is mediated by ways of knowing, doing, and valuing that are socially 
situated. It is through participating in situated practice that an individual is initiated into 
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the culture of a particular community of practice. In this process a person’s relationships 
to others, to activity, and to the world are transformed over time to show both 
congruence with and critique of the ways of knowing, doing and valuing of a 
community (Lave & Wenger, 1991).  
 In elaborating forms of initiation into the culture of mathematics, van Oers (2002) 
maintains that discourse plays a pivotal role in raising people’s awareness of and 
engagement with the practices and ideologies of mathematical communities. According 
to van Oers (2002), it is through the mathematical ‘attitude’ displayed by community 
members, for example, classroom teachers and university academics, that aspiring new 
members of the community, for example, prospective teachers and early career 
academics, are afforded or constrained in becoming autonomous, critical, and authentic 
participants in the practice of the community. Attitude as defined here refers to the 
personal stance manifested by an individual participating in discourse (van Oers, 2002). 
When this attitude is in accord with a socially accepted genre of mathematical discourse 
the individual may be said to be employing the ‘voice of mathematics’. Bakhtin’s 
(1986) notion of ‘voice’ provides a mechanism for situating the personal and the social 
within a particular ‘community of practice’. For us (see Renshaw & Brown, 2007), 
meaning making is simultaneously developed dialectically in accord with Vygotsky’s 
(1987) ‘general genetic law of cultural development’, and dialogically in accord with 
Bakhtin’s (1986) theory of language. To develop deep understanding of a cultural 
knowledge, such as mathematics, individuals necessarily have to adopt different voices 
when speaking within a community of practice and when speaking to different 
audiences. This continuous dialogical interplay between speakers and audience where 
ideas and viewpoints are proposed by members of the community allows for the notion 
of ‘voice’ to seen as being compatible with the sociocultural approach used in this 
paper.  

Method 
The first research community of practice that is the focus of this article was formed 
within a larger research project designed to examine classroom teachers appropriation 
of a theoretically informed and research based pedagogy (Collective Argumentation) for 
teaching mathematics in the middle years of schooling (Years 6 to 9). Collective 
Argumentation (Brown & Renshaw, 2000) is a sociocultural approach to teaching and 
learning mathematics that presents students with mathematics tasks that require them to 
individually represent a solution, compare, explain and justify this solution within a 
small group of peers and then come to an agreement with this group on a solution to the 
task that the group can present to the broader class of students and the teacher for 
discussion and validation. 
 The large research project employed a sociocultural methodology, based on a 
‘design-experiment’ (see Schoenfeld, 2006). Professional development sessions were 
used to assist classroom teachers and university academics to reflect upon and assess the 
nature of their activity as teachers of mathematics. Each session, based upon what van 
Huizen, van Oers, and Wubbels (2005, p. 273) refer to as the “basic principles of a 
Vygotskian paradigm for teacher education” oriented participants towards ‘ideal forms’ 
of teaching mathematics using the principles of Collective Argumentation. Each session 
provided opportunities for participants to learn through providing reports of their own 
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classroom practice and through interacting in discussions about each other’s 
performance in the mathematics classroom.  
 The second research community of practice is an international group of mathematics 
education researchers comprised of university academics and classroom teachers who 
meet annually to present and discuss refereed research papers, to view and discuss 
posters of works in progress, and to engage in symposia about mathematics education. 
The classroom teacher, Sam, who is the focus of this article, is an experienced teacher 
of mathematics in the middle (students ranging in age from 11 to 14 years of age) and 
senior phases of schooling (students ranging in age from 15 to 18 years of age) and a 
long-term member of both research communities of practice. The university academic, 
Ray, an author of this article, is a mathematics educator in a large metropolitan 
university and a long-term member of both research communities. (For an elaboration 
of Ray’s mathematics teaching journey see Brown, 2009). 
 The corpus of data that is the focus for reflection in this paper comprises two data 
sets. The first set of data relates to a professional development session (the 8th of 12) 
held towards the end of the second year of the large study. The session, attended by 
seven classroom teachers and three university academics, focused on inviting teachers 
to report on the teaching and learning of mathematics in their classrooms. During this 
session Sam provided a 20 minute report on a mathematics activity that took place in his 
Year 6 classroom (see Figure 1).  
 The second set of data relates to an interview Sam provided in the last year of the 
study whilst he was attending an international mathematics education conference. This 
interview was conducted by a Research Assistant after Sam had presented a refereed 
paper (co-authored by Sam and another classroom teacher). The format of the interview 
comprised 22 open type questions designed to elicit Sam’s perceptions of the four 
interrelated components of knowing and doing within a community of practice as 
elaborated by Wenger (1998) - ‘meaning’, ‘practice’, ‘community’, and ‘identity’. 

Analysis and discussion 
Sam’s report to teachers and university academics 
Sam’s report focused on the activity reproduced in Figure 1. In the analysis that follows, 
italics have been used to identify Sam’s and others’ actual words. 

 

Figure 1: Task sheet as presented to a Year 6 class. 
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In describing the lesson to teachers and university academics, Sam commenced by 
situating the activity of this class of Year 6 students within a problem-solving context 
that allowed students to “give me some information about how they are going in 
developing … understanding”. Adapting a textbook activity so that it “allowed them to 
use collective argumentation” and so that the students could go “away and have a bit of 
a play”, Sam’s purpose in the lesson was about eliciting “a variety of responses” from 
students.  

 

Figure 2: A novel response to a ‘straightforward’ task. 

According to Sam, this group of students had translated the problem in terms of the 
concept of ‘speed’, a translation that Sam considered to be “pretty cool”. However, 
what was “really cool” was the return journey where the students “found the average 
speed. So they said I want to get home in sixty-five minutes, so this is where home is 
[see Figure 2 (0,0)], so what they found was they drew a point from here [see Figure 2 
(65,8)] to here [see Figure 2 (0,0)], because this [points to the coordinates (65,8)] is how 
far out they are, so they are eight kilometres away and they want to get back home in 
sixty-five minutes… So that’s the speed he’s got to travel to get back home, and they 
(the group) found the equation to that particular line.” Sam then went on to say that he 
had “never actually thought about it (the task) like that” and that “for them (the group) 
to interpret it (the task) that way, it’s really cool”. 
 Sam’s peers (Julie and Jay) then engage him in discussion about this group response 
to the task. As the discussion progresses and the teachers struggle to understand this 
group’s interpretation of the task, it becomes clear that these teachers have adopted a 
stance within the discourse that privileges thinking about and understanding the 
mathematics generated by students. The verbal interactions between Julie, Jay and Sam 
evidence an ‘attitude’ directed toward using students’ representations of solutions to 
tasks as ‘cultural tools’, that is, as thinking devices that may explain and generate 
understanding. This ‘attitude’ is given voice by Jay when she states that the student 
solution “is a realistic way” of addressing the task, by Julie when she states that even 
though “…we always do it (read graphs) left to right…”, the group response “is right”, 
and by Sam’s statement that “…in terms of what I expected (the students to do) and 
what I got, I thought that (the group response) was pretty cool”. By adopting this stance, 
these teachers, whilst struggling to interpret this novel group response within the 
conventions used for reading graphic representations, are, at the same time, gaining 
insights into their own practices as teachers of mathematics. However, this stance does 
not appear to be the one adopted in the discussion by the university academic, Ray. 
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During the discussion, Ray questions the novelty of the student response by stating that 
the solution posed seems a “pretty natural (everyday) thing to do” and by questioning 
whether Sam is “reading too much” into the thinking behind this response to the task. 
This questioning is challenged by Sam who states that a “natural (conventional) 
solution to the task would be to drop a line from the point (See Figure 2 [50,8]) to the 
point (See Figure 2 [65,0])”. Later in the discussion, Ray calls into question the 
sophistication of the student response by implying that an alternate response to the task 
that interprets the question as requiring the bicycle trip to be completed from beginning 
to end in 65 minutes is more sophisticated than the novel group response being 
discussed where the students have interpreted the task as requiring the home leg of the 
bicycle trip to take 65 minutes. However, this questioning is challenged by Julie who 
implies that an unusual response like the group response is “more interesting”, therefore 
more sophisticated, than a “normal (conventional) response” to the task. 
 These interactions with the university academic provide some evidence of what is 
being valued in the discussion of Sam’s report. For the teachers, privileging thinking 
about and understanding the mathematics generated by the students seems vital to the 
teaching learning process. For the university academic, privileging more conventional 
interpretations of mathematics tasks over student interpretations seems paramount. For 
the teachers, valuing the “realistic”, the “cool”, the “reinterpreted”, the “unusual”, and 
the “interesting”, is highlighted in the discussion of Sam’s report. For the university 
academic, valuing not “reading too much” into a solution, the “sophisticated” and the 
conventional is highlighted. 
 According to the teachers, as expressed in their statements during this discussion, 
student presentations are not just about the representation of correct answers, but about 
using representations to enhance meaning. That is, using mathematical representations 
to (a) show a “realistic” way of solving a task (Jay and Sam), (b) “reinterpret” a task 
construct such as time (Julie), and to (c) show a solution to a task so that others could 
“understand what their interpretation was and why they did it” (Sam). This view of the 
function of student representations is in line with Schoenfeld’s (1988) expanded notion 
of mathematics instruction. According to Schoenfeld, teachers may assist students to 
think mathematically by using appropriate mathematical notations to make conceptual 
connections explicit and by applying formal mathematical knowledge to problem 
situations in a flexible and meaningful manner. As such, it may be said that within the 
discussion of Sam’s report, Sam, Jay and Julie have adopted a stance which privileges 
thinking mathematically and that they are giving voice to an expectation that teachers 
need to engage in thinking mathematically with the class during mathematics lessons. 
However, in the same discussion, the university academic seems to be privileging 
‘mastery’ as he focuses on whether the group of students have mastered the conventions 
associated with representing information graphically and with due regard to the 
authority voiced in the problem text. This voice is displayed by the university academic 
when he poses the question to Sam - “So are you reading too much into this?” This 
utterance places the university academic in the position of the evaluator of Sam’s 
contribution to the discussion. We can assume from Julie’s statements, where she 
focuses on the convention of reading graphical representations from left to right and 
questions “why they (the group) are going that way (right to left)”, that the university 
academic’s statements are a signal to the teachers that Sam’s interpretation of the 
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student response is now ‘old’ information and that the discussion is now ready for ‘new’ 
perspectives on the group’s solution to be expressed. However, during the discussion of 
the report, Jay, Sam and Julie assert and maintain control of the discussion stating that 
the group solution is a “different interpretation”, “pretty cool”, and “interesting” and 
position the role of expertise firmly within the teachers participating in the discussion. 
 According to Wenger (1998), privileging a practice such as ‘thinking 
mathematically’ within a communal context requires privileging the ability to create 
new meanings. In turn, privileging this ability entails relations of power, in other words, 
what legitimacy and efficacy does an interpretation of a task have to ourselves and to 
others within a community of practice. Communities of practice are important sites for 
the legitimisation of meaning because they define socially accepted ways of knowing 
and doing (Wenger, 1998). From the analysis of the text of the discussion that 
accompanied Sam’s report of his own practice, it appears that the university academic is 
a legitimate, but ‘peripheral participant’ (Lave & Wenger, 1991) in this discussion, 
despite his attempts to identify himself with classroom teachers when he states “Alright 
now just explain to an … old primary school teacher …” why the group response being 
discussed was ‘cool’. The interactions between the statements of the university 
academic and those of the teachers imply that the teacher participants in this discussion 
view the classroom teaching and learning of mathematics as being their domain of 
expertise. 
 This positioning of ‘power’ within this research community of practice raises what 
Sullivan (2006, p. 307) refers to as interesting “complexities” in the teaching of 
mathematics. For the university academic it seems important that an alternative solution 
to the task that interprets 65 minutes as being the total time from the beginning to the 
end of the bike ride, be a preferred response. Yet Sam, Jay, and Julie have privileged a 
response that may or may not be acceptable depending on a person’s point of view. The 
nature of this complexity is, perhaps, given voice in the silence of the other four 
teachers and university academics present during this discussion. However, for the 
university academic who did contribute to the discussion, the complexity arises from the 
tension between his commitment to ensuring that the voices that are privileged within 
the community are organised around criteria that promote systematic, critical and non-
contradictory inquiry and his commitment to valuing Sam’s reported ‘enacted 
instruction’ practices (Herbel-Eisenmann, Lubienski, & Id-Deen, 2006). The nature of 
the factors that shape Sam’s practice is evidence in an interview conducted after his 
presentation of a paper about his classroom practice to delegates at a mathematics 
education research conference. Due to the focus of this paper only those responses that 
refer to Sam’s identity are referred to in the analysis below. 

Sam’s interview at a mathematics education research conference 
In response to the question “What role do you think researchers play in the way you 
teach in your classroom?” Sam made it clear that he values research with references to 
using “Teaching for Understanding” (Perkins, 1992), “Collective Argumentation”, 
“mathematical modelling” and “technology” when teaching mathematics. However, 
Sam also made it clear that the value of research lies in its provision of tools to teachers 
so that they may assist students to “build understanding”. For Sam this utilitarian 
relationship between classroom teaching and research is given voice when he referred to 
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teachers giving theoretical ideas about the teaching of mathematics “a go” to see if 
“they fit” or “they don’t fit” with your “own way of doing things”. However when 
asked about the relationship between classroom teachers and university academics the 
stance adopted by Sam in his response was very much based on the insider-outsider 
distinction (Smith, Blake, Curwen, Dodds, Easton, McNally, Swierczek, & Walker, 
2009). To Sam, university academics are peripheral participants in the community of 
classroom teachers of mathematics, participants who enter classrooms to “look”, 
“probe” and to “try some things to see if they make a difference”, but then “go away” 
leaving the teacher to appropriate what they will from the encounter. In the end, Sam 
voices the conclusion that university academics “can’t necessarily have a big impact on 
a school or on groups of kids or on teachers because you are always looking in …”. 
This “looking in” is problematic for Sam because it is sometimes conducted by people 
who are too far removed from the classroom, who sometimes “really don’t know what” 
teaching mathematics in the classroom is like, who “dabble here” and “dabble there” 
and who do not effectively communicate to teachers the findings of their research – 
“…what happens in between? Who knows?” Throughout the interview, Sam adopts the 
stance that classroom teachers are in an “interesting place” because they can “have 
more of an impact on what can happen in the classroom”. 

Conclusions 
The above analyses provides interesting insights into the notion of teacher identity as a 
teacher of mathematics and a university academic participate in different communities 
of practice – a local research community of practice composed mainly of classroom 
teachers and a more global research community of practice composed mainly of 
university academics. Through the implementation of pedagogical approaches such as 
Collective Argumentation, Sam allowed students to make their thinking visible. 
Representations of student thinking were used by Sam in his classroom as a catalyst to 
compare, to explain and to develop the mathematical understandings of students. In 
Sam’s communities of practice (the local and the more global) representations of 
student thinking were used to model his teaching of mathematics so that others (teachers 
and university academics) could explore his teaching in order to consider its 
effectiveness in developing student understanding. As such, the voice of Sam acting in 
his research communities of practice is imbued with the meanings, intentions, and 
accents of mathematics lessons that he has taught and is presently teaching in his local 
school environment. In this sense, the ways in which meaning is represented, explained 
and developed, between the communities of practice (the local community focused on 
professional development and the more global focused on research) is, for Sam, 
‘critically aligned’ (Jaworski, 2006) to his classroom practice.  
 Within this alignment, difference is privileged and seen as ‘interesting’, ‘novel’ and 
as contributing to the understanding and development of mathematics. Hence, an 
essential insight gained from this research is that learning about the teaching of 
mathematics occurs most productively when the professional audience is diverse and 
includes both local community members of teachers and others, such as university 
academics, whose taken for granted perspectives suggest novel ways of ‘seeing’ and 
interpreting the local practices. In this way, theories of teaching and learning, for 
example Collective Argumentation, may inform and become interwoven with teachers’ 
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everyday classroom practice and teacher education may be presented to teachers as a 
‘process of becoming’ (Wenger, 1998). 
 Sam’s ‘process of becoming’ as evidenced in the above analyses is of interest in 
itself as it foregrounds a dialectical tension between his classroom community of 
practice and the more global mathematics education research community as represented 
by university academics. The research interests of mathematics university academics are 
concerned with developing and communicating principled, theory based pedagogies that 
are well researched and evidenced based. However, this is not the central concern of 
Sam who draws upon a wide range of approaches to teaching mathematics and tries 
them out for what they are worth to him as a teacher of mathematics. It is as if Sam is 
saying that, as a teacher I use various approaches to teaching mathematics and am not 
constrained by the preoccupations of university academics, so the notion of an ‘ideal 
form’ of teaching mathematics seems less important to him.  
 However, improving student understanding of mathematics, as his report and 
interview responses attest, is important to him. He, himself, is a researcher who has 
presented evidence of the effectiveness of his practice to an audience of researchers; 
however, he remains committed to a local community of research practice. As such, 
there is a dialectical tension within the ‘attitude’, within the mathematical voice, Sam 
displays within his interview, a tension that portrays future zones of proximal 
development that university academics may negotiate with Sam and others so that talk 
about the practice of teaching mathematics and how to improve it may become 
accessible to those beyond the local district. What these future zones of contact may be 
and where they may be negotiated provides fertile ground for further study. 
 In turn, Ray, the university academic’s process of becoming is of interest. The 
complexity of providing teachers with opportunities to report on and discuss their own 
practice of teaching mathematics in the classroom, and, at the same time, provide 
opportunities for teachers to use the products of research to systematically guide the 
development of classroom practice and to critically look at its effectiveness, needs to be 
coped with. Too much emphasis on the former may result in teachers adopting an ‘ad 
hoc’ accumulation of ‘things that fit’ with their ways of teaching mathematics, too 
much emphasis on the latter may reduce teacher participation in a local research 
community of practice. Perhaps achieving this balance lies within the provision of 
opportunities to classroom teachers to discuss and compare their classroom practice 
with ‘ideal’ forms as practiced and modelled by university academics in their teaching 
of mathematics. This tension between the ‘ideal’ (evidenced based approaches to 
teaching mathematics) and the more local, contextualised approaches to teaching is 
necessary to the development of a competence that may extend the local research 
community of practice beyond its borders (Wenger, 1998). 
   A second important insight gained from this research is that university academics 
and teachers need to work collaboratively to build on each other’s understanding and to 
develop knowledge networks that encompass more global educational communities of 
teachers and university academics. In this way, teachers and academics may encounter a 
diversity of practices and a diversity of audiences that lead to productive tensions and 
new insights. As such, the relationship between the teachers and university academics in 
these communities of practice needs to be reciprocal in nature, a relationship not based 
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on replacing one practice with another but on interweaving (Renshaw & Brown, 2007) 
classroom practice with the practice and products of research. 
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For the past three years, the authors have been using questionnaire items to assess the 
pedagogical content knowledge (PCK) of primary teachers involved in a multi-faceted 
professional learning program in Catholic schools in Victoria. We will describe the 
challenges of developing and coding items which assess PCK in mathematics, levels of 
performance on various items, and the extent to which change over time was evident. We 
will also share insights about areas for which professional learning programs might give 
greater emphasis, arising from the data.  

Introduction 
Shulman (1986) first introduced the notion of pedagogical content knowledge, which he 
described as “the most useful forms of representation of those ideas, the most powerful 
analogies, illustrations, examples, explanations, and demonstrations – in a word, the 
ways of representing and formulating the subject that make it comprehensible to others” 
(1986, p. 9). Since this time, researchers have attempted to conceptualise and measure 
the mathematical knowledge needed for teaching (Ball & Bass, 2000; Chick, 2007; Hill, 
Ball, & Schilling, 2008; Hill, Sleep, Lewis, & Ball, 2007). Barton (2009), in reflecting 
on the phrase pedagogical content knowledge with respect to teaching mathematics 
suggested that it “includes knowledge about how mathematical topics are learned, how 
mathematics might best be sequenced for learning, having a resource of examples for 
different situations, and understanding of where conceptual blockages frequently occur, 
and knowing what misunderstandings are likely” (p. 4).  
 In studying teacher knowledge, some researchers developed frameworks (Ball, 
Thames, & Phelps, 2008; Chick, Baker, Phum, & Cheng, 2006). Ball and her colleagues 
proposed a model with several categorises encompassing Shulman’s Subject Matter 
Knowledge and Pedagogical Content Knowledge. They include all of these under the 
domain of mathematical knowledge for teaching. Also Ball, Hill and Bass (2005) 
differentiated between two types of mathematical content knowledge: “We defined 
mathematical content knowledge for teaching as composed of two key elements: 
“common” knowledge of mathematics that any well-educated adult should have and 
mathematical knowledge that is “specialised” to the work of teaching and that only 
teachers need to know” (p. 22). 
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Some researchers have investigated teachers’ PCK associated with a particular domain 
of mathematics, such as proportional reasoning (Watson, Callingham, & Donne, 2008), 
area and perimeter (Yeo, 2008), fractions (Watson, Beswick, & Brown, 2006), chance 
and data (Watson, 2001) and decimals (Chick, et al., 2006), while utilising different 
instruments of assessment (e.g., multiple choice items, open response items, interviews, 
and classroom observations). 

Background to CTLM 
The Contemporary Teaching and Learning of Mathematics Project (CTLM) is a 
professional learning and research project that will involve 82 Catholic primary schools 
in Victoria (Australia) between 2008 and 2012. Each school participates in a two-year 
program with Australian Catholic University (ACU), consisting of 10 to 12 full days of 
teacher professional learning (including workshops, professional reading, and between-
session activities), along with in-classroom support from the research team. Each year a 
new cohort of schools begins their first year of the project with ACU (i.e., Intake 1 in 
2008; Intake 2 in 2009; Intake 3 in 2010 and Intake 4 in 2011). This cycle of 
professional learning continues until 2012 when the final intake completes their second 
year. One of the project aims is to enhance teacher pedagogical content knowledge, 
prompting a need to measure improvement in PCK over time.  

The PCK framework  
Prior to constructing PCK items, the authors developed a framework that would 
underpin their construction. There were three considerations that were helpful in this: 
frameworks for mathematics PCK developed by other researchers; the mathematical 
content focus of the CTLM Project for the respective cohorts in the given year (whole 
number, rational number, structure, measurement, space, chance and data); and some of 
the key aspects of the teacher role on which the project was to focus. 
 In light of the three considerations above, our current framework has the following 
components: 
Pathways: Understanding possible pathways or learning trajectories within or across 
mathematical domains, including identifying key ideas in a particular mathematical 
domain. 
Selecting: Planning or selecting appropriate teaching/learning materials, examples or 
methods for representing particular mathematical ideas including evaluating the 
instructional advantages and disadvantages of representations or definitions used to 
teach a particular topic, concept, or skill. 
Interpreting: Interpreting, evaluating and anticipating students’ mathematical solutions, 
arguments or representations (verbal or written, novel or typical), including 
misconceptions. 
Demand: Understanding the relative cognitive demand of tasks/activities. 
Adapting: Adapting a task for different student needs or to enable its use with a wider 
range of students. 
 The authors stress that the framework was not intended to be exhaustive, and clearly 
is not as broad as some others mentioned previously. 
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The questionnaires 
We developed six questionnaires each year, one each for teachers of Grades Prep–2 
(teachers of 5 to 8 year-olds), 3–4, and 5–6, for each cohort. Typically, during the 
teachers’ first year of the project the questionnaires contained between four and six 
items focusing on Whole Number, (and Rational Number and Structure in years 5-6) 
and three items in the second year focusing on Measurement, Space, and Chance and 
Data. Each questionnaire involved items intended to reflect the broad content focus of 
the CTLM professional learning program, but also provide data on teachers’ capacities 
in each element of the framework, with several items addressing more than one 
component of the framework. To date, 774 teachers have completed the same 
questionnaire twice in a single year (119 in 2008, 321 in 2009 and 334 in 2010). 632 
teachers completed their first questionnaire this year. 

Constructing PCK items 
Apart from the considerations above, several decisions were made in our attempt to 
construct items that assessed teachers’ PCK and these were: 
 It was intended that the items reflect some classroom scenario to which the teacher 

had to respond hopefully illuminating knowledge used in the practice of teaching. 
 In order to show change over time, most items were chosen to be relatively 

challenging for teachers early in the year.  
 Initially, items were scored out of three points, but as will be discussed later, this 

was changed in 2010 to scores out of six. 
 The questionnaire was intended to take no longer than 40 minutes to complete. 

Challenges of constructing and coding PCK items  

In order to highlight that this process was difficult and evolving, we note that in the 
period 2008 to 2010, 39 “new” items were developed and administered. Seven items 
were administered only once and then dropped. Fifteen items were administered twice 
(in the same year) and then dropped. Some items had minor changes to wording or 
format and were not deemed “new” items, while others had substantial rewrites and 
were considered “new” items. Some difficulties faced in creating PCK items and coding 
teachers’ responses are now discussed.  

Highly rated responses early in the year 
A reason for some items being administered only once (usually in February/March) was 
the high quality of responses, indicating teachers were generally proficient in this area 
and retesting would not show growth or positive change (for example, see Fig. 1). In 
respect of our framework we categorised this task as related to the Interpreting and 
Pathways elements of our framework. 
 In March 2008, most teachers in P-2 who were given the item called “Molly’s 
Method” were able to identify a less sophisticated response, e.g., counting all by ones; 
and a more sophisticated response, e.g., multiplying 3 x 4. 
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Molly’s Method 

Molly, in Year 2, is asked this assessment question:  
Here are three cherries in one bunch. How many cherries would there be in four bunches? 
Molly says: “There would be 3, 6, 9, 12. That’s 12 cherries altogether.” 
Describe 2 other ways a Year 2 child might correctly solve this problem; one less mathematically 
sophisticated and one more sophisticated than Molly’s. 
Less sophisticated: 
More sophisticated: 

Figure 1. Molly’s Method (P-2 questionnaire 2008). 

Assessing content only 
For some content areas, in particular Space, we had difficulty devising an item that was 
not an assessment of common content knowledge (CCK) “in disguise”. (e.g., Fig. 2). 
However, with some alterations we chose to continue with the use of items like these 
for Space for four reasons: results from 2009 indicated that many teachers had 
difficulties with the terminology and attributes of 2D and 3D shapes and we felt an 
improvement in their content knowledge might have a positive effect on their ability to 
provide worthwhile classroom examples; the items could be consistently coded; this 
content per se was a key feature of some of the professional development days; and the 
item could be easily adjusted for the different questionnaires for the various year levels.  

Can you do it? 

Mr Magoo’s Year 6 students were having fun trying to describe shapes and solids which actually don’t 

exist. Mr Magoo made a list of some of his favourites.  

(a) Place one tick in each row to indicate whether it is “possible”, “impossible”, or “I’m not sure.” 

 Possible Impossible I’m not sure 

A trapezium with no lines of symmetry    

An equilateral, right-angled triangle    

A rectangle that is not a parallelogram    

A cone that is a prism    

(b) For one response which you labelled “impossible”, please explain why. 

Figure 2. Can you do it? (5-6 questionnaire, 2009). 

Disadvantages of multiple choice items 
The item “Decimal Diversity” (Fig. 3) was dropped after being administered twice in 
2008 to teachers in Years 5-6, for three reasons. It was deemed to be assessing only 
mathematical content and not PCK; teacher knowledge related to decimals was assessed 
better in 2009 by another item called “Ordering Decimals”; and most importantly, we 
made a decision at this point not to use pure multiple choice items where the teachers 
were not asked to explain their reasoning (see reasons below).  
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Decimal Diversity 

Mrs Mason asked her Year 6 students to give her another name for this number.  0.125 
Her students came up with a variety of answers; some correct, some incorrect. 
Please circle all of the following which are really the same as 0.125. (More than one is correct). 

A. One tenth, two hundredths and five thousandths 
B. One hundred and twenty-five tenths 
C. One eighth 
D. Twelve hundredths and five thousandths 
E. 0.125% 
F. 12.5 percent 
G. One hundred and twenty-five thousandths 
H. 1 tenth and a quarter of a tenth 

Figure 3. Decimal Diversity (5-6 questionnaire, 2008). 

 We know that multiple-choice items for students without the opportunity to elaborate 
their decision making are not very useful and can provide deceptive information about 
understanding (see, for example, Clements & Ellerton, 1995). In our opinion, this is also 
a major weakness of much of the work of Ball and her colleagues with respect to 
teachers (e.g., Ball & Bass, 2000). In 2010, 202 teachers of Prep–6 were asked “Is this 
shape a rectangle?” (see Fig. 4). We categorised this task as Pathways, in particular the 
“key ideas” aspect of this element of the framework. In February, 33.0%, 45.1% and 
64.2% of teachers in P-2, 3-4, and 5-6 respectively, indicated “Yes”. However, only 
2.7%, 4.9%, and 3.0% of Prep–2, 3–4 and 5–6 teachers respectively could provide an 
appropriate explanation for children. Some examples of inappropriate explanations 
provided by teachers who circled “yes” were: 
A rectangle is a square by definition therefore a square is also a rectangle 
A rectangle is a four sided shape therefore a square is technically a rectangle 
It has two sets of parallel sides 
A rectangle has four straight sides with opposite sides of equal length 
 
 
 

 

 

During class discussions, there was much debate about whether this shape (with equal length sides 

and equal angles) is a rectangle.  

Is this shape a rectangle? …………….Yes / No   [please circle one] 

Please say how you would explain your reasoning to children. 

Figure 4. Is this shape a rectangle? (P–6 questionnaires 2010). 

It is clear that if those teachers had been scored according to their correct answer 
(without any elaboration expected), the data would have been misleading. 

Limitations of pencil and paper assessment 
While we believed it was important to have teachers explain their thinking or justify 
their choices, sometimes these responses were not well articulated. This sometimes led 
the coder into making inferences about the correctness of a response or the potential of a 
described activity about which they were not fully comfortable, making the coding 
difficult and at times unreliable and ultimately the item unusable. It could be argued that 
a teacher’s written response may not match their intended practice and it is sometimes 
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difficult to know how the teacher intended to enact their idea, without observing the 
teaching or at least interviewing them to enable elaboration of their response.   
 We acknowledge that providing a written test to assess PCK is not ideal and that a 
more comprehensive view of a teacher’s knowledge would be obtained through a series 
of assessments such as observing teacher’s practice in the classroom and using 
interview protocols to supplement questionnaire data. These data would more likely 
take the form of a case study approach which provides information about a small 
number of teachers, a small number of lessons, limited mathematical content and 
possibly only a few aspects of a PCK framework. However, while not as comprehensive 
as possible, our data provide information about a large cohort of teachers and some 
aspects of their content knowledge and related PCK. 

Constructing items for Chance and Data 
Overall we had the most difficulty coming up with items we felt were appropriate for 
assessing elements of our framework for Chance and Data. In particular, we had 
difficulty creating challenging items for teachers of P-2, while focusing on Chance and 
Data content for those grade levels. In 2011 we chose not to include items that assess 
Chance and Data. 

Creating scoring rubrics and applying them 
The two main difficulties in creating a rubric for each item were creating a rubric that 
could be consistently applied across coders (see previous discussion) and one that 
captured evidence of change over time, if it existed. In 2009, each item was coded out 
of three and the data from that year indicated limited change over time. It was decided 
that this may be partially due to the coarse rubric. In 2010, we decided to code most 
items out of six, as we hoped a more fine-grained rubric for the PCK items would help 
us identify changes that were not evident in the coarser 3 point rubric. Depending upon 
the item, the results were mixed as to whether the fine-grained rubric was helpful. 
 For most items, one coder who was proficient with the rubric scored each teacher’s 
responses to items. Where there was any confusion or uncertainty about assigning a 
code, a second coder was used to confer or check codes. For some items all responses 
were checked by a second coder. Where two researchers (one of the authors and a PhD 
student) coded all items independently, they obtained 96% agreement, a very high level 
of inter-rater reliability (Roche & Clarke, 2009). 

Teachers’ improved performance on PCK items 
Although space does not allow us to provide detailed data for all questionnaires, Figure 
5 provides a sample of the results from 2010. These data indicate the mean results per 
item, for February and October, for Year 5-6 teachers in 2010. As anticipated, the 
scores for items administered early in the year were generally low and for most items 
the improvement was also small.  
 For each task, the element(s) of the framework we judged to be reflected in the item 
were as follows: Comparing fractions (Selecting and Pathways); Up the garden path 
(Interpreting); Division stories (Selecting and Pathways); Ordering decimals 
(Interpreting and Pathways); and Closed to open (Selecting and Interpreting and 
Adapting). 
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Figure 5. Mean score per item for Year 5/6 teachers (Feb and Oct 2010). 

The item for which there was the greatest mean improvement for teachers in P–2 and  
5–6 was Division Stories (see Roche & Clarke, 2009 for a description of this item and 
the scoring rubric). The teachers were required to name the two forms of division, draw 
a simple picture and write a story problem that represented 12 ÷ 3 for each form of 
division. The results showed that teachers were more familiar with partition division 
than quotition division and were generally unaware that quotition division was helpful 
for making sense of division by a fraction less than one.  
 In 2010, we added a question within the Division Stories item whereby teachers were 
asked to solve 8 ÷ 0.5. While the added question is assessing common content 
knowledge (CCK) and not PCK, we would argue that improvement in teacher 
knowledge about the two forms of division might improve a teacher’s content 
knowledge. Table 1 provides the percentage of teachers who, in February and October, 
could correctly name quotition division as the form of division most helpful for making 
sense of 8 ÷ 0.5 and could explain why.  It is reasonable to argue that the professional 
learning program was responsible for the teachers’ improvement in their knowledge of 
the two forms of division. 

Table 1. Percentage of teachers who were successful in naming and describing why quotitive division is 
helpful for division by a fraction less than one (P-6 questionnaires 2010). 

 Feb Oct 

P-2 (n = 63) 8.7% 30.4% 

3-4 (n = 33) 6.6% 23.0% 

5-6 (n = 36) 5.5% 30.9% 

 
Table 2 shows the percentage of teachers who could correctly solve 8 ÷ 0.5 in February 
and October in 2010. It should also be noted that some teachers appeared to use the 
“invert and multiply rule” to solve 8 ÷ 0.5 as evidenced by their scribbles next to the 
calculation. This apparent need to use a rule may be one reason why the percentage of 
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success in Table 2 is much higher than for Table 1. Not surprisingly, teachers of Year 5-
6 were more successful with this content than teachers of lower grades. 

Table 2. Percentage of teachers who solved 8 ÷ 0.5 correctly (P-6 questionnaires 2010). 

 Feb Oct 

P-2 (n = 63) 44.4% 60.3% 

3-4 (n = 33) 57.6% 72.7% 

5-6 (n = 36) 77.8% 83.3% 

P-6 (n = 132) 56.8% 70.5% 

 

Possible areas of emphasis in professional learning programs arising 
from our data 
After slightly more than three years assessing teachers’ PCK using our classroom 
scenarios approach, there have been several themes that have emerged, which point to 
possible extra emphasis in professional learning programs. We note the difficulty many 
teachers have in changing a closed question into an open one, being able to interpret 
student-invented alternative algorithms; in articulating the nature of a very high quality 
response to a given mathematics task; understanding alternative methods and solutions 
in Structure (early algebraic thinking); and creating a story problem to match a 
particular equation (e.g., 12 ÷ 3 in Division stories task). We have already acted to 
embed a greater emphasis on these aspects in our 2011 professional learning program. 

Conclusion and recommendations 
The process of creating questionnaires related to our framework, while challenging, has 
helped us to think about what we value in PCK and more importantly reflect on our 
professional learning program and to make adjustments as necessary along the way. It 
has highlighted the very complex nature of teacher knowledge and the difficulties in 
defining and assessing all those elements that constitute the act and art of teaching.  
 We have acknowledged some of the difficulties in measuring teachers’ mathematical 
PCK, such as the limitations of pencil and paper items; designing items that we believed 
assessed faithfully a teacher’s PCK for mathematics; creating rubrics that could be 
applied consistently; making choices about on which content to focus; and ultimately 
finding evidence of change over time, if it exists. We note that it may be difficult for 
teachers to show greater improvement, given the breadth of content of the professional 
learning program and the limited ability to make an impact on such a large group of 
teachers.  However, we also acknowledge that some improvement was evidenced by our 
PCK items and that improving teachers’ PCK appeared to improve teachers’ CCK.   
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Encouraging students to articulate their thinking when doing mathematics is a means by 
which teachers ascertain understanding. Reported here are the results from a content 
analysis of the written reflections of 67 undergraduate students who incorrectly simplified a 
rational expression. Although asked to write about the thinking that led them to their 
solutions, most did not. Instead, they recounted what they had done or had not done. Of 
those who did write about their thinking, most wrote of their confusion or uncertainty; only 
a few provided a rationale for the procedures they used. Nevertheless, insights into student 
thinking were gleaned. 

 
Reflection, silent or articulated, undertaken individually or with others, scaffolded or 
unaided, has a place in the teaching and learning of mathematics. Carpenter and Lehrer 
(1999, p. 22) state that ―reflection involves the conscious examination of one‘s own 
actions and thoughts‖. In the cognitive science literature, reflection has been described 
as a metacognitive activity. Sjuts (1999) describes metacognition as ―knowing and 
thinking about one‘s own cognitive system as well as the ability to control and check 
this system‖ (p.76). He explains that while reflection can be seen as a metacognitive 
process, the subject of the reflection involves cognitive processes, such as learning, 
remembering, understanding, thinking, and knowing.  
 Carpenter and Lehrer (1999) argue that communication itself can be a reflective act:  

Articulation involves the communication of one‘s knowledge, either verbally, in writing 
or through some other means like pictures, diagrams, or models. Articulation requires 
reflection in that it involves lifting out the critical ideas of an activity so that the essence 
of the activity can be communicated…. in fact, articulation can be thought of as a public 
form of reflection. (p. 22) 

The benefits of incorporating one form of articulation, written reflection activities, into 
student learning experiences have been documented for both the school context 
(Goldsby & Cozza, 2002; Lim & Pugalee, 2004) and the university context (Borasi & 
Rose, 1989; Parnell & Statham, 2007). Learning benefits have been found in both the 
cognitive and affective domains. Written reflection can improve students‘ problem 
solving, mathematical content knowledge, and understanding. It can also provide 
therapeutic value. For the teachers, student written reflections can inform their 
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pedagogy. It may provide explanatory data about student misconceptions that shed light 
on worked solutions and verbal responses. Although Payne and Squibb (1990, p. 445) 
argue that ―important insights into the nature of cognitive skill and its acquisition can be 
gained by examining errors‖, making inferences from worked solutions alone has 
limitations. 
 An area of mathematics in which student errors and, to a lesser extent, student 
thinking has been probed is the manipulation of rational expressions. For example, 
research into students‘ struggle with simplifying rational expressions, also referred to as 
algebraic fractions, has had a long history (Grossman, 1924; Guzmán et al., 2010; 
Storer, 1956). In 1924, Grossman wrote 

Every teacher of experience knows that a great many of his algebra pupils all the way 
from the first year in high school up to college continue with almost comical regularity to 
make strange mistakes in the subject of ―cancellation‖ in fractions—mistakes that show 
clearly that the essence of the matter has escaped them. (1924, p. 104) 

Almost ninety years later, there exists an extensive literature that classifies the ―strange 
mistakes‖ students make in simplifying rational expressions, theorises the thinking that 
may be causing the errors, and makes recommendations for pedagogy. Yet, students at 
school and in higher education continue to make errors when simplifying rational 
expressions. The research reported here adds to this body of knowledge in two ways.  
 The paper explores the merit of post-solution written reflection, a form of 
―reflection-on-action‖ (Schön, 1987, p. 27), for collecting explanatory data on student 
thinking on this topic amongst undergraduate students. This method of generating 
explanatory data has been rarely used in this context. The literature suggests that spoken 
reflection through interviews has been the primary means by which researchers have 
explored student thinking when working with rational expressions (Guzmán, Kieran, & 
Martínez, 2010; Nishizawa, Matsui, & Yoshioka, 2002). Secondly, undergraduate 
students‘ understanding of rational expressions does not appear to have attracted the 
same interest as that of school students.  
 The research reported here is part of a larger study (Ruhl, 2011) investigating student 
learning, in particular student errors, in the algebraic component of an undergraduate 
preparatory mathematics subject at an Australian university. The study analysed three 
sets of data, namely, the worked solutions to a test students sat upon completion of the 
algebraic unit, the confidence levels they expressed for each question of the test, and the 
written reflections on the questions they answered incorrectly. The test, the reflection 
activity, and the preparation leading up to both were part of the teaching and learning 
experience of all students in the cohort.  
 This paper focuses on the written reflections that students who volunteered for the 
study generated for one question in the test. The question asked students to simplify a 
rational expression in one variable in which the denominator was already factorised. 
The solution required factorising the binomial expression in the numerator prior to 
cancelling the one factor common to the numerator and the denominator.  
 The question was selected because of the high error rate (86% of study participants 
simplified incorrectly) and the high level of false confidence. Of those who indicated ―I 
am confident I am right‖, 94% were wrong. Similarly of those who chose ‗I am fairly 
confident I am right‘, 82% of the responses were incorrect. 
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Method 
An algebra test of twenty questions was administered to a cohort of students enrolled in 
an undergraduate preparatory mathematics subject at university. The subject is 
equivalent to a secondary school mathematics subject that prepares students for entry 
into disciplines at the tertiary level where knowledge of calculus is required (such as 
engineering, or the natural sciences). A range of students enrol in the subject; some have 
not satisfied mathematics prerequisites on entry to the university, while others are 
enrolled in degree programs that have no mathematics prerequisite for entry and are 
required to study this level of mathematics during their degree. 
 Students sat for the test after having completed the five week long algebra 
component which comprised approximately the middle third of the subject. It is 
assumed that students enrolled in this subject do not have any prior algebraic 
knowledge.  
 The students had sat for a similar test at the commencement of the algebra course, 
the results of which had been used for teaching purposes. That test, which had also been 
administered to other cohorts, served as a pilot to the final modified test.    
 The test, taken under formal exam conditions, was worth 15% of the total 
assessment. Students were directed to show all their working for each question 
attempted.  
 Ten days after sitting the test, in a 50 minute lecture timeslot, the marked papers 
were returned to the students. As well as providing a mark, the examiners highlighted 
for most questions the parts of the responses where the errors had occurred. A set of 
written solutions for the test questions was also distributed to the students.  
 Upon receiving their papers, students were invited to write reflections for the 
questions they had answered incorrectly. Most students spent 30 to 40 minutes on the 
task writing on average more than 10 reflections.  
 The reflection task was scaffolded. In addition to the cognitive prompts of errors 
being highlighted and the provision of worked solutions, there was also the 
metacognitive prompt asking students to recall the thinking they experienced at the time 
of responding to the question. The directions given orally and in writing for the written 
reflective task included the following:  

1. If you have an error highlighted in yellow, compare your answer to the worked 
solution. Note that not all errors are highlighted. 

2. Describe the mathematical thinking you were doing that led you to respond to 
the question in the way you did. 

 Students had been encouraged in the intervening tutorials and via email to attend the 
written reflection session. The benefit stressed was that reflection would help maximise 
their learning from the test in preparation for their final exam. There was also the 
incentive of gaining up to 2.5% bonus marks for having written reflections.  
 Experience in writing reflections on their solutions had been included in the five 
tutorials leading up to the test. Students experienced a range of reflection activities that 
included individual and group tasks and oral and written tasks. The ongoing constraint 
the tutor encountered was the lack of time to develop reflection skills; much of the 
tutorial time involved re-teaching of the mathematics presented in lectures. Students had 
little or no experience articulating their mathematical thinking and the reflection tasks in 
the tutorials met with some resistance. 
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 The target question for which the analysis of the reflections is reported in this paper 
was written as follows: 

Simplify the following rational expression completely. 
b3 + 6b 
   3b 

The solution for the target question given to the students is reproduced in Figure 1. 

 

Figure 1. Solution for the simplification of the rational expression.  

Of the 160 students enrolled in the subject, 151 students had volunteered for the study; 
of these, 133 sat the test and had provided a response to the target question. One 
hundred and fifteen of the 133 students (86%) produced incorrect responses to the 
question; of these, 68 (51%) wrote reflections regarding their response. One reflection 
was unusable, leaving 67 for analysis.  
 The written reflections were subsequently typed, coded, and recorded using the 
Nvivo 9 qualitative data processing software. Content analysis was used to categorise or 
code the reflections in a two part process. On Patton‘s (2002) inductive-deductive 
continuum along which he places qualitative research methodologies, the analysis used 
in this study would best be described as inductive but with some tentative pre-existing 
conceptual guidelines. Using the analogy of a category as being a ―bin‖ in which data 
are placed, Miles and Huberman (1985) note that ―any researcher no matter how 
inductive in approach knows which bin to start with and what their general contents are 
likely to be‖(p. 28).  
 After the three researchers had read and reread the reflections, the first ―bin‖ or 
category became ―Did the students do the task required i.e., did they describe the 
‗mathematical thinking‘ that had led them to their response, and if not, what did they 
do?‖ This led to categorising the reflections according to type of reflection. The second 
phase of analysis focussed on how the reflections contributed to understanding the 
student thinking that led to the specific errors evident in their solutions. The errors in 
the responses had been categorised prior to analysing the reflections (Ruhl, 2011). This 
second process required analysing the reflections with reference to the student worked 
solutions.  
 The analysis of the data took place the semester following the delivery of the subject. 
As the main researcher (Ruhl) was the sole tutor for the subject, ethics required that the 
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names of the students who had volunteered for the study would be available only after 
the results for the subject were released.  

Results and discussion 
The results of the first phase of analysis in which the reflections were coded according 
to type are summarised in Figure 2. The number attached to each category indicates the 
number of reflections coded in that category. The first categorisation used a temporal 
dimension distinguishing between the reflections that were a historical record, for 
example, ―Tried to cancel the b with top and bottom‖, from those that were written from 
the perspective of hindsight or in retrospect, for example, ―I should have factorised‖. Of 
the 67 reflections coded, 35 were coded in both categories. 

 Figure 2. Reflections coded according to type.  

 The second level of coding subcategorised each of the two sets in terms of whether 
the reflections referred to ―doing‖ (see examples above) or ―thinking‖. Two ―thinking‖ 
examples were ―Thought I could cancel because the base letters were the same‖ and ―I 
forgot to factorise‖. The ―reflections in retrospect‖ required a third category called 
―Other comments‖ which included reflections such as ―A lot more study needed 
perhaps‖.

 The third level of coding further categorised the five categories from the second level 
of coding. However, the figure includes only the coding done for the ―description of 
student thinking‖ category for the reflections that recorded what students believed they 
were thinking at the time of simplifying the rational expression. The two most important 
findings from this phase were the large number of reflections that focussed on ―doing‖ 
rather than ―thinking‖ and the very small number of reflections that were a rationale for 
simplifying the rational expression in the chosen manner. The reflection types for each 
error type identified in students‘ solutions are shown in Table 1. 
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Table 1. Summary of reflection type for error type in student solutions.  

 

Of the 24 reflections that recorded what students did in simplifying the rational 
expression, 15 referred to ―cancelling‖ (14) or ―eliminating‖ (1). Thirteen of the 15 
were reflections for solutions where students had made a ―simple cancellation error‖. A 
breakdown of these 13 reflections showed that  

– 5 referred to cancelling or eliminating ―common factors‖ 
– 2 referred to cancelling ―variables‖ 
– 2 referred to cancelling ―numbers‖ 
– 3 made no reference to what was cancelled 
– 1 cancelled ―some properties of the expression‖ 

It is possible to infer from these reflections that students realised that simplification of 
the rational expression requires cancellation of ―something‖ common to the numerator 
and the denominator with the ―something‖ being described in various ways. However, 
their understanding of what constitutes a common factor appears to be that it is either a 
number or a variable that is found in a term in the numerator and in a term in the 
denominator. Hence none saw the need to factorise the numerator. 
 Not all cancellation errors however, seem to be associated with failing to factorise. 
The student script reproduced in Figure 3, for example, indicates that the student knew 
to factorise the numerator. In this instance, the component of the written reflection 
analysed stating ―took 1b from 3b‖ reinforces the categorization of this error as a 
―cancellation by subtraction of like terms‖ error.  
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Figure 3. Student script for a cancellation by subtraction of like terms error. 

Of the 19 thinking reflections categorised as ―other thinking‖, all, with one exception, 
expressed confusion or uncertainty. Examples include, ―I got confused‖ and ―Was 
unsure how to do it‖. The exception was that of a student who had performed a ―simple 
cancellation‖ error. Her script is worth commenting on (Figure 4) because, unlike the 
previous case, the reflection does not appear consistent with the worked solution.   

 

Figure 4. Student script for a simple cancellation error. 

Apart from the ―simple cancellation‖ error, the worked solution appears to indicate that 
the student appreciates the need to factorise the numerator before cancelling. The 
common factor b also appears to have been cancelled successfully. Yet the reflection 
indicates that perhaps the student does not understand why she manipulated the 
expression in the way she did. She states, ―I still see the top line as pieces of a puzzle 
rather than a complete value‖. This image suggests that the student sees the elements of 
the numerator as discrete pieces that can be lifted and discarded when their match is 
found on the denominator.  
 Finally, the category that explicitly described the thinking that led students to their 
solutions contained five reflections. These are reproduced below. Four of the set provide 
the opportunity to see that conceptually similar reflections need not mean similarly 
worked solutions.  

 ―I simplified the 6 and the 3 by 3 because they were both common factors of each 
number.‖ 
―I believed you could cancel if the numerator and denominator had same 
letters/symbols.‖ 
―I was thinking that because 6b and 3b are like terms I could just cancel.‖ 
―Thought that I could cancel because the base ‗letters‘ were the same.‖ 
―I tried to divide by 3b, because the question said to simplify, I looked for like terms. 
6b÷3b=2b.‖ 
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The first three reflections were written by students who made the ―simple cancellation‖ 
error; the fourth was written by someone who made the ―cancellation by subtraction of 
like terms‖ error and the fifth was by a student who made the ―cancellation error 
involving the division of coefficients while retaining the variable‖. Apart from the first 
reflection, the remaining four seem to share an understanding that cancellation in a 
rational expression involves the cancellation of ―like terms‖. Notwithstanding the 
common ground amongst the reflections, the corresponding solutions displayed 
different errors and different end results. The result corresponding to the second and 
third reflections were both b3+2; the result corresponding to the fourth reflection was 
b3+3b; and the result from simplifying the rational expression that corresponded to the 
last reflection was b3+2b. 
 The results produced in this study were influenced by a number of conditions that 
may have limited the quality and the quantity of the reflections. Firstly, time constraints 
meant that learning how to reflect mathematically had been limited. Secondly, the time 
allocated to writing the reflections was limited; students may have sacrificed depth for 
breadth. Thirdly, the scaffolding, in particular, the worked solutions, may have strongly 
influenced the nature of the responses and provides at least a possible partial 
explanation for the large number of reflections that focussed on the teacher‘s solution as 
their point of reference. 

Conclusions and implications 
In conclusion, the findings from this study have implications for pedagogy in the 
algebra unit of undergraduate preparatory mathematics subjects. Using written 
reflections to generate explanatory data about student thinking has the benefit of 
accessing a large number of students in a time efficient way. However, it does not allow 
for the teacher/researcher prompts that dialogue offers which can lead to richer 
reflections. Notwithstanding this limitation, the study showed that written reflection 
provides insights into the student thinking, including its contradictions and anomalies, 
that contributes to incorrectly simplifying rational expressions as well as revealing the 
difficulty that students have with writing about their thinking.  
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This paper draws from a pilot study about a teacher education program that focused on 
building preservice primary teachers’ confidence and abilities in teaching and learning 
mathematics. The cohort involved on-campus [n=82] and off-campus [n=420] participants. 
The qualitative study was based on developing three aspects of mathematics teacher 
education: (1) Content knowledge; (2) Pedagogical knowledge; and (3) Knowledge of the 
learner. A problem-based learning environment was created to build students’ self-efficacy 
and to encourage the beginning teachers’ willingness to engage in the unit content by 
providing authentic teaching contexts, and to develop a richer conceptual and procedural 
understanding of mathematics. 

Introduction 

For many preservice primary teachers, learning to teach mathematics can be a 
challenging and, at times, a fearful undertaking. Many researchers (Black, 2007; 
Jorgensen, Grootenboer, & Sullivan, 2010) have discussed the nature of preservice 
mathematics education, and in particular, how a social constructivist approach can 
enhance a productive disposition and willingness to engage in learning mathematics. 
Student-centred learning offers a pedagogical approach for mathematics education in 
the 21st century where the educational paradigm shifts from traditional, teacher and 
textbook-centred approaches, to situations where the learner is personally challenged 
and engaged in a social construction of knowledge.  
 This paper describes an ongoing project that seeks to investigate a productive 
learning environment for first-year preservice primary teachers taking an initial 
mathematics education unit of study. During the first stage of the project, the focus was 
on the plausibility of a problem-based learning (PBL) approach for enhancing 
productive dispositions with preservice teachers to teaching and learning mathematics. 

Background 
Many preservice primary teachers have demonstrated negative feelings and attitudes to 
learning mathematics (Cady & Rearden, 2007). In addition to poor attitudes, 
mathematics educators are often faced with teaching students with low mathematical 
content knowledge and a history of mathematical experiences that are predominantly 
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teacher-centred (Tobias, Serow, & Schmude, 2010). To complicate the situation further, 
it has recently become necessary to broaden the scope of tertiary teaching and move 
beyond lecture-plus-tutorial and 9-to-5 approaches, as well deliver units online and via 
mixed modes. Whilst face-to-face and even mixed mode strategies enable real-time 
contextual experiences in social situations, replicating this is in an online environment 
where the preservice teacher experiences the multiple facets of student-centred teaching, 
is a hurdle that many tertiary educators are facing as we move to a more global 
classroom environment. 

Teachers’ work is often described as working within the union of different domains 
of knowledge. Lappan and Theule-Lubienski (1992) provide a visual model for teacher 
education that defines at least three kinds of knowledge that a teacher must have in 
order to teach effectively. These domains are represented visually in Figure 1.  

Figure 1. Knowledge domain framework for mathematics teacher education 
(Lappan & Theule-Lubienski, 1992, p. 253). 

It has been previously said that many teacher education programs only teach students 
these domains of knowledge in isolation from each other (Lappan & Theule-Lubienski, 
1992). The lack of integration between these three key areas of knowledge can create 
divisions between these different aspects of teacher education, and leaves the student 
without the appropriate experiences and skills needed to reason and analyse their 
teaching and students (Lappan & Theule-Lubienski, 1992).  
 Figure 1 depicts effective teaching as the intersection of these three domains of 
knowledge and identifies the inherent complexity in good teaching. Cooney (1994) 
appreciated the value of this mathematics education framework and that the task for the 
teacher was more than imparting knowledge about content and processes. However, 
Cooney also recognised the complexity of the task for effective teacher education. “The 
problem is that these different domains are neither mutually exclusive nor clearly 
defined, thereby making the nature of teacher education anything but a well-defined 
process” (p. 609). While this paper does not seek to clarify or clearly define these 
domains of knowledge, it does recognise the benefit that the Lappan & Theule-
Lubienski (1992) framework offers, by illustrating the interplay of the different types of 
knowledge needed for effective mathematics teaching. However, the intention of the 
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research study is to enunciate how the three domains of knowledge interact and are 
utilized as a model for “effortful” mathematics teaching. It is argued that if we want our 
preservice teachers to have a positive attitude and enhanced teaching practices when 
they graduate, then it seems essential that, during their tertiary studies, they need to 
have authentic and engaging experiences that incorporate the complex nature of 
mathematics education. 
 One approach that lends itself to working closely with many interrelationships in 
domains of knowledge is problem-based learning. This pedagogical approach has been 
identified over many decades as a successful way to educate students in medical 
education (Azer, 2007). Since its extensive use in the education of medical students at 
McMaster University in Ontario, Canada, which began in the 1960s, problem-based 
learning has spread to many other fields of education including law, engineering, 
psychology, and architecture (Gijbels, Dobchy, Bossche & Segers, 2005; Peters, 2006).  
 However, problem-based learning has not been used extensively, thus far, in teacher 
education. As the problem-based learning approach is designed to use and promote 
student-centred learning, it appears to have the potential to embrace and place the 
preservice teachers in the complexity that is inherent in teaching by providing authentic, 
ill-defined problems that need resolution.  
 The early pioneers of problem-based learning were Howard S. Barrows and Robyn 
M. Tamblyn. Barrows and Tamblyn (1980) observed that medical students, who had 
passed a number of courses in basic medical knowledge, using a non-problem-based 
learning approach, were not able to sufficiently transfer their knowledge when applying 
it to the assessment of a patient’s condition. This was evident when Barrows and 
Bennett (cited in Barrows & Tamblyn) investigated medical students as they performed 
an inquiry on a simulated patient. For the most part, the students would gather data 
procedurally and try to combine it together later, or make a diagnosis based on a single 
symptom or sign, without looking deeper for other possibilities. 
 Barrows and Tamblyn (1980) felt at this time that the current use of problems in the 
curriculum was misplaced. Problems were often given to students to solve only after 
they had been given the facts, concepts and principles, either as an example to highlight 
the importance of the knowledge they had just been given, or as an opportunity to apply 
this knowledge. However, Barrows and Tamblyn believed a complex problem should be 
introduced before the facts were known, as a focus for the study to be carried out. 
Problem-based learning has certain broad characteristics with the central one being that 
“the problem is encountered first in the learning process” (Barrows & Tamblyn, 1980). 
They believed that the application of this knowledge helps enthuse students, teach 
problem solving skills, and aid in retention, and assert that knowledge used is better 
remembered. 
 It is important to note from the outset, as does Savin-Baden (2000), that not all 
learning that involves some kind of problem is problem-based learning. Eng (2000) 
mentions that with the “explosion” of interest in problem-based learning, concern has 
arisen that the concepts of problem-based learning will be confused with any 
educational approach that uses the word “problem”, which may then be seen as 
applying a problem-based learning model. This concern has given rise to the question of 
what actually qualifies as problem-based learning. Many have asked what 
characteristics does the learning process need to have in order to be considered a 
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genuine problem-based learning approach. To what extent does the use of problem-
solving have to be included in a course to have a genuine problem-based learning 
status?  
 Many researchers (Eng, 2000; Savin-Baden, 2000) agree that the characteristics of 
problem-based learning laid out by Boud (1985) are key features. These are: 

 the presentation of a problem occurs at the beginning of the learning process, and 
that this process is in response to the problem; 

 an emphasis on students taking the initiative and responsibility for their own 
learning; 

 more scope for the crossing of boundaries between disciplines;  
 a focus on processes rather than products of knowledge attainment; 
 a more collaborative relationship between students and teachers; 
 an appreciation and accommodation of a student’s knowledge and experience at 

the beginning of the learning process; 
 a greater attention to the communication and interpersonal skills so that students 

understand that in order to relate their knowledge, they require skills to 
communicate with others; and 

 tutors/lecturers are not used as significant sources of content, but rather as 
facilitators of the learning process, achieved through guiding and questioning. 

Whilst it appears in theory that problem-based learning has much to offer mathematics 
preservice teacher education, the approach has had little investigation using the key 
features outlined by Boud. This paper reports on the findings of a pilot study that 
required a four-week problem-based learning intervention as a precursor to assist in the 
development of a semester long problem-based learning unit in mathematics education. 
The pilot program implemented is described in the following methodology. 

Research questions 
The following research questions were used to guide the pilot study and to establish 
whether a student-centred approach could positively influence preservice mathematics 
teachers’ dispositions to learning and teaching mathematics: 

 How do preservice teachers respond to a problem-based learning approach to 
learning? 

 What are some of the implications of applying a problem-based learning approach 
in teacher education? 

Methodology 
The problem-based learning approach was undertaken in the initial stages of Semester 
Two 2010, with 82 (67 female, 15 male) first-year primary preservice teachers, 
undertaking the Bachelor of Education course at The University of New England in 
Armidale, NSW. The preservice teachers were enrolled in a first-year, semester-length 
mathematics education unit of study. All participants are described as continuing 
students who arrive at university immediately or within a few years of completing 
secondary school education. This intervention is a pilot study to inform a larger project 
investigating problem-based learning in the mathematics education context. 
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The problem-based learning program 
The problem-based learning program was conducted over a 4-week duration at the 
commencement of a semester-long unit (11 weeks). The intervention focussed on early 
Number using the Count Me In Too framework (NSW Department of Education and 
Training, 2002). Each week involved a 2-hour tutorial, followed by a 1-hour content 
lecture. The tutorials were broken into two parts: The Open and The Close. 
 The Open involved preservice students being presented with a scenario of a student 
engaged in mathematical tasks, and involved opportunities to determine the student’s 
level of understanding. The scenario was typically divided into two or three packets of 
information that were released throughout the tutorial time. These packets would often 
describe the context of the scenario and student work samples in varied forms, such as 
paper artefact, a description, or video of the student doing a task. The pre-service 
teachers were expected to discuss, analyse, and critique the information, as well as 
hypothesise possible educational implications. Once the information had been 
exhausted, another packet of information was provided. This new information was 
usually more comprehensive and revealed further detail about the scenario’s context and 
insight into the student’s mathematical situation. It was expected that while preservice 
students were working through the scenario they would identify areas where they 
believed their knowledge was inadequate to deal with the situation if they were the 
teacher. These items of need were called Learning Targets. Each person in the group 
was assigned a Learning Target to study, and asked to report the findings back to the 
group at the beginning of the next tutorial.  
 The Close began with students sharing what they had found about their Learning 
Target. This was usually followed by a whole group discussion to bring the scenario to 
a conclusion. 
 At the conclusion of the 4-week PBL intervention, participants were invited to 
complete an online questionnaire concerning their experiences of learning in a problem-
based learning environment. From the sample of 82 participants, 48 participants elected 
to complete the post PBL survey. The questionnaire comprised of multiple-choice 
responses and open-ended responses. The goal of the survey was to collect the 
participants’ subjective feedback, as well as their practical experiences of learning 
mathematics education in a problem-based learning environment. Examples of 
questions relating to their experiences were “What three things have you most valued 
about learning through a problem-based learning?” and “What has been challenging 
about learning using the problem-based learning approach?” The responses to the online 
survey were analysed qualitatively to identify emerging themes (Miles & Huberman, 
1994).  

Results 
The following results report on the responses to three questions from the online 
questionnaire. The data highlight some interesting themes from the first-year cohort’s 
reflections of their experiences during the problem-based learning section of the unit. 
These are presented in tabular form and are a result of a thematic content analysis of the 
qualitative responses received in the questionnaire.  
 Table 1 includes the themes identified in the students’ qualitative responses when 
asked “What three things have you most valued about learning through a problem-based 
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learning (PBL) approach?” Table 2 shows the themes of the students’ qualitative 
responses when asked, “What has been challenging about learning using the PBL 
approach?” Table 3 shows the themes from the student responses when asked, “What 
could be improved to assist learning using the PBL approach?” 

Table 1. Students’ most valued aspect about the PBL experience. 

Theme Frequency 
Real life/practical 29 
Group work 24 
Learned teaching strategies 23 
Independence/self-directed/own responsibility 14 
Structure of the PBL (tutorial/scenario first, then lecture) 11 
Creating own learning targets 10 
Lectures 8 
Discovering resources  3 
Logical sequence of unit content 1 
Problem solving 1 

Table 2. Students’ themes of the most challenging aspects of the PBL experience. 

Theme Frequency 
Group members not doing work 15 
Finding relevant information/knowing what to look for 14 
Being inexperienced 1st years 10 
Didn’t know the answers 8 
Group dysfunction 7 
Content 2 
Repetitive scenarios 2 
Lecture spoiled Close (gave the answers) 2 

Table 3. Students’ advice of what could be improved in the PBL experience. 

Theme Frequency 
The Close (in general) 17 
The Close (need for tutor/class summary) 13 
Accountability 12 
Need for more direction, such as question/goals 7 
Create a final product/presentation/portfolio 7 
Nothing 6 
Better explained Close 6 
Provide more resources 4 
Not every week/too repetitive 3 
Glossary/terminology 2 
Have lecture first, before tutorial 1 
Smaller groups 1 
More PBL (pilot too short) 1 
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Discussion  
The results from the post-intervention questionnaire revealed a number of aspects of the 
problem-based learning experience that the students clearly valued. These highly-
regarded attributes can be closely aligned to the general features of student-centred 
learning, such as collaboration, autonomy in their learning and working on authentic 
tasks that are relevant to the students. This is an encouraging sign, because experiencing 
and valuing student-centred learning is one of the goals the researchers set out to 
achieve. It is hoped that this will assist the students to reform their view of pedagogy 
from a teacher-centred approach to a student-centred approach. 
 The most highly valued aspect was the authentic or “real-life” nature of the 
scenarios. The majority of the cohort appreciated this element of their problem-based 
learning experience. An example of this appreciation can be seen in the following 
student’s comment. 

It was really good seeing real-life situations. Seeing how things don’t work out all of the 
time … Like we’ve watched videos in Drama, and everything works out perfectly. The 
class did everything correctly. But with these [scenarios], you are working on problems, 
which is what teachers do, they have to work out problems. 

The students generally appeared to value the actual goals of the scenarios, such as 
analysing the mathematical work of the student. They engaged in exploring strategies 
and ideas that could help develop the student’s understanding of mathematics. 

[I valued] how to improve students learning by being able to recognise where the students 
are having difficulties and as a teacher, what steps to take to help the students succeed. 
 
By using real-life problems and seeing them occur, it makes it much easier to understand 
and learn how to fix the problems rather than just being taught about different 
approaches. 

Autonomy and self-directed learning was also seen as a positive aspect to the problem-
based learning experience.  

I like how it is a peer-directed option but still have the tutor there to help out, and how we 
feel in more control of our learning. 
 
I like the idea of having a problem and having time to locate the answer for ourselves, 
then being able to check our ideas with the lecturer. 

Approximately half the cohort mentioned that they valued the group work and 
collaboration. Interestingly, group work was also mentioned as one of the greatest 
challenges they faced while working in the problem-based learning environment.  

 [I valued] discussion with group members, to bounce ideas off each other and come up 
with ideas you would not normally have thought of. 

There were, however, areas that need to be significantly improved in order to implement 
a successful problem-based learning unit. A clear weakness of the pilot program 
identified by students was the second part of the tutorials, The Close. Many students 
saw it as ineffective for a variety of reasons. Partly this dissatisfaction with the Close 
was attributed to the students’ belief that it was lacking a clearly defined structure and 
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had limited direction. This was evident in student responses that offered advice on what 
could be done to improve the problem-based learning experience.  

The Close part of the PBL might need to be more organised and structured, possibly to 
get more out of it and to come to a final conclusion about the strategies that should be put 
into place, to help the students. 

The Close was also seen as ineffective by a number of students, owing to the lack of 
contribution by a few group members. It was revealed that some students believed 
members of their group were not contributing sufficiently, which was due to a lack of 
accountability, and this resulted in dysfunction within the group.  

It would be good if there was someone to ensure that all group members were doing their 
share of the work, as it was really focused on everyone being involved.  Everyone in the 
group relied on others to learn certain areas and when they wouldn’t do it and you spent a 
lot of time doing yours, it gets quite irritating. 

Group dysfunction has been identified as a very common cause of impeded learning in a 
problem-based learning environment. However, if the facilitator is only working with a 
single group, this dysfunction can usually be resolved (Azer, 2007). This raises a 
challenge that needs to be addressed when a single lecturer is working with multiple 
groups in a problem-based learning environment, as was the case in this pilot study. 
 With respect to the inherent complexity of teaching described in the Lappan and 
Theule-Lubienski framework (1992) and offered in a problem-based learning 
environment, a small number of students commented that they appreciated the 
complexity and challenge of the scenarios.  

I personally liked being chucked in the deep end, because then you have to sink or swim. 
Because then you know that if this happens to me in real life, I know I can do it. Whereas 
I’d rather have the choice to sink or swim now, than be in a job and don’t have a choice.  

The results of the questionnaire reveal a number of implications for incorporating a 
problem-based learning approach in mathematics teacher education. Barrows and 
Tamblyn (1980) mention that problem-based learning was originally designed 
specifically for use in medical education. This raises a number of issues for educators 
wanting to incorporate this approach in areas such as teacher education, which has 
significantly less resources, and if it is to be used in other modes of education, such as 
distance learning. Problem-based learning was designed for face-to-face learning with a 
facilitator for each group of eight students. This is a significant use of resources that are 
simply not available in current times in teacher education, resulting in a number of 
practical implications evidenced in this pilot study. 

Conclusions 
This paper reported on a pilot study used to inform and assist in the development of a 
much larger main study, which is to be undertaken in Semester 2, 2011. A significant 
development in the main study will be the inclusion of approximately 400 online 
students as well as a cohort of 100 on-campus students. Consequently, this significantly 
broader environment will provide a larger collection of data, including pre- and post-
tests looking at attitudinal and pedagogical change of the preservice mathematics 
teachers. It is anticipated that the main study research evidence will lead to teacher 
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educators gaining greater insight into how preservice mathematics teachers construct 
their pedagogical understandings in an interactive and technologically rich environment. 
 Problem-based learning has been an effective pedagogical approach in medicine, 
architecture and engineering for over forty years. There has been a surge in popularity 
in the last few decades and it has been used in many other areas of education to enable 
students to develop their skills and understandings in an authentic and personally 
meaningful manner. Curiously, the PBL approach is yet to be used extensively in 
teacher education and is rarely reported in mathematics teacher education. This ongoing 
investigation offers a potentially powerful means of modelling with preservice teachers 
an effective student-centred approach for an inherently complex and challenging 
mathematics education environment. 
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This paper reports on a recent research study that investigated Victorian year 10-11 
mathematics students’ attitudes and beliefs on the impact of handheld CAS calculators on 
students’ mathematics achievement. Students were surveyed using the Mathematics and 
Technology Attitudes Scale, which was used to monitor five affective variables relevant to 
learning mathematics with CAS. Principal component analysis, t-tests, correlations, and 
MANOVA were used for the analysis of responses. Students’ responses indicated that there 
is a positive correlation between their attitudes towards CAS and their prior knowledge and 
experience. The results also reflected the common finding that boys express greater 
confidence than girls in technology use in mathematics learning. 

Introduction 
The aim of the study was to investigate year 10-11 mathematics teachers’ and their 
students’ attitudes and beliefs towards the impact of handheld Computer Algebra 
System (CAS) calculators on students’ mathematical outcomes in relation to gender. 
This paper focuses only on the students’ beliefs. 
 Computers, graphing calculators and handheld CAS calculators have been used in 
secondary schools for the learning of mathematics in Australia and overseas for more 
than two decades. Their use has been supported and advocated through schools’ 
mathematics curriculum and government initiatives (Australian Association of 
Mathematics Teachers, 1996; National Council of Teachers of Mathematics, 2000; 
Victorian Curriculum and Assessment Authority, 2005, 2007). Burton and Jaworski 
(1995, cited in Vale, 2002) expressed concern that the use of computers and other 
technologies in mathematics might erode advancements made toward gender equity in 
mathematics. Furthermore, Vale (2002) claimed that the research about gender and 
computers illustrates the concerns raised by mathematics education researchers about 
the cultural influence of computers in mathematics and hence the need to carefully 
examine what is happening for girls in these learning environments. Also, the research 
into mathematics teachers’ and students’ attitudes and beliefs about teaching and 
learning contexts established a series of systematic associations linking teachers’ 
                                                        
1 This paper is part of a PhD thesis by the first author, supervised by the second author and Associate Professor Helen 
Forgasz. Faculty of Education, Monash University. The authors would like to thank Helen Forgasz for her detailed 
comments on an earlier draft of the paper. 

685



SHAMOAIL & BARKATSAS 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

attitudes and approaches with their students’ attitudes, learning approaches, and 
outcomes (Prosser & Trigwell, 1999).  
An explanation of these associations is therefore important in understanding the 
significance of investigating mathematics teachers’ and their students’ attitudes and 
beliefs of teaching and learning using handheld CAS calculators in mathematics 
classrooms.  Handheld CAS calculators are currently mandatory in senior secondary 
mathematics classrooms in Victoria, Australia. Thus, it is becoming important for 
educators and mathematics teachers to know students’ perceptions if they want students 
of both genders to be more successful in mathematics classes. The purpose of the study 
reported in this paper was to investigate students’ attitudes and beliefs about handheld 
CAS calculators in mathematics learning and to determine if males’ and females’ views 
differ.  

Literature review 
The brief review of the literature that follows explores the studies and findings of 
previous research on gender differences in mathematics outlined by Ruthven (1995), 
Fennema (2000), Forgasz (2002, 2003) and others on their analysis of gender and 
technology in mathematics education.  
 A major goal of the research on gender issues in relation to technology is to increase 
our understanding of how gender differences develop and relate to technology in 
mathematics. However, with regard to gender and technology, the small number of 
studies, particularly those addressing Victorian secondary mathematics students, gave 
conflicting results to students’ attitudes towards computers and graphics calculators.  
 Previous research studies on gender differences showed how different ways and 
methods have been used to minimise the gender gap, not only in mathematics teaching, 
but also in many fields of study especially in science, engineering and technical fields.  
Much research focused on how students’ attitudes towards mathematics tended to 
influence their performance in the subject as well as their future careers involving 
mathematics (Clifford, 1998; Fennema, 2000). Also, the interactive nature of 
technology could provide the opportunity for girls, especially, to work independently 
and become more confident in their learning of mathematics. 
 In her study focussing on gender and attitudes towards computers in mathematics 
learning, Forgasz (2002) found that: 

Compared to males, females are generally reported to be less positive about computers, 
like them less, perceive them as less useful, fear them more, feel more helpless around 
them, view themselves as having less aptitude with them, and show less interest in 
learning about and using computers; females are also less likely than males to stereotype 
computing as a male domain, to have received parental encouragement, to use computers 
out of school or to own one. (p. 369) 

However, research on graphing calculators by Ruthven (1995) found that the 
performance of upper secondary female students using graphing calculators was clearly 
superior to that of their male counterparts on items that required visual-spatial abilities. 
Similarly, Forster and Mueller (2001) suggested that girls are not disadvantaged in 
mathematics, as often suggested, where the use of graphing calculators is an integral 
and important part of the teaching and learning and when assessment questions and 
tasks are completed using graphing calculators. 
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 In Victoria, the 2006–2009 Mathematics Study Design (VCAA, 2005) further 
extended the use of CAS in the other Units 3 and 4 subjects, allowing handheld CAS 
calculators into the assessments of Further Mathematics, Mathematics Methods (CAS), 
and Specialist Mathematics. This introduction and implementation of CAS calculators 
has resulted in changes to existing curricula, assessment and teaching styles because it 
challenges the algorithmic algebra and graphing that form the central thread of 
secondary mathematics (Asp & McCrae, 2000). As mathematics classes in Victoria are 
on the cusp of a new era in handheld CAS calculators, it seems reasonable to research 
mathematics teachers’ and their students’ beliefs and attitudes towards the impact of 
handheld CAS calculators on teaching and learning mathematics and on the 
mathematics curriculum, particularly in the Victorian context.  
 The literature presented here suggests that with regular calculator use male and 
female students show significant improvement in their mathematical understanding and 
skills when dealing with mathematical problems. However, this is dependent on the 
nature of their experiences, including the classroom culture and the teaching and 
learning activities set by their mathematics teachers.  

Research method 
The participants were 520 Year 10-11 students from 15 Catholic secondary schools 
across Victoria. Invitations to participate in this research were sent to 85 coeducational, 
and single-sex Catholic secondary schools in Victoria. There were 268 (51.5%) students 
from metropolitan and 252 (48.5%) students from non-metropolitan Catholic schools. 
Of the 15 schools that participated in the study, three were from high, six from medium, 
and six from low socioeconomic areas.  
 In order to investigate the relationship between the students’ mathematics 
confidence, confidence with handheld CAS calculators, attitude to learning mathematics 
with CAS calculators, affective engagement and behavioural engagement, achievement, 
gender and year level, the Mathematics and Technology Attitudes Scale (MTAS) 
(Pierce, Stacey & Barkatsas, 2007) was administered. Five subscales were developed by 
Pierce et al. (2007), which allowed the researchers to monitor the following five 
variables: 
1. Mathematics confidence (MC): Students’ perceptions of their ability to attain 

good results and their assurance that they can handle difficulties in mathematics. 
2. Affective engagement (AE): How students feel about mathematics. 
3. Behavioural engagement (BE): How students behave when learning mathematics. 
4. Confidence with CAS technology (TC): Students’ confidence in using handheld 

CAS calculators. 
5. Attitude to the use of CAS technology to learn mathematics (MT): Students’ 

interaction with CAS. 
These variables were selected because they were constructs required to measure 
students’ competence and confidence when using handheld CAS calculators in the 
mathematics classroom. The instrument consists of 20 items. A 5-point Likert-type 
scoring format was used for the four subscales MC, AE, TC and MT listed above. 
Students were asked to indicate the extent of their agreement with each statement, on a 
five point scale from strongly agree to strongly disagree (scored from 5 to 1). A 
different but similar response set was used for the Behavioural Engagement (BE) 
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subscale. Year 10-11 students were asked to indicate the frequency of occurrence of 
different behaviours. A five-point system was again used: Nearly Always (NA), Usually 
(U), About Half of the Time (Ha), Occasionally (Oc), Hardly Ever (HE), and these were 
scored from 5 to 1 respectively.   
 A t-test was used to determine any differences that existed between boys’ and girls’ 
responses.  

Data analysis and discussion 
Factor analysis 
The twenty survey items of the MTAS were initially subjected to a Principal 
Component Analysis (PCA- extraction method: Maximum Likelihood), using SPSS 
Version 18.0. The five components that were extracted were identical to the five 
components of the original MTAS by Pierce, et al. (2007): Mathematics Confidence 
[MC], Confidence with Technology [TC], Attitudes to Learning Mathematics with 
Technology [MT], Affective Engagement [AE], and Behavioural Engagement [BE]. 
Prior to performing the PCA, the suitability of data for a PCA was assessed. Inspection 
of the correlation matrix revealed the presence of many coefficients of .3 and above. 
The Kaiser-Meyer-Oklin sampling adequacy value was .87, exceeding the 
recommended value of .6, and the Bartlett’s Test of Sphericity was statistically 
significant (<.001), supporting the factorability of the correlation matrix (Pallant, 2009, 
p. 197).  
 The PCA using data from 520 students’ responses to the twenty items forming the 
MTAS indicated that the data satisfied the underlying assumptions of the PCA and that 
together Principal Component analysis revealed the presence of five components with 
eigenvalues greater than 1, explaining 29.7% (component 1), 15.3% (component 2), 
7.9% (component 3), 6.9% (component 4), and 5.4% (component 5) of the variance 
respectively. An inspection of the scree plot revealed a clear break after the fifth 
component. The five components that were extracted were identical to the five factors 
of the original MTAS survey (Pierce et al., 2007), and those reported by Barkatsas, 
Kasimatis and Gialamas (2009).  

Reliability analysis 
Reliability analyses yielded satisfactory Cronbach’s alpha values for each subscale of 
(MTAS) indicating a strong or acceptable degree of internal consistency in each 
subscale. The lowest value was that of the MC subscale (0.69), however, according to 
Hair, Anderson, Tatham and Black (2006), the generally agreed upon lower limit for 
Cronbach’s alpha is 0.70, although it may decrease to 0.60 in exploratory research. 

Further statistical analyses 

In order to explore gender differences in the set of dependent variables, a multivariate 
analysis of variance (MANOVA) was conducted. Five dependent variables were used 
(MC, TC, MT, AE, and BE). The independent variable was gender. Preliminary 
assumption testing was conducted to check for normality, linearity, univariate and 
multivariate outliers, homogeneity of variance-covariance matrices, and 
multicollinearity, with no serious violation noted (Wilk’s Lambda = .88, F (5, 177) = 
4.57, p<.001). There were statistically significant differences between males and 
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females in two subscales TC (p<.05) and MC (p<.05). Gender differences are examined 
in the next section. 

Gender differences 
This section reports results on the five subscales by gender. Only responses from the six 
Catholic coeducational schools are considered in this section, in which the boys and 
girls have experienced the same mathematical learning environments. One hundred and 
eighty four (87 boys and 97 girls) completed all the items of the survey. Background 
characteristics of the student sample are listed in Tables 1 and 2 below. 

Table 1. Students’ characteristics by gender in coeducational schools. 

 Frequency Percent Valid percent Cumulative 
percent 

Male 87 47.3 47.3 47.3 

Female 97 52.7 52.7 100.0 

Total 184 100.0 100.0  

Table 2. Students’ characteristics by year level in coeducational schools. 

 Frequency Percent Valid percent Cumulative 
percent 

Year 10 42 22.8 22.8 22.8 

Year 11 142 77.2 77.2 100.0 

Total 184 100.0 100.0  

 
The breakdown of these scores by gender, illustrated in Figure 1 below, revealed that 
boys have statistically significantly higher scores than girls for subscales TC (t=2.78, 
df=180, p< .01) and MC (t=3.01, df=180, p<.01) indicating significant gender 
differences. No statistically significant gender differences were found for the BE (t=-
.657, df=182, p=.512), MT (t=.044, df=182, p=.965) and AE (t=.25, df=182, p=.801) 
subscales. These results reflect the common finding that boys express greater 
confidence than girls in technology and mathematics, as shown in the respective MC 
and TC distributions of scores in figure 1, and are similar to those of Pierce et al. (2007) 
who found gender differences on variables corresponding to TC (Confidence with 
Technology) and MC (Mathematics Confidence), and less difference on variables MT 
(Attitudes to the use of CAS technology to learn mathematics) and AE (Affective 
Engagement).  
 As reported earlier, no statistically significant differences were found for the BE 
subscale. These results contrast with those of Vale and Leder (2004) who found gender 
differences only on their variable corresponding to MT. They found that boys view 
computer-based mathematics lessons more favourably than girls. Vale and Leder (2004) 
viewed students’ attitudes to computer-based mathematics as being defined by the 
students’ perceptions of their achievement in mathematics. They noted differences in 
boys’ and girls’ behaviours in mathematics lessons when computers were used: “girls 
viewed the computer-based learning environment less favourably than boys and boys 
and girls thought differently about the value of computers in their mathematics lessons” 
(Vale & Leder, 2004, p. 308). 

689



SHAMOAIL & BARKATSAS 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

 

Figure 1. MTAS scores for subscales by gender. 

School setting differences 
This section reports results on the five subscales by students’ school type. Responses 
from the nine (4 single-sex boys, and 5 single-sex girls) schools are considered. Three 
hundred and thirty-six students (145 boys and 191 girls) completed all the items of the 
survey.            
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Figure 2. MTAS scores for subscales by school type. 

As shown in Figure 1 above, the median, the upper quartile and the maximum value in 
the MT distribution of scores for girls are all greater than the respective values in the 
boys’ MT distributions of scores, indicating that not all the students with negative 
attitudes for learning with CAS are girls, and that boys and girls valued using CAS in 
mathematics lessons. The breakdown of the scores by school type, illustrated in Figure 
2 above, revealed that single-sex boys’ schools have statistically higher scores than 
single-sex girls’ schools for the MC and the AE subscales. No significant differences 
between single-sex boys’ schools and single-sex girls’ schools were found for the BE, 
TC, and MT subscales.  

Conclusions 
In this paper we investigated Victorian secondary students’ attitudes towards handheld 
CAS calculators in mathematics learning. The Mathematics and Technology Attitudes 
Scale (MTAS) was used to examine student engagement, attitude, and confidence in 
learning mathematics with CAS. 
 The findings revealed that there are statistically significant positive correlation 
(weak, moderate or strong) between all parts of scales BE, TC, MC, AE, and MT for 
males and females for the 184 students from the six Catholic coeducational schools. We 
have two explanations for this positive correlation: 1) there is a strong tendency for year 
11 girls and boys who feel confident about mathematics to value using handheld CAS 
calculator for learning mathematics; and 2) boys and girls are experiencing the learning 
of mathematics more positively, simply because the use of handheld CAS calculators is 
currently mandatory in years 10 and 11 in all Victorian Catholic secondary schools, and 
students value it because they feel it has the potential to compensate for self-perceived 
shortcomings (Pierce et al., 2007).  
 The results of the study also indicated that boys in single-sex boys’ schools were 
more confident about their ability to attain good results and also could handle 
difficulties in mathematics (MC) better than girls in single-sex girls’ schools. However, 
no differences were found in students’ confidence in using handheld CAS calculators 
(TC) or attitudes to the use of CAS technology to learn mathematics (MT). These 
results are similar to those reported by Forgasz (2008), who analysed the VCE 
mathematics results for 2007. This analysis revealed a clear pattern of male dominance 
among the highest achievers in all of the subjects examined, and the proportions of high 
achieving males far exceeded their proportions of enrolments in the various subjects. 
The study also revealed that students in single-sex schools, particularly in boys’ 
schools, were highly over-represented among the highest achievers in all three VCE 
mathematics subjects.    
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Student beliefs about mathematics are difficult to access and categorize. This paper 
discusses one method used in an attempt to mitigate this issue. As part of a larger study into 
Year 5 and Year 6 students’ beliefs about the nature of mathematics as well as their self-
beliefs about the domain, a subgroup of 185 students completed a drawing task. The 
metaphors used in these drawings are explored as a way of accessing, grouping, and 
understanding the range of beliefs held by these students.  
 

Theoretical framework 
This study of student beliefs about the nature of mathematics and how they view 
themselves in terms of mathematics—their self-beliefs about maths—is part of ongoing 
doctoral research into the beliefs of Year 5 and 6 children, aged between eight and 
eleven. ―Beliefs about knowledge and knowing have a powerful influence on learning, 
and deepening our understanding of this process can enhance teaching effectiveness‖ 
(Hofer, 2002, p. 13). Further, students’ beliefs about mathematics relate to their interest 
and motivation in the subject (Kloosterman, 2002).This paper examines some of the 
beliefs depicted in a drawing task that was implemented in order to address several of 
the challenges inherent in accessing and interpreting children’s beliefs about 
mathematics. 

Beliefs 
Frank Lester (2002) defines belief as ―a special form of knowledge—namely, personal, 
internal knowledge,‖ in contrast to ―external knowledge which is knowledge resulting 
from the consensus of some community of practice‖ (p. 351). He maintains that teachers 
need to be aware of their students’ beliefs because each individual’s internal knowledge 
―directs her or his actions and subsequent learning‖ (p. 351). Even though the 
mathematics education community recognises the importance of researching and 
understanding beliefs about mathematics, questions remain about how to access and 
interpret these beliefs. Traditionally, beliefs data have been collected either by asking 
individuals about their beliefs through the use of questionnaires and/or interviews, or by 
observations. Both of these methods have inherent problems: inferring beliefs from 
classroom observations is controversial (Lester, 2002) as it is extremely difficult, 
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perhaps impossible, to interpret what is an internal, private belief from external 
behaviour alone; and self-report measures are also problematic because individuals may 
respond in ways they think the researcher expects (Creswell, 2003). Moreover, young 
respondents may not know what they believe or may not be able to articulate their 
beliefs about mathematics (Young-Loveridge, Taylor, Sharma, & Hawera, 2006). One 
of the solutions to these problems is to collect data by using multiple methods (Lester, 
2002; McDonough, 2004); for example, a combination of various self-report measures 
and observations at different times. A challenge, here, is to ensure the methods are of 
interest to the participants as well as allowing them control over how much of their 
experiences and beliefs are shared with the researcher (Christensen & James, 2008). 

Metaphors 
Studying beliefs about mathematics is difficult because they are not easy to categorise 
or analyse. One solution is to explore the metaphors used by the students in their 
drawings. A metaphor, a device for trying to make meaning of one thing by comparing 
it to something else (Chapman, 2002; Gauntlett, 2007; Lakoff & Johnson, 2003), is not 
merely a literary figure of speech but is fundamental to human understanding and to 
describing and making sense of experience: ―[M]etaphor is pervasive in everyday life, 
not just in language but in thought and action‖ (Lakoff & Johnson, 2003, p. 3). 
Metaphors are used both in language and visual representations (Gauntlett, 2007; 
Lakoff & Johnson, 2003). Lim and Ernest (1999) describe images of mathematics that 
encompass both the cognitive and the affective by including ―all visual or metaphorical 
images and associations, beliefs, attitudes, and feelings related to mathematics and 
mathematics learning experiences‖, some of which they classify as myths such as 
―mathematics is just computation‖ and others as metaphorical images of a journey, a 
skill, ―daily life experience‖ or a game (p. 44). Picker and Berry (2000) also use the 
term ―image‖ when looking at drawings that included metaphors associated with 
mathematics and mathematicians such as ―maths as coercion‖ (p. 75), ―the foolish 
mathematician‖ (p. 79) and ―mathematicians with special powers‖ (p. 84). Young-
Loveridge et al. (2006) discuss students’ beliefs about the nature of mathematics in 
terms of perspectives, some of which are described through metaphors of utility and 
problem solving. 

Literature review 
For the purposes of this research, it was decided to access children’s beliefs through a 
drawing task because images are ―a rich source of understanding the social world and 
for representing our knowledge of the social world‖ (Freeman & Mathison, 2009, pp. 
109–110). Drawings are a vehicle for researchers to access children’s lived experiences 
(Anning & Ring, 2004; Golomb, 1992; Hubbard, 1989; Veale, 2005) and image-making 
is one of the ways children make meaning of the world. Drawing is often viewed as an 
enjoyable activity that children choose both in and out of the of the classroom as a 
medium through which to communicate experiences, feelings and beliefs (Christensen 
& James, 2008; Veale, 2005). 
 Within the classroom, it can be unclear what individual children understand and 
believe about a topic or an area of study, particularly in situations where they have 
problems with articulating exactly what they know or mean. Because drawings or other 
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image-making tasks involve a different sign system, however, children are given an 
alternative way to communicate (Sidelnick & Svoboda, 2000), an alternative medium 
for explaining concepts and experiences that are difficult to put into words (Golomb, 
1992; Veale, 2005). A drawing task is also a familiar activity that is easy to administer 
in the classroom.  
 Recently, image-based data have been used in education research (Kilpatrick, 
Carpenter, & Loma, 2006; McDonough, 2004; Sidelnick & Svoboda, 2000) and in 
health studies (Backett-Milburn & McKie, 1999; Horstman, Aldiss, Richardson, & 
Gibson, 2008; Veale, 2005); however, few authors address the issue of how to analyse 
drawings in a systematic way (Rose, 2007).  
 As with any other one-off method of data collection such as questionnaires and 
single interviews, the researcher or classroom teacher needs to be aware of the extent to 
which the data are influenced by the context of the moment, bound both by time and 
place. As a result, it is important to use information from additional sources such as 
observations as well as written and spoken responses when interpreting drawings. Thus 
for this research, the contents of the drawings have been coded and interpreted by 
looking at the written text many of the students chose to include with their drawings, 
and in terms of classroom and school context observations as well as some interview 
content. 
 This use of mixed methods is not new. Picker and Berry (2000), for example, 
analysed images of 476 students in five countries in conjunction with questionnaire 
responses to identify images of mathematics and mathematicians as coercive (mainly 
domineering teachers), foolish, and overwrought, as well as brilliant, and possessing 
―special powers‖ (p. 75). Picker and Berry noted the words children included in 
drawings and writing about the drawings (particularly questions), the size of elements, 
and features of the characters and other aspects of images such as classrooms. They 
analysed common themes and concluded that ―there is more agreement than 
disagreement across countries about mathematicians among pupils at the lower 
secondary age‖ (p. 91).  

Research design 
In contrast to Picker and Berry’s (2000) research, the participants in this research were 
primary students and more varied types of data were collected. The participants were 
823 New Zealand primary school students from 17 schools who answered a 
mathematics beliefs questionnaire that included a combination of open- and closed-
questions. In addition, a subsample of 185 students at two focus schools completed a 
belief drawing task, mathematics classes were observed, and video and audio-recordings 
were made in two focus classrooms. A year later, nine students and nine teachers were 
interviewed.  
 The data were analysed by the first-named researcher using a combination of 
quantitative and qualitative approaches. The data from these drawings were coded in 
terms of mathematical content, metaphors used, affect (Goldin, 2002) and utility, and 
entered into SPSS. Initial codings were discussed with teachers from the focus schools. 
Final coding decisions were checked with a colleague who is using a similar method for 
analysing data from children’s drawings for his research. The choice of the first three 
categories was based on the frequency of appearance (after Glaser & Strauss, 1967), 
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while utility was included both because of its prevalence at the Blue School and the 
Young-Loveridge et al (2006) findings. Cross-tabulations enabled a comparison of the 
frequencies in terms of gender, ethnicity and school.  
 The beliefs that were of particular interest in the analysis of questionnaire and 
interview responses as well as the drawings were the participants’ epistemological 
beliefs about mathematics. This was both in terms of the nature of knowledge and truth, 
as well as the mathematics self-beliefs that individuals use to predict or explain how 
well they achieve in a specific domain (Schunk & Pajares, 2002). Some of the 
questions, for example, asked participants to describe the nature of mathematics and 
how they viewed the world of maths; others asked them how good they thought they 
were at mathematics, or how they saw themselves as engaging and achieving within this 
world. For the drawing task, students were asked to draw ―what maths or doing maths 
means to you‖. Both the nature of mathematics and doing maths were included because 
of Lim and Ernest’s (1999) findings that participants have difficulty in discriminating 
between the two aspects.  
 The results section below focuses on the drawings, interpreted in terms of their 
content but also through background information from the some of the participants’ 
written responses, interviews, and classroom behaviour.  

Findings 
All of the students chose to complete the drawing task; in addition, many of the 
participants wrote more on their drawings than they had on a written task about the 
nature of mathematics. A very brief quantitative summary is included first. In the 
following subsection, a qualitative summary of selected metaphors will be presented.  

Quantitative results 
Most of the drawings (90%) included some depiction of the content of mathematics: in 
particular, number and basic operations (83%), geometry (25%), measurement (22%), 
and algebra (11%). However, this information was communicated in very different 
ways. Overall, 67% of the students included metaphors in their drawings to explain 
―what maths or doing maths‖ means to them, 59% included some aspect of affect, and 
13% used metaphors of ―maths as useful‖. Fewer girls than boys used metaphors (61% 
as opposed to 73%), or included affective elements (53% c.f. 65%), but more girls than 
boys included notions of utility in their drawings. Asian and Pakeha students more 
frequently included metaphors and affective elements in their drawings than did Maori 
and Pasifika students. Under affective elements, students included images, metaphors 
and words to indicate concepts like ―maths is fun‖, ― maths is exciting‖, ―maths is 
boring‖, ―maths is terrible‖: 70% of these suggested positive feelings, 40% negative, 
and for 42% a combination of positive and negative feelings. There was a marked 
difference between the drawings at the two schools, which is summarised in Table 1. 

Table 1. Percentages of students who include metaphors, affective elements, and utility, 
compared by school. 

School Metaphor  Affect  Utility 
Blue: N= 42 74% 26% 45% 
Red: N=143 65% 69%  4% 
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Although more students at the ―Blue School‖ seem to include metaphors in their 
drawings (74%) than at the ―Red School‖ (65%), if the numbers are adjusted by 
removing metaphors that only refer to the utility of mathematics, then only 45% of Blue 
drawings include metaphors. This suggests that the students at the Blue School view 
mathematics in a much more utilitarian way than the students at the other school do 
(45% and 4%). This difference, as well as the difference in including affective elements, 
suggests that there are major differences in how the students at these schools view 
mathematics.  

Reading the metaphors 
One of the problems with a quantitative analysis of drawings is that the complexity of 
the metaphors and the distinctness of the individual voices tend to get lost. If metaphors 
are viewed as an essential to understanding of concepts, then it is important to explore 
them as a way to access what individual students believe and understand. All of the 
drawings were analysed, but, because of space constraints, only a small sample of the 
students’ metaphors can be included here. 

The nature of mathematics 

A wide range of beliefs about the nature of mathematics, from the extremely narrow to a 
universal view, appeared in the drawings. For some students, number and/or the utility 
of maths were important: Ella1, for example, includes a long explanation on the back of 
her drawing, and incorporates images of money, a person working as a ―cashier‖, a 
calendar and ―a teacher [who] is teaching the child so she can get a job involving 
numbers.‖ 
 Other children depicted mathematics in universal terms, ―as life‖, as something that 
underpins all of existence. For instance, Zach’s picture included a volcano, the sky, sun, 
and fishes in the sea with a sprinkling of algorithms and symbols. He explains, ―Well, 
you know maths is everywhere. It’s in the sky, in the volcano, and under the sea‖. 
 Katia used the sea to reflect her understanding of the never-ending universality of 
mathematics. She also views mathematics as a separate culture or world with its own 
language and symbols.  
 Other students use geographic metaphors like ―Numberland‖ or ―Mathsland‖. 

Self and mathematics 

In many of the drawings, especially the more complicated ones, notions of the nature of 
mathematics become entangled with the individual students’ views of themselves and 
mathematics. Tom (Figure 1) views himself in ―Mathsland‖ as if on a quest, with words 
and concepts reflecting metaphors associated with computer gaming. ―It is raining 
numbers in Mathsland. I almost fall into a new equation.‖ He leaps over ―the hurdle of 
maths … A new strategy comes flying at me. I get to know it later on‖. There is a sketch 
of Tom patting a purring strategy, and there is the ―Evil Textbook‖ to avoid. Other 
students also use gaming imagery by portraying themselves as figures of power, the 
holder of knowledge, a king, or ―Plus Man‖ in the world of maths. 

                                                        

1 All names of students have been changed, usually to an alias of their own choosing. 
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Figure 1. Tom’s drawing. 

Heads and brains 

One of the most common metaphors—albeit used in different ways—is of the head or 
brain. The first way of expressing this indicates thinking, learning, knowledge, and 
improving one’s intellectual capacity. More complex drawings include actual 
algorithms, concepts, and notions either within the head or streaming out. In contrast, 
negative drawings depict brain-burn and stress (Figure 2), with drawings of the tops of 
heads hinged off and numbers spewing out, or flames leaping from heads—and 
accompanying legends like Jason’s, ―Maths gives me brain burn,‖ or Lyle’s, ―Kill me 
now with numbers‖. 

Feelings positive or negative 

A range of feelings is portrayed through metaphors in the drawings from maths is fun 
and exiting, through boring, to stress-inducing, as well as a mixture of feelings. Positive 
feelings are displayed through smiling faces, hearts, flowers, words, and other happy 
images. For Chloe, it is a combination of fireworks, bombs, and ―Maths makes me feel 
as good as an icecream tastes‖. Lucy has positive brains, smiling girls, tunes, and a 
bottle of maths pills: ―Dosage: Take a lesson a day to get you going happily.‖ Hamish 
includes ―fun with games‖, but ―boring as in a subject without colour‖, and a tombstone 
inscribed with ―R.I.P Famous Mathmatician dude‖. Hazel uses black and red to show 
how much she finds maths boring, ―Hates it‖. and that it gives her a headache. Harry 
(Figure 2), one of the brain-burn artists, has students hanging from the light fixtures, 
throwing up, or calling for ―Mummy‖. 
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Figure 2. Harry’s drawing. 

Discussion and implications 
This drawing task allowed students to portray their idiosyncratic beliefs and experiences 
through a medium that they viewed as fun and non-threatening (Christensen & James, 
2008; Veale, 2005). It permitted those with weaker literacy skills to present as much 
information as their more literate peers. Although many of the students view 
mathematics in terms of number and basic operations (as found by Young-Loveridge et 
al., 2006), they communicated this view of the nature of mathematics through a variety 
of metaphors in their drawings: for some, numbers and symbols; for others, notions of 
usefulness for future employment, measurement, the ability to use money for shopping; 
or in terms of the fabric of life, a more universal approach.  
 The majority (70%) of the students who include affect position themselves as 
belonging to a world of fun, excitement and challenge, while the remainder feel 
boredom, hate the subject, or seem stressed by their experiences of the mathematics 
classroom.  
 Even though the students include a great range of metaphors in their drawings, it 
seems that the greatest difference between responses can be explained by school rather 
than by gender or ethnicity. In particular, a greater percentage of children from the Blue 
School included metaphors of utility, and affect metaphors were more prevalent in the 
Red. Teachers, the school context, as well as socio-economic status (Blue School 
middle, Red high) seem to have influenced the responses (Hattie, 2009). For example, 
Mr R’s class2 (Blue School) represented utility most frequently, which reflects his 
beliefs about mathematics as useful3. Ms McG’s class (Red School), an accelerated 
group, had the most complex representations of affect and content which were probably 
influenced by the teacher, their high decile school, and perhaps their ability; although in 
no other group did ability seem to account for differences in metaphors.  

                                                        

2 Blue School. 
3 Based on a questionnaire and interview. 
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Conclusion  
In summary, it was found that the majority of students picture mathematics largely as 
number and basic operations. Metaphors and affective elements were common in their 
drawings. It seems that schools, and specific teachers in particular, affected these 
primary students’ understanding of the utilitarian nature of mathematics, and this 
finding has implications for practice, suggesting that it is possible to convey to young 
children the usefulness of what they are learning and its applications in many aspects of 
their environment and lives. Further, the children expressed a range of strong feelings 
about mathematics as well as both positive and negative images of its nature, and it 
seems that these can also be influenced by schools and/or teachers—a point that would 
need to be researched more deeply. 
 Lakoff and Johnson (2003) and Gauntlett (2007) discuss the notion of metaphor as 
conceptual, essential for abstract thought, and based on the individual’s experience. It is 
clear from this research that by looking at the metaphors children use, teachers may gain 
valuable insight into what their students believe and understand, which in turn could 
help explain differences in engagement and learning in mathematics. They may also 
become aware of what their students feel about mathematics and/or about students’ 
experiences of learning mathematics. This information has the potential to assist 
teachers in making decisions about classroom practice (McDonough, 2004) in terms of 
the next steps for individual students as well as for groups. However, it is important to 
interpret the content of drawings in terms of additional information such as other tasks, 
discussions, or interviews (Freeman & Mathison, 2009; Lester, 2002; McDonough, 
2004), as well as to recognise that teaching behaviours and biases—as well as 
classroom and school contexts—may affect what students portray. Despite these 
cautions, the use of a drawing task to access students’ beliefs and understanding about 
mathematics proved an effective means of collecting complex and varied data from a 
large group of students. 
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This exploratory study involving Australian and Chinese teachers seeks to characterise 
teachers’ capacity to help students connect arithmetic learning and emerging algebraic 
thinking. The study is based on a questionnaire given to Australian and Chinese teachers, 
comprising seven students’ solutions of subtraction sentences. Teachers’ responses to the 
questionnaire were analysed in terms of four categories: knowledge of mathematics, 
interpretation of the intentions of the official curriculum documents, understanding of 
students’ thinking, and capacity to design appropriate instruction in the short and long 
term. These four categories form the basis of our construct of teacher capacity. 

Curriculum focus 
In many countries, official curriculum documents now endorse the building of closer 
relationships between the study of number in the primary school and the development 
of algebraic thinking. Algebraic thinking is not the same as the use of algebraic 
symbols. It is about identifying generalisations and structural relations in number 
sentences and operations. This is very different to what in the past was seen as the 
study of arithmetic. 
 Australian Curriculum in Mathematics (ACARA, 2010) presents Number and 
Algebra as a single content strand for the compulsory years of school. In its overview 
statement to this strand, ACARA (2010) website states that:  

Number and algebra are developed together since each enriches the study of the other 
… They (students) understand the connections between operations. They recognise 
pattern and … build on their understanding of the number system to describe 
relationships and formulate generalisations. They recognise equivalence and solve 
equations and inequalities … and communicate their reasoning.  

This statement echoes important ideas that have been present for at least five years in 
related State curriculum documents, for example, in linking Number, Structure and 
Working Mathematically in the Victorian Essential Learning Standards (VCAA, 
2007); and in other official curriculum documents such as the Mathematics 
Developmental Continuum (DEECD, 2006). 
 The Chinese Mathematics Curriculum Standards for Compulsory Education 
(Ministry of Education, 2001), also present a single strand entitled Number and 
Algebra. In Stage 2 which covers Years 4 to 6, two “teaching objectives” refer to the 
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importance of considering the inverse properties of calculation and to investigating 
the properties of equivalent sentences. Objective 5 on “operation of numbers” refers 
“to experience the inverse relation between addition and subtraction, as well as that of 
multiplication and division in the process of concrete operation and solution on simple 
practical problems.” (p. 21). Objective 3 on “sentences and equations” (p. 21) refers 
“to understand the property of equal sentences and enable to solve easy equations with 
the property of equal sentences (e.g. 3x + 2 = 5, 2x – x = 3)”. Several Chinese 
researchers, such as Xu (2003), emphasise that closer alignment is needed between 
the study of number and number relationships in the primary school and the study of 
algebra in the secondary school in this curriculum reform.  
 Official documents in both countries clearly endorse a more coherent treatment of 
number sentences and operations and the development of algebraic thinking in the 
primary and early years of secondary school; and we argue that teacher capacity is a 
key dimension in realising that goal. However, the implementation of curriculum 
change is never simply from the top down. Teachers’ interpretations and responses at 
the level of practice are never simple reflections of what is contained in official 
curriculum documents. While curriculum documents set out broad directions for 
change, any successful implementation of these “big ideas” depends on teachers’ 
capacity to apply subtle interpretations and careful local adaptations (Datnow & 
Castellano, 2000). Teachers’ professional insight and agency in translating these ideas 
into practice must frame any definition of teacher capacity (Smyth, 1995). Moreover, 
simply focussing on enactment as the defining feature of capacity tends to place any 
teacher opposition to reform in an entirely negative light.  

Research focus 

In examining the importance of teacher capacity in building a bridge between number 
operations and algebraic thinking, our mathematical focus is on students’ ability to 
read and interpret number sentences as expressions of mathematical relationships, 
rather than seeing them exclusively as calculations to be performed. Specifically, we 
draw attention to the importance of assisting students to use ideas of equivalence and 
compensation to solve number sentences involving subtraction. These methods, Irwin 
and Britt (2005) have argued, may provide a foundation for algebraic thinking (p. 
169). Jacobs, Franke, Carpenter, Levi and Battey (2007) use the term relational 
thinking to refer to these kinds of strategies. These authors agree that there is still 
room for debate whether relational thinking in arithmetic represents a way of thinking 
about arithmetic that provides a foundation for learning algebra, or is itself a form of 
algebraic reasoning. They argue strongly that “one fundamental goal of integrating 
relational thinking into the elementary curriculum is to facilitate students’ transition to 
the formal study of algebra in the later grades so that no distinct boundary exists 
between arithmetic and algebra” (p. 261). 

The research instrument and some results 
Teachers in both countries were invited to complete a written questionnaire based on a 
“scenario” where some researchers had visited their school and gave students (either 
in Year 6 or Year 7 ) the following number sentences, asking them to write a number 
in the box to make a true statement, and in each case to explain their working briefly. 
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These two questions, according to the scenario, had been accompanied by similar 
questions dealing with addition, and were intended to see how students interpret and 
solve number sentences involving different operations: 

For each of the following number sentences, write a number in the box to make a true 
statement. Explain your working briefly. 

 

39 –  15 =   41   – 
 
104 –  45 =        –    46 

 

The Australian and Chinese teachers were then presented with seven responses 
selected from actual responses by Australian and Chinese students in a study reported 
by Stephens (2008). In the Australian sample (see Appendix A), two Australian 
students, A and B, correctly found the missing number by calculating the result of the 
subtractions 39 –15, and 104 – 45, and then used these results to calculate the value of 
the missing numbers on the right hand side. Student C refrained from calculating, 
attempting to use equivalence, but compensated in the wrong direction to get answers 
of 13 and 103 respectively (or mistook the operation for + instead of -). Two students, 
D and E, successfully argued that since 41 is two more than 39 the missing number 
has to be two more than 15 to keep both sides equivalent. They applied similar 
reasoning to the second problem. Student F used arrows connecting the two related 
numbers (e.g. 39 and 41), and also connecting the other number (15) to the unknown 
number. Above the arrows Student F wrote +2 for the first problem and +1 for the 
second problem, obtaining correct answers. Finally, student G placed the letters A and 
A1 beneath 39 and 41, and B and B1 beneath 15 and the unknown number, and found 
correct values for the unknown numbers using an explanation based on equivalence 
and compensation. While the answer to the first problem is correct, Student G’s 
written explanation contained a small error. 
 The Chinese sample contained parallel examples as far as possible. Students A and 
B gave calculated solutions that were almost identical to their Australian counterparts. 
Students C and D, in the Chinese sample, gave correct and clearly articulated 
relational explanations. Student E used a diagrammatic representation almost identical 
to Student F in the Australian sample. Student F in the Chinese sample used 
compensation correctly in the first problem, but in the wrong direction for the second 
problem (like Student C in the Australian sample) giving an answer of 103. Student G 
in the Chinese sample also used compensation in the wrong direction in the first 
problem, obtaining an answer of 13. However, in the second problem Student G gave 
the missing number as 59 which is the result of calculating 104 – 45. 
 Teachers were then asked three key questions, with each question on a separate A4 
page. Firstly, teachers were asked to comment briefly on each of the seven samples. 
Secondly, Australian teachers were asked how they would respond specifically to 
Students A, B and C if they were students in their class. They could respond to other 
students if they wished. Chinese teachers were asked to respond specifically to 
Students A, B and F. Thirdly, all teachers were asked: “In planning your teaching 
program, how do you want to move students’ thinking forward in regard to these and 
related questions? How will you develop the kind of mathematical thinking that 
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students need to solve these kinds of number sentences? You can talk about a short 
design of one or several lessons, or a longer plan over the year.”  

The sample 

Both samples used in this exploratory study were convenience samples. The 
Australian sample consisted of 20 Numeracy coaches working in Victorian 
government schools who were participating in an extended professional development 
program. All 20 were school-based with time release to support mathematics teaching 
in their home school or in other local schools. 17 were based in primary schools. Two 
of the three coaches who were based in secondary schools were not mathematics 
specialists, although all were teaching mathematics. The Chinese sample of 20 
teachers was randomly selected from a larger group of more than 100 specialist 
mathematics teachers who had agreed to complete the questionnaire (Chinese version) 
during several teacher professional development programs in Nanjing, Whenzhou and 
Chongqing. All Chinese teachers were teaching Mathematics across several grades; 
and 18 were teaching in elementary schools. 

The analytical framework: Four criteria 
Teacher capacity to build effective bridges between the teaching of number and 
thinking algebraically about number sentences using equivalence and compensation is 
defined in this study in terms of four criteria: Criterion A: Knowledge of 
mathematics; Criterion B: Interpretation of the intentions of official curriculum 
documents; Criterion C: Understanding of students’ thinking; and Criterion D: 
Design of teaching (See Table 1, over). This construct of teacher capacity is similar to 
the construct of mathematical knowledge for teaching elaborated in two important 
papers by Ball, Thames and Phelps (2008) and by Hill, Ball and Schilling (2008). Our 
Criterion A is intended to capture their category of Specialized Content Knowledge; 
our Criteria B and C are derived from their category of Knowledge of Content and 
Students, that is, knowledge that combines knowing about students and knowing 
about mathematics; and our Criterion D gives emphasis to their category of 
Knowledge of Content and Teaching, which combines knowing about teaching and 
knowing about mathematics. Our construct of teacher capacity differs from the 
construct of mathematical knowledge for teaching in giving a greater emphasis to 
knowledge of official curriculum documents. 

Qualitative analysis 
Each criterion of our analytical framework was expressed in terms of four specific 
indicators (see Table 1). In the case of the first two criteria, these indicators expressed 
how well teachers’ responses indicated a clear understanding of the mathematical 
thinking that the two problems were intended to examine; and in the second criterion 
how this thinking reflected key ideas of current official curriculum documents in the 
respective countries. Indicators of capacity associated with the third criterion looked 
specifically at how well teachers could describe and interpret key features of 
performance expressed by the seven students, and how well they could respond to 
what the students had done in terms of immediate classroom teaching. Finally, those 
for the fourth criterion looked at how well teachers could plan for teaching that 
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fostered a deeper appreciation of the mathematical thinking embodied in these and 
related tasks, especially in fostering ideas of equivalence and compensation. 

Table 1. Four criteria and associated indicators. 

Criterion A – Knowledge of relevant 
Mathematics:  
(1) Does the teacher recognise that there are two 
mathematical approaches to solving these kinds of 
problems – using calculation; or using 
equivalence and compensation for the operations 
of subtraction or difference?  
(2) Does the teacher recognise that students need 
to attend specifically to subtraction or 
“difference” when using equivalence?  
(3) Does the teacher refer specifically to 
mathematical terms such as “equivalent 
difference” or “difference unchanged”?  
(4) Does the teacher understand that equivalence 
using subtraction is compensated differently from 
addition, and/or that the key idea of equivalence 
also applies to the other operations?  

Criterion C – Understanding of students’ 
thinking:  
(1) Does the teacher recognise that Australian 
students D, E, F & G (or Chinese students C, D & 
E) were correctly using relational thinking 
although expressed in different ways?  
(2) Does the teacher identify the typical error 
(compensating in the wrong direction) shown in 
solution C of Australia sample (or solutions F(2) 
and G(1) of China sample)?  
(3) Does the teacher recognise the importance of 
identifying those students who can only use 
calculation? 
(4) Do Chinese teachers see that solution G(2) 
suggests a deeper misunderstanding; or do 
Australian teachers recognise that student G has a 
clear understanding of equivalence although 
makes a small error in the explanation for 
question 1? 

Criterion B – Interpretation of the intentions 
of official curriculum documents:  
(1) Does the teacher realise that “Mathematical 
Thinking” should be treated as an important 
consideration whilst calculation remains valued?  
(2) Does the teacher understand and support the 
intention of the curriculum to link number 
learning and algebraic thinking?  
(3) Does the teacher show in his/her descriptions 
of children’s responses, an awareness of the key 
curriculum goal of moving students from reliance 
on calculation to using equivalence in number 
sentences, here with respect to “difference” or 
subtraction?  
(4) Does the teacher’s response use terms, words 
or expressions that are found in official 
curriculum documents? 

Criterion D – Design of teaching:  
(1) In designing teaching, does the teacher focus 
on the important aspects of mathematics to be 
taught and fostering mathematical thinking, not 
on general strategies? 
(2) Does the teacher have a short-term teaching 
plan to respond to selected students in the next 
lesson? Does the teacher recognise that it is more 
important to let students who can think 
relationally explain their thinking to the whole 
class, but not so important for those who used 
calculations?  
(3) Does the teacher have a longer-term teaching 
plan to move students’ relational thinking 
forward? How well does this plan reflect 
knowledge of students’ thinking (Criterion C)? 
(4) Does the teacher give teaching examples or 
use teaching with variation to help students’ 
learning and thinking? 

 

Qualitative evidence of demonstrated teacher capacity 
Criterion A: Knowledge of Mathematics 

Chinese teacher 1 commented: “If the same number is added to both minuend and 
subtrahend, the difference represented by the number sentence will be unchanged … 
this is also called the law of difference unchanged.” Similarly, Australian teacher 11 
said: “Although the process is the same with both + and - , the students often 
misunderstand whether they have to add or subtract to get the equivalent value on 
both sides of the equals sign.”  
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Criterion B: Interpretation of the intentions of official curriculum documents 

Australian teachers 3 and 4 referred to Key Characteristics of Effective Numeracy 
Teaching P-6 (DEECD, 2009). Teacher 4 pointed to the need to:  

engage students in identifying and using arithmetic relationships within number 
sentences to solve problems without calculating and teach a repertoire of strategies – 
(using) guess-guess-check (systematic trial and error), logical arithmetic reasoning and 
inverse operations to solve a wider range of number sentences. 

Chinese teacher 15 said: “In the elementary teaching of number and algebra, integrity 
and coherence need to be embodied”. 

Criterion C: Understanding of students’ thinking 

Despite their different responses, students C, D, E, F & G were all using the relations to 
solve the questions which is different from students A & B. This is a better method and 
to be encouraged because it is closer to the structural thinking that students need when 
learning algebra. These number sentences have been carefully chosen to make this 
method better. Student C spotted the relationships between the numbers being used in 
both algorithms (addition and subtraction) …. s/he has added to one of the numbers, 
(whereas) s/he needed to subtract from the other. (Australian teacher 5) 

Chinese teacher 13 said, “It is not easy to judge whether A and B solve it through 
calculation, or through the reverse principle between addition and subtraction,” noting 
the importance of distinguishing between those students who can only use calculation. 
Chinese teacher 8 says that “After students’ agreement on Type 2 (relational thinking), 
further explain the rationale of type 2 to help students understand it.”  

Criterion D: Design of teaching 

One Australian teacher 16 gave a well-designed five-stage plan to move students 
thinking forward with each stage reflecting a different level of mathematical thinking. 
 Chinese teacher 7 suggested: “Explore variations, change the ‘–’ in both sides into 
‘+’ or have the change in one side and leave the other unchanged.” Teaching with 
variation is used effectively in the following teaching examples: 

1. Fill in “>“ , “<“ or “=“ in ○.  

45 – 36 ○ (45 + 3) – (36 + 3)  

45 – 36 ○ (45 – 3) – (36 – 3)  

198 – 42 ○ (198 + 2) –(42 + 2) 

2.Fill in “+” or “–” in ○, and numbers in □.  

87 – 45 = (87 ○ □) – (45 － 3)  

98 – 36 = (98 – 5) －(36 ○ □)  

184 – 56 = (184 ○ □) – (56 + 8) 

A weak or inappropriate response to Criteria B and D 

Australian teacher 7 said: “I am not familiar with working in this area of the school I 
would need to consult the Maths (Developmental) Continuum ... I need further help as 
I was probably looking in the wrong progression point.” 

A dissenting response to Criteria A and B but strong on D 

Chinese teacher 7 showed a clear understanding of the mathematical elements of the 
questions and designed very clear teaching examples to help students develop 
relational thinking. However, teacher 7 had very strong resistance to fostering 
mathematical thinking other than ensuring students’ correct calculations:  

The solutions of Students A & B need to be energetically popularized (to the whole 
class), because most students can master them ... The deep thinking of Student C 
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deserves praise, but it shouldn’t be introduced, because it is not very good and some 
students may be confused by it and cause mistakes like that of Student F. 

An exploratory quantitative analysis 
By assigning a score of 1 if one of the four indicators was evident in a teacher’s 
response, and 0 if it was omitted from their response or answered inappropriately, it 
was possible to construct a score of 0 to 4 for each criterion, and hence a maximum 
score of 16 across the four criteria. While the four listed indicators for each criterion 
are, in our opinion, the most relevant in terms of reflecting teacher capacity, they are 
not the only possible indicators. We allowed for the possibility that teachers’ might 
provide convincing alternatives to the four indicators that we had listed. 
 For the Chinese sample, the highest score was 15 and the lowest score was 5, with 
a median score of 9. For the 20 Australian teachers, the highest score was 14 and the 
lowest was 2, with a median score of 10. The respective mean scores were 9.05 
(Chinese) and 8.9 (Australian) with standard deviations 2.31 and 3.54 respectively. In 
the Australian sample, four teachers scored less than 5, whereas a score of 5 was the 
lowest for the Chinese teachers. Table 2 shows means that were calculated for each of 
the Criteria, and a global mean score calculated across all four Criteria. 

Table 2. Means for each criterion and global means. 

Sample Criterion A Criterion B Criterion C Criterion D Total 

Chinese 3.0 2.2 1.75 2.1 9.05 

Australian 2.3 2.45 2.1 2.05 8.9 
 

An initial classification of Teacher Capacity 
Those teachers who scored between 11 and 16 were classified as demonstrating High 
Capacity; those scoring between 6 and 10 were classified as having Medium 
Capacity; and those scoring less than 6 as having Low Capacity. An initial 
classification of the two samples is shown Table 3. 

Table 3. Classifications of teacher capacity. 

Capacity Chinese Australian 

High 4 6 

Medium 15 10 

Low 1 4 

Discussion and conclusion 
Among Chinese and Australian teachers, High Capacity to make an effective bridge 
between the teaching of number and fostering of algebraic thinking was demonstrated 
by teachers’ clear understanding of the mathematical nature of the tasks students had 
been engaged in; their capacity to relate these tasks to relevant curriculum documents; 
their high interpretative skills when applied to each of the seven samples of students’ 
work; and their extensive range of ideas for designing and implementing a teaching 
program to support the development of students’ mathematical thinking. Medium 
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Capacity was shown by other teachers who, while possessing knowledge and skills 
supportive of these directions, clearly need to increase their current levels of 
professional knowledge and skills. In both samples, Low Capacity was evident in a 
minority of teachers who appeared unable to express a clear articulation of the 
mathematical nature of the tasks, or what differentiated the seven responses used in 
the questionnaire. These teachers were unable to point to how the tasks related to what 
is contained in official curriculum documents, or to describe how they would plan a 
program of teaching to foster these and related mathematical ideas. 
 Chinese and Australian teachers in the sample appeared to perform similarly on 
Criteria B (Interpretation of the intentions of official curriculum documents) and D 
(Design of teaching). However, Chinese teachers appeared to perform better than their 
Australian counterparts in elaborating the mathematical thinking embedded in the 
tasks that the students were asked to work on. On the other hand, Australian teachers 
appeared slightly better than the Chinese sample in responding to Criterion C 
(Understanding of students’ thinking). These apparent differences call for further 
investigation. An initial pair-wise comparison of the four criteria shows a significant 
correlation at 0.05 level between Criteria A & B, and A & C; and at 0.01 level 
between Criteria A & D, B & C, and B & D. Similar analysis at the level of indicators 
should also be explored, and a factor analysis could also be used. 
 As a basis for a study involving a larger sample of teachers in both countries, with 
a more carefully stratified sample with respect to specific mathematical training, years 
of experience and location, this exploratory study has been successful in several 
respects. The questionnaire using the seven samples of students’ work, and its three 
key questions, was effective in eliciting teachers’ responses. In turn, teachers’ 
responses were able to be used as a basis for examining teacher capacity in terms of 
teachers’ mathematical knowledge, knowledge of official curriculum documents, 
understanding of students’ thinking – that is, ability to analyse and interpret students 
responses and to frame appropriate responses to individual students – and to design 
credible sequences of teaching to foster the underlying mathematical ideas. These 
interpretations and professional dispositions go well beyond the “big ideas” or 
“general statements of intent” that are typically expressed in official curriculum 
documents. These subtle interpretations and the ability to frame immediate and longer 
term instructional responses are pre-requisites of any successful implementation of the 
“big ideas”. In this paper we have elaborated a definition of teacher capacity firmly 
based on these characteristics. We feel confident that the conceptual and analytical 
framework of this exploratory study is robust enough to guide a larger study 
examining teacher capacity and curriculum reform in China and Australia. 
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Applications and mathematical modelling have been a distinctive part of the senior 
secondary curriculum in Queensland for over two decades. Findings related to technology 
use from an on-going longitudinal study of this initiative are reported. Twenty-three 
teachers and curriculum figures from across the state were interviewed and artefacts related 
to technology use were collected from teachers. Teachers’ understanding of the nature of 
modelling and the potential for technology to be used at various junctures in the modelling 
cycle affected the extent of technology use in teaching and assessment. The culture of the 
classroom was perceived as being very different by teachers who made significant use of 
technology during modelling. Technology was also seen as being essential for the future 
successful teaching of applications and modelling. 

Introduction 
 With the wisdom of hindsight it seems obvious in 2011 that a plethora of technological 
devices is relevant to the teaching of applications and mathematical modelling at all 
levels of schooling but particularly at the senior secondary level. The use of technology 
appears relevant whether modelling is seen as a vehicle for teaching other mathematics 
or as part of mathematical content to be taught and learnt in its own right. Both of 
Hußmann’s “central tasks of the technology that supports [sic] independent concept 
formation” (2007, p. 348) are relevant to either approach—”the function of construction 
by contributing to building ideas, and on the other hand, … the function of irritation by 
initiating a change of concept” (p. 348). Indeed we have found both operating in 
modelling classrooms where technology rich teaching and learning environments were 
being researched (Stillman, in press; Stillman, Brown, & Galbraith, 2010). 
Nevertheless, the question needs to be asked what is the reality across the spectrum of 
classrooms in a context where applications and mathematical modelling have been 
promoted at an educational system level for a considerable time? As an example of 
what has transpired in everyday classrooms we consider the implementation of 
applications and mathematical modelling within senior secondary mathematics curricula 
in Queensland, where the initiative was first introduced in 1989 (e.g., Queensland Board 
of Senior Secondary School Studies [QBSSSS], 1989). 
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Background 
A long lasting ideological legacy of the 1960s and 1970s which saw marked changes in 
many countries in the Western world has been a desire among young people to be 
convinced of the efficacy of any activities in which they are asked to engage rather than 
being expected to be willing participants who follow directions given by others in 
authority (Niss, 1987). At the secondary and tertiary levels of education students began 
questioning the relevance of the mathematics they were studying; “and right from the 
beginning relevance was interpreted by students, teachers and educationalists as 
applicability” (Niss, 1987, p. 491). At the same time there was employer dissatisfaction 
with mathematics departments of universities (see McLone, 1973) because of the 
scarcity of mathematics graduates who appreciated the applicability of mathematics in 
other fields and who could model real problems and readily communicate results to 
non-mathematical clients. Educational reforms such as those flagged in Everybody 
Counts: A Report to the Nation on the Future of Mathematics Education (National 
Research Council, 1989) identified modelling as one of the “distinctive modes of 
thought” (p. 31) offered by mathematics and mathematics was said to play a special role 
in education because of “its universal applicability” (p. 31). From this milieu of 
influences came the impetus to change the Queensland senior mathematics syllabuses 
from purely abstract approaches to teaching and content to ones incorporating an 
emphasis on applications and mathematical modelling as a distinctive characteristic. 
According to the current Mathematics B syllabus, mathematical modelling is “the act of 
creating a mathematical model, which may involve the following steps: identify 
assumptions, parameters and/or variables; interpret, clarify and analyse the problem; 
develop strategies or identify procedures required to develop the model and solve the 
problem; investigate the validity of the mathematical model” (Queensland Schools 
Authority, 2010, p. 44). 
 The advancement of technological devices and the beginnings of the manufacture of 
such devices for dedicated teaching purposes in school and university settings 
serendipitously coincided with the development of the new syllabuses (Stillman & 
Galbraith, 2009). However, the importance of technological devices to the work of 
applied mathematicians who engage in mathematical modelling of real situations and to 
teachers and students teaching and learning through applications and mathematical 
modelling quickly became apparent. “These devices provide not only increased 
computational power, but broaden the range of possibilities for approaches to teaching, 
learning and assessment” (Niss, Blum, & Galbraith, 2007, p. 24). Niss, Blum and 
Galbraith also warned of the possibility of “associated problems and risks” if these 
devices were not used and incorporated in the teaching/learning environment in an 
appropriate manner.  
 The use of technological devices as tools to carry out repetitive or difficult processes 
in the solution of a mathematical model has been recognised for some time but several 
researchers (Confrey & Maloney, 2007; Galbraith, Stillman, Brown, & Edwards, 2007) 
have seen the potential for technology in the inquiry/reasoning processes that occur 
throughout the modelling cycle. Recently, Geiger, Faragher, and Goos (2010) 
confirmed that “student-student-technology related activity takes place during all phases 
of the mathematical modelling cycle” and that, in particular, technology plays a role in 
“the conceptualisation of the model” not just the solving process (p. 64). This is 
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consistent with what happens in workplaces where modelling is conducted. Ekol (2010), 
from a study of 10 applied mathematicians teaching in university but also working as 
modellers in industry, concluded that “technology plays a big role in fostering 
exploration towards discovery, also in sustaining interest in the modeling process” 
(p. 196). In particular, his interviewees believed that modellers needed to be able to 
make the appropriate choice of which technology to use and when to use it and also to 
use technology in a playful way during modelling “for meaningful exploration” (Ekol, 
2010, p. 194) of the situation being modelled and the mathematics being applied. 

Research methods 
Queensland syllabus and review documents from the late 1980’s up to the latest 
syllabuses implemented in 2009 were examined. In addition semi-structured interviews 
were conducted with 23 interviewees. Samples of 5 key curriculum figures [QKCG] 
(e.g., non-teacher members of expert advisory committees, curriculum officers of the 
state education department, or statutory board or authority officers overseeing syllabus 
implementation), 6 secondary mathematics teachers in key implementation roles 
[QKTG] (e.g., state or district review panel chairs or state review panel members), and 
12 secondary mathematics classroom teachers [QCTG] were purposefully selected 
(Flick, 2006) as being relevant to the purposes of the study (Richards, 2005, p. 41). 
These teachers were representative of several school districts and of the state, Catholic 
and independent schools systems. A series of interview questions covering the period of 
introduction, and later periods of widespread implementation and modification were 
asked. In addition, practising teachers provided artefacts, usually in the form of tasks, 
which typified their use of real world applications and modelling in teaching and 
assessment, and their use of technology in these contexts.  
 In order to identify emergent themes within the interview responses, and the teaching 
and assessment artefacts, these data were entered into an NVivo 8 database (QSR, 2008) 
and analysed through intensive scrutiny of the data from a particular interviewee and 
across the corpus of the data from all interviewees to develop and refine categories 
related to these themes (Richards, 2005). Specifically this paper will address emergent 
themes related to responses to the following interview questions: 
1. To what extent have you incorporated the use of technology when exploring real-

life situations that require investigative, modelling or problem-solving 
techniques? 

2. The syllabuses require a balanced assessment plan that includes a variety of 
techniques such as extended modelling and problem-solving tasks and reports. 
What types of task do you use in your alternative assessment? To what extent do 
these use real world contexts? To what extent do they also incorporate the use of 
technology? How? 

3. How is the culture of the classroom influenced by the presence of technological 
devices in a classroom environment promoting both technology and applications 
and mathematical modelling? 

4. What possible implications does technology have for the future successful 
teaching and assessment of applications and modelling within upper secondary 
mathematics? 
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Findings 
Implications of developing understanding of nature of modelling and 
potential of technology use 
As the affordability and quality of technology allowed it to be freely able to be used in 
the classroom, it was soon realised by some teachers that a classroom rich in technology 
would serve to facilitate the implementation of the syllabuses particularly those aspects 
pertaining to mathematical modelling and applications. It allowed the messiness of real 
world data to be dealt with as this teacher points out: 

I think that has been a big driving thing, the fact that you have the technology that you 
can then explore real-life situations and the kids can actually get down and get dirty in the 
mathematics rather than everything being really nice and neat because up until that stage, 
like in the old syllabus, because they didn’t have that facility, everything was always 
pretty much nice. (QKTG3) 

This potential has not been realised in all schools, however, with the uptake of 
technology being described as “patchy” by some (QKCG4; QKCG5) especially with 
respect to the extent of how it is used mathematically in exploring real world situations. 

Some people use technology really well and all the time and others, because the syllabus 
says you have to use it, they will use it just to do more calculations or just to draw graphs 
or things like that. (QKCG4) 

Extent of technology use in teaching 

As teachers’ understanding of (a) what mathematical modelling entailed increased,  
(b) how it differed from mathematical applications became clear and (c) what 
technology offered to teaching and learning, the necessity for modelling and technology 
to be an integral part of the teaching/learning environment became more accepted. 
Thus, modelling and technology came to enjoy a symbiotic relationship in the 
classrooms of these teachers where technology is “just natural, you don’t even think 
about it that it is there. Kids pick it up and just use it” (QKTG2). Although technology 
was seen as ideal for demonstrating by the teacher, it also had a pivotal role to play in 
the hands of students who were allowed to play and explore models and emerging ideas 
when modelling. 

I think you need to be able to engage people more immediately in what’s going on there 
so I think technology being used to demonstrate and for students to play with as well as 
illustrate mathematical concepts generally I think is very important and also for 
modelling and problem solving as well. (QCTG12) 

Technology allowed timely access to modelling or exploring of situations for which 
students were yet to learn more sophisticated mathematics to model.  

So at this stage in the course [end of semester 2 in year 12] I am actually revisiting the 
same problem and employing the algebraic approach and differentiating and saying, 
“Okay, that’s how we do that at this stage in the course” even though earlier in the course 
we were prepared to let the calculator do most of the work for us. (QCTG2) 

Others saw this as a means to extend the sophistication of the modelling their students 
were able to do with one teacher stating: “The increase in technology we can get our 
hands on now means we can tackle increasingly sophisticated modelling” (QCTG7). 
This was seen as an underpinning reason for using technology. 
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Models become quite sophisticated quite quickly and then kids can’t take them any 
further but technology offers you an opportunity of scaffolding around that. (QKTG2) 

Not all teachers used technology to a significant extent in teaching about applications or 
modelling, with some reserving it “mostly [for] alternative assessment” (QCTG5) 
although they were “quite happy to go to the computer labs” and work on computer 
investigations from textbooks. 

Extent of technology use in alternative assessment 

“Assessment techniques other than traditional written tests or examinations” (QBSSSS, 
1992, p. 40) became known as alternative assessments. These were required to be 
included in a school’s assessment program at least twice yearly. Some teachers spoke of 
using technology almost exclusively in their alternative assessment although some, but 
not all of these, also used technology in teaching when exploring and investigating real 
world situations. For many the motivation was not that they believed using technology 
when exploring real situations to be good pedagogy or essential but rather it was 
“because it is mandated” (QCTG5). 

In assessment, well we can’t use computers in exams so we try to see if we have their 
alternative assessment task, their one per semester, try to have something there where 
they would be using the computer. … (QCTG1) 

How students used the technology seemed to resonate with the teachers’ view of 
modelling. Those teachers who saw modelling as no different from mathematical 
application designed assessment tasks that provided opportunity for using technology 
only as a tool in solving. 

It is just making use of the technology to do the number crunching more than anything 
else and then being able to interpret what you have at the end of that. (QCTG5) 

Others saw alternative assessments as providing the ideal forum to show evidence of 
meaningful technology use when assessing applications and modelling. 

We look to our assignments as the main evidence that our students use technology 
because in the supervised exams they certainly use technology to draw graphs, to do 
calculations, find mathematical models…but what is the proof of it really but it is evident 
in the assignments. (QCTG7) 

Classroom culture in an environment promoting technology and 
application and modelling 
Most teachers who had embraced technology spoke of their classroom culture being 
“very different to what we used to do way back in time. Absolutely we couldn’t do the 
sorts of things that we do if we didn’t have the technology” (QKTG3). This was partly 
in response to teaching a generation of students who are technologically knowledgeable 
in certain respects reacting in quite different ways to students of the past: 

I think having an internet generation has meant that the way that students interact with 
each other has obviously changed and [as] learners has become different and I think 
students need more immediate gratification these days. They need to see a dynamic 
situation happen in front of them. They don’t have patience to sit there and graph things 
manually. (QCTG12) 

Elements of the classroom culture that were said to be enhanced were also elements of 
what researchers have identified as integral to conducting modelling successfully in the 
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classroom such as the technology rich environment becoming a “vehicle for opening up 
ideas” (QKTG1) and “more discussion amongst them” (QCTG4; QKTG1). The 
increased discussion was seen by some teachers as helping students’ mathematical 
understanding (QKTG1). The classroom was also seen as becoming “a little bit more 
collaborative” (QKTG1) with a “bit more [group work] because even though they have 
got their own [calculators] they still compare” (QCTG4). 
 Several teachers pointed out that it was not just having the access to the technology 
that was the key to the changed culture. It was very much dependent on the approach 
taken to teaching modelling. 

Oh, yeah, very definitely changes the way you teach because the tedium of the algebra or 
whatever it is, the calculation is taken away and the answer … to that stage will come up 
very quickly and the kids are more interested, much more engaged. It’s not just 
technology but yes it does help. … it depends on what you do in the classroom too. 
(QCTG1) 

Some acknowledged that an enquiry approach was called for. 

It is not just the fact that technology is there. It is the way it is used. And it is the way the 
teacher uses it and the type of culture they build themselves. So if they build a culture that 
is about enquiry and mathematical modelling and all that sort of thing and incorporate 
technology into that then you can really kick on. (QKTG2) 

However, these teachers were still limited in their view of the potential of technology in 
a modelling environment as technology was seen as being of assistance only in the 
solving phase of the modelling cycle and not as a means of enabling model 
conceptualisation or decision making at all phases throughout the modelling. 

If you’re going to introduce technology in there it is just likely going to be used as a 
number cruncher and not much more. So you have to build in the other stuff as well and it 
is not just technology alone that does it. (QKTG2) 

Implications for the future for successful teaching and assessing of 
applications and modelling 
Some teachers saw technology as essential to successfully implementing the intentions 
of the syllabuses in the allowable time. 

I think it is essential because I think you have got to, for the limited time that we have 
that we can spend in assessment you can’t have them not using the technology. It is too 
time consuming to do all that without the technology… as long as they know what the 
technology is doing and I think that is the idea. (QCTG1) 

Others spoke of it enriching the whole experience that was the perceived intention of 
the syllabus with technology playing an essential role in exploration of real life 
situations mathematically enabling students to confirm their own understandings. 

I don’t think you can teach mathematics successfully without technology to be honest 
with you. You can teach mathematics but you can’t build an understanding of those real 
life situations. (QKTG3) 
I just think it is enriching the whole process, the whole experience. It is giving kids other 
ways of confirming the learning that they have. (QCTG9) 

One of the key curriculum figures took a futuristic “learning community” approach 
considering the classroom as borderless with students being willing to share ideas with 
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others within their classroom and across classrooms which could be co-located or 
geographically distant. 

I am interested in Rudd’s idea of providing every student with a laptop … What it seems 
to me is that it would provide the opportunity for kids to form learning groups and to 
share things and to see how other people work on things. Now I think this would be more 
powerful than anything, if a teacher here who was working on mathematical modelling, 
one of their [groups] could some how or other share what they were doing  and let the 
others see what  they were doing and thinking about and how this group was thinking 
about it. You would get a lot of “Ahas”. What I am saying is the technology if it could 
provide that sort of networking then you could really pick up the pace in the 
mathematical modelling side of it. …The learning community stuff is still pie in the sky, I 
suppose, but it is still exciting even to someone who is past exciting. (QKCG3) 

Discussion and conclusion 
With respect to the responses of participants in relation to the extent of technology use 
in teaching and alternative assessment involving real world contexts some teachers 
clearly had welcomed the opportunity to expand their repertoire of teaching and 
assessing practices with respect to applications and modelling that technology brought. 
Others saw technology providing little more than a computational device to remove the 
tedium and potential inaccuracies of repetitive calculations or graphing associated with 
the solution of a mathematical model. In the latter instance this usually was related to a 
view of modelling as being no different from using mathematical applications and 
opportunities for use of technology being more prominent in assessment than in 
teaching. 
 In classrooms where technology was said to play a significant role in teaching 
applications and modelling the classroom culture was said to be very different as the 
“internet generation” was more engaged by immediate feedback and dynamical displays 
available by teaching with technology. The constructive function of technology in 
concept formation (Hußmann, 2007) was acknowledged by these teachers. Hußmann’s 
“function of irritation” was less obvious in the responses but could perhaps be inferred 
as being present in communities of inquiry or when students were said to be using the 
technology to confirm their learning. Exploration, sustaining interest and engagement, 
and playing with the mathematical ideas and the situation being explored as identified 
by Ekol’s (2010) applied mathematicians were all mentioned as elements of the 
classroom culture where technology was readily available and expected to be used. 
Again the teacher’s view of modelling limited the perceived potential and promoted use 
to the solving phase or expanded it to pervade the modelling cycle along the lines 
promoted by Confrey and Maloney (2007). 
 Finally, some saw the use of technology as essential to successfully fulfilling the 
intentions of the syllabuses with respect to modelling. Even though several saw this as 
clearly enriching the whole teaching/learning experience as intended by the syllabus 
writers, there was mention of the unfulfilled potential of a borderless learning 
community providing networking amongst modelling groups across distances and 
geographical boundaries further enriching that experience. 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

717



STILLMAN & BROWN 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

References 
Confrey, J., & Maloney, A. (2007). A theory of mathematical modelling in technological settings. In W. 

Blum, P. L. Galbraith, H-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics 
education (pp. 54–68). New York: Springer. 

Ekol, G. (2010). Mathematical modelling and technology as robust “tools” for industry. In A. Araújo, A. 
Fernandes, A. Azevedo, & J. F. Rodrigues (Eds.), Conference proceedings of EIMI 2010: Educational 
Interfacecs between Mathematics and Industry (pp. 189–197). Lisbon: Centro Internacional de 
Matemática & Bedford, MA: COMAP. 

Flick, U. (2006). An introduction to qualitative research (3rd ed.) London: Sage. 

Galbraith, P., Stillman, G., Brown, J., & Edwards, I. (2007). Facilitating middle secondary modelling 
competencies. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: 
Education, engineering and economics (pp. 130–140). Chichester, UK: Horwood.  

Geiger, V., Faragher, R., & Goos, M. (2010). CAS-enabled technologies as ‘agents provocateurs’ in 
teaching and learning mathematical modelling in secondary school classrooms. Mathematics 
Education Research Journal, 22(2), 48–68. 

Hußmann, S. (2007). Building concepts and conceptions in technology-based open learning 
environments. In W. Blum, P. L. Galbraith, H-W. Henn, & M. Niss (Eds.), Modelling and 
applications in mathematics education (pp. 341–348). New York: Springer.  

McLone, R. R. (1973). The training of mathematicians. London: Social Science Research Council. 

National Research Council. (1989). Everybody counts: A report to the nation on the future of 
mathematics education. Washington, DC: National Academy Press. 

Niss, M. (1987). Applications and modelling in the mathematics curriculum: State and trends. 
International Journal of Mathematics Education, Science and Technology, 18(4), 487–505. 

Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P. L. Galbraith, H-W. Henn, & 
M. Niss (Eds.), Modelling and applications in mathematics education (pp. 3–32). New York: 
Springer.  

Queensland Board of Senior Secondary School Studies (1989). Trial/pilot senior syllabus in Mathematics 
C. Brisbane: Author. 

Queensland Board of Senior Secondary School Studies (1992). Senior Mathematics B. Brisbane: Author. 

Queensland Studies Authority (2010). Mathematics B senior syllabus 2008. Brisbane: The State of 
Queensland : Author. 

QSR (2008). NVivo v.8 [Computer Software]. Melbourne: QSR. 

Richards, L. (2005). Handling qualitative data: A practical guide. London: Sage. 

Stillman, G. (In press). Applying metacognitive knowledge and strategies in applications and modelling 
tasks at secondary school. In G. Kaiser, W., Blum, R., Borromeo Ferri, R., & G. Stillman (Eds.), 
Trends in teaching and learning of mathematical modelling. New York: Springer. 

Stillman, G., Brown, J., & Galbraith, P. (2010). Identifying challenges within transition phases of 
mathematical modeling activities at year 9. In R. Lesh, P. Galbraith, C. R. Haines, & A. Hurford 
(Eds.), Modelling students’ mathematical competencies (pp. 385–398). New York: Springer.  

Stillman, G., & Galbraith, P. (2009). Softly, softly: Curriculum change in applications and modelling in 
the senior secondary curriculum in Queensland. In R. Hunter, B. Bricknell, & T. Burgess (Eds.), 
Crossing divide. Proceedings of the 32nd Conference of the Mathematics Education Research Group 
of Australasia (Vol. 2, pp. 515–522). Adelaide: MERGA. 

718



MATHEMATICS: TRADITIONS AND [NEW] PRACTICES • © AAMT & MERGA 2011 
 

A STRATEGY FOR SUPPORTING STUDENTS WHO 
HAVE FALLEN BEHIND IN THE LEARNING OF 

MATHEMATICS 

PETER SULLIVAN  
Monash University 

peter.sullivan@monash.edu 

SUE GUNNINGHAM 
Sue Gunningham Consultancy Services 

sue.gunningham@bigpond.com 

 
Given the diversity of achievement in most classes and the other pressures on teachers, it 
seems unrealistic to assume that class teachers, as part of their everyday teaching, can 
provide whatever support is needed by students who have fallen a long way behind. The 
following is a report of a specific initiative aimed to investigate the potential of an out of 
class student support intervention, the goal of which is to prepare students for the 
mathematics lessons they will experience subsequent to the support. 

Introduction 
One of the consistent conclusions from international comparisons is that while 
Australian students overall are doing well, there is a long tail of underachievement 
(Thompson & De Bortoli, 2007). This is no surprise to teachers of mathematics. A Year 
9 mathematics teacher sent us the following story. He was revising some recent work, 
and the students were working on this problem. 

You earn $12 per hour for 22.5 hours. You pay 26% of your earnings in tax.  
How much tax will you pay? 

A girl, Emma, wanted help. 
Mr T:    Do you have a job? 
Emma:    Yes 
Mr T:    How much an hour do they pay you? 
Emma:    I don’t know—I just started.  
Mr T:   Let’s say you earn $12 an hour and you work for 3 hours. How 

much is that? 
Emma:    I don’t know. Do you divide? 
Mr T:   No. Think about earning $12 an hour. You work one hour, and 

then another, and then another. How much have you earned? 
Emma:    I don’t know. 
Kylie (sitting nearby): Is it $36? 
Mr T:    Yes. Good. 
Emma (to Kylie):  God, you’re smart. 

This story highlights a number of critical issues for mathematics education: How has 
this student survived so long in the system without action being taken to address her 
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inability to answer such questions? What benefit is she gaining from her Year 9 
mathematics classes? 
 However it seems that this is not an isolated case. Consider the following two 
NAPLAN items taken from the 2009 Year 9 assessment in which students do not use a 
calculator. One item was presented as follows: 

Steven cuts his birthday cake into 8 equal slices. He eats 25% of the cake in whole slices. 
How many slices of cake are left? 

This was a “write in” answer and 85% of Victorian students did this correctly. Even 
though it is a very straightforward question, there were 15% who gave the wrong or no 
answer. Attributing difficulties to the reading does not explain the number who could 
not do it. All Year 9 work in mathematics classes would be much more difficult than 
this question. 
 Another item was as follows: 

A copier prints 1200 leaflets. One-third of the leaflets are on yellow paper and the rest are 
on blue paper. There are smudges on 5% of the blue leaflets. How many blue leaflets 
have smudges? 

The students could choose from four options: 40, 60, 400, or 800. There were 59% of the 
Victorian students who chose the correct answer. Recognising that this item involves 
three steps after reading the question, there are 41% who could not choose the correct 
response from the four options. We suspect that those students would have substantial 
difficulty in comprehending most of their Year 9 mathematics. We also suspect that 
their difficulties started well before that stage. 
 Given the diversity of achievement in most classes and the other pressures on 
teachers, it seems unrealistic to assume that class teachers, as part of their everyday 
teaching, can provide whatever support is needed by students who have fallen such a 
long way behind. The following is a report of a specific initiative aimed to investigate 
the potential of an out-of-class student support intervention, the goal of which is to 
prepare students for the mathematics lessons they will experience subsequent to the 
support. 

Theoretical framework 
One aspect of the rationale for this approach is derived from cognitive load theory 
(Bransford, Brown, & Cocking, 1999). Pegg (2010), for example, outlined his 
perspective on maximising learning based on this perspective. The theory suggests that 
all information is processed in working memory and then stored in long term memory. 
The idea is to have the information that is stored in long term memory efficiently 
chunked so that it can be readily retrieved. The initial processing of information and 
preparation for this chunking happens in working memory, which is of limited capacity.  
 While Pegg (2010) focused on developing fluency in calculation as a way of 
reducing the load on working memory, this intervention program focuses on the ways 
that students attend to stimuli around them and the key information that they select for 
processing. In all situations, and especially in classrooms, there is more happening than 
can be effectively attended to, so it is necessary to select from among the sensory 
experiences.  
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Students who have fallen behind have greater difficulty in selecting the appropriate 
information and so the instruction, the task, the language, and even what the other 
students are saying and doing becomes confusing. The hypothesis is that if the attention 
of such students can be focused on key information, they can select more appropriately 
what is likely to help them learn. An example of the way this works is in mathematical 
language. If students do not know what is meant by terms such as parallel, right angle, 
index, remainder, or average, then instruction using those terms will be confusing and 
ineffective since so much of their working memory will be utilised trying to seek clues 
for the meaning of the relevant terminology.  
 Without necessarily drawing on this particular theory, many educators have based 
their approaches to instruction on the same principles. Tzur (2008), for example, argued 
that instruction should begin with what the students already know and are confident 
with and then move to content that is unfamiliar, rather than what he claims is the 
common approach of starting with unfamiliar content.  
 A second rationale for this approach is that classrooms are social and students prefer 
to participate positively, thereby satisfying a need for social connectedness (see 
Hannula, 2004). Of course, sometimes some students do not seem to reflect that need in 
their behaviour. This can be explained by Dweck’s (2000) notion of describing students 
as either seeking mastery of the content or affirmation of their performance from the 
teacher (or someone else). Elliot (1999) explained that students who have a performance 
orientation but who see the risk of failure as high will actively avoid participation, 
which is commonly manifest in them threatening classroom order.  

Approaches to supporting students experiencing difficulty 
There are a number of existing programs designed to support students who have fallen 
behind in their learning. Gervasoni (2004) for example, argued that low achieving 
students can lose confidence in their ability, and develop poor attitudes to learning and 
to school. One outcome is that the gap grows between the knowledge of these children 
and of other children and that the typical learning experiences provided by the 
classroom teacher for the class do not enable each child to participate fully and benefit. 
Ginsburg (1997) concluded that “as mathematics becomes more complex, children with 
mathematics learning difficulties experience increasing amounts of failure, become 
increasingly confused, and lose whatever interest and motivation they started out with” 
(p. 26). Gervasoni (2004) outlined the Extending Mathematical Understanding program 
that involves professional development for teachers along with dedicated time in small 
groups with students experiencing difficulties. Gervasoni presented evidence that 
students who experience the program’s structured intervention improve. A similar 
program, QuickSmart, also results in impressive improvement in students who complete 
the program (Graham, Bellert, Thomas, & Pegg, 2007). 
 Programs such as these are clearly successful in what they seek to achieve and this 
particular initiative is seeking to extend these in a particular direction. 

721



SULLIVAN & GUNNINGHAM 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

The Getting Ready intervention 
The intervention reported below was supported by the Wyndham Network of Schools in 
the Western Metropolitan Region of Melbourne1. The participating schools agreed to 
release tutors to work with selected students in small groups, with the goal of providing 
preliminary information on the upcoming topic to those students, prior to their 
participation in the classroom mathematics lesson.  
 Initially the tutors met with the second author on three occasions to consider 
appropriate models for working with students in the tutoring sessions. The advice 
offered to the tutors was that they should: 

• highlight and familiarise students with the vocabulary of their next mathematics 
lesson;  

• use questioning to focus the students’ attention on the relevant concept(s) and to 
‘resurrect’ any prior knowledge of the concept that the students may have; and 

• briefly model the sorts of activities to be undertaken in the next classroom lesson. 
It was emphasised to tutors that they should not seek to teach the content, because the 
goal is that the students prepare to learn in the lesson, as distinct from removing the 
need for them to concentrate when they get to the lesson. 
 Year 3 students were selected for inclusion in the program by the tutors on the basis 
of the annual teacher judgement data, Early Years Interview results, and ‘On-demand’ 
testing data. Year 8 students were chosen on the basis of their NAPLAN results from 
the previous year, with students appearing in the bottom 20% of the applicable data 
being eligible for selection to the program. Where this number proved too many, the 
tutors conferred with the classroom teachers to select from the identified cohort, those 
students whom it was believed, would most benefit from inclusion in the program. 

The data collection  
There are three types of data presented: the first and major section uses the response of 
participants to elaborate details of the intervention; the second section is a brief 
description of insights from a videotape record of a tutoring session; and the third 
section is some analysis of pre- and post assessments including comparisons of the 
results of those who were tutored and those who were not. 

From the participants 
As a preliminary evaluation of the initiative, participants were interviewed at the end of 
the first phase, some six months from commencement of the project. In particular, the 
interviews were intended to explore: 

What are the organisation and administrative challenges in implementing this initiative? 
What was the experience of the tutors, the class teachers and the participating students?  

Sixteen people were interviewed at the end of phase one: three tutors (one from each 
school, designated as Schools A, B, and C); six teachers (four from School A, and one 
each from Schools B and C); and seven students (five from School A and two from 
School B). The following presents selected representative responses on aspects of the 
initiative. 

1 The program was supported by Sharon Taylor, managed by Lucy Glover and Steve Boyle, and involved the 
participation of a range of energetic and professional tutors and teachers. 
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One of the interview questions sought participants’ perspectives on the aims of the 
intervention. The aim of the program being implemented before mathematics lessons 
was to give students “pre-knowledge” based on relevant language, according to two 
tutors and one teacher. Particular comments were: 

What my hope is, is that I’m giving them the pre-knowledge, so front-loading the kids, so 
when they actually go to the numeracy lesson ahead they will have an idea of what is 
going to happen. In that way, that will free up some learning space so they’re not still 
behind the eight ball. So they come in, they know what’s expected and then they can gain 
more out of the numeracy lesson than they normally would have. (Tutor, School C) 

The response of other teachers were similar. It seems that their perspective on the aims 
and intention of the initiative were aligned with the goals of the program. 
 The interviews also sought insights into what the respondents saw as the benefits of 
the program. One tutor discussed the benefits to the students with regard to how they 
think about their learning. 

I can see the benefits to being one step ahead rather than always being on the back foot 
trying to continuously catch up. I think it’s a benefit even if it’s just seeing the main word 
and then that’s a word that they’re familiar with so when they go into the grade they say 
“Oh, I remember that word, I know what it is”. And that’s what I’m actually finding 
when I go back to revisiting. “Do you remember yesterday when we talked about this—
can you tell me about it?” So it’s going back so we can go forward, making constant 
connections. It’s helped me hone my teaching skills, and then I’m relaying it back on to 
the teachers to say “We need to work on this”. Because it’s just the three of us we need to 
focus on what they’re actually doing, instead of with 20 kids. (Tutor, School B) 

These benefits are indeed those that were hypothesised. 
 Another of the consistent messages from teachers was that they found that students 
gained in confidence when they came back to the classroom. 

I think it’s because they feel more confident about the topic we’re learning about because 
they’ve already had a bit of work with [the tutor], so I think that helps them a lot. It’s sort 
of a confidence thing where they can participate and they’re willing to participate in 
discussions. (Teacher, School B) 
Definitely. Confidence. Before if I was questioning them they would never put their hand 
up where as their hands are up straight away trying to tell me what they’ve been learning 
with [the tutor]. They want to tell me everything they’ve been learning. They do have a 
greater confidence to be put into a discussion, so it gives them the confidence to 
contribute in the class where before they would just sit on the floor, not really put their 
hand up, but now I can see the connection between working with [the tutor] and when 
they come in here. They are familiar with the words, they are familiar with the vocab, and 
different areas like that. (Teacher, School C) 

While confidence is not the end goal, it is clearly advantageous and is likely to lay the 
foundation for changed approaches to participation. 
 Building on the development of students’ confidence, there were examples of how 
the intervention transformed the experience of some students when they returned to 
their class. The following is an illustrative example: 

My thought was that we are targeting those students that just need that extra bit to give 
them that shove, and the biggest thing I’ve noticed is their confidence. They are coming 
back in and these kids are putting up their hand and they are getting the answer right. I do 
a lot of language in mathematics before I start anything, so that’s constant reinforcement. 
They are not just hearing it from me, they are hearing it from [the tutor] as well and that 
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has made the biggest difference. I got so excited yesterday because one student who is 
part of the program has come from being so quiet—she doesn’t like to speak a lot, she’s 
almost mute and ESL—and she now puts her hand up for everything. … And another 
child in my class in the program, he is now so positive. I say “Maths” and he goes “Yeah, 
I’ve done this with [the tutor], and he gets so excited because he knows what he’s doing. I 
think it’s ace. (Teacher, School A) 

These comments are very powerful and indicate the potential of this approach in 
transforming willingness of students to participate in class. 
 A somewhat unexpected outcome was that the program seemed to impact on 
classroom teaching. The following is a comment by one of the teachers:  

Yes. Even with my own teaching – I’ve been able to keep the lessons flowing rather than 
having to stop and start. This way it’s been easier to go through all the topics. (Teacher, 
School A) 
It’s benefited my kids dramatically, but I don’t know whether it’s just my kids and the 
fact I’ve taken it on so completely that might have been what’s made the difference. 
(Teacher, School A) 

It is interesting that this should happen, and perhaps might be one of the major benefits 
of this approach to intervention over others, in that it potentially improves the learning 
of all students. 
 Participating students were also interviewed and the following are some 
representative comments: 

[The tutor] helps me know maths very well and it’s very fun to do maths. She teaches me 
how to skip numbers and it’s easier for me to skip numbers so I don’t have to count by 
ones [for subtraction]. (Student, School B) 
[The tutor] helps me practice my writing. She’s helped with multiplication and ladders 
and vertical. She has helped me with division because we’ve been doing that (in class). 
(Student, School B) 
It made it easier.  ’Cause first I didn’t know it [division] and then with (the tutor). I learnt 
something. (Student, School A) 
Because you get to learn how to do them and also sometimes I get confused about it. She 
explains things and tells us to do them in our scrap books. (Student, School A) 
It is because then I can understand and I know what to do. I always answer questions. 
(Student, School A) 

The students clearly feel that they have learned, and see the connection to class 
participation. 

Lessons from the video records 
One of the video records shows three Year 8 boys participating in a tutoring session. 
The boys start the session very restless, paying little attention to the task, and potentially 
threatening order even in the small group. The tutor on the video progressively engages 
the students in reviewing what they know about the topic and clarifying any language 
issues that may have been relevant. 
 The tutor also models the action expected in the class, which was using a protractor 
and compass. The boys became progressively more engaged in the task, and at the end 
were fully engaged in listening and watching. Subsequent reports indicate that the 
students returned to their class and participated well and appropriately in the full class 
learning experience. 
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The inference is that an outcome of the tutoring is that students are more able to 
participate in the social experience that is the classroom. Another insight is that 
allowing such students to watch, as distinct from merely listening may be a potentially 
useful strategy in both tutoring and whole class sessions. 

Some comparisons of assessment scores 
All schools used a form of assessment at the start of the year and then again near the 
end of Term 3, using VCAA on demand testing. The schools were quite different in the 
way that the results were recorded, so they are presented separately.  
 Table 1 presents the results for the four primary schools that participated. The scores 
relate to the VELS levels. Notionally each year students should improve 0.5 of a level. 
In each case the gains in the means of the tutored students are compared with the 
students who did not participate in the tutoring. 

Table 1. Comparison of gains for tutored and non-tutored Year 3 students. 

Name Tutored students’ gains (n) Not tutored students’ gains (n) 
Primary School A .44 (12) .30 (12) 
Primary School B .40 (12) .32 (26) 
Primary School C .38 (22) .40 (81) 
Primary School D .30 (11) .50 (55) 

In two primary schools the tutored students improved more than the others, and in two 
schools the reverse is the case. Therefore it is not possible to make judgments about 
effectiveness for tutored students from these data. It is noted though that the 
assessments measured knowledge over broader content than was covered by the tutoring 
program, indicating that any learning of students being tutored seemed to apply beyond 
those topics taught. Table 2 presents results for Year 8 students in two secondary 
schools. 

Table 2. Comparison of gains for tutored and non-tutored Year 8 students in two schools. 

School Group N Mean gain Median gain 
Secondary school A (N=168) Tutored 24 .45 .55 
 Not tutored 144 -0.03 .08 
Secondary school B (N=111) Tutored 21 .48 .50 
 Not tutored 90 .29 .40 

In both cases, the gains for the tutored students were greater than for the not tutored 
students, and in one case much greater. Again, given that the comparison is on more 
than the taught topics, this improvement is outstanding. 

Important considerations/issues that evolved during the pilot 
There were a number of organisational considerations that became apparent during the 
trials and constitute learning from the experience of developing the initiative 
interactively with the teachers and tutors. 

• Group size: Initially the tutors worked with groups of varying sizes however over 
time it became apparent that the optimum group size was 2 or 3 students. A 
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common characteristic of the selected students was a lack of confidence when 
working in numeracy and this manifested itself as a reluctance to ask and/or 
answer questions, to offer suggestions or take risks during the sessions. It became 
apparent that the more students in the group, the greater the opportunity for each 
student to continue these practices. At the same time, the tutors could recognise a 
real benefit in having at least two students per group because this provided 
opportunity for students to discuss the mathematics in a familiar way, share 
strategies, support each other to take risks and finally to remind and prompt each 
other during their whole-class mathematics lessons.  

• The tutors gradually all reduced their groups to either two or three students. 
Careful attention was paid to the mix of students in each group to avoid 
personality clashes. Similarly each group comprised students from the same class 
to ensure they would be able to support each other back in the classroom. Some 
tutors opted for groups of 3 to accommodate the frequent absenteeism that appears 
to be linked to low achievement, particularly in the secondary school setting. A 
group of three students meant that even if one student was absent, the remaining 
two students could have worthwhile dialogue during the session. 

• Absenteeism: Initially, when a student was absent, some classroom teachers 
substituted other students into the tutoring session to ‘fill the gap’. As it happened, 
this upset the balance of the sessions and became a source of frustration to the 
tutors. The short sharp timing of the session became lost when the model needed 
to be explained to the non-tutoring student, the reflection on past lesson 
success/challenges was difficult, the confidence of the tutored student sometimes 
regressed and the relationship between tutored student and tutor became difficult. 
It was therefore decided that in the case of an absenteeism non-G.R.I.N. students 
would not be substituted into the G.R.I.N. session.  

• Withdrawal from class: We recommended to schools that students not be 
withdrawn from the same lesson repeatedly. By the same token, students with low 
confidence in numeracy may demonstrate confidence in other fields and should be 
given an opportunity to demonstrate this where possible. Tutors sought to spread 
the lessons from which a student was withdrawn across a range of subjects on 
different days and at different times during the week.  

• Adequate time for tutors and teachers to meet: It was an ongoing challenge for 
tutors and teachers to meet regularly to share information about future lessons and 
discuss student progress. Some tutors are also classroom teachers and have ready 
access to team planning sessions, while others are forced to rely on teachers’ work 
programs, casual conversations in the staffroom or chats on the run in corridors.  

• Professional learning of tutors: All tutors met together on a monthly basis for the 
purposes of sharing ideas and professional learning. During these sessions the 
structure of the tutoring sessions was re-visited and refined as required and 
common tools for data collection were developed. Tutors also participated in 
professional development about effective questioning and ‘wait time’. More 
recently tutors worked as a professional learning team and gave feedback to each 
other on the basis of video clips that they have taken of themselves delivering 
tutoring sessions. These video clips have become a powerful tool for focusing on 
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the structure and intervention model, the purpose for each section of the structure 
and the tutor’s role within that structure. 

Conclusion 
It is reasonable to conclude that the intervention was extraordinarily successful. The 
tutoring initiative has a clear rationale, it was received positively by students, tutors, and 
class teachers, and there is evidence of positive broader learning gains from the 
students.  
 There are two important aspects to the initiative. First, participation in the tutoring 
does indeed prepare students to be able to participate in their usual classes by reducing 
their cognitive load in the class. Second, since learning and classrooms are social 
settings, it allows tutored students to participate normally in the social settings thereby 
changing the way that they see themselves. 
 It is noted that there are other advantages in this approach. The resources required are 
not much greater than the cost of providing the tutor. There is a need for teachers to plan 
effectively and to articulate their plans to the tutors. There is a need for close 
collaboration between teachers and tutors. While there is some requirement of education 
of tutors and teachers, these are minimal and the whole process is readily sustainable. 
There are multiple stories of transformational change in the behaviour of some students. 
The approach clearly has potential. 
 There is one further issue. Sometimes commentators suggest that some students 
cannot learn mathematics whatever we do. This project demonstrates that this is a false 
assumption and that students can learn if given appropriate opportunity. 

References 
Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.) (1999). How people learn: Brain, mind, 

experience, and school. London: Committee on Developments in the Science of Learning, National 
Research Council. 

Dweck, C. S. (2000). Self theories: Their role in motivation, personality, and development. Philadelphia, 
VA: Psychology Press. 

Elliot, A. J. (1999). Approach and avoidance motivation and achievement goals. Educational 
Psychologist, 34(3), 169–189. 

Graham, L., Bellert, A., Thomas, J., & Pegg, J. (2007). QuickSmart: A basic academic skills intervention 
for middle school students with learning difficulties. Journal of Learning Disabilities, 40(5), 410–419. 

Gervasoni, A. (2004). Exploring an intervention strategy for six and seven year old children who are 
vulnerable in learning school mathematics. Unpublished PhD thesis, La Trobe University, Bundoora, 
Vic., Australia. 

Ginsburg, H. P. (1997). Mathematical learning disabilities: A view from developmental psychology. 
Journal of Learning Disabilities, 30(1), 20–33. 

Hannula, M. (2004). Affect in mathematical thinking and learning. Turku: Turun Yliopisto. 
Pegg, J. (2010). Promoting the acquisition of higher order skills and understandings in primary and 

secondary mathematics. Make it count: What research tells us about effective mathematics teaching 
and learning (pp. 35–39). Camberwell: ACER. 

Thompson, S., & De Bortoli, L. (2007). PISA in brief from Australia’s perspective. Melbourne: 
Australian Council for Educational Research. 

Tzur, R. (2008). A researcher perplexity: Why do mathematical tasks undergo metamorphosis in teacher 
hands? In O. Figuras, J. L. Cortina, S. Alatorre, T. Rojano, & A Sepulveda (Eds.), Proceedings of the 
32nd Annual Conference of the International Group for the Psychology of Mathematics Education 
(Vol.1, pp. 139–147). Morelia: PME. 

727



MATHEMATICS: TRADITIONS AND [NEW] PRACTICES • © AAMT & MERGA 2011 
 

STUDENTS’ WAYS OF USING HANDHELD 
CALCULATORS IN SINGAPORE AND AUSTRALIA: 

TECHNOLOGY AS MASTER, SERVANT, PARTNER AND 
EXTENSION OF SELF 

HAZEL TAN 
Monash University  

Hazel.Tan@monash.edu 

HELEN FORGASZ 
Monash University  

Helen.Forgasz@monash.edu 

 
Students’ ways of using handheld calculators were investigated and compared on a sample 
of 964 Singaporean and 176 Victorian (Australia) senior secondary students. A survey 
instrument was developed based on four metaphors of technology use proposed by Geiger 
(2005): Master, Servant, Partner, and Extension of Self. Factor analysis found three factors: 
Master, Servant, and combined Partner and Extension of Self. Victorian students were 
found to have significantly lower scores on calculator as Master and as Servant, compared 
to Singaporean students. Males in both regions exhibited higher fluency of calculator use, 
compared to females. 

Background 
Handheld calculators such as the graphics calculator (GC) and calculators with 
computer algebra system (CAS) play an important role in secondary mathematics 
education (Wong, 2003). The GC and CAS calculators have been used in high stakes 
examinations at senior secondary levels in different parts of the world. In Victoria, 
Australia, the GC has been allowed in mathematics subjects in the Victorian Certificate 
of Examinations (VCE) since 1997 (Routitsky & Tobin, 1998), and currently CAS 
calculators are allowed in some examinations for year 12 VCE mathematics subjects 
(Victorian Curriculum and Assessment Authority [VCAA], 2010). In Singapore, GC 
use has been implemented in all the mathematics subjects at General Certificate of 
Examinations Advanced-level curriculum since 2006 (Wong & Lee, 2009). With the 
large number of senior secondary students taking mathematics examinations each year, 
research on handheld calculators is crucial in benchmarking and investigating the 
impact of the technology on mathematics teaching and learning. 
 The theoretical framework, instrument developed, and a report of the analysis and 
findings are described in the following sections. 

Theoretical framework 
While there have been a number of instruments developed to find out about students’ 
attitudes towards the use of technology in mathematics education (e.g., Pierce, Stacey, 
& Barkatsas, 2007), there are few that measure students’ ways of using technology. In 
order to enable investigations into students’ use of technology in a broad and systematic 
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manner, without tying the technology use to specific topics or specific instructional 
strategies, an instrument was developed which drew upon the four metaphors 
framework originally developed by Goos, Galbraith, Renshaw and Geiger (2000). 
Grounded in socio-cultural models of learning, Goos et al. (2000) theorised that 
technologies are cultural tools and their use is “actively re-shaping human interactions 
and interactions between humans and the technology itself” (p. 318), thereby 
transforming the learning process. They posited four roles for technology in the 
teaching and learning context: technology as Master, Servant, Partner, and Extension of 
Self (MSPE). Geiger (2005) further refined the metaphors into subcategories with 
representative student descriptions. These descriptions were then modified into the 
survey items (see Tan, 2009) used in this study. An outline of the metaphors is shown in 
Table 1. Geiger (2005) noted that while the MSPE metaphors represent increased levels 
of complexity of technology use, they correspond to an expansion in the “technological 
repertoire where an individual has a wider range of modes of operation available to 
engage with a specific task” (p. 370), and not to a hierarchy of stages of use where an 
individual abandons one level to progress to another. Hence a student who is proficient 
in using technology as a Partner might use technology as a Servant for certain 
mathematical tasks such as menial computation, when required. 

Table 1. MSPE framework of technology use by students. 

Metaphor Description 
Technology as 
Master 

The student is subservient to the technology – a relationship induced by technological 
(limited operations used) or mathematical dependence (blind consumption of 
whatever output generated, irrespective of accuracy and worth). 

Technology as 
Servant 

Technology is used as a reliable timesaving replacement for mental, or pen and paper 
computations. Student “instructs” the technology as an obedient but “dumb” assistant. 

Technology as 
Partner 

Students often appear to interact directly with the technology, treating it almost as a 
human partner that responds to their commands – for example, with error messages 
that demand investigation. The calculator acts as a surrogate partner as students 
verbalise their thinking in the process of locating and correcting such errors. 

Technology as 
Extension of 
Self 

Students incorporate technological expertise as an integral part of their mathematical 
repertoire. Technology is used to support mathematical argumentation as naturally as 
intellectual resources. 

Adapted from Geiger (2005, p. 371) 

Research questions 
1. How are Singaporean and Victorian students using handheld programmable 

calculators, with respect to the MSPE framework? 
2. Are there differences among students from the two regions? 
3. Are there any gender differences? 

Methods 
A survey instrument was developed based on the MSPE framework and piloted with 
178 Singaporean senior secondary students (Tan, 2009). For the main study, a different 
group of Singaporean mathematics students (N=964) and 176 Victorian students taking 
the VCE mathematical methods subject participated. 
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An online survey was created using SurveyMonkey (http://www.surveymonkey.com) in 
two versions; the words “calculator” referring to “GC” for Singaporean students and to 
“CAS calculators” for Victorian students. Recruitment was carried out through schools 
via invitation emails in 2009–2010. There were three phases in the collection of 
Victorian data: (1) 110 schools from the Government, Catholic and Independent sectors 
were invited to participate; only two independent girls’ schools and one Catholic boys’ 
school participated; (2) 20 Independent schools (3 girls’, 2 boys’, 15 co-ed) were invited 
to forward invitation emails to their students; (3) an advertisement was created using 
Facebook (http://www.facebook.com) to invite more Victorian students to participate in 
the study (Tan, 2010). 
 The instrument consists of 12 positively worded items using 5-point Likert response 
formats, ranging from 1 (Strongly disagree) to 5 (Strongly agree). The items are shown 
in Table 2. Factor analysis was conducted using the software PASW Statistics 18.0 
(SPSS) to investigate the underlying factors, based on the MSPE theory for both data 
sets. 

Analysis and discussion 
There were 964 Singaporean students (37.1% males, 62.9% females), and 176 Victorian 
students (31.3% males, 68.8% females). Higher percentages of females than males 
responded to the online survey in both regions. For the Victorian data, more 
independent girls’ (n=6) than boys’ (n=3) schools were invited to participate in the 
study in phases 1 and 2 as there were more Independent girls’ (24) than boys’ (14) 
secondary schools in Victoria (http://www.independentschools.vic.edu.au/); this 
partially explains the higher percentage of female participants. Similar numbers of 
female (29) and male (30) Victorian students responded through Facebook. In contrast, 
all four participating Singaporean schools were co-ed. In 2009, there were more female 
(55.5%) than male senior secondary students in Singaporean junior colleges (Ministry 
of Education, 2010), likely to be replicated among the participating schools. Research 
also indicates that girls are more likely than boys to respond to invitations issued via 
schools (e.g., Porter & Whitcomb, 2005). 
 It must be noted that the small sample size of Victorian data (< 300) and the high 
percentage of Independent school students (73.9%) limit the generalisability of the 
Victorian findings. 
 Factorability of the data was assumed since the Kaiser-Meyer-Olkin (KMO) 
measures of sampling adequacy (KMOVic= 0.680 and KMOS’pore= 0.763) were more 
than 0.6 (Tabachnick & Fidell, 2001), and Bartlett’s tests of sphericity yielded 
significance (χ2

Vic
 (66)= 404.5, χ2

S’pore
 (66)= 3202.8; p<0.001). Initial factor analyses 

using the Kaiser criterion of eignenvalues > 1 (Pallant, 2001) resulted in a four-factor 
solution for Victorian data and a three-factor one for Singaporean data. Inspection of the 
scree plots justified the use of three-factor solutions to explore both data sets. Principal 
factors extraction (principal axis factoring) with Varimax rotation and Kaiser 
normalisation was performed on the items specifying three-factor solutions, accounting 
for 43.9% of total variance for the Victorian data and 46.8% for the Singaporean data. 
The rotated factor matrices with factor loadings less than .3 removed (Pallant, 2001) are 
shown in Table 2. 
 As seen in Table 2, the factors matched the MSPE metaphors, with items for Partner 
and Extension of Self combined as one factor (henceforth referred to as “Technology as 
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Collaborator”), consistent with the pilot study results (Tan, 2009). The factors are 
labelled Tech_Master, Tech_Servant and Tech_Collaborator. The cross-loadings in the 
Victorian data for items M1 and P2 are still consistent within the theoretical framework 
of increasing levels of sophistication of technology use. 

Table 2. Rotated factor matrices for Victorian and Singaporean data. 

  Victorian  Singaporean 

Factors  1 2 3  1 2 3 

(M1)* I do not know why sometimes the calculator does not give me the 
answer that I want. 

  .40 .50    .60 

(M2) I usually just follow the steps taught when using the calculator to solve 
problems, and do not really understand the maths involved. 

   .75    .68 

(M3) I find calculators confusing because it uses different conventions and 
symbols than normal maths. 

   .72    .71 

(S1) I use the calculator for basic calculations because it is more accurate than 
working by hand. 

  .59    .71  

(S2) I use the calculator for calculations because it is faster than working by 
hand. 

  .70    .89  

(S3) I use the calculator to look after large calculations and tedious repetitive 
methods. 

  .72    .55  

(S4) I copy the graphs on the calculator in my answers because they are more 
accurate than drawing by hand. 

  .42    .30  

(P2) I use the calculator to help me simplify steps in a complex problem.  .68 .33   .59   

(P3) I use the calculator to help me look at the same problem or concept in 
different ways (e.g., using graphs and tables to understand the process of 
differentiation in addition to algebraic method). 

 
.62   

 
.75   

(P4) The calculator helps me understand concepts better.  .53    .68   

(E1) I often use the calculator to explore maths even before the teacher tells me 
to. 

 .43    .63   

(E2) The calculator allows me to expand my ideas and to do the work my own 
way. 

 .64    .76   

* Items developed according to MSPE framework (Tan, 2009). 
 
 Cronbach–α values were calculated to assess the internal reliability of the items for 
each of the three subscales: Tech_Master (αVic= 0.686; αS’pore= 0.714), Tech_Servant 
(αVic= 0.703; αS’pore= 0.699), and Tech_Collaborator (αVic= 0.735; αS’pore= 0.819). 
Although for the Victorian data the Cronbach–α value was less than the ideal of 0.7, it 
was still reasonable (Pallant, 2001). For the two data sets, performing the same factor 
analysis procedures produced the same factor solution consistent with the theoretical 
framework. This confirms the stability of the factors, and the validity and reliability of 
the instrument, allowing for comparisons between the two groups of students to be 
undertaken. 
 Subscale scores were calculated using the average score of all items within each 
factor, reduced to the range 1 to 5 for ease of interpretation. Table 3 shows the results of 
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comparisons of the mean subscale scores by region and gender, using t-tests (except 
where otherwise indicated). 

Table 3. Regional and gender comparisons: N, mean scores, standard deviations, test statistics, and p-
values. 

Factor Region 
Mean 
(SD) 

test statistic, 
p value Gender 

Valid 
N Mean SD 

test statistic, 
p value* 

Tech_Master Singapore 3.189 
(0.801) t (1051) = 

5.341, 
p<0.001 

Female 586 3.235 0.775 t 
(930)=2.308, 

p<0.05 
Male 346 3.110 0.840 

Victoria 2.771 
(0.860) 

Female 98 2.871 0.840 U=751.5, 
p<0.05 Male 23 2.348 0.832 

Tech_Servant Singapore 3.777 
(0.659) t (140.2) = 

2.793, 
p<0.01 

Female 585 3.750 0.657 
NS 

Male 349 3.821 0.661 
Victoria 3.563 

(0.807) 
Female 98 3.625 0.836 U=745.5, 

p<0.05 Male 22 3.284 0.599 
Tech_ 
Collaborator 

Singapore 3.034 
(0.733) 

NS 

Female 579 2.964 0.691 t (641.9)=         
-3.781, 
p<0.001 

Male 341 3.152 0.786 

Victoria 3.058 
(0.766) 

Female 99 3.022 0.724 
NS 

Male 23 3.218 0.934 
* Mann-Whitney U test was used for Victorian gender comparisons. 

Comparisons between Victoria and Singapore 
As seen in Table 3, Singaporean students generally scored significantly higher for  
Tech_Master (x̄ S’pore=3.189, x̄ Vic=2.771) and Tech_Servant (x̄ S’pore=3.777, x̄ Vic=3.563) 
than Victorian students. This suggests that the Victorian students had higher levels of 
fluency with handheld programmable calculators than Singaporean students. 
 There are various possible explanations for these differences, for example a socio-
economic factor suggested by the high percentage of Independent school students in the 
Victorian sample. School-sector differences in student performances have been reported 
in Australia (e.g., Marks, 2009).  
 Another explanation may be the differences in the school systems in the two regions: 

 With the use of GC allowed in the VCE since 1997, Victorian mathematics 
teachers may have more experience with teaching the use of programmable 
calculators and might be better able to mediate students’ learning with calculators 
than Singaporean teachers. 

 Most Victorian senior secondary students learn in a classroom structure, using 
published textbooks, whereas most Singaporean senior secondary students learn in 
a lecture-tutorial structure, using lecture notes provided by their teachers.  

 Victorian secondary schools usually encompass grades 7-12, whereas most 
Singaporean senior secondary schools consist of grades 11-12 only. 

These differences may have advantaged Victorian students with better quality or more 
consistent teaching and increased exposure to the use of programmable calculators. 
Since CAS calculators and GCs share a number of similar functionalities and syntax, 
Victorians may be less likely to use their CAS calculators at the Master level than 
Singaporean students use their GCs. 
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 For both regions, the mean scores for Tech_Collaborator were not significantly 
different from the neutral value 3 (S’pore: t(919)=1.394, Vic: t(120)=0.831; p>0.1). 
This suggests that students use the calculators at this highest level only some of the 
time, consistent with Geiger’s (2005) findings. 

Gender differences in how students use calculators 
Figure 1 shows the box plots for the three subscales by region and gender. The 
skewness in the distribution for Tech_Servant for male Victorian students, possibly due 
to the small sample size, is evident. Hence the non-parametric Mann-Whitney U test 
was used for the Victorian data (Pallant, 2001) – see Table 3. As shown in Table 3, 
males had significantly lower mean scores than females for Tech_Master in both 
regions (S’pore: x̄ M=3.110, x̄ F=3.235; Vic: x̄ M=2.348, x̄ F=2.871). Singaporean males 
also had significantly higher mean scores for Tech_Collaborator than females (x̄ 
M=3.152, x̄ F =2.964), with no significant difference for the Victorians. 
 For Tech_Servant, no significant gender difference was found for the Singaporeans, 
whereas Victorian males’ mean scores were significantly lower than females’ (x̄ M= 
3.284, x̄ F =3.625). This suggests that Victorian males may be less reliant than females 
on calculators to replace mental or pen-paper computations; this finding may partially 
explain the higher percentages of males than females scoring top grades in the 
calculator-free VCE mathematics examinations (Forgasz & Tan, 2010). 
 

  

 

Figure 1. Box plots for Singaporean and Victorian data, grouped by gender. 
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Conclusion 
In conclusion, Victorian students appeared to have greater fluency than Singaporean 
students with sophisticated calculators, despite the finding of no significant differences 
at the highest level of calculator use (Tech-Collaborator). For greater generalisability 
for Victoria in particular, more research is needed with larger samples and broader 
school sector representation. Gender differences were consistent with past research in 
that males showed greater mastery of the calculators than females, in both regions. 
Given that the calculators were used in high-stakes mathematics examinations where the 
results affect entrance into university courses, these findings call for further research 
into assessment and instruction to address these gender differences. 
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Since 2000 gender differences in mathematics achievement in Australia have reappeared. In 
this paper we report on the achievement outcomes of girls and boys in a longitudinal study 
of reform in low economic school communities. Analysis of student data to inform teaching 
was one element of student centred approaches implemented by teachers. Teachers targeted 
students’ next point of learning and more girls than boys participated in mathematics 
intervention programs. Growth in achievement was greater for boys than for girls in the 
primary years, and so the achievement gap that favours males widened. It is concluded that 
student centred approaches need to be gender inclusive.  

Introduction 
For the past decade, researchers have observed the re-emergence of gender inequality in 
mathematics achievement, participation and affect in Australia at all levels of schooling 
(Vale, 2010; Vale & Bartholomew, 2008). These outcomes represent a reversal of a 
trend toward gender equality in achievement and participation observed during the 
1990s (Forgasz, Leder, & Vale, 2000) and can be attributed a lack of focus on gender 
equity in educational policy in general and on the educational needs of boys in 
particular (Vale, 2010). The focus of the current federal government education policy 
on equity and socio-economic equity in particular (MCEETYA, 2008) has provided an 
opportunity to refocus the attention of education systems and teachers on equity issues 
in education. Australian government initiatives for school reform include programs 
designed to build capacity of educational leadership and teachers; promote whole school 
approaches, the use of data, and student centred teaching; develop intervention 
programs for students; and support the engagement of parents and community 
(DEEWR, 2009).  
 In this paper we examine gender issues in low socio-economic (SE) school 
communities using data gathered during a longitudinal study of teacher practice and 
student achievement in schools that participated in a school reform project jointly 
funded by the Victorian government (DEECD, 2009) and the federal government, under 
its Smarter Schools Pilot program (DEEWR, 2009).  
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Background 
Various feminist theories have informed the struggle for gender equity in mathematics 
education through policy initiatives, curriculum development, and pedagogical 
approaches since the 1980s (Vale, 2010; Vale & Bartholomew, 2008). It is generally 
agreed that equitable practice is responsive to students’ learning needs, intellectually 
challenging, and inclusive (Anthony & Walshaw, 2007; Jorgensen, Grootenboer, & 
Sullivan, 2010). Such practice, it is argued, is student centred.  
 The capacity to respond to students’ learning needs depends on teachers knowing 
their students well. Analysis of students’ work samples and formative assessment 
practices, also known as assessment for learning, has been driving reform of 
mathematics teaching in Australia since 2000 as a result of research projects such as 
The Early Years Numeracy Project (Clarke, et al., 2001) and Scaffolding Numeracy in 
the Middle Years Project (Siemon, Izard, Breed & Virgona, 2006) conducted in 
Victoria. By analysing students’ mathematical reasoning teachers are able to target their 
teaching to address students’ misconceptions or challenge them within their “zone of 
proximal development” (Vygotsky, 1978). 
 Critical theory supports transformative pedagogies that go beyond addressing student 
learning needs which, from the school improvement policy context, are often perceived 
from a deficit perspective. Transformative pedagogies connect with students’ cultures, 
involve reciprocal learning and develop respect (Atweh, 2009). Boaler (2008) believes 
that transformational practice also involves equitable relations in diverse classrooms 
with students “acting” equitably and “treating each other with respect and considering 
different viewpoints fairly” (p. 168). These approaches shift student centredness from a 
constructivist perspective to a social-constructivist perspective where teachers also 
design tasks for students organised in mixed achievement-level groups and classes.  
 Findings from international assessment studies (TIMSS and PISA), Australian 
national benchmarking, and particular research studies for the period 1995 to 2007 are 
reported and summarised by Vale (2010). Studies of affect consistently report gender 
differences favouring males at all year levels and this has remained unchanged since the 
1980s. Since 2000 males typically out perform females in the early years of schooling 
(for example, Horne, 2004) as 9-year-olds in TIMSS and 15-year olds in PISA. Higher 
proportions of females achieved the national benchmark in Years 3, 5, and 7 however 
the proportion of females performing below expected benchmark increases with year 
level. Studies by Forgasz (2006) and Leder and Forgasz (2010) show that female 
participation in senior secondary mathematics is falling in the subjects required for 
continued study of mathematics beyond schooling and that males are more highly 
represented among the top performers at all levels of schooling. Studies also reveal that 
gender differences in mathematics achievement are mediated by other equity factors 
such as individual and school socio-economic level, indigenous status, language 
background other than English, and degree of remoteness (Thomson, De Bortolli, 
Nicholas, Hillman, & Buckley, 2010).  
 For some years accountability has been driving educational policy and interventions 
in Australia and internationally. All schools in Victoria are required to develop annual 
strategic plans that aim to improve the proportion of students achieving the national 
achievement benchmarks. To date, gender equity is not given prominence in current 
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government policy, and therefore schools are not called upon to develop targets and 
strategies for gender equity. 
 Australian government initiatives, as indicated above, are now providing resources 
and small amounts of funding for low SE and indigenous school communities to support 
reform. The suite of reforms that these schools and their leaders and teachers are 
expected to adopt include the use of assessment data to inform school planning and 
classroom teaching, student centred approaches to teaching, and appropriate 
intervention programs. In this study we report briefly on the way in which schools and 
teachers who participated in one of the Literacy and Numeracy Pilot programs 
(DEEWR, 2009) implemented these strategies, and the achievement outcomes for girls 
and boys from low SE school communities.  

The study 
The 76 government schools in this study belong to four networks of primary and 
secondary schools located in metropolitan Melbourne and regional Victoria. The 
Department of Education and Early Childhood Development (DEECD) selected these 
networks of schools for participation in the Victorian Pilot because of the low SE of the 
school communities and the general underperformance of these networks, overall and 
individual schools, when compared with other networks in Victoria. Some schools in 
these networks also have high proportions of Koori students, students who are new 
arrivals in Australia, refugees, or students meeting the criteria for learners of English as 
a second language (ESL). 

The study used a mixed methods design incorporating quantitative assessment of 
student mathematics outcomes and collaborative practitioner research methods 
(Cherednichenko, Davies, Kruger, & O’Rourke, 2001). Principals, numeracy leaders, 
numeracy coaches, regional network leaders, and other regional project staff from all 
schools in the Pilot were invited to respond to three open-ended questions (personal 
accounts). Other qualitative methods including observations of meetings and classrooms 
and analysis of documents were used for in-depth case studies of nine schools. Schools 
also completed a questionnaire about the numeracy intervention program(s) 
implemented at their school and provided student identification numbers of the students 
who participated in these intervention programs.  

Student mathematics achievement data were collected using online assessment tools 
provided to schools by the DEECD. Data were collected four times at six-monthly 
intervals during the study: March and September, 2009, and March and September, 
2010. The Mathematics Online Interview (MOI) adapted from the Early Years 
Numeracy Interview (Clarke et al., 2001) was used to gather assessment data for 
students in years P–2 and results are reported in “growth points.” The On Demand 
Adaptive Test for Number (VCAA, 2009) was used for students in Years 3–10. This test 
is designed to assign items to the student based on their relative success with a 
beginning set of items at a level indicated by the classroom teacher. Results are 
recorded to one decimal place using the Victorian Essential Learning Standard (VELS) 
score (VCAA). Individual student results for each assessment period were paired. 
Growth in student achievement for each six-month period (March 2009 to September 
2009, September 2009 to March 2010, and March 2010 to September 2010) was 
calculated. Analysis of variance was used to compare achievement and growth by 
gender. 
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Findings 
Using student data, student centred approaches and interventions 
At last year’s MERGA conference we reported on the student centred approaches 
implemented by teachers in the pilot study (Vale, Weaven, Davies, & Hooley, 2010). 
We showed that the schools and teachers adopted a constructivist interpretation of 
student centred approaches since they focussed on the children’s “point of need” to 
differentiate teaching and learning. These approaches were typically more evident in the 
practices of primary teachers than secondary teachers in the pilot. Teachers used a range 
of data to identify children’s learning needs. These included analysis of student 
responses to MOI, the Number Fluency Interview (Montgomery & Waters, n.d.), and 
NAPLAN test items, along with samples of students’ class work. School Numeracy 
Leaders and Numeracy Coaches supported analysis of these data, often taking 
responsibility for compiling results and responses in formats that made interpretation of 
data for individual students and classes of students easier for teachers. Analysis of these 
data enabled teachers to identify students at various levels of risk of under-achievement, 
and hence target students for particular intervention programs implemented at schools. 
Intervention programs included both in class and withdrawal programs. Some were 
individual; others were for small groups of students. The data analysis practices and 
intervention programs are presented in more detail elsewhere (Vale, Davies, Hooley, 
Weaven, Davidson, & Loton, 2011). 

Gender differences in the early years (P–2) 
Mean scores and growth in achievement for place value and addition and subtraction for 
female and male students for March 2010 to September 2010 is recorded in Table 1. 
Male achievement is significantly greater than female achievement for both place value 
and additive thinking (F=19.411, p<0.05 and F=4.361, p<0.05 respectively). While 
growth in achievement is greater than the equivalent ENRP benchmark for six months 
(0.56 for place value and 0.82 for addition and subtraction (Clarke et al., 2010), the 
effect of the Pilot has been to widen the achievement gap between males and females. 
The gap widens from 0.09GPs to 0.15GPs for place value and 0.05GPs to 0.1GPs for 
addition and subtraction from March to September 2010. While these changes appear to 
be small they are statistically significant (F=5.454, p<0.05 and F=4.260, p<0.05 
respectively). The gaps in achievement are illustrated in Figure 1. 

Table 1. Achievement and growth in place value and addition and subtraction for students in Years P–2 
(MOI growth points), March 2010 – September, 2010. 

Females (N=2664) Males (N=2937) Domain Month 

Mean SE Mean SE 

Mean difference 

March 0.984 0.021 1.075 0.020 -0.091 Place Value 

Sept 1.675 0.023 1.823 0.022 -0.148* 

Mean growth  0.691  0.748  -0.057* 

  Females (N=2652) Males (N=2930) Mean difference 

March 1.423 0.028 1.468 0.027 -0.045 Addition & 
Subtraction Sept 2.316 0.030 2.426 0.028 -0.110* 

Mean growth  0.893  0.958  -0.065* 
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Figure 1. Mean scores for Place Value and Addition and Subtraction for female and male students in 
Years P-2, March to September 2010(MOI growth points). 

Gender differences in the middle years (3-10) 
Mean scores for female and male students in Years 3, 4, and 5 in March 2009 and Years 
4, 5, and 6 in September 2010 are recorded in Table 2 and illustrated in Figure 2. 
Overall growth in achievement is significantly greater than expected (0.75 VELS points 
in 18 months). Gender differences in achievement favour males and are statistically 
significant. Over the period, the gap in favour of males doubles (0.06 VELS points in 
March 2009 to 0.13 VELS points in September 2010) and is statistically significant 
(F=3.868, p<0.05).  

Table 2. Achievement and growth for primary students, March 2009 – September, 2010 (VELS). 

  Females (N= 667 ) Males (N= 697) 

Year Month Mean SE Mean SE 

Mean 
difference 

2009 March 2.690 0.030 2.749 0.029 -0.059 

 Sept 3.018 0.031 3.111 0.030 -0.093 

2010 March 3.185 0.033 3.247 0.033 -0.062 

 Sept 3.509 0.033 3.639 0.033 -0.130* 

Growth Mar09–Sept10 0.819*  0.890*  -0.071* 

 

Figure 2. Mean number scores for female and male primary students March 2009 – September 2010. 
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Mean scores for female and male students in Years 6 and 7 in March 2009 and Years 7 
and 8 in September 2010 are recorded in Table 2 and illustrated in Figure 3. Growth in 
achievement is well below the expected level (0.75 VELS). The gender difference is 
negligible at the beginning and end of the 18-month period. 

Table 2. Achievement and growth for secondary students, March 2009 – September, 2010 (VELS). 

  Females (N=453 ) Males (N= 496) 

Year Month Mean SE Mean SE 

Mean 
difference 

2009 March 3.807 0.042 3.833 0.040 -0.026 

 Sept 4.075 0.042 4.081 0.041 -0.006 

2010 March 4.178 0.044 4.222 0.042 -0.044 

 Sept 4.351 0.044 4.353 0.042 -0.002 

Growth Mar09– Sept10 0.544  0.520  0.024 

 

Figure 3. Mean number scores for female and male secondary students March 2009 – September 2010. 

The different rates of growth for male and female students indicate the way in which 
classroom approaches support their learning and how they are affected by the summer 
slow-down. Growth in number achievement is higher for primary males than primary 
females from March to September and lower over the summer months. The opposite is 
the case for secondary students. Growth in number achievement for secondary females 
is higher than for males during Terms 2 and 3 and lower in Terms 4 and 1. 

Numeracy intervention 
There were more female than male primary students participating in numeracy 
interventions as expected, given the difference in achievement favouring male students 
in the primary years (see Table 4). In secondary schools there were more males than 
females who participated in numeracy intervention programs. The primary numeracy 
intervention programs especially benefited male students as their growth in achievement 
was significantly greater than the expected level (0.25 VELS for 6 months) and greater 
than the growth achieved by female students participating in these programs, though 
this gender difference was not significant. Students participating in secondary numeracy 
intervention programs recorded growth in achievement at the expected rate for 6 months 
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and there was no difference between males and females. Hence while the primary 
numeracy intervention programs supported these students to achieve growth at above 
the expected rate they did not make an impact on closing the gender gap in 
achievement, and may have contributed to widening the gap. 

Table 4. Growth in number achievement for students in numeracy intervention programs from March to 
September 2010. 

 Primary (Year 3–6) Secondary (Year 7–10) 

Cohort N Mean Growth N Mean Growth 

Females 77 0.301 32 0.287 

Males 51 0.428 38 0.283 

Conclusion 
Students in primary schools benefited from the student centred differentiated 
pedagogical approaches of the Pilot, since growth in achievement was greater than the 
expected level. However the stereotype of male mathematics hegemony was not 
challenged as the gender gap widened for students in all primary year levels. This was 
despite the fact that more females participated in numeracy intervention programs. The 
different effect of the summer slow-down on female and male primary and secondary 
students requires further investigation, however it is clear that student centred 
approaches must involve more than differentiated tasks if we are to close the gender gap 
in primary settings. It seems to us that a transformative approach that embraces the 
socio-constructivist perspective of learning is required if we are to address the 
intransigent gender differences in affect in mathematics and the persistence of gender 
differences in achievement.  
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In this paper we report our learning as researchers from a 5-year professional development 
design experiment. At its completion, we identified five strands of support as being 
essential to mathematics teachers’ learning. However, when planning the design experiment 
based on prior research, we only explicitly considered two of these strands—Building 
Mathematical Competence and Focus on Student Reasoning. The significance of three 
more strands of support became evident during the course of the experiment. We document 
the emergence of one of these strands, Understanding the Institutional Context of Teaching, 
by focusing on pivotal episodes from the experiment. 

Introduction 
Effectively supporting mathematics teachers’ professional learning is a complex 
endeavour (Ball & Cohen, 1999; Goos, Dole, & Makar, 2007; Little, 1993; Simon, 
2000). Research indicates that effective professional development (PD) programs 
should have a longitudinal, ongoing character as well as a focus on content (Askew, 
Brown, Rhodes, Johnson, & Wiliam, 1997; Carpenter et al., 2004) in order to support 
significant, generative teacher learning. However, detailed analyses of the means of 
support used in longitudinal PD programs are largely missing (Little, 2002). By 
reporting such analysis, our goal is to contribute to teacher development theory (cf. 
Cobb, Zhao, & Dean, 2009) relevant to supporting the learning of teachers within high-
stakes accountability environment.  
 The case for our discussion is a 5-year PD program1 developed as part of a PD 
design experiment (cf. Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003), conducted 
with a group of middle years mathematics teachers from a USA school district2 with a 

ogramhigh-stakes accountability pr

                                                       

3. The PD goal was to “help teachers develop 

 
1 The PD program included a two-day summer institute and three one-day work-sessions during the first year of the 
study, a three-day summer institute and six one-day sessions during each of the subsequent four years, and 
a concluding three-day summer institute. 
2 In the USA, school district is an important, independent, administrative unit whose policies can have a significant 
influence on teachers’ instructional practices. 
3 The presented study was a part of a larger research project. The research team included Paul Cobb, Kay McClain, 
Chrystal Dean, Teruni Lamberg, Melissa Gresalfi, Lori Tyler, Jana Visnovska, and Qing Zhao. In addition to the 
authors’ analyses, this paper draws on dissertation analysis developed by Dean (2005). The preparation of this paper 
was supported in part by The University of Queensland under NSRSU grant No. 2009002594.  
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instructional practices in which they induct their students into the ways of reasoning of 
the discipline by building systematically on their current mathematical activity” (Cobb 
& McClain, 2001, p. 207). At the beginning of the design experiment and based on prior 
research in the field, Cobb and McClain (2001) outlined the initial conjectured 
trajectory for the teachers’ learning (cf. Simon, 1995) and the means by which this 
learning would be supported. Two key strands of support were initially identified: 
Building Mathematical Competence and Focus on Student Reasoning. While the first 
directly addressed the need for PD to focus on mathematical content, the second aimed 
at supporting mathematics teachers’ pedagogical reasoning and practices (e.g., Fennema 
et al., 1996; Franke & Kazemi, 2001a). As we argued elsewhere, both these strands 
proved to be critical in supporting the teachers’ learning (Dean, 2005; Visnovska, 
2009). However, additional directions of support were instrumental.  

                                                       

 In this paper, we document how a specific new strand of support, Understanding the 
Institutional Context of Teaching, emerged in working with the teachers4. We first 
explain that the research team conceptualised teacher learning as situated within 
institutional context of teachers’ schools and the district from the outset (Cobb & 
McClain, 2001; Cobb, McClain, Lamberg, & Dean, 2003), yet did not view institutional 
context as an explicit strand of support in facilitating changes in teachers’ views of 
mathematics teaching. We then present pivotal episodes (cf. Cobb, Stephan, McClain, 
& Gravemeijer, 2001) from PD sessions that, in retrospect, provided insight into the 
emergence of this strand of support and its importance. 

Data and method of analysis 
The data consisted of video-recordings of all PD sessions, field notes of these sessions, 
copies of the teachers’ work, and a debriefing and planning research log. We analysed 
the data using an adaptation of constant comparative method described by Cobb and 
Whitenack (1996) that involves testing and revising tentative conjectures while working 
through the data chronologically. As new episodes are analysed, they are compared with 
conjectured themes or categories, resulting in a set of the theoretical assertions that 
remain grounded in the data5.  

Initial focus on institutional context: Framing the PD design 
experiment 
In planning the PD design experiment, Cobb and McClain (2001) conceptualised 
teaching mathematics as a distributed activity, shaped by the types of tools that were 
made accessible to teachers as well as the institutional context in which teachers 
worked. Rounds of data collection were conducted to document the institutional context 
of the teachers’ work. These included interviews with the teachers and the key school 
and district administrators, and were used to understand (a) how the activity of teaching 

 
4 The additional 2 strands of support that emerged from our work with teachers were Building Teacher Community 
and Focus on Student Engagement (for partial analysis see Visnovska & Cobb, 2009). Importantly, all 5 strands were 
interrelated and mutually reinforcing in supporting the learning of teacher group. 
5 Given the scope of this paper, we include representative teacher comments and interactions where possible as we 
build our argument. These examples do not provide a complete evidence base for the presented claims. References to 
our published work and dissertations indicate where more systematic evidence for the claims can be found. 
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mathematics was accomplished at the school and district levels and (b) what supports 
and constraints the teachers experienced in their work (Cobb, McClain, et al., 2003).  
 Oriented by this conceptualisation of teaching, in the initial PD sessions we included 
PD activities, in which teachers shared their views of their institutional context with us. 
We used these conversations to tune the initial PD design, by better understanding how 
the teachers reasoned about mathematics and mathematics teaching at the time. For 
instance, the persistent pressures for improving achievement on standardised tests 
helped us understand why it was reasonable for the teachers to focus on students 
“getting” the solution methods that lead to correct outcomes. Only much later in our 
collaboration with the teachers, through the analyses of the actual learning of the teacher 
group, did we realise that this initial attention to institutional context and the 
conversations we had with the teachers facilitated a number of changes that proved 
essential to teachers’ learning. Specifically, through these conversations, the teacher 
group was supported to (a) “deprivatise” their teaching practices, that is, start to 
publicly discuss and critique their teaching, and (b) come to view changes to their 
current ways of teaching as both necessary and, more importantly, feasible in their 
schools. In addition, the group recognition of institutional context as a means to 
understand and transform how mathematics was taught in the district later contributed 
to the process of (c) inducting new members to the group, thus supporting the 
continuation of group learning. In the ensuing sections, we discuss how each of the 
three changes was realised in our work with the teachers, and build an argument for 
considering institutional context strand of support when designing PD programs. 

Deprivatising teachers’ instructional practices  
The institutional context in which the teachers worked was characterised by high-stakes 
accountability and lack of formal and informal professional support (Cobb, McClain, et 
al., 2003). As a result, the teachers worked in almost complete isolation. When they 
initially participated in the PD sessions, it was both alien and uncomfortable for them to 
talk about their teaching openly without feeling they were being judged and their 
professional status threatened. However, in order for the teachers to engage 
productively in PD inquiries into classroom teaching (Ball & Cohen, 1999; Borko, 
2004), it was imperative that they deprivatised their teaching practices.  
 In retrospect, the explicit conversations about institutional context that we had with 
the teachers were instrumental in the deprivatisation process. At the time, we included 
these conversations to deepen our understanding of how the schools and the district 
organised for mathematics teaching. The retrospective analysis revealed a pivotal 
episode that took place in year 1, session 3. During this work session, the teachers 
brought in their students’ written work from a statistical task on life span of batteries 
and were asked to investigate how these students reasoned statistically. This, for the 
teachers, appeared to be a high-risk activity, perceived as a way to evaluate their 
instructional practices. As they carefully treaded the terrain, issues pertaining to the 
institutional setting dominated the discussion.  

Naomi:  … we were doing this [statistical task in my classroom] yesterday, my 
principal came in, she saw me at the overhead and the room was kind of 
dark and the kids were talking about batteries. And she is looking at me like 
“[Standardised tests] and you are talking about batteries?”  
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Amy:  My principal took flack because the superintendent came in to my room and 

I was teaching Roman Numerals and they are not on the [standardised test]. 
I don’t care. 

Significantly, while expressing frustrations about pressures they felt, the teachers started 
to ask each other for advice. This was the first instance in which the teachers openly 
discussed events from their classrooms. 

Rachel: [to Amy]…you were saying that you would give a kid a half an hour to get a 
kid to discuss something that you asked them. I agree with that totally, but 
… well my principal would say, “You are not covering all your topics”. I 
agree, I want kids to explain things, but administrators would say, when they 
come in to observe your class, and I have had several to observe my class, 
they say “You are taking too long on this. You should ask them, maybe wait 
two or three minutes and then move on”. So sometimes you can’t get into 
that deep discussion because of time limits, because of behavior. 

Amy: Part of it is the fact that I have been at this a lot longer than you and I know 
they ain’t gonna bother me. 

[Teachers laugh, some express agreement with Amy.] … 
Rachel: Well how do you like, if you are talking to one particular student, for 

example, you are talking to me and I am hesitant about talking to you, how 
do you keep the rest of the class engaged? Because sometimes if I am 
focusing on one particular student, the rest of the students are like, okay ... 

Amy: Simply the force of my personality to a certain extent. They know, that in 
this class everyone has a right to speak and everyone has a right to make a 
mistake. And everyone has a right to an opinion. And by God, if I am going 
to listen to yours, you are going to listen to his. It is just a matter of directing 
them... 

In retrospect, this and similar conversations in a number of subsequent PD sessions 
helped teachers realise that they had experienced similar challenges and frustrations in 
their classrooms, and that these were related to the institutional context in which they 
worked. In a sense, teachers too began to view teaching as distributed. This allowed 
them to feel less judged when opening up their classrooms for discussions of their 
teaching, as they no longer felt the responsibility for failures to be solely theirs.   

Cultivating a sense of feasibility of change  
In our view, effective PD programs should proactively cultivate teachers’ “reason and 
motivation to want to change the way they teach mathematics” (Cobb & McClain, 2001, 
p. 208). In our own and others’ prior work, the teachers were successfully supported to 
develop such need by engaging in activities in which they realised that what their 
students understood mathematically as a result of their instruction was different from 
what was intended (e.g., Fennema et al., 1996). This led the teachers to question the 
teaching practices responsible for such learning and motivated them to work on 
improving these practices.  
 In contrast, the teachers in the PD program reported here initially considered it 
impossible to alter the ways they taught because, in their experience, the ways they 
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taught were mandated by their schools6. Even after the teachers established that there 
was a contradiction between teaching for understanding and content coverage approach 
(for which they were accountable to their principals), they did not come to believe that it 
was feasible to change their practices and did not become interested in scrutinising 
them. To the teachers, institutional pressures of their work appeared to be given and not 
susceptible to change. From our perspective as researchers, it became critical to 
cultivate both teachers’ motivation and sense that it was feasible to change their 
teaching practices.  
 This led us to introduce PD activities in which we proactively challenged these 
teachers’ views. In retrospect, two episodes were pivotal and we introduce one of them 
here. At the end of session 5 in year 2, we proposed a possible future project for the 
group: generating evidence to show school leaders that covering content does not help 
students learn mathematics. The teachers picked up the proposal and, in a quick 
progression, brainstormed ideas for getting the principals involved in thinking about 
mathematics teaching and learning more deeply.  

Wesley: I just had an idea: think about it. The middle school principals are going to 
be here on the 19th. Maybe if they are here for food, maybe we could be in 
here with them to convince them we are doing something good.  

Ruth:  It is a small group of them. But they are going to be looking at the schools. 
… 

Naomi:  So maybe we should be doing an activity while they are here and invite 
them to come see the activity.  

Muriel:  Or with the kids? 
Researcher: Or what the kids are doing. 
Muriel:  Yeah, I’d like for them to see what the kids are really thinking 

[mathematically, like when we interviewed students in last PD session].  … 
Naomi:  I bet they would be surprised. 
Researcher:  I bet they would… That idea might have merit … Letting them know that 

the 6th grade teachers are doing what [principals] are telling them: they are 
covering the material, they are reviewing, but [in 7th grade students need to 
learn it again anew]. 

Muriel:  I would like for them to see it and then hear the discussion afterwards.   

In the subsequent months, the teachers proactively pursued opportunities to engage with 
the school leaders, continued to plan for the joint PD activity, and framed these efforts 
as an avenue to justify to the school leaders the need for resources (e.g., time to 
collaborate) to improve students’ mathematics learning and performance.  
 While five school leaders eventually attended PD session 6 in year 37, the changes in 
teachers’ perceptions of feasibility of changing how they taught mathematics were 
obvious form the very beginning of year 3. Despite the fact that there were no 
discernible changes in institutional context and the teachers continued to be dissatisfied 

hools, they no longer merely shared their complaints. with the situation in their sc

                                                        
6 The analysis of the institutional context (Cobb, McClain, et al., 2003) corroborated the teachers’ reports. The school 
leaders viewed teaching mathematics as a straightforward endeavor and responded to accountability pressures of 
state-mandated achievement tests by monitoring teachers’ content coverage. Some of them conducted daily drop-in 
visits in teachers’ classrooms to check whether appropriate objectives were being covered. As a result, the teachers 
viewed themselves as having little control over both goals of mathematics instruction and how these goals should be 
accomplished in their classrooms.  
7 It is indicative of the institutional context that it took the teachers and district mathematics coordinator more than 
one year to succeed in securing the school leaders’ participation. 
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Instead, they planned what they could do in order to change their school leaders’ views. 
The teachers came to realise that they collectively had a better understanding of how 
mathematics should be taught compared to their school leaders and were thus better 
positioned to guide instructional improvement. This motivated the teachers to foster 
their professionalism by scrutinising their practices and developing more effective ways 
of teaching for mathematical understanding.  

Supporting the continuation of the teacher group  
Realising the importance of explicit attention to institutional context and how it shaped 
the work of teaching mathematics, both the researchers and the teachers made 
institutional context an explicit topic of conversations when new teachers were recruited 
to join the group8. The continuing teachers named the working on issues related to 
institutional context among the 4 goals9 of the PD work when they introduced PD goals 
to the newcomers during an orientation session in year 3. Sharing the group history, 
they also clarified that discussions of institutional context helped to build trust between 
teachers and researchers at the beginning of the collaboration. 

Amy: [The researchers] have provided us with a [soundboard]. … like at the very 
beginning, I knew we were supposed to do statistics, [a researcher] came to 
the first one [PD session], and we were sitting there for four hours and she 
listened to us complain about every single solitary thing that ever crossed 
our minds as we’ve been teaching. And I was [thinking] “When is she going 
to tell us to shut up, that that’s not what we are here for?” And she never did. 
So they’ve always sat around and listen. They wanna know what is 
important to us whether it is on their agenda or not. 

Continuing teachers contrasted the context of PD sessions to institutional context in 
their schools when they talked about the collaborative nature of the PD group, its non-
threatening culture, and highlighted how this difference helped them to open up their 
practices to the group. 

Marci: I guess we are all comfortable with each other, and not just that, but 
comfortable with having people to come in and not criticise you based on 
what you taught, not on what their idea of teaching math is. … It is different 
from when the administrators may come in or even for new teachers, when a 
mentor is coming to observe. Because you feel that you are looking for 
something in particular to criticise their way or their method of teaching 
mathematics. 

They also demonstrated the deprivatised nature of their practices by bringing their 
students’ work and classroom video to sessions, and by talking openly about difficulties 
that they faced in their teaching10.  
 The stories told by continuing teachers and their actions had face validity for the 

ation of teaching practices initially took more than one newcomers. While deprivatis

                                                        
8 A group of ten teachers participated in PD program in first two years. In the remaining years, some of the teachers 
left the district and the PD group and others were recruited to join. For details on membership in the PD group and 
conceptualisation of group learning across its changes see Visnovska (2010). 
9 The other three goals teachers named were: (a) understanding students’ thinking, (b) “redoing” textbook units on 
statistics, and (c) learning about improving lessons over time like in Japanese lesson planning (Visnovska, 2009). 
10 Two situations in which the old-timers commented on their classroom difficulties spontaneously occurred in 
session one, one in session two, and others occurred with a similar rate throughout the year. 
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year (Dean, 2005), all newcomers opened up their practices for scrutiny within their 
first four PD sessions (Visnovska, 2009). They also actively engaged in working on 
improving their teaching and shaping their institutional context, and raised no doubts 
about feasibility of these efforts. Successful initiation of the newcomers enabled the 
teacher group to continue working towards its goals across changes in the group 
membership (Visnovska, 2009).  

Conclusions 
diSessa and Cobb (2004) clarify that productive design-based theorising includes 
“hypothesizing and developing explanatory constructs, new categories of things in the 
world that help explain how it works” (p. 77). We propose that—along with 
longitudinal character of PD support, focus on content and on students’ mathematical 
reasoning—attending to institutional context of teaching is important in both 
understanding and effectively supporting teachers’ generative growth (cf. Franke & 
Kazemi, 2001b).  
 To substantiate this claim, we discussed three practical problems that occurred in our 
PD collaboration that had to be overcome for the PD program to be effective. Firstly, 
deprivatising teachers’ practices was necessary if these were to become a subject of 
inquiry in PD sessions. Secondly, coming to see changes as feasible within the 
institutional environment was instrumental in developing teachers’ genuine need and 
motivation for improving their teaching. Lastly, establishing continuation of the group 
learning across changes in its membership was important as the district in which we 
worked had relatively high teacher mobility. We have illustrated how attending to 
institutional context of teaching in the PD activities helped in addressing these practical 
problems.  
 The research team was initially unaware that conversations about institutional 
context would be influential in the group learning. Presented results are thus a product 
of genuine research team learning enabled by the retrospective analysis of the PD 
collaboration. We suggest that the results are most relevant to PD designers and 
facilitators working with teachers in similar institutional settings, and to teachers who 
would benefit form effective PD programs. 
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The Early Years Generalising Project involves Australian students, Years 1–4 (age 5–9), 
and explores how the students grasp and express generalisations. This paper focuses on the 
data collected from clinical interviews with Year 3 and 4 cohorts in an investigative study 
focussing on the identification, prediction and justification of function rules. It reports on 
students attempts to generalise from function machine contexts, describing the various 
ways students express generalisation and highlighting the different levels of justification 
given by students. Finally, we conjecture there are a set of stages in the expression and 
justification of generalisations that assist students to reach generality within tasks. 
 

The Early Years Generalising Project (EYGP)1 is a series of cross-sectional studies of 
cohorts of students from Year 1 to Year 4 (age 5 to 9) that aims to build theories 
regarding young students’ ability to grasp and express generalisations, the two 
components of the act of generalisation in terms of Radford, 2006). Each cross-sectional 
study covers a particular context and form of generalisation (e.g., growing patterns and 
pattern rules, equivalence and equation principles, operations and arithmetic processes 
and structures). Each study has two stages: (a) exploration—an initial stage where a 
small sample of students (n=5) from each Year level participate in one-on-one clinical 
interviews; and (b) validation—a final stage where, as a result of these interviews, 
conjectures were posed and tested in one-on-one semi-structured interviews conducted 
with a further cohort of 20 students from each Year level, selected to represent a wide 
range of academic abilities and cultures.  
 This paper presents a single aspect of the project; an exploration of how Year 3 and 4 
students (age 7 to 9) express and justify generalisations for the context of input-output 
changes using function machines and the form function rules. It covers two year levels 
of the initial stage of the cross-sectional study on function machines. 

Context 
For EYGP, mathematics consists of relating and transforming things (numbers, shapes, 
variables) with relationships and transformations being two ways of looking at the same 

e power of mathematics being the way relationships and idea (Scandura, 1971), and th

                                                        
1 EYGP is funded by ARC Discovery grant DP0987737. 
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transformations on their own or together give rise to generalisations (Warren, 2005). 
Functional thinking emerges from the transformational perspective but can be 
understood in relationship terms, and is the ability to identify the rules that relate two or 
more varying quantities (Smith, 2008).  
 There are some studies that suggest that young students can think functionally and 
generalise in functional situations. For example, Blanton and Kaput (2005) found that 
students can engage in co-variational thinking as early as Kindergarten and use  
t-charts and express rules in Years 3 to 5, while Cooper and Warren (2008) found that 
Years 3 and 4 students can generalise rules for function contexts. However, there is still 
little known about how young students’ identify and generalise function rules. Most 
studies of functional thinking have focused on middle years’ students and explored 
functions represented as growing patterns (e.g., Lannin, 2005, Radford, 2006). These 
studies require students to coordinate two variables where one is explicitly represented 
(e.g., the visual representation of the growing pattern) and the other variable is more 
abstract (e.g., the position of each term). By focusing on function machines and input-
output changes, this paper explores the question that, if we represent both variables and 
the function action more explicitly, does this assist students to reach more explicit 
generalisations? 
 Studies with older students with the focus on growing patterns have identified the 
different approaches students use when completing generalisation tasks. Harel (2001) 
identified two approaches: (a) results generalisation where a generality is developed 
from a few examples usually involving trial and error; and (b) process generalisation 
where a generality is developed and justified when considering progression across many 
steps. This classification is supported by Radford (2006) who has labelled the two 
approaches as naive induction and generalisation and Lannin (2005) who has labelled 
them non-explicit and explicit. To investigate this classification in younger students, 
this paper also explores the extent to which young children can justify their 
generalisations.  

Theoretical framework  
Underpinning this research project is the theoretical perspective of semiotics. 
Mathematics has been depicted as an intrinsic symbolic activity which is achieved 
through communicating using oral, bodily, written and other signs (Radford, 2006). The 
discipline of semiotics is based on perceivable signs that assist understanding of the 
mathematics processes of thought, symbolisation and communication. Of particular 
importance to this paper is the use of body and language, seen best through the physical 
activity of students as they interact with artefacts (Sabena, 2008).  Additionally, studies 
have noted that cognition is strongly related to the use of the body (Lakoff & Núñez, 
2000). It was this framework that drove the construction of the activities and framed the 
data analysis.  

Method 
Ten students from Years 3 and 4 (4 males and 6 females with an average age of 8.5 
years) were selected to be interviewed in the initial exploration stage of this study. The 
students were from a middle socio-economic school in the outer suburbs of a major city 
and had a range of academic abilities and cultural backgrounds. The interviews 
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consisted of 6 tasks; two having a language focus, one having a geometry focus, and 
three having a number focus. The aim of the tasks was to probe students’ understanding 
of functions. The interview was video recorded and was of approximately 20 minutes 
duration. The students were presented with activities involving concrete materials and 
whole body movement starting from unnumbered situations and moving to numbered 
situations. Table 1 presents the six tasks, each tasks function rule, and an example of the 
input and output values for each rule.  

Table 1. Example of tasks given to students. 

 Unnumbered situations  Numbered    
situations 

Numbered situations 

Task Language 
(1) 

Language 
(2) 

Shape (3) Number (4) Number (5) Number (6) 

Rule Add ‘ip’  Add ‘ap’ Make it thinner and 
smaller 

Add two Subtract three Double 

Example In Out In Out In    Out In Out In Out In      Out 

 T Tip M Map Red, 
large, 
thick 
triangle 

Red, 
large, 
thin 
triangle 

5 7 10 7 4        8 

 Initially, students were introduced to a cardboard box function machine called Rosie. 
The input and output values were presented on cards or as physical shapes. The 
interview began with the first language task—Language (1). Each student was shown a 
letter and asked to place it into Rosie’s ear (input) and then the researcher produced the 
output card from the opposite ear (output). This occurred for three input numbers. Then 
they were asked to predict the output value for given input values. Each student was 
then asked to identify the rule.  
 The questions posed were contingent on the responses given by the student. After the 
first question, depending on their responses, students were either given further examples 
or were asked to predict output values for given input values. They were asked then to 
predict input values for given output values and to identify the reverse rule. The 
researcher asked students to justify their answers and express the rule and its inverse in 
general terms. This process was repeated for each task. In practice, the process mirrored 
an “acting out” of input-output tables (t-tables) and identifying the relationship between 
the corresponding pairs of values in the table. From a semiotic perspective, the signs 
were the cards and kinaesthetic movement.  
 All video recordings were transcribed with attention paid to both the students’ verbal 
responses and their manipulation of the concrete materials, in particular how students 
engaged with the signs and interpreted these signs as they identified the function. The 
data was analysed by two researchers and member checks were performed. Semiotics 
has been used throughout the research project to analyse the data.  Within this particular 
study, the data sets have emerged out of the semiotic analysis conducted. The 
interpretation of actions are not included in this paper, but if interested please refer to 
Warren, Miller, and Cooper (2011).  
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Results and discussion 
The data associated with each task is organised into four sections, namely, the student’s 
ability to correctly predict: (a) output values from given input values, (b) the function 
rule, (c) input values from given output values, and (d) the inverse function rule.  
 Table 2 presents the tasks together with the frequency of students who were 
successful in each section. 

Table 2. Frequency of student’s correct responses to six tasks. 

Tasks Language tasks Shape task Number tasks 

 (1) (2) (3) (4) (5) (6) 

Rule Add ‘ip’ Add 

‘ap’ 

Make it smaller & 
thinner 

Add 2 Subtract 3 Doubling 

 

Predict output 8 8 6 10 9 8 

Identify output rule 8 8 8 9 8 8 

Predict Input 10 8 7 8 8 8 

Identify Input (inverse) rule 7 7 6 8 7 4 

 

The results indicate that students could predict the output card for given input cards 
when asked. The shape task was the only task in which students appeared to have 
difficulty and this pertained to their inability to describe the attributes of the particular 
shape (colour, size, thickness).  
 At least 80% of students could identify the rule Rosie was using to create the output 
value. However, students were not always able to identify the input rule (inverse rule). 
This was particularly so for the last number task (doubling) as students did not appear to 
have the mathematical language to describe the action of halving or dividing by two.  
 The students were then asked three questions to explore their ability to generalise the 
three number tasks.  

 First, they were asked to pick the largest number they knew as an input value and 
identify the corresponding value that would come out of the function machine. 
For the purposes of this study this has been labelled a quasi generalisation 
(Cooper & Warren, 2008, adapted from Fujii and Stephens’, 2001, notion of 
quasi-variable).  

 Second, the students were given a fictitious number (e.g., finky) as the input value 
and asked to predict the output value.  

 Third, their ability to inverse the process was also probed by asking them if 
‘finky’ came out what value would they put in the machine.  

These questions were included to determine if the student could generalise the rule 
beyond the use of numbers and move to a more abstract understanding that entailed the 
use of variables.  
 Table 3, below, identifies students’ responses to each of these three questions for 
each of the tasks. The tick indicates that their quasi-generalisation was correct and the 
written text identifies the rules they predicted for the fictitious number ‘finky’.  
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Table 3. Student’s success in quasi generalisation and generalising the number tasks. 

Student Plus 2 (number task 4) Subtract 3 (number task 5) Double (number task 6) 

 Quasi Finky in Finky out Quasi Finky in Finky out Quasi Finky in Finky out

S1  Take out 
the inky 

nr  nr nr  
 

nr nr 

S2  2Finky Finky  00Finky 3finky  2finky nr 

S3  2Finky -2finky  -3finky 3finky  Finky2 nr 

S4  Finky2 Finky-2  finky-3 finky3  Double 
finky 

Half finky

S5 nr nr nr nr nr nr nr nr nr 
 

S6  It will turn 
into a 2 

Finky-ky  nr nr  nr 
 

nr 

S7  Finky add 
2 letters 

Finky take 
2 letters 

nr finky  
-3 letters 

Finky plus 
3 letters 

nr nr nr 

S8  K + 2 = 7 
therefore 
k=5 

p –2 = 4 
therefore 
p=6 

 n – 3 = 16 
therefore 
n = 19 

N + 3 =19 
therefore 
n = 16 

 Double q Halve q 

S9  nr nr  nr nr nr nr nr 
 

S10  Finky + 2 Finky has 
to go down 
by 2 

 Finky – 3 Frisky + 3  Finky x 2 Finky 
divided in 
half 

Note: nr – no response 

 
Of the students who were asked to generalise the ‘add two rule’ using the word ‘finky’, 
2 students were successful in expressing the generalisation. The other students would 
either talk about the generalisation in regard to adding two letters or express it as 
‘finky2’ without using the mathematical operation involved with the function. S8 
required a value for the variable and therefore he used expressions that incorporated 
single letters.  
 Nine students’ generalisations aligned with Harel’s (2001) process generalisation 
(showing generalisation across a number of steps) or Lannin’s (2005) explicit 
generalisation (linking the dependent variable with the independent variable). The 
different levels of process/explicit generalisation tended to be related to 
misunderstandings of the notation system used to represent variables and expressions 
involving operations. Many of these misunderstanding reflected the categories identified 
by Küchemann (1981): particularly Letter as object, Letter as specific unknown, Letter 
as generalised number, and Letter as variable. It did not seem that the students were 
engaging in ‘guess and check’ either in the initial stages of identifying the rule or in 
“whole-object” strategies as identified in past research involving growing patterns (e.g., 
Lannin, 2005; Radford, 2006).  
 Table 4 presents the levels of expressions for generalisation together with examples 
of each descriptor for each level. Statements such as ‘finky2’ were accompanied by 
utterances such as “You add 2, it is finky2”, which aligns with adding two to 50 and 
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obtaining 52. In all there were 60 responses related to describing the generalisation (6 
per student).  

Table 4. Levels of expression for explicit generalisations together with frequency of student usage. 

Level Descriptor Example (+2 rule) Frequency

1 No expression R: What if I had a made up number like finky and put that into 
Rosie. What would come out?  
S: A donkey. 
R: What do you have to do with it? What does the machine do 
to it? 
S: I don’t know. 

25 

2 Letter as object R: So what do you think would happen to finky? 
S: Finky add two letters  

7 

3 Letter as specific 
unknown 

S: It is a K so K plus 2 is & so K is 5.  4 

4 Letter as generalised 
number or variable  

R: What do you think would happen if I put in a number called 
finky?  
S: 2 Finky you add two. 
 
R: What if I put in a number like finky? What would come out? 
S: Finky add 2. 

12 
 
 
 
12 

 

As indicated in the results, 40% of the students’ responses (n=24) incorporated the use 
of letters as generalised numbers or as variables. This was accompanied with students 
reiterating that ‘finky’ meant any number. Most of the responses that were considered as 
Level 1 responses were proffered by three students, S1, S5, and S9. From the results, 
stages of expression of justification were hypothesised. These stages relate to the use of 
numbers and unknowns in the students’ general statements, and reflect the stages 
proffered by past research (e.g., Lannin, 2005). Table 5 presents the three stages with 
the associated exit points of each student. 

Table 5. Stages of expression of justification. 

Stage  Descriptor Exit point 

1 Numeric evidence 
(countable numbers) 

Used small countable numbers to justify the rule   

   S5, S7, S9 

2 Quasi - generic 
evidence (uncountable 
numbers) 

Used quasi-variables to justify the rule   

   S1, S6, S8  

3 Generic evidence 
(algebraic expression) 

Used letter notation to justify the rule  

   S2, S3, S4, S8, S10 

 

This research makes the distinction between using large numbers to justify 
generalisations and using algebraic notation. This reflects the distinction that Fujii and 
Stephens (2001) make with regard to the use of variables and the quasi-generalisation of 
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Cooper and Warren (2008). We conjecture that for young students, moving from 
familiar numeric situations to using large uncountable numbers represents a leap in 
understanding. It shows that students are moving from a simple computational situation 
to evidencing an understanding of the applicability of that computation across the 
number system.  

Conclusion and implications  
This research presents three main tentative conclusions. First, young students can 
engage in activities that require them to express and justify generalisations. This result 
suggests that there is a need for young students to experience functional thinking 
activities within the classroom to develop higher levels of mathematical understanding. 
It would be suggested that kinaesthetic activities that link directly to the learning 
context of the student would be beneficial. The level of thinking they exhibited mirrors 
that shown in past research in growing patterns with older students. In this instance 
though there is one distinctive difference in these students’ responses which is the 
absence of Lannin’s (2005) terms of non-explicit generalisations or recursive thinking, 
building on the previous term or terms in the sequence to determine subsequent terms. 
We suggest that this is a result of how the activity was constructed where the signs for 
the input and output were explicit (represented as input and output cards) and the 
linking of the data sets was accompanied by physical movement. In addition the input 
numbers were randomly selected thus ensuring that there was no implicit relationship in 
one data set (e.g., the input or output numbers).  
 Second, we conjecture that young students’ ability to reach generalisations was 
assisted by the types of activities that were selected and the way they were presented to 
the students. The crux of problems involving functional situations is the need to 
coordinate two data sets, the independent and dependent variables and identify the 
relationship between these sets. The activities for this research were deliberately chosen 
so that this relationship was transparent. From a semiotic perspective the signs for each 
were visible and required the students to be actively involved in their creation. Blanton 
and Kaput (2005) also chose tasks where the variables were explicitly related, for 
example, the number of eyes and tails on puppy dogs, and hence the students 
demonstrated success in this task. In addition, the EPGP study, the function or change 
process was represented kinaesthetically by gesturing with hands across the front of the 
function machine. This assisted students to focus on the underpinning concept 
embedded in all of these activities, which is co-variational thinking.  
 Third, we also conjecture that the context for growing patterns in previous studies is 
restrictive and abstract. The position of each term as one of the variables is not 
transparent and we conjecture this contributes to the use of guess and check and 
recursive strategies. Additionally, in past research students have been asked to engage in 
the exploration of functional problem solving situations with little prior experience in 
co-variational thinking. This adds to their difficulties. Our research suggests that young 
students can deal with co-variational situations as long as both variables are explicitly 
represented and the rule is clear for students. The tasks presented in this study focus on 
the relationships within the function, that is, it is not obscured by other aspects as it is in 
patterning. When using examples such as patterning sequences, students tend to ‘run 
along’ the pattern instead of recognising the covariant relationship between pattern 
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terms and their positions. Additionally, cards were displayed to the students in a random 
sequence forcing students to focus on the relationship between the input and output 
(horizontal relationship) rather than on the relationship of just the output cards (vertical 
relationships).  
 This paper has focused on students’ attempts to generalise from function machine 
contexts, describing the various ways students express generalisation. Furthering the 
conjectures presented the Early Years Generalising Project is continuing to further 
investigate functional thinking with larger cohorts of students.  
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This paper considers the change in teachers’ confidence, beliefs, and knowledge with 
respect to mathematics teaching across a 3-year collaborative intervention, which although 
planned in a reform-based learning environment, took place as the reforms were rolled back 
and a new view of curriculum introduced. Of 86 middle school teachers involved at some 
time during the project only 19 completed both the pre- and post-profiles and of these only 
11 had been in the project since its beginning. Teacher change appears more likely to have 
been related to the length of time in the program than to the state-wide curriculum changes. 

Introduction 
The Tasmanian project upon which this report is based was titled “Mathematics in an 
Australian Reform-Based Learning Environment” (MARBLE). The “reform-based 
learning environment” reflected moves of several Australian states to create values-
based curricula “designed to meet current educational needs by making legitimate 
connections between disciplines” (Department of Education Tasmania (DoE), 2002, 
p. 11). The aims of the project within the context of the Tasmanian Essential Learnings 
curriculum (DoE, 2002) were to provide professional learning (PL) for teachers to assist 
them in enhancing middle school students’ mathematical understanding necessary for 
the quantitative literacy needs of today’s society (Steen, 2001) and for the further study 
of mathematics in order to contribute to innovation in Australia (Committee for the 
Review of Teaching and Teacher Education, 2003).  
 Research elsewhere had suggested that important features of PL programs included: 

(a) ongoing (measured in years) collaboration of teachers for purposes of planning with 
(b) the explicit goal of improving students’ achievement of clear learning goals, (c) 
anchored by attention to students’ thinking, the curriculum, and pedagogy, with (d) 
access to alternative ideas and methods and opportunities to observe these in action and to 
reflect on the reasons for their effectiveness. (Hiebert, 1999, p. 15) 

Sowder (2007), in her extensive review, similarly advocated the need for ongoing PL. 
The challenge faced by the MARBLE PL program was fitting all of these aspects into 
the time and resources available. 
 Several papers previously reported on some of the outcomes of the MARBLE 
project. Pertinent to the current work, Watson, Beswick, and Brown (2006) reported on 
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initial data collected on a fraction problem, indicating the strengths and weaknesses of 
teachers’ pedagogical content knowledge (PCK) in relation to the task. Information 
such as this formed the basis of the interventions that took place during the project. 
Initial levels of teachers’ confidence and beliefs were covered by Beswick, Watson, and 
Brown (2006). Change in students’ attitudes (Beswick, Watson, Brown, Callingham, & 
Wright, 2011) and performance (Watson, Brown, Beswick, Callingham, & Wright, 
2010) over the time of the project have also been reported. Initial analysis of teacher 
knowledge was provided by Beswick, Callingham, and Watson (2011). The current 
paper completes the data analysis by reporting on the changes that took place for 
teachers over the 3 years of the MARBLE project. 

Background context for MARBLE 
The background to the MARBLE PL program was the Essential Learnings Framework 
(DoE, 2002). This curriculum framework identified 18 Key Elements within five 
Essential Learnings (Thinking, Communicating, Social Responsibility, World Futures, 
and Personal Futures). “Being Numerate” was identified as a key element in the 
Communicating Essential and was one of the first Key Elements against which teachers 
reported in 2005. This emphasis recognised “Being Numerate” as an important cross-
curricular understanding and coincided with an increased focus on pedagogy and 
collaborative practice across the curriculum. 
 Amid controversy over the implementation of the Essential Learnings Framework, in 
2006 a new curriculum was announced by the incoming Minister for Education that 
would “make [the curriculum] easier to understand, and more manageable for teachers 
and principals” (DoE, 2007, para 1). Mathematics/Numeracy became one of eight 
defined areas of the curriculum against which both primary and secondary teachers are 
required to report. 
 Against this backdrop, the research question for this paper is: What changes occurred 
for various subgroups of teachers in the MARBLE project in relation to the knowledge 
and confidence for teaching mathematics?  

The professional learning program 
The initial experiences provided for teachers in the MARBLE project were summarised 
by Watson, Beswick, Brown, and Callingham (2007) in relation to mathematical 
content knowledge, PCK, knowledge of students as learners, and curriculum 
knowledge. PL topics in the earlier years of the project included quantitative literacy in 
the media, problem solving strategies, and assessment (formative and summative, and 
involving the use of rubrics). The final coverage of topics in the project is contained in 
Beswick et al. (2011). Topics included the use and benefits of concrete materials, 
planning a unit of work, and understanding common misconceptions with fractions.  
The schools in the project were situated in rural areas of the south (five) and north (four, 
including one Catholic) of the state. Four of the DoE schools were district high (K–10), 
one was a high (7–10), and three were primary (K–6) schools; the Catholic school was 
K–10. Except for one planning session with representatives of all schools held at the 
beginning of the second year, all PL sessions were held within the two clusters of 
schools. There were 3 whole-of-cluster sessions in the first year, 11 in the second, and 
10 in the third in each region. The sessions were largely the same in each cluster but on 
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occasion the specific needs of teachers meant that modifications of content occurred or 
specific topics were included. Feedback, in addition to that reported here, was sought 
from teachers at the end of each session, and through meetings with school 
coordinators, face-to-face interviews with 19 teachers at the end of the project, and 
surveys of teachers who left the project (and school) during the project. 

Methodology 
Design and sample 
The overall research design was a longitudinal study of teacher and student change with 
respect to the interventions as part of the project. As noted elsewhere (e.g., Watson et 
al., 2010) students’ attitudes and performance were measured each year. Teachers 
completed a profile adapted from the work of Watson (2001) when they entered, and at 
the end of, the project.  
 It was envisaged that most teachers would be in the project for 3 years but as seen in 
Table 1, this was not the case. The table contains information on the teachers who took 
part in the MARBLE project. Some teachers did not participate for long enough to 
complete either the initial or the final teacher profile. 

Table 1. Teacher participation in the MARBLE project. 

 Year 1 Year 2 Year 3 Total 
Number of Teachers 42 47 54 
New Teachers - 24 20 86 
Completed Initial Profile 42 12 9 63 
Completed Final Profile 11 3 11 25* 

* Of the 25 teachers who completed the final profile, only 19 had completed the initial profile. 

Instruments 
The initial profile questions provided a data set comprising five sub-scales relating to 
teaching mathematics: Confidence, Everyday Life, Numeracy in the Classroom, 
General Pedagogical Knowledge, and Pedagogical Content Knowledge. Coded scores 
for items in the Confidence, Everyday Life, and Numeracy in the Classroom subscales 
ranged from 1 to 5, with higher scores representing more confidence to teach the 
concept (such as fractions) or a higher level of agreement with the given statement (e.g., 
“I need to be numerate to be an intelligent consumer”).  
 General Pedagogy items were coded hierarchically, with higher scores representing 
higher levels of pedagogical knowledge. The highest level response (code 3) for the 
item, “How would you go about improving students’ numeracy and mathematical 
understandings?”, for example, indicated that teachers provided an integrated, high-
level rationale for their written responses. The PCK items were also scored 
hierarchically and asked teachers to think about the range of responses their students 
would give to each of the numeracy items, and then consider how to use the items in the 
classroom. An example of a PCK item is presented in Figure 1.  
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Figure 1. An example of a PCK item used in both profile administrations. 

From the sub-scales a Combined Scale was constructed that was used by Beswick et al. 
(2011) to suggest a four-level hierarchy for teacher knowledge for teaching 
mathematics. These levels were labelled Personal Numeracy, Pedagogical Awareness, 
PCK Emergence, and PCK Consolidation, based on the outcomes of Rasch (1960) 
analysis, to reflect increasing ability of teachers to express confidence in their capacity 
to teach topics, to cope with numeracy in everyday life, to agree with student-centred 
statements about numeracy in the classroom, and to display sophisticated general 
pedagogical knowledge and PCK for mathematics. 

Analysis 
The original data set used by Beswick et al. (2011) was augmented by one teacher; the 
software Winsteps (Linacre, 2006) and the Rasch Partial Credit Model (Masters, 1982) 
were used for the analysis reported here. Of the 59 individual profile items, 49 were 
common to both initial and final profiles and were used to link the two profiles for 
analysis. The 49 link items provided an anchor set that established the difficulties of the 
items at each test administration relevant to each other and estimates of person ability 
were identified for each teacher in the original and follow-up profile, anchored to the 
same set of link item difficulties so that genuine comparisons could be made. These 
ability measures were used as a basis for subsequent analysis. T-tests were used to 
compare the mean ability levels of all teachers who completed either the initial or final 
profiles and paired t-tests were used to compare those of teachers who completed the 
profile on both occasions. Effect sizes were calculated as described by Burns (2000), 
looking at the profile items as a whole and separated into the five sub-scales. 

Results 
The results for the overall profile and the five sub-scales are presented in four stages, 
comparing the initial and final profiles completed by the following groups of teachers: 
all at the start (n = 63) with all at the end (n = 25); those who completed both initial and 
final profiles (n = 19); those who began in Year 1 and completed both profiles (n = 11); 
and those who began in Years 2 or 3 and completed both profiles (n = 8). 
 Table 2 shows that in comparing all teachers who completed the initial profile (n = 
63) and/or the final profile (n = 25) there was little change in the overall Combined 
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Scale, Confidence, Numeracy in the Classroom, or PCK. The change in teachers’ 
reaction to numeracy in Everyday Life was significant and negative. The mean ability 
score for this subscale for teacher ID17, for example, fell from 4.6 to 1.4, a difference of 
3.2 (raw score range of 1 to 5). The only significant positive change for this group 
occurred in relation to general classroom pedagogical knowledge, which, from the 
effect size, should have been observable in the classroom.  

Table 2. Change for all teachers completing initial and/or final profiles. 

Original (n = 63) Follow-Up (n = 25)  
mean SD mean SD 

t p-value Effect 
size 

Combined scales 0.57 0.45 0.61 0.41 0.391 0.697 0.09 
General Pedagogy -0.24 0.82 0.45 0.87 3.530 0.001** 0.83 
Confidence 0.84 1.21 0.87 0.94 0.120 0.904 0.03 
Everyday Life 1.70 1.30 1.03 0.75 2.397 0.019* -0.56 
Numeracy in the 
Classroom 

0.52 0.41 0.54 0.41 0.231 0.818 0.06 

PCK -0.03 1.36 0.16 1.34 0.596 0.553 0.14 
* Significance <.05.     ** Significance <.01. 
 
Table 3 contains parallel results for the 19 teachers who completed both profiles, 
regardless of when they began with the MARBLE project. The results were in the same 
direction and were similar to those in Table 2. 

Table 3. Change for teachers who completed both initial and final profiles (paired t-tests). 

Original (n = 19) Follow-Up (n = 19)  
mean SD mean SD 

t p-value Effect 
size 

Combined scales 0.61 0.45 0.64 0.47 0.165 0.870 0.05 
General Pedagogy -0.08 1.00 0.53 0.98 1.889 0.067 0.6 
Confidence 0.91 1.39 0.93 1.04 0.050 0.957 0.02 
Everyday Life 2.02 1.49 1.17 0.78 2.180 0.036* -0.69 
Numeracy in the 
Classroom 

0.55 0.33 0.56 0.38 0.023 0.982 0.01 

PCK -0.30 1.64 0.06 1.48 0.704 0.486 0.23 

* Significance <.05. 

Table 4 summarises the results for the 11 teachers who were involved in the MARBLE 
project for all 3 years and completed both profiles. The t-values are not significant, 
except for Everyday Life, due to the small sample size, but the effect sizes are larger 
than for the other groups of teachers. For the 11 teachers, only Numeracy in the 
Classroom showed no change, whereas PCK showed a meaningful increase reflected in 
the effect size. Results for General Pedagogy and Everyday Life were similar to those 
for the large data sets of which they were a part. Using Burns’ (2000) classification of ± 
0.4 as a significant effect size for this type of data, the combined scale of all items for 
these teachers shows an almost significant effect size at 0.38. This differs considerably 
to the effect size seen in Table 2, showing almost no difference. Using the four-level 
hierarchy described by Beswick et al. (2011), three of the 11 teachers achieved a higher 
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level in the follow-up profile administration; one moving from Level 3 (PCK 
Emergence) to Level 4 (PCK Consolidation), and the other two from Level 2 
(Pedagogical Awareness) to Level 3. Two teachers shifted in a negative direction, 
moving from Level 3 to Level 2, however the degree of movement was very small. 
Other teachers remained within the same level. Overall, the mean ability score from the 
first profile administration to the second went up for 7 teachers and down for 4 teachers. 

Table 4. Change for teachers who participated for 3 years and completed both initial  
and final profiles (paired t-tests). 

Original (n = 11) Follow-Up (n = 11)  
mean SD mean SD 

t p-value Effect 
size 

Combined scales 0.65 0.37 0.79 0.35 0.926 0.366 0.38 
General Pedagogy -0.20 1.19 0.48 0.97 1.486 0.153 0.61 
Confidence 1.20 1.18 1.37 0.79 0.627 0.538 0.26 
Everyday Life 2.36 1.45 1.30 0.70 2.177 0.042* -0.89 
Numeracy in the 
Classroom 

0.55 0.36 0.56 0.39 0.074 0.942 0.03 

PCK -0.85 1.87 0.26 1.38 1.590 0.127 0.65 

* Significance <.05. 

Table 5 summarises the results for the 8 teachers who were involved in the project for 1 
or 2 years only and completed both profiles. The results are similar to those of the other 
participants in relation to an improved general pedagogy, a decrease in relation to use of 
numeracy in Everyday Life, and no change in relation to Numeracy in the Classroom. 
The big changes, however, were with respect to Confidence and PCK, which were 
negative and brought about a negative change in the Combined Scale. These teachers 
appeared to have experienced an “implementation dip” in terms of the PCK aims of the 
project. 

Table 5. Change for teachers who participated for 1 or 2 years of the project only  
and completed both initial and final surveys (paired t-tests). 

Original (n = 8) Follow-Up (n = 8)  
mean SD mean SD 

t p-value Effect 
size 

Combined scales 0.57 0.57 0.43 0.55 0.492 0.630 -0.23 
General Pedagogy 0.10 0.71 0.59 1.06 1.103 0.289 0.52 
Confidence 0.65 1.68 0.33 1.09 0.449 0.661 -0.21 
Everyday Life 1.54 1.50 1.00 0.90 0.884 0.392 -0.42 
Numeracy in the 
Classroom 

0.57 0.30 0.56 0.39 0.057 0.955 -0.03 

PCK 0.47 0.88 -0.22 1.65 1.039 0.317 -0.49 

Discussion and conclusions 
In answering the research question about change in teacher knowledge and confidence 
over the 3 years of the MARBLE project, two aspects of the results are considered. The 
first is the overall disappointing outcome for teachers generally. The second is the better 
performance of the 11 teachers in the project for 3 years.  
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 The numbers in Table 1 support Hiebert’s (1999) view that, regardless of the focus 
on explicit goals, students’ thinking, and alternative ideas, little impact can be expected 
if the time of exposure is not measured in years (plural). The reasons for the turnover of 
teachers were not related to the content of the PL as only one teacher of the 86 
expressed disagreement with the aims of the project and actively withdrew. The other 
teachers left the project because of changed roles or schools. Many of the exiting 
teachers, surveyed informally, expressed thanks for what they had achieved from the 
program, and some indicated that they regretted leaving. 
 Although the numbers are small, the more positive outcomes for the teachers who 
were in the project for the 3 years are encouraging, particularly with respect to PCK. As 
reported by Watson et al. (2006), the teachers initially struggled with PCK tasks. The 
improvement suggests that at least some of the requirements set out by Hiebert (1999) 
and Sowder (2007) were met during the program. Perhaps it is possible to speculate that 
difference in the PCK outcomes for the 11 teachers in the program for 3 years and the 8 
in it for 2 years or less reflect the difficulty in taking up new ideas associated with 
teaching numeracy and having the confidence to trial them purposefully in the 
classroom. It may be that the teachers who were in the project for 3 years had similar 
experiences but persevered and hence came out with more proficiency in their PCK and 
Confidence. It would appear that at least 3 years are needed to overcome the 
“implementation dip” that the somewhat radical change in numeracy practice brought 
about. That the eleven teachers also displayed the same negative change in relation to 
numeracy in Everyday Life as did the other teachers, suggests that generally all of the 
teachers became more realistic in their assessment of their ability to handle numeracy in 
everyday settings.  
 The authors would suggest, somewhat facetiously, that others should choose for their 
interventions, schools with little staff movement and systems that do not change their 
curriculum during a 3-year period. Unfortunately this is not the real world. The Linkage 
Partner in this project purposely chose two rural clusters of schools where it felt help 
with numeracy was needed; however, little was done outside of MARBLE to alleviate 
the problem of teacher retention and issues of rurality. As to system change, although 
unfortunate and creating an observable underlying tension for teachers, it was not felt 
by the authors to be a major factor in the outcomes of the research. 
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Students’ perceptions of what teachers do and what students themselves do that helps them 
learn gives an insight into what might be effective in a mathematics classroom. This paper 
looks at student perceptions in general but also specifically in relation to the teaching and 
learning of mathematics. Data were collected from students at two South Australian schools 
via an online survey conducted each year for three years. The students were asked 
questions relating to what teachers did that helped them learn and what they did that helped 
them learn Mathematics. The results of the survey will be presented and will highlight areas 
that students think are most important in learning mathematics. 

Introduction 
The importance of teachers to student learning has been well established worldwide 
(Darling-Hammond, 2007) and in Australia, a government report Teachers for the 21st 
Century: Making the Difference (Department of Education Science and Training 
[DEST], 2000) highlighted that not only are teachers central to student learning, but that 
student needs are changing and therefore the skills teachers need to be effective are also 
changing. The related area of teacher effectiveness has in recent times been the subject 
of scrutiny in Australia (DEST, 2000, 2003) and overseas (Darling-Hammond, 2000, 
2007; Wang, Haertel, & Walberg, 1993) and much has been written on the qualities of a 
good teacher (Center for Teaching Quality, 2006; Department of Education and 
Children’s Services [DECS], 2005).  
 Darling-Hammond (2007) proposed a number of qualities for effective teachers,  

 strong general intelligence and verbal ability that help teachers organize and 
explain ideas, as well as to observe and think diagnostically;  

 strong content knowledge—up to a threshold level that relates to what is to be 
taught;  

 knowledge of how to teach others in that area (content pedagogy), in particular 
how to use hands-on learning techniques (e.g., lab work in science and 
manipulatives in mathematics) and how to develop higher-order thinking skills;  

 an understanding of learners and their learning and development—including how 
to assess and scaffold learning, how to support students who have learning 
differences or difficulties, and how to support the learning of language and 
content for those who are not already proficient in the language of instruction; 
and 
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 adaptive expertise that allow teachers to make judgments about what is likely to 
work in a given context in response to students’ needs. (p. 3) 

Wilson, Cooney and Stinson, (2005) looked specifically at mathematics teachers and 
highlighted four main areas that make for good teaching in mathematics; Prerequisite 
teacher knowledge, promoting mathematical understanding, engaging students, and 
effectively managing the classroom environment. They went on to examine these areas 
in more detail and highlighted some more specific practices such as Connecting 
mathematics, Visualizing mathematics, Assessing students’ understanding, and Refrain 
from telling. Although they did indicate that while the ―teachers were emphatic that 
good teaching was not telling, they believed that they should guide the students and 
even tell in instances where guiding was unsuccessful‖ (p. 97). Perry (2007) also 
highlighted that mathematics teachers needed to have ―a passion and enthusiasm for 
both the subject and its teaching‖ and ―to know their children well and to make sure that 
their lessons were fun and relevant, both for the children and for the teachers‖ (p. 282).
The Australian Association of Mathematics Teachers [AAMT] (2006) has developed 
research-based Standards for Excellence in Teaching Mathematics in Australian 
Schools, which are organised around the three domains of Professional knowledge,
Professional attributes, and Professional practice.
 While much of the research into what makes a good teacher is based on data that has 
been collected from teachers (Perry, 2007; Wilson, Cooney, & Stinson, 2005), students’ 
perceptions of what teachers do that helps them learn (Wang, Haertel, & Walberg, 
1993) and what students do to help themselves learn (Hattie, Biggs, & Purdie, 1996, 
Lawson & Askell-Williams, 2002) has also been the subject of ongoing research. Wang
et al. (1993) synthesised research into students perceptions of what helps them learn and 
identified 28 categories which were grouped into six broad types of influences. One 
type was Classroom instruction and climate, which included eight categories—
Classroom management, Student and teacher social interactions, Quality of instruction,
Classroom climate, Student and teacher academic interactions, Classroom assessment,
Classroom instruction, and Classroom implementation and support. Kiewra (2002)
looked into what teachers can do that develops the learning strategies of the students. 
 This paper adds to the research around teacher effectiveness from a student 
perspective and also what strategies they use when learning mathematics.  

Method 
The results presented here are a part of a larger 3-year study that examined 
―contemporary learning environments‖ (with a focus on the use of learning 
technologies) involving four South Australian schools. This paper reports on students’ 
perceptions of what teachers do that helps them learn and what they, as students, do that 
helps them learn. The results are from two of the four schools involved in the larger 
study, one a large metropolitan high school with students from Years 8 to 12 and the 
other a small R–12 area school.  
 A three-stage process was used to gather the data for the research around student 
perceptions of what teachers do that helps them learn. In Stage 1, student focus groups 
were asked open ended questions. In Stage 2, the notes from the focus group responses 
were collated by the researchers and common themes extracted. These common themes 
were then turned into statements, where the words used by the students were 
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incorporated into the statements in order to make the student voice more evident. In 
Stage 3, the statements were added to an online survey and the students were asked to 
indicate what they thought were the five most important aspects and also to indicate 
how often they saw these actions on a five-point Likert scale.  
 The first time that the survey was run in 2008, an open response question “What 
advice would you give teachers to help them better support your learning?‖ was 
incorporated to allow students to add any other things that teachers did that helped them 
learn. This was done in order to capture anything not evident from the focus groups. 
The survey was then run in 2009 and 2010. The same statements were used in all three 
surveys, as the open response question had not yielded anything new.  
 The students were asked to nominate what they considered to be their best subject 
and then in relation to that subject to respond to a series of questions related to what 
they do that helps them learn. These questions were only part of the 2009 and 2010 
surveys.  
 Each year, classes of students were taken to the computer room and given time to 
complete the questionnaire. A total of 918 students completed the online survey in 
2008, 1105 in 2009, and 624 in 2010. The survey data was imported into SPSS for 
analysis and the open ended responses were examined by the researchers to identify any 
additional aspects of teaching that the students considered to be important.  

Results and discussion 
The student ranking of what they believe to be the most important practice or process 
that helps them learn was very consistent across the three years, particularly in the top 
five (see Table 1, next page). Teachers explaining things well was the most important 
for all three years, with almost half the students rating it either most or second most 
important in 2010. Given that the data were collected over a three year period, only the 
year 8, 9, and 10 students would have completed all three surveys. This meant that there 
were between 100 and 200 new students doing the survey each year. This level of 
consistency across two quite different schools across three years does strengthen this 
result.  
 The top five practices are quite consistent with aspects of the AAMT Standards for 
Excellence in Teaching Mathematics in Australian Schools (AAMT, 2006) as well as 
aspects identified by Wilson, Cooney and Stinson (2005) and Perry (2007). 
Interestingly, classroom management was rated quite low and not seen as being a 
significant issue in these two schools, and so it would be interesting to see if this was 
more highly rated in other more challenging schools. Being extended in class was also 
rated quite low by the students, as was looking at ways students learn. These are both 
about teachers’ processes/practices that would be difficult for students to observe and 
would have long-term effects, as opposed to the more immediate effects from the more 
highly ranked processes/practices.  
 The students were also asked to rate how frequently they observed the teacher 
practice or process, on a Likert scale from 1–5 (Never, Some of the time, About half the 
time, Most of the time, and All the time). The mean of the ratings was calculated and 
used as a measure to compare across the three years.  
 
 

770



WHITE 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

Table 1. Student ranking of what they believed was the most important practice or process that a teacher 
used that helped them to learn.  

No. Aspect 
Rank 
2008 

Rank 
2009 

Rank 
2010 

3 Teachers explained things well 1 1 1 
1 In general teachers got me interested in the lesson material 2 2 2 
17 My teachers were approachable 3 3 3 
2 My teachers encouraged me to achieve 4 4 4 
9 My teachers provided useful feedback 5 5 5 
5 My teachers would check on our understanding of lesson material 6 8 7 
15 My teachers were passionate and energetic about teaching 7 7 8 
18 My teachers talked to me as an individual 8 9 9 
7 My teachers' lessons were well organised 9 6 6 
11 My teachers arranged for student to have some choice in class activity 10 13 10 
16 My teachers used a variety of ways of explaining things 11 11 6 

8 
My teachers would generally try to provide for different student's 
learning needs 

12 12 15 

4 My teachers told me about ways to remember what we were learning 13 10 11 
12 Generally classes were well managed 14 15 14 

13 
Generally the class environment encouraged me to achieve excellent 
results 

15 14 13 

14 Generally I was able to have input to the things I am learning 16 17 17 
10 My teachers would extend me during classes 17 16 19 
6 My teachers would closely look at the ways in which we were learning 18 18 16 

19 
My teachers implemented learning experiences with ICT that helped me 
learn 

19 19 18 

20 
My teachers implemented learning experiences that used ICT to 
specifically cater for different needs of students 

20 21 21 

21 
My teachers supported students to learn for themselves what ICT to use 
and when to use it 

21 20 20 

 
The top five most important practices, as rated by the students, were experienced by the 
students quite frequently, and in most cases there was an increase in the mean across the 
three years of the surveys which would indicate that the practice was becoming more 
frequently experienced by the students. It is interesting to note that there are some 
practices that are frequently experienced, such as ―Generally classes were well 
managed‖ which was the second highest mean value, that were not considered to be 
important by the students, who rated it 14th or 15th. Teachers offering choice in a 
lesson was rated as the 10th most important but was one of the least frequently 
experienced practices.  
 The schools involved used the data from the first survey to look at their practices and 
identify areas that needed to be further developed. The schools used the data in different 
ways, with one school getting the student leadership team to report the data back to 
teachers during a staff meeting and talk about what they saw as being important. The 
other school had the student leadership work with the rest of the students to unpack 
what they meant by the top ranked practices and what they would like to see improved. 
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The student data provided a very useful stimulus for discussion and from the data in 
Table 2 there can be seen an overall trend of increased frequency of important practices 
experienced by the students. 

Table 2. Mean rating of frequency of observation of teacher practice or process.  

No. Statement 2008 2009 2010 
1 

In general teachers got me interested in the lesson material. 
2.95 2.99 3.18 

2 My teachers encouraged me to achieve. 3.49 3.36 3.50 
3 Teachers explained things well. 3.32 3.30 3.45 

4 My teachers told me about ways to remember what we were learning. 2.76 2.76 2.87 
5 My teachers would check on our understanding of lesson material. 3.08 2.99 3.07 
6 My teachers would closely look at the ways in which we were 

learning. 
2.84 2.76 2.81 

7 My teachers' lessons were well organised. 3.66 3.55 3.58 
8 My teachers would generally try to provide for different student's 

learning needs. 
3.06 2.97 3.03 

9 My teachers provided useful feedback. 3.22 3.15 3.36 
10 My teachers would extend me during classes. 2.78 2.72 2.89 
11 My teachers arranged for student to have some choice in class 

activity. 
2.65 2.64 2.87 

12 Generally classes were well managed. 3.54 3.45 3.61 
13 Generally the class environment encouraged me to achieve excellent 

results. 
3.05 3.10 3.30 

14 Generally I was able to have input to the things I am learning. 3.10 2.97 3.26 
15 My teachers were passionate and energetic about teaching. 3.13 3.09 3.31 
16 My teachers used a variety of ways of explaining things. 3.16 3.06 3.22 
17 My teachers were approachable. 3.60 3.50 3.75 
18 My teachers talked to me as an individual. 3.10 3.09 3.38 
19 My teachers implemented learning experiences with ICT that helped 

me learn. 
2.82 2.86 3.21 

20 My teachers implemented learning experiences that used ICT to 
specifically cater for different needs of students. 

2.64 2.59 2.91 

21 My teachers supported students to learn for themselves what ICT to 
use and when to use it. 

2.85 2.77 3.18 

 
The students nominated the subject that they did best at and were asked to rate a series 
of statements related to what they do that helps them learn that subject on a 5 point 
Likert scale (Strongly disagree, Disagree, Neutral, Agree, and Strongly Agree). The 
data from students who indicated that Mathematics was their best subject has been 
presented in Table 3 below, showing the means for each of the statements.  

Mathematics was their best subject 
In 2009, 16.9% of the students surveyed nominated Mathematics as their best subject, 
second only to English at 17%, this would seem to be a very positive and possibly a 
surprising result. However, the students who rated Mathematics as their best subject 
were, not surprisingly, very sure that they could succeed. The students also indicated 
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that they could do better if they made a greater effort and that they really wanted to 
understand what they were learning.  
 The data below, although presented in two sections, need to be read together. For 
example, the data in Table 3 indicate that the students are not very likely to use the 
World Wide Web for Mathematics, while Table 4 indicates they are less likely to use 
the web than for most other subjects.  

Table 3. Student rating of agreement for statements relating to what they do that helps them learn 
Mathematics.  

Statement 2009 
Mean 

2010 
Mean 

I am sure that I can do well in this subject. 4.40 4.42 
I practise things over and over until I know them well in this subject. 3.68 3.97 
I make a note of things that I don't understand very well in this subject, so that I can follow 
them up. 

3.64 3.90 

I make plans for how to do the activities in this subject. 3.22 3.43 
I make up questions that I try to answer about this subject. 2.82 3.38 
I try to put ideas into my own words when I'm learning something new in this subject. 3.51 3.78 
I am deeply interested in this subject 3.64 3.72 
I think about my thinking, to check if I understand the ideas in this subject. 3.59 3.78 
I draw pictures or diagrams to help me understand this subject. 3.54 3.68 
I can get better at this subject if I put in the effort. 4.17 4.22 
When I have finished an activity in this subject I look back to see how well I did. 3.86 3.99 
I want to really understand what I am learning in this subject. 4.17 4.26 
I use the world wide web (e.g., Google, Wikipedia) to help me understand this subject. 2.80 3.08 

 
It is notable that the students used practice as a way of learning mathematics, and the 
students also highlighted review as being very important—and that effort and 
understanding were valued. 
 The means in all of the statements increased from 2009–2010, indicating that the 
students were more positive about the range of the strategies listed to help themselves 
learn. There had been a greater emphasis on contemporary learning within the schools 
and this may indicate that the students were more aware of their own learning strategies.  

Differences between learning areas 
 The section on what students do that helps them learn was structured so that each 
student nominated one area and answered the questions in relation to that subject only; 
as such different students responded to each of the subjects and so care must be taken 
when looking at the results comparing subjects.  
 Table 4 highlights differences in column means for the different learning areas for 
the 2009 data. The comparison of column means is presented in Table 4, below, where a 
letter in a column indicates that there is a significant difference between the means of 
that subject and the column’s subject for the question in that row. These results are 
based on two-sided tests assuming equal variances with significance level 0.1, and, for 
each significant pair, the letter of the subject with the smaller mean appears under the 
subject with larger mean. The letters in the table represent the subject that the students 
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nominated as their best subject: A—no subject nominated (Blank),  B—Arts , C—
Design and Technology (D&T), D—English, E—English as a Second Language (ESL), 
F—Languages other than English (LOTE), G—Mathematics, H—Physical Education 
(PE), I—Science, J—Studies of Society and the Environment (SOSE), and K—
Vocational and Employment Training (VET). When reading the table, any letter in the 
Mathematics column represents a subject that has a mean less than Mathematics, while 
any subject column that has a G in it will have a mean greater than Mathematics for that 
question. 
 

Table 4. Differences in column means. 

 
Subject 

 Blank Arts D&T Engl. ESL LOTE Math PE Sci. SOSE VET 
(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K) 

H_1. I am sure that I can do well in 
this subject. 

  A A       A A A     

H_2. I practise things over and 
over until I know them well in this 
subject. 

  D J           D       

H_3. I make a note of things that I 
don't understand very well in this 
subject, so that I can follow them 
up. 

            D   D H     

H_4. I make plans for how to do 
the activities in this subject. 

  G F G                 

H_5. I make up questions that I try 
to answer about this subject. 

                B     

H_6. I try to put ideas into my own 
words when I'm learning 
something new in this subject. 

      G         G     

H_7. I am deeply interested in this 
subject 

  A D E 
F G 

A G         A G A D E 
F G 

G   

H_8. I think about my thinking, to 
check if I understand the ideas in 
this subject. 

                      

H_9. I draw pictures or diagrams 
to help me understand this subject. 

D D F H D F H       D F H   D F H D   

H_10. I can get better at this 
subject if I put in the effort. 

  A             A D F     

H_11. When I have finished an 
activity in this subject I look back 
to see how well I did. 

  A F                   

H_12. I want to really understand 
what I am learning in this subject. 

                A D F 
H 

    

H_13. I use the world wide 
web(eg. Google, Wikipedia) to 
help me understand this subject. 

G G B F G 
H 

G H G G     B F G 
H 

B F G 
H 

  

Results are based on two-sided tests assuming equal variances with significance level 0.1. For each significant 
pair, the key of the smaller category appears in the column of the category with larger mean. 
Tests are adjusted for all pairwise comparisons within a row of each innermost sub-table using the Bonferroni 
correction. 
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Table 4 provides some insight into the different approaches that students use to learn 
different subjects. Students indicated that they are more likely to use diagrams in 
Mathematics than in English, LOTE, and PE, while they are less likely to put ideas into 
their own words than in English and Science. Students also used notes to remind 
themselves of things that they did not understand more when learning Mathematics than 
English. Students planned more in the Arts and Design and Technology, which may be 
a reflection of the types of problems that are set in mathematics classrooms in general.  
 It would also seem that the students are not as deeply interested in mathematics than 
many of the other subjects, which may be cause for concern as these are the students 
who nominated Mathematics as their best subject. Has mathematics been presented as a 
tool to be used rather than as a discipline with its own knowledge that can be studied in 
depth? 

Conclusion 
The results of this study add to the body of knowledge around teacher effectiveness, and 
in particular it gives a student perspective on what teachers do that helps them learn. 
The consistency of the results across two schools and three years does indicate that the 
students are quite sure about what teachers’ practices help them learn. While the 
statements provide some insight to what students value, by their nature they are open to 
interpretation and so more work is needed to unpack these statements. The student-
generated statements support much of the previous work done in the area, and in 
particular the AAMT standards (AAMT, 2006) include many practices that students 
identified as being important. 
 The data on what the students do that helps them learn, while not as well developed 
as the teacher statements, do provide some useful insights to areas for further 
investigation. Why is it that students for whom mathematics is their best subject believe 
that they can do well and really want to understand what they are learning, but do not 
have the deep interest that other students have for their best subject? 
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With increased accountability attached to students’ results on national testing in Australia, 
teachers feel under pressure to prepare students for the tests. One approach is to use 
evidence from school and student results to identify areas for targeted teaching strategies to 
improve students’ understanding. Using NAPLAN results lower secondary mathematics 
teachers in one school implemented mental computation and estimation approaches as well 
as a strategy to address the literacy demands of typical test items to support student learning 
before and after the NAPLAN test. An analysis of the professional learning identified 
approaches to enhance both students’ learning as well as teaching practice. 

Introduction 
Prior to 2008, each state and territory in Australia used state-developed tests to collect 
student achievement data for the Federal Government. To better standardise the 
monitoring of student achievement the National Assessment Program in Literacy and 
Numeracy (NAPLAN) was introduced in 2008 (DETYA, 2000). The same tests in 
literacy and numeracy are now administered to all students in Years 3, 5, 7, and 9. 
Testing early in the school year potentially provides diagnostic information to teachers 
about their students’ performance in mathematics topics common to all states and 
territories (Curriculum Corporation, 2006).  
 Whether we approve of a national testing regime or not, this level of accountability is 
in place for the foreseeable future with pressure on school principals and teachers to 
improve results. While the information may be useful after the results are released, 
teachers of Years 3, 5, 7, and 9 are experiencing increased pressure early in the school 
year to prepare students for the test. Principals, school systems personnel, and parents 
are scrutinising the results to determine whether schools and their teachers are 
‘measuring up’. Public comparisons between ‘statistically similar’ schools are now 
possible with the recent release of the My School website by the Federal Government 
which presents statistical and contextual information about schools. 
 The results from the assessments are reported in individual student reports to parents, 
as well as school and aggregate reports with substantial information including results 
for each item and for each student. The school reports enable teachers to analyse the 
results for each year group to determine which items appear to be understood and which 
are problematic. In addition, school data can be compared to the Australian student data. 
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The information is useful to address common errors and misconceptions as well as to 
aid planning and programming of future learning (Perso, 2009). Rather than abandon 
good pedagogical practices and have students individually practise test items, NAPLAN 
items can be used as one source to address key issues in students’ mathematical 
understanding and develop appropriate quality-teaching approaches (Anderson, 2009). 
The purpose of the project reported here was to engage teachers in using evidence from 
their own NAPLAN results to identify their students’ needs and collaboratively develop 
pedagogical practices which research has shown to be beneficial in building 
understanding. In particular, this paper describes and analyses the outcomes of a 
program conducted in one school by addressing the following research questions. 
1. What strategies did teachers choose to use to support student preparation for 

NAPLAN and how was this different to previous practice? 
2. Did the professional learning support have an impact on student learning and on 

teaching practice? 

Literature review 
Teaching to the test 
High-stakes testing has been criticised for encouraging teachers to limit the curriculum 
to what is assessed (Abrams, Pedulla & Madaus, 2003) and resulting in the “corruption 
of indicators and educators” (Nichols & Berliner, 2005, p. 1). While the types of testing 
being conducted in some states in the United States of America in recent years could be 
considered higher stakes than the NAPLAN testing in Australia, systems, principals and 
teachers feel under pressure to prepare students for the tests and achieve good results, 
particularly given the publishing of the My School website . The pressure to raise scores 
has the potential to distort teaching and learning but there are ways teachers can support 
students’ preparation for high-stakes tests without detracting from real learning (Gulek, 
2003). Miyasaka (2000) identified five types of test preparation practices that support 
student learning and improve achievement— teaching the mathematics content, using a 
variety of assessment approaches, teaching time management skills with practise in test-
taking, reviewing and assessing content throughout the year, as well as fostering student 
motivation and reducing test anxiety. In addition, Marzano, Kendall and Gaddy (1999) 
found knowledge of test vocabulary and terminology improves student performance.  
 Compulsory testing of students in Years 3, 5, 7 and 9 in Australia has the potential to 
focus teachers’ efforts on preparing students for the test by using past papers for 
practise and limiting learning to technical support such as how to fill in answers (Nisbet, 
2004). However, balancing this is the potential benefit of identifying students’ strengths 
and weaknesses with data informing planning and teaching. In a survey of 56 primary 
schools, Nisbet (2004) reported about two thirds of the schools used the data to identify 
topics causing difficulties but only 40% of teachers used the results to identify 
individual students who were having difficulty, and only 22% used the results to plan 
their teaching. The low proportion of primary school teachers using the data to inform 
teaching and learning represents a missed opportunity and there is little evidence that 
secondary mathematics teachers are analysing NAPLAN data in meaningful ways. 
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An alternative approach 

There is an alternative approach to ‘teaching to the test’ but the evidence above suggests 
teachers require support to analyse and interpret the data and consider alternative 
practices, to address common student misconceptions and difficulties (Anderson, 2009). 
Gulek (2003, p. 42) refers to the need for “school practitioners to become assessment 
literate in order to make the maximum use of test results” and Thomson and Buckley 
(2009) describe the potential of test item analysis to inform pedagogy. It should be 
noted the test preparation practices that we are advocating are aimed at improving 
students’ knowledge, skills and understanding of mathematics and not at artificially 
increasing students’ test scores.  
 Research has advocated several teaching practices that have the potential to target 
particular aspects of students’ difficulties in mathematics and numeracy. While many 
strategies could be considered, in this project, to be based on students’ errors, the 
following strategies were chosen from research which has shown them to be helpful in 
increasing mathematical understanding: mental computation, estimation and number 
sense, and the literacy demands of context-based mathematics questions. 

Sources of students’ errors 

Common student misconceptions have been identified as a major source of errors. For 
example, Ryan and Williams (2007, p. 23) use the term “intelligent overgeneralization” 
to refer to students’ predisposition to create inappropriate rules based on experiences. 
Some common generalisations include: multiplication makes bigger; division makes 
smaller; division is necessarily of a bigger number by a smaller number; and longer 
numbers are always greater in value. The following is an example of a NAPLAN 
Numeracy item where this type of over-generalisation occurs with few students 
selecting the correct answer of 22. 

  What is the answer to 6.6  0.3? 

  A) 0.022  B) 0.22  C) 2.2  D) 22 

A common fraction misconception occurs when area is not the feature students identify 
in regional models of fractions (Gould, Outhred, & Mitchelmore, 2006). The “number 
of pieces” interpretation is a common response. This research explains the responses to 
the 2008 Year 7 NAPLAN item shown in Figure 1 where only 28% correctly selected 
the last option.  

 

Figure 1. A fraction item from the 2008 Year 7 non-calculator numeracy NAPLAN test. 
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1. Mental computation, estimation and number sense 
In dealing with misconceptions like these, Anderson (2009) points out those 
encouraging students to apply reasoning about numbers to evaluate answers can be a 
challenge. She argues that one way to support the development of students’ thinking 
strategies is to use test items that focus on mental computation, estimation and number 
sense (McIntosh, Reys & Reys, 1997). Options in multiple-choice items may often be 
eliminated after considering whether the solutions are reasonable. Anderson proposes 
that after students have estimated the answer, teachers can pose questions such as: 

 What strategies could you use to check the solution? 
 What would the question need to be to obtain each of the alternative answers? 

An estimation focus allows test items to be a source of meaningful mathematical 
discussion. 

2. Literacy demands of context-based mathematics questions 
The contextual nature of many NAPLAN items and the associated language 
implications often leads to claims that these tests are more comprehension than 
mathematics. However, interpreting mathematical situations in context is what 
numeracy is all about. Hence, we claim the contextual nature of the items is at the heart 
of numeracy and deserving of special attention. It seems pointless to pursue repetitive 
symbolic manipulation exercises to address poor responses to contextual items.  
 Newman (1983) developed an error analysis protocol to analyse student responses to 
contextual items. She identified five levels of difficulty (Table 1). Most errors occurred 
in the second and third levels of ‘comprehending’ and ‘transforming’ the text into an 
appropriate mathematical strategy, not applying the symbolic procedure. By translating 
each of the levels from Table 1 into a question for students, teachers are able to 
determine their first level of difficulty (White, 2005). 

Table 1. Levels in Newman’s error analysis. 

Reading the question Reading 

Comprehending what is read Comprehending 

Transforming the words into an appropriate mathematical strategy Transforming 

Applying the mathematical process skills Processing 

Encoding the answer into an acceptable form Encoding 

 

Engaging teachers in professional learning 
Planning professional learning opportunities for teachers in relation to promoting a 
change in practice requires consideration of several factors such as teachers’ 
knowledge, beliefs and attitudes (Wilson & Cooney, 2002). Rather than change in 
beliefs and attitudes preceding change in practice, Guskey’s (2002) model proposes 
professional learning precedes the implementation of new ideas in classrooms, which 
when implemented can lead to a positive change in student learning outcomes, and 
subsequently, a change in teachers’ beliefs and attitudes. This model suggests that 
teachers need to try new ideas and witness positive student outcomes before they fully 
embrace such approaches.  
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Building on Guskey’s model, this project aimed to change secondary mathematics 
teachers’ attitudes towards NAPLAN and its usefulness. The approach taken with the 
teachers encouraged them to use evidence from the previous NAPLAN Numeracy test 
for their students, to identify topic areas and mathematical concepts of concern, and to 
develop strategies addressing the particular learning needs of their students 

Methodology 
One school which had a high NESB enrolment and low NAPLAN results volunteered to 
participate in the project. Ten teachers of Years 7 and 9 (12 classes in total) were 
involved. In May each year, Years 7 and 9 students complete two 32-item test papers 
for Numeracy, one with and one without the use of a calculator. The authors used the 
school’s 2008 NAPLAN numeracy test results to identify specific areas of the 
curriculum requiring consolidation. Items from NAPLAN 2008 in these areas were used 
by the authors to compile a short diagnostic pre-test for each of Years 7 and 9 consisting 
of 5 non-calculator and 5 calculator items. Though the results from 2008 were those of 
the current Year 8 and 10, not the cohorts involved in the project, they were still 
considered reflective of teaching approaches in the school because the teachers were the 
same. Teachers administered the tests in early March, slightly more than two months 
before the NAPLAN tests in May, 2009. Each teacher corrected their class responses. In 
the six Year 7 classes, only one class had more than 50% of total responses correct in 
the calculator and non-calculator pre-tests (same class). In the six Year 9 classes, two 
had more than 50% of total responses correct in the non-calculator pre-test and no class 
had more than 50% of total responses correct in the calculator pre-test. These data 
support the items chosen as being areas of difficulty for the students. 
 A one day meeting two months before the NAPLAN tests was held between the 
teachers and the authors. The day consisted of reviewing the students’ pre-test 
responses, considering the key mathematical ideas and misconceptions in the tasks, and 
exploring a range of possible teaching approaches identified by the authors. Teachers 
also contributed suggestions about the mathematical issues they saw as relevant and 
strategies they believed could be used to address student difficulties. As a result, a list of 
possible strategies was jointly constructed. Each teacher then nominated one or more to 
implement in their general teaching as well as with targeted NAPLAN items. 
 Data collected from teachers included teacher questionnaires and interviews plus 
eight teachers were observed for one lesson by a trained research assistant who was a 
qualified mathematics teacher. Pre-tests were collected from students in each of the 
eleven classes. In addition, comparative NAPLAN results for the Year 7 and 9 students 
in 2009 with their Year 5 and Year 7 results respectively in 2007 aligned with the 
corresponding New South Wales data have been used. 

Results and discussion 

The results mainly report the preferred teaching strategies identified and used by the 
teachers. These data inform on pedagogical practices and potential teacher change 
during the project. A second section reports on student learning. Given there was only 
two months of teacher implementation before the NAPLAN test and the length 
restrictions of the paper, these data are only briefly reported. They are seen as some 
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indicator of the success of the professional learning but not in any way conclusive on 
their own.  

Teaching strategies 
During the one day meeting, the teachers reported giving their students practise on 
NAPLAN type items before the tests. However, there was no use of school data to 
inform their planning and practice, or approaches to build desired understanding in their 
general teaching. When each pre-test item was discussed, teachers were asked to 
estimate the proportion of the school cohort correctly answering each item. They tended 
to overestimate and were frequently surprised by the low number of correct responses.  

From looking at the mathematics involved in the identified areas and the incorrect 
answers chosen by students, the teachers and authors chose eight strategies as 
potentially useful for improving students’ mathematics proficiency. These strategies 
contained a mix of general teaching strategies and some for class discussions based 
around NAPLAN style items. The teachers indicated that they intended to focus on the 
areas of concern and use strategies from the day not only in their general teaching, but 
also with NAPLAN items as stimuli for constructive class discussion. 
 After implementation, teachers completed a short questionnaire where they ranked 
the strategies in their preferred order of usefulness. Table 2 shows the results from the 
eight teachers who responded to the questionnaire. Scores were calculated by assigning 
1 to the first choice, 2 to the second choice and so on, hence the lowest score indicates 
the most preferred strategy and the highest score indicates the least preferred (scores 
could range from 8 to 64). 

Table 2. Preferred strategies as reported by the teachers to address students’ difficulties. 

 Strategy Score 

1. Promoting interpretation of context-based mathematics questions using 
Newman’s error analysis questions 

20 

2. Developing efficient mental computation strategies 29 

3. Using estimation strategies with all calculations 36 

4. Eliminating possibilities in multiple choice questions 41 

5. Checking reasonableness of answers 43 

6. Developing visualisation strategies in geometry (2D to 3D and 3D to 2D 
representations) 

47 

7. Identifying irrelevant information in mathematics questions 52 

8. Developing strategies for answering open-ended questions 58 
 

Their ranking must be interpreted realising they may not have tried some at all and only 
chose from the specific ones they did implement. None the less, the attractiveness of the 
ones they did choose to try is a factor in determining effective strategies that promote 
good pedagogy and are seen as comfortable for use by teachers.  
 Newman’s questions and mental computation emerged as the most popular choices 
with 7 teachers ranking Newman’s in the top 3. Some teachers’ comments revealed 
some believed they were already using such strategies. For example: 

The majority of the strategies I already used prior to the PD except for the Newman’s 
method. 
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Others found the opportunity to consider new approaches was beneficial to both their 
teaching and student learning as shown by the comments below from three different 
teachers. 

Identified their need for mental computation and to read all of the question. 
I found the Newman’s questions are very useful. I went through that with all my classes. 
Newman’s strategies— worked— ensuring read all of question. 

Three teachers’ comments suggest their knowledge and understanding of the potential 
of NAPLAN items and data have improved: 

It gives me an idea of which kind of questions students found hard so I would focus more 
on those areas. 
Next year I intend to show students a variety of strategies for approaching the numeracy 
tests. I will also target some specific areas of knowledge that students in the past have had 
difficulties with. 
The pre-test identified common areas of weakness in my class. Common misconceptions 
were easily identified by the alternate choice students made when choosing the answer. 

Professional dialogue between teachers and the researchers enabled the identification of 
a range of strategies for implementation in classrooms, an approach acknowledged as 
successful by the following three teachers’ comments: 

It was good to gather with colleagues and to discuss alternate teaching strategies.  
It was especially good to get the chance to do practical maths questions and be the 
“student” ourselves. 
Focusing on mental computation, visualisation, Newman’s as part of each unit, from 
beginning of the year—encouraging this as a normal part of doing Maths. 

Even though teachers indicated they already used some of the teaching strategies in 
regular lessons, their awareness of the strategies and ability to identify when they were 
using them increased. Further, they had not used them as a focus for supporting 
NAPLAN preparation nor in taking items and through these strategies making them a 
source of constructive class discussion rather than right/ wrong drill and practice. The 
data here show they were still using some of the learning three months after the 
NAPLAN tests. 
 Table 3 shows the strategies which were planned for and actually used by the 
teachers in the observed lesson. Some teachers used more than one strategy. 

Table 3. Observed strategies. 

 Strategy Planned Observed 

1. Promoting interpretation of context-based mathematics 
questions using Newman’s error analysis questions 

3 3 

2. Developing efficient mental computation strategies 2 2 

3. Using estimation strategies with all calculations 0 0 

4. Eliminating possibilities in multiple choice questions 3 1 

5. Checking reasonableness of answers 1 2 

6. Developing visualisation strategies in geometry (2D to 3D 
and 3D to 2D representations) 

3 3 

7. Identifying irrelevant information in mathematics questions 1 0 

8. Developing strategies for answering open-ended questions 0 0 
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The data set here is not big but still allows for some inference about the classroom 
practices of the participating teachers. 
 The top two (Newman’s analysis and mental computation) figured prominently but a 
specific focus on estimation did not. All three who used Newman’s analysis actually 
went through the steps with the class. Visualisation, though not an original popular 
choice, was used as the basis for three of the lessons. The specific test strategy of 
eliminating possibilities in multiple choice questions was planned but not widely used 
indicating lessons became more involved with the mathematics and appropriate 
procedures rather than test based strategies. As one teacher said to her class, “Does the 
answer actually fit the question? Have confidence in your ability.” 
 Four of the lessons involved NAPLAN items as a source of class discussion and 
group work. In all these lessons, teaching went beyond right/wrong answers and looked 
at procedures. Three involved group work, while one was more teacher centred. The 
visualisation lessons were three of the four that did not use NAPLAN items. The 
teachers chose other activities that involved students in groups building objects given 
specific properties (for example, can you build the shape which looks like this from the 
front and has the most cubes). The level of student engagement was commented on 
positively in six of the eight lessons.  

Student learning 
Student data from 2007 to 2009 for each student were compared to the total NSW data. 
The groups used in the comparisons were the same in both 2007 and 2009. The mean 
gain for each group was calculated by averaging the individual gains. The results 
comparing the mean gains using a one tailed t-test showed that the gains by the sample 
school compared with the state are significant at the 1% level for Year 7 and at the 2% 
level for Year 9. These comparative data are encouraging and do support a positive 
impact of the project on student learning but, especially given that only two months of 
intervention occurred and all the other influences on the students and teachers, the 
approaches implemented can only to be viewed as one factor impacting on the gains. 

Conclusions 
There is evidence that engagement in the project by teachers and students coincided 
with some positive student learning outcomes and new teaching practices. The use of 
Newman’s analysis in particular seems to have provided a better way of dealing with 
contextual mathematics. Thus the project was seen as successful by the school. The mix 
of using clearly identified strategies in general class teaching with NAPLAN items as a 
stimulus for discussion appear to be an effective pedagogical combination. The results 
here are consistent with Martin’s (2003) observation that showing students test items 
and discussing strategies for thinking about questions and responses promotes student 
confidence and resilience, and enables a greater sense of student control over their 
learning. In addition, the assessment literacy (Gulek, 2003) of teachers by using data to 
inform teaching certainly became apparent as part of teaching practice where no 
indication of doing so previously was evident. However, there is no conclusive evidence 
about the way the data were used. 
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The results presented here are not advocating ‘teaching to the test’, rather they support 
the notion that there is much to learn from using a school’s NAPLAN data to develop 
pedagogical content knowledge about important mathematical concepts. Nor is national 
testing being promoted as the most desirable approach to assessing students’ 
knowledge, skills, and understanding. Teachers best carry out assessment as they talk to 
and observe their students (AAMT, 2008). However, given the reality we face and the 
fact that many teachers do feel pressure to actively prepare their students for the tests, 
the approach presented here offers some ideas for a constructive way to do so. Future 
iterations therefore are supported and, in particular, the results suggest looking for ways 
to increase long term positive beliefs and ownership by teachers. 
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Increasing numbers of young people experience disruption to their education owing to 
chronic illness. Many seek to continue their learning despite absence from school for 
prolonged or accumulative periods of time. The need to consider ways to support them 
arose in the context of a project called Link ‘n Learn funded by the Australian Research 
Council (2008-2010). This paper reports on one aspect of a collective case study of students 
absent from school with diverse types of chronic illness and their mathematics teachers. It 
highlights that students focussed on their desire for interaction to continue study whereas 
their teachers were concerned about issues of illness. 

 
What do students worry about when they miss mathematics lessons at school owing to a 
chronic illness? When they want to continue their studies nonetheless, what matters to 
them? What concerns do their teachers have about these students‘ learning during 
absence? This paper explores these issues for senior secondary students with chronic 
illness, who want to continue their mathematics studies, and their teachers at school. 
Understanding more about their concerns has implications for the educational support of 
increasing numbers of young people who experience disruption to their education while 
managing a chronic illness.  
 For most young people a big part of normal life is attending school. For those with 
chronic illness, being absent and losing contact with teachers and peers may create 
apprehension about disrupted friendships and falling behind academically (Charlton, 
Pearson, & Morris-Jones, 1986). Research has found that keeping things as normal as 
possible decreases their anxiety, increases their sense of control and helps them cope 
better with treatment (Bessell, 2001; Brown & Madan-Swain, 1993). Opportunities to 
connect to school and continue their learning may provide welcome distraction. 
Disconnection from school over time may lead to students becoming reluctant to return 
to full-time attendance (Bessell, 2001; Haas & Fosse, 2008). Addressing students‘ social 
and academic needs also improves their quality of life and employment prospects 
(Charlton, et al., 1986; Lightfoot, Wright, & Sloper, 1999). 
 Although on-site hospital schools traditionally oversee the educational needs of 
inpatients, medical advances and de-centralised healthcare have resulted in shorter stays 
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and therefore reduced access for young people to the available learning support. Those 
who are not hospitalised, nor well enough to return to school, often spend lengthy 
periods of time at home: ―out of sight‖ of hospital schools and their own schools. Yet 
federal and state legislation mandates schools to provide educationally for all of their 
enrolled students. How might schools avoid their students with chronic illness being 
―out of mind‖ during absence? Government-funded home-tutoring programs typically 
provide one hour of educational support per week for students absent from school for 
prolonged periods but eligibility and availability vary across educational sectors (Shaw 
& McCabe, 2008) and these programs are deemed inadequate on their own.  
 The ARC-funded Link ‘n Learn project, of which the collective case study is a part, 
involved a partnership between the Royal Children‘s Hospital (RCH) Education 
Institute and the Melbourne Graduate School of Education at the University of 
Melbourne. It explored the possibilities of school-based educational support utilising 
communications technologies to connect students with chronic illness to their schools 
(Wilkie & Jones, 2010). The collective case study focussed on the interaction between 
senior secondary mathematics students and their teachers to achieve academic 
continuity, defined in this study as students’ access to, and utilisation of, opportunities 
to learn effectively so that academic progress is made despite disruption to full-time 
schooling. The following section provides details on the context for the study by 
discussing why academic continuity in mathematics was the focus. 

Context for the research 
Chronic illness often goes hand-in-hand with absence from school and young people 
miss out on learning opportunities at school for lengthy periods or accumulatively over 
time, which often leads to significant gaps in their education. This is of particular 
concern in the domains of literacy and numeracy (Chekryn, Deegan, & Reid, 1987; 
Shiu, 2001). Secondary students absent from school undergoing cancer treatment have 
expressed particular anxiety about mathematics: they tend to be well aware that many 
university courses require mathematics study at Years 11 and 12 as a pre-requisite. Yet 
researchers believe that students‘ independent attempts to keep up with their studies by 
trying to accumulate factual knowledge are an ineffective way to learn in this domain 
(Charlton, et al., 1986; Fottland, 2000). There is overwhelming consensus that 
interaction between teachers and students is fundamental to effective education. 
Sociocultural perspectives consider mathematical learning as ―an inherently social 
activity‖ (Schoenfeld, 1994, p. 62) that involves both ―individual and collective learning 
processes‖ (Van den Heuvel-Panhuizen, 2003, p. 10). Clarke (2001) suggests that 
locating ―learning solely within social practice or solely within the cognising 
individual‖ is a mistake (p. 297).  
 Independent study of mathematics is problematic for young people absent from 
school. This is corroborated by education advisors at the RCH Education Institute who 
commented that students bring their textbooks with them to hospital but struggle to 
learn from them. They also highlighted that mathematics was the hardest subject for 
them to support, particularly in the secondary years, because of the specialist knowledge 
required. Research has found that some students had trouble accessing any support at all 
for their mathematics learning during absence from school; others received some tuition 
in hospital but this ―bore little or no resemblance to what they would have done in 
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school‖ (Charlton et al., 1986, p. 1345). Visiting teachers who tutor students at home 
state similar concerns about their lack of mathematics expertise (Searle, Askins, & 
Bleyer, 2003). 
 Providing effective mathematics education support for students whether they are in 
hospital or at home has proved a difficult challenge. Previous research conducted at the 
RCH Education Institute explored online communication between students with chronic 
illness and their schools, and recommended the exploration of strategies specifically to 
support learning in mathematics (Campbell & St Leger, 2006). The positive feedback 
from student participants about using communication technologies to keep in touch with 
school, the advent of increasingly flexible and affordable options, and concern for the 
inadequacy of current educational support, led to ongoing research efforts including the 
Link ’n Learn project. The following section describes the design of a collective case 
study to address the need for further research into support approaches and to also 
consider the perspectives of young people who are looking ahead to university and want 
to continue mathematics study despite chronic illness.  

Research design 
There are multi-faceted issues and concerns when a student is unwell and absent from 
school: a complex context at the intersection of medical and educational domains. 
Students are in and out of hospital, often stuck at home, too unwell to attend school but 
seeking to continue their studies nevertheless; teachers at school are busy with their 
classes and teaching, and have a student they no longer see every lesson. The student‘s 
goal is academic continuity in mathematics, their hope is for support from school, and 
the possibility is for interaction mediated by technologies. In designing a collective case 
study, I sought to focus on this interaction between a student and their mathematics 
teacher—between student–and–teacher pairs—keenly interested in their viewpoints and 
perceptions, their experiences and issues. A pair best represented my understanding of 
what constituted ―a case‖ (Adelman, Kemmis, & Jenkins, 1980). 
 An important aspect of the study was gathering data over time rather than just at one 
moment as a snapshot. Young people by definition experience chronic illness over 
extended periods of time. I chose to construct a collective case study around a small 
number of students and their teachers (22 participants), methodologically so that I could 
develop in-depth understanding of their activities, experiences and perceptions over 
time and explore multiple viewpoints (Stake, 2006). An interpretive reflexive approach 
focusing on detail also required a manageable number of subjects.  
 I sought to utilise as many sources of data as possible (Creswell, 2007) while 
remaining sensitive to the dignity of students during a potentially traumatic period. 
Initial data were gathered about each student‘s and teacher‘s concerns, interaction 
preferences and perceived support needs. Informal conversations, observations (hospital 
and school visits), emails and text messages provided ongoing data about the nature and 
frequency of communication between a student and teacher. Once students returned to 
school full-time or the end of the academic year was reached, interviews were 
conducted individually with the student and their teacher. These provided opportunity 
for the students and teachers to reflect on their interactions with each other: on what was 
important to them; their teaching/learning experiences; particular issues they faced; 
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outcomes of their experiences; and advice they would give to others in a similar 
situation. 
The students in this study had different levels of self-perceived ability in mathematics, 
various types of chronic illness, and diverse patterns of absence from school (see Table 
1).  

Table 1. Students’ mathematical ability, type of illness, treatment, and absence from school. 

 

The following discussion focuses on one particular aspect of the collective case study: 
the concerns of the students—what mattered to them when trying to learn mathematics 
during absence from school—and the concerns of their teachers. Other themes relating 
to the learning and teaching of mathematics through online interaction and to academic 
continuity are discussed elsewhere (Wilkie, 2010).  

Discussion of findings 
Previous research has highlighted the anxiety young people with chronic illness may 
experience about falling behind academically (Hedström, Ljungman, & von Essen, 
2005). I sought to explore this issue further specifically in the domain of mathematics 
and as it related to students‘ attempts at independent study and their being absent from 
lessons at school. I also examined teachers‘ perspectives on their concerns for their 
student‘s ongoing study. These themes are discussed in turn in the following three 
subsections. 
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Students’ concerns: Continuing mathematics study away from school 
All students indicated that not being able to ask questions while studying concerned 
them. A majority considered that having to figure things out for themselves was ―most 
hard‖. Yet overall there was no correlation between the level of concern about these two 
issues and students‘ perceived ability in mathematics, for example:  

The textbook work looks really complicated when no-one‘s there to explain. (A, 
9/5/2008, high ability) 
On my own, like if I needed help, I couldn‘t just ask the teacher. (B, Q6.4, 27/11/2008, 
high ability) 
It was hard doing stuff and not having a teacher there to show me how to do it. (C, Q3.3, 
24/11/2008, lower ability) 

One student‘s indication that this was not a concern for him was surprising since he had 
given up trying to study on his own quite quickly: ―a month into being sick‖ (H, Q2.2, 
13/11/2009). Perhaps he indicated this to signal to me his high ability; later in the year 
he admitted that he had struggled with independent study: ―I used to try, I did a bit of 
commerce work and a bit of maths work myself but I found it too hard so I just stopped‖ 
(Q2.1, 13/11/2009). Davis, Hersh, and Marchisotto (1995) found that in mathematics 
―better students tend to demand instant understanding‖ but when learning becomes 
difficult, this may be ―debilitating‖ and cause resistance to further study (p. 315).  
 A majority of students expressed concern about the motivation to keep going with 
study. One said that ―you get behind with it and you just can‘t be bothered doing it‖ (C, 
Q9, 24/11/2008). Another student indicated no concern about his motivation, and indeed 
his determination to continue study was apparent until terminal cancer intervened. One 
student‘s indicating no concern was initially surprising because he expressed a low level 
of self-perceived ability, yet demonstrated self-motivation throughout the year and 
completed all the work his teacher gave him. He said ―I‘m not good getting ‗A pluses‘ 
but I just want it to be a Pass. That‘s all I want it to be‖ (E, Q6, 5/11/2009). 
 Concern about not having enough energy to keep up with the work elicited surprising 
responses: I had expected more students to consider ill health an issue. One student with 
chronic fatigue syndrome indicated she only found it ―somewhat hard‖ to manage. 
Another underwent haemodialysis twice a week (fatigue is a major side-effect), yet he 
indicated that he did not find lack of energy an issue. Of the six students with cancer, 
only one reported lack of energy as being ―most hard‖. I had observed first-hand the 
intense treatment each of these students underwent; and two students with aggressive 
osteosarcomas maintained positive attitudes even when they were noticeably unwell. Do 
some students genuinely not experience ill health as affecting their learning or do they 
intend to show their determination that they are getting on with life anyway, despite 
their illness? Does ongoing study during illness symbolise this resolve? Whether or not 
feeling unwell is an issue, students seemed to want to portray that their study and 
motivation struggles are about the lack of assistance, not ―sickness‖. 

Students’ concerns: Absence from mathematics lessons 
The two major concerns of students regarding their absence from mathematics lessons 
were missing out on hearing the teacher’s explanations and on being able to copy down 
notes in class. Unsurprisingly, all teachers reported high use of these activities in their 
lessons. Not being able to ask questions or to seek individual help from the teacher were 
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also of concern to a majority of students (and their teachers). One student said, ―I like to 
get everything done in person with [teacher name]‖ (E, Q7.1, 5/11/2009). Four students 
indicated more concern than their teachers about individual help; four pairs expressed a 
similar high level of concern. In comparing students‘ with teachers‘ concern about 
taking notes in class, students generally expressed more anxiety than teachers (Figure 
1). 

Figure 1. Comparing concerns: not being able to copy down notes.

When initially asked what she needed for mathematics study, one student replied 
promptly ―notes from the board‖ (B, 11/9/2008). Another student preferred the 
possibility of having lessons videoed, saying ―I learn better in class‖ and when ―I copy 
down notes‖ (C, 4/9/2008). One student photocopied notes from her friends but said that 
―because they didn‘t write everything out, it was like a different language‖ (D, Q4.1, 
19/11/2008). It seemed that having another student‘s notes at least provided some 
information but being able to write one‘s own notes (via videoconferencing or a 
videorecorded lesson) was preferable. 
 Being able to work with friends on problems elicited a wide range of initial responses 
but none of the students with self-perceived high ability in mathematics categorised 
working with friends as an activity they thought they would miss most. Do students 
with high ability rely less on the involvement of peers in their learning or would they 
like to be perceived as not needing the help of peers? Yet one student with high ability 
later reflected, ―I was studying on my own and not with the class – and it was different 
because I wasn‘t learning it in school – but on my own‖ (J, Q2, 28/7/2009).
 There was a range of responses to missing out on finding out about class work being 
set with five students indicating it as a high concern. One student said that if teachers 
―give out what exercises [are] to be done‖ to a student who is unwell, it ―gives them a 
fair idea of what needs to be expected, so when it comes to exams or when you go back 
to school, again it‘s not a big shock and you don‘t feel out of it‖ (D, Q10.1, 10.3, 
19/11/2008). Those students whose teachers had already been keeping their students up-
to-date with what was happening in class expressed no concern. It seems that knowing 
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what is happening in lessons is sought by students, even those who have given up on 
independent study. It seems to provide at least some sense of connection to school even 
if it might exacerbate their anxiety about falling behind. 

In considering students‘ concerns overall, there was no correlation between a 
student‘s perceived level of ability in mathematics and the nature of their concerns 
about being absent from lessons. Rather, students‘ favourite learning activities generally 
correlated with their issues of highest concern about being absent from lessons. There is 
the sense that the key concern for students is missing interaction with their teacher.  

Teachers’ concerns: Their student studying during absence 
Teachers all indicated that they made high use of explaining and stepping through 
solutions on the board in lessons, so it is perhaps unsurprising that a majority expressed 
high concern about students missing out on those activities. Only one teacher was the 
exception, indicating little concern, yet his student indicated a high level of concern and 
had even tried to attend some lessons when he was quite unwell. When I met the teacher 
he initially said that his student ―can teach himself‖ and that ―[he] only needs to be told 
the chapters being covered in class‖ (Mr A, 15/5/2008). Later in the year he explained 
that he had wanted to do more for his student but suggested that he could not have, 
rather than that it would have been unnecessary.  

In comparing students‘ and teachers‘ levels of concern about student motivation, 
there was a noticeable mismatch between several pairs (see Figure 2). 

Figure 2. Comparing concerns: struggling with motivation. 

In four pairs, the teachers were less concerned than their students; over time the students 
showed that they were indeed self-motivated but communicated that they struggled. It
seemed that staying motivated was an issue that students related more to trying to learn 
mathematics on their own than to their ill health. 
 A majority of teachers expressed high concern about their students struggling to keep 
up-to-date with work and seemed to relate this to students‘ ill health rather than to 
absence from lessons. Interestingly, three teachers had significant reservations about 
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supporting their students during absence from school and their students each had cancer. 
The students expressed little or no concern about ill health affecting study but teachers 
expressed high concern. In later interviews these teachers reflected on their uncertainty 
about students with serious illness continuing study: 

I thought, ‗Why are you doing this stupid maths when you‘re so ill?‘ to be quite honest.
(Mr A, Q6, 30/10/08) 
My first thoughts were… ‗Why would they want to be doing this? Like, who cares about 
maths–in that situation? (Mr G, Q4.2, 16/10/2009) 

Once one of these teachers understood that his student wanted to continue study, he was 
―happy to go along with what [his student] want[ed]‖ (Mr G, 10/3/2009). The other two 
teachers sent a list of topics to their students but remained unconvinced about the 
appropriateness of study during cancer treatment.  

Implications and conclusion 
Students in this study seemed to portray that what they need to continue mathematics 
learning successfully during absence from school are interaction with their teacher and 
involvement somehow in what is happening in lessons. They seemed less concerned 
about managing their illness than about their struggles to learn independently–to figure 
things out for themselves. They seemed to want to convey that being unwell was not
what they wanted to focus on when talking about their schoolwork; the main issue for 
them was involvement in learning opportunities, not coping with illness. One student 
summed it up poignantly, ―I was more worried about school than I was about being 
sick‖. Her suggestion was for teachers to provide ―just that reassurance of how much 
you need to do‖ (D, Q11, 19/11/2008). Teachers, however, focussed more on issues 
related to ill health and expressed concern about their students‘ ability to even cope with 
study. 
 In considering these differing perspectives, suggestions addressing the educational 
support of students absent from school with chronic illness include: 

 Giving students the opportunity to specify what types of academic support matters 
to them, for example, photocopied notes, lesson handouts, email updates, 
telephone calls, videoed lessons, online interaction with their teacher, 
videoconferencing during lessons, and modified work requirements;  

 Encouraging students to tell teachers that they want to interact with them, and 
teachers to respond with direction and advice about ongoing study; and 

 Reassuring teachers that being as normal as possible in their relationship with 
students and focussing on learning rather than illness are likely to benefit students. 

These could be communicated through videos and brochures accessible online from 
educational authorities and distributed by school support staff to teachers informing 
them of: why students might benefit from contact with them during chronic illness; 
advice from students and teachers who have experienced similar situations; ways to 
develop modified learning programs; suggested wording for emails; and interaction 
strategies. Similar resources could be developed for students (and their families) to 
inform them of: why teachers may worry about study during chronic illness; how to 
communicate with teachers; and strategies for managing study during absence. 
 There remain many educational issues to address in supporting young people with 
chronic illness, unsurprising perhaps given the infrastructure, communication and 
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coordination required: the involvement of families, schools and hospitals in complex 
contexts. But the value placed on academic continuity through connection by young 
people themselves, the importance of minimising their educational disadvantage, and 
the desire to help them participate fully in life, provides motivation to continue. 
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Microanalysis of excerpts of video-stimulated post-lesson student interviews illuminated 
the nature and role of queries that sustained creative problem solving activity. These 
queries led to student realisation that they ‘did not yet know’, and the impetus to explore 
further. In this study, using Seligman’s (1995) construct of ‘optimism’, ‘not knowing’ is 
considered ‘failure’ and ‘finding out’, ‘success’. By responding optimistically to identified 
‘failure’, these students achieved success—developed new mathematical understandings. 
The intertwined nature of problem solving, and optimistic activity subsequent to such 
queries is elaborated. This study contributes to the body of knowledge on sustaining 
autonomous problem solving activity.  

Introduction 
Mathematics learning associated with developing ‘deep understanding’ (‘relational 
understanding’, Skemp, 1976) differs from predominant teaching practices where: 

… doing mathematics means following the rules laid down by the teacher; knowing mathematics 
means remembering and applying the correct rule when the teacher asks the question, and 
mathematical truth is determined when the answer is ratified by the teacher (Lampert, 1990, p. 29).  

The pedagogical approach employed in this study promotes student activity consistent 
with the title to Lampert’s article: “When the problem is not the question and the 
solution is not the answer”. The questions that students in this study focused upon were 
not those in the teacher’s problem, and the results of student explorations were not 
explicit answers to the problem questions. Students focused their own questions, and 
developed their own pathways. During such activity, students are “not only choosing 
the cues and concepts—and often unexpected cues and concepts—but even the very 
question” (Chick, 1998, p. 17), and are making “not so much direct attempts at solving 
the problem … [but] thoroughly investigating it, with auxiliary information being 
extracted from each trial” (Krutetskii, 1976, p. 292). Relational understanding (Skemp, 
1976) develops through such exploration—a connected form of understanding where 
students know why mathematics is relevant and can select and use it in unfamiliar 
situations. The social element query (Schwarz, Dreyfus, & Hershkowitz, 2009) became 
a focus when it preceded shifts in thinking about mathematics generated. Seligman’s 
(1995) ‘optimism’ was employed as a lens because it has been linked with learning 
gains in mathematics (Yates, 2002), and problem solving (e.g., Williams, 2005).  
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Theoretically framing this study 
Optimism (Seligman, 1995) is an explanatory style associated with how people respond 
to successes and failures. Sawyer (2007) described problem-solving activity of 
innovative design teams in industry as: “mak[ing] more mistakes, … [with] as many 
misses as hits” (p. 16). Similarly, mathematical problem solving leading to insights 
generally includes ‘failures’ ‘on the way to’ attaining ‘successes’ (Williams, 2006a, b). 
Thus, for the purposes of this study, mathematical problem solving is considered a 
situation of adversity where ‘failure’ is ‘not knowing’ and ‘success’ is ‘finding out’. An 
optimistic child perceives successes as ‘permanent’, ‘pervasive’, and ‘personal’ and 
failures as ‘temporary’, ‘specific’, and ‘external’. These terms are elaborated later 
through illustrations. Indicators of optimism were displayed in interviews with students 
who creatively solved self-set problems (Williams, 2005). For example, Dean struggled 
to attain a passing grade in mathematics (See Williams, 2005, p. 284), but showed he 
considered ‘not knowing’ as temporary and able to be overcome: “it always takes me a 
long time to understand when we first start a new topic”. And, he employed personal 
effort to help overcome this temporary state: “I go over and over it until it makes sense”. 
He perceived his successes (finding out) as a characteristic of self (someone 
overcoming ‘not knowing’ through personal effort): “and then I get it” [Success as 
Pervasive]. Kerri (Williams, 2005, p. 321), a high achieving girl in the same study, 
spontaneously constructed new knowledge on several occasions during the research 
period (see Williams, 2007). Her comment: “last year I did not do as well in maths; the 
teacher took too big a leaps” showed she limited her ‘failure’ in mathematics to a 
particular time frame [Failure as Specific], and identified an external factor that 
contributed [Failure as External]. Despite their differences in mathematical 
performances, Dean and Kerri both displayed indicators of optimism, and no indicators 
of lack of optimism, and each was willingly ‘stepped into unfamiliar territory’ to 
explore to develop new mathematical understandings. They did not refer to ‘not yet 
knowing’ as ‘failure’. The term ‘failure’ is used in this paper to link to optimism.  
 In common language usage, ‘optimism’ is taken to mean feelings of hopefulness and 
confidence. Seligman’s construct includes the perception that personal effort is required 
to attain successes (as well), not just a hope that it will happen. Martin (2003) and 
Williams (2003) identified similar constructs associated with student capacity to 
overcome adversities during learning: ‘academic resilience’, and ‘optimistic exploratory 
style’ respectively. Martin’s construct relates to learning in general, and Williams’ 
construct (Seligman, 1995; Williams, 2006a, b) relates to student inclination to explore: 
enter ‘flow’ situations.  
 Flow (Csikszentmihalyi, 1992), a state of high positive affect during creative 
activity, occurs when a person/group spontaneously develops new skills in response to 
self-set challenges. Such activity is ‘signalled’ by intense engagement and loss of all 
sense of time, self, and the world around as all energies are focused on the task at hand 
(e.g., Williams, 2006a). During mathematical problem solving, flow conditions occur 
when a group, or individual student, spontaneously and idiosyncratically identifies an 
unfamiliar mathematical complexity that was not apparent at the commencement of the 
task, and decides to explore it (e.g., Williams, 2007). The term spontaneous refers to 
student learning not caused by the teacher (or another ‘who knows’):  
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We do not use spontaneous in the context of learning to indicate the absence of elements with 
which the student interacts. Rather we use the term to refer to the non-causality of teaching 
actions, to the self regulation of the students when interacting ... we regard learning as a 
spontaneous process in the student’s frame of reference. (Steffe & Thompson, 2000, p. 291) 

Steffe and Thompson’s expression “in the student’s frame of reference” is crucial to 
spontaneity. Social elements (Schwarz et al., 2009)—control, elaboration, explanation, 
query, affirmation, and attention—have been linked to spontaneity (Williams, 2005). 
Where activity is spontaneous, control, elaboration, explanation, and affirmation are 
internal to the student because the student controls the pathway taken, explains and 
elaborates the mathematical ideas involved, and works out, for themselves, whether the 
mathematics they generate is reasonable. The role of attention and query in relation to 
spontaneity still need further investigation.  
 ‘Observable cognitive elements’ during the process of critical inquiry (Schwarz et 
al., 2009), were integrated with Krutetski’s (1976) ‘mental activities’ to analyse 
knowledge construction (Williams, 2005). Recognizing involves identifying a context in 
which a previously constructed mathematical entity applies, or identifying mathematics 
relevant to a context (Schwarz et al., 2009). Building-with involves using a 
mathematical procedure that has been recognized, in a context in which it has 
previously been used (non-spontaneous) or in a new context (spontaneous). Krutetskii’s 
‘mental activities’ form subcategories of building-with associated with spontaneity: 
element-analysis (examining a problem element by element), synthetic-analysis 
(simultaneous analysis of several elements), and evaluative-analysis (synthetic-analysis 
for the purpose of judgement). Constructing involves integrating previously constructed 
knowledge to develop new insight (Schwarz et al., 2009; Krutetskii, 1976), checking 
internal and external consistency, and recognizing its usefulness in other situations 
(Krutetskii, 1976).  
 The research question for this study was “What are the nature and role of queries that 
sustained spontaneous problem solving activity in this study?”  

Research design 
This section describes the context (schools and students), data sources, and excerpts 
selected, and the pedagogical approach employed (including the tasks, composition of 
groups, and the types of interactions intended to support spontaneous student thinking). 

Context, data sources, excerpts selected 
Two Grade 5 students were the focus of excerpts in this study: Tom [Excerpt 1] and 
Lenny [Excerpt 2, 3]. They attended either a Northern Suburbs Government Primary 
School, or a Southern Suburbs Catholic Primary School in Melbourne. The broader 
study from which this data was selected captured problem-solving activity in upper 
elementary school classes with three tasks undertaken each year over a two-year period. 
Six 80-minute sessions were undertaken each year with the researcher as teacher 
implementing the task, and the classroom teacher participating. Four cameras in the 
classroom captured the activity of each group of 3-4 students in the class as they worked 
with the task, and briefly reported group findings to the class every 10-15 minutes. 
Work generated by groups during these sessions was collected and used to support 
student discussion during interviews. Video-stimulated post-lesson student interviews 
were undertaken individually with four students after each lesson. Students were asked 
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questions including whether they learnt anything new, how they learnt it, and to find 
parts of the lesson that were important to them (including, if possible, anything that 
influenced their process of learning something new). Tom and Lenny were each 
interviewed after the lessons from which these excerpts were taken. Three excerpts of 
video data and associated student interviews were selected for microanalysis. Each 
excerpt included at least one query (self-query or external), and the student continued to 
control the pathways they explored, and the questions they focused upon after these 
queries, and simultaneously displayed high positive affect. Tom, in Excerpt 1, was 
working with the final task in the first year: “The Fours Task”. Lenny, in Excerpts 2 and 
3, was working with the sixth task (at the end of the second year): “Marketing Through 
Blue Smarties”. Queries from different sources were the focus of each excerpt. 

Engaged to Learn pedagogy  
This approach was developed (see Williams, 2009) to provide opportunities for flow 
situations. The class undertook three to four cycles of group work followed by reports to 
the class. Questions asked by other students, the teacher, or the teacher-researcher were 
intended to be non-confrontational (no contradicting). Rather, they were expected to be 
requests for elaboration or explanation that were not focused beyond the content 
presented. For the purpose of sustaining spontaneous activity, the teacher-researcher 
and classroom teacher did not provide mathematical input or hints, or agree with or 
dispute pathways taken during these cycles. Instead, they tried to ask questions to elicit 
further thinking. Such questions are illustrated herein by the type of interviewer queries 
in Excerpt 3. 
Group composition 

Groups (3-4 students) were composed by the researcher-teacher informed by video data 
from group interactions during previous tasks, and teacher background knowledge. 
Students with similar paces of thinking (differs to student performance) were grouped 
together so they were more likely to develop new ideas at the same rate. Such 
composition was intended to reduce possibility of some members ‘falling out of flow’ 
because the challenge became too great, or not entering flow because the challenge was 
insufficient. A group member likely to buffer negative influences was included in each 
group where possible. I had developed these grouping strategies as a teacher before I 
knew about flow, and before I realised that the ‘positive group member’ was optimistic. 
Tasks 

Each task was accessible through a variety of representations and levels of 
mathematical sophistication, and included concrete materials to support student 
experimentation. The two tasks undertaken during the excerpts selected were: 
The Fours task (Tom) 
Make each of the whole numbers from one to twenty inclusive using four of the digit 
four and as many of the following operations and symbols as required:  

+  +  -  -  X  /   ÷  √  .  ( )  2 

Develop strategies to generate these integers faster than other groups. Groups spent 
three minutes with individuals generating possibilities alone. Then they shared their 
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findings, and ideas, in their group. During reporting sessions, groups could focus on any 
of the following:  

• Two numbers they had generated;  
• Something they had found;  
• Something that was not working that other groups might be able to help with;  
• A ‘big picture idea’ that helped generate numbers faster; or 
• Anything else they thought could be useful to other groups.  

Reports later in the task tended to focus more on the later dot points.  
Marketing through Blue Smarties (Lenny) 
Design an advertising slogan by constructing a Blue Smartie Promise to attract lovers of 
blue Smarties to buy. Remember broken promises are not good for the company. Each 
group starts with a small-unopened box of Smarties (coloured candy), predicts the 
number of blue Smarties in their box (giving reasons for their predictions), opens the 
box, counts, and discusses their findings with their group. Groups then reports to the 
class, and add a tally to the board (See Figure 1). Each class member then predicts, 
opens, and counts blue Smarties from a new box, and adds their data to Figure 1. 
Groups analyse the data and report on their analysis. Groups then try to develop a Blue 
Smartie Promise. The feasibility of keeping each promise is then discussed.  

Results and discussion 
Excerpt 1: Queries from member of Tom’s Group  
Tom participated in the cycles of group work and reporting on ‘The Fours Task’. Alf, 
another group’s reporter explained how his group made 17. In doing so he expressed 
four divided by four as a mathematical object:  

… we did four times four to get sixteen but we needed one more … we had two extra 
fours … then we did four times four plus … four over four … so it would be like saying 
four times four plus one … four over four is one whole, so that is just like saying one, and 
four times four plus one you get seventeen1 

Tom excitedly realised he could apply this idea more generally: “when he [Alf] said 
four over four … is the same as one just that sentence just flung me like quickly in my 
mind ahhh I could use that”. When group work recommenced Tom stated: 

… we need … a strategy to figure out every single one … like what Alf and Ken’s group 
did because four over four… one could come in handy for everything that is a not 
multiple of four- so … from sixteen you need one to get to seventeen ... umm- something 
minus four over four to get to fifteen 

Tom undertook element-analysis in identifying the structure of Alf’s calculation (stem 
plus four over four). He could see he could vary the stem and use either plus, or minus, 
four over four for different integers. Tom elaborated his idea further to his group:  

For four you can get three and five using four over four and for eight you can get six and 
seven and for twelve you can get eleven and 13 and for 16 you can get 15 and 17 and for 
20 you can get 19.  

1 Key to Transcripts: ‘…’ text omitted that does not alter meaning; ‘-’ changed direction to comment; ‘[text]’ 
explanatory text added by researcher. ‘/’ cut across another’s statement. 
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In doing so, he continued to focus on the part after the stem (plus or minus one) and did 
not elaborate on making stems. Gabrielle (another group member) requested further 
explanation and Tom focused again on the part after the stem. Eventually, Gabrielle 
took the pencil from Tom, shifted the paper towards him, and tapped on the sheet: “How 
how how?” Tom elaborated the end part again. Gabrielle did not give up though; she 
queried in a different way: “… so if somebody asked you to … give answers to every 
single number …?” This query did not draw attention to the stem, nor contradict Tom’s 
idea that the stem could be any multiple of four. In responding to Gabrielle’s query, 
Tom realised his idea was only partially correct: “… if you are going to do like 12- you 
can’t do 12- you won’t be able to do it because four plus four plus four is the only way 
to get 12”. Gabrielle’s queries captured Tom’s attention with her repeated emphasis on 
the word ‘why’ and her tapping. Her queries did not contain mathematical input, and did 
not draw specific attention to what was problematic. Yet Tom identified what he did not 
yet know [failure] as he responded, and spontaneously tried to find out more as a result.  
 Tom’s subsequent cognitive activity was simultaneously optimistic [synthetic-
analysis; Failure as Temporary]. In simultaneously considering the structure and its 
usefulness for generating different integers, he perceived not knowing as temporary: 
“… so the only one that you can do it for is 16 … oh unless you do eight- so four plus 
four- yeah so four eight- so four plus four minus four over four …”. By continuing to 
vary parts of the calculation as he tried to see what was possible, and considering the 
outcome each time, Tom made decisions about whether he needed to explore further 
(evaluative-analysis: synthetic-analysis for the purpose of judgement). He 
simultaneously demonstrated that he perceived not knowing could be overcome by the 
personal effort of looking into the situation to see what could be changed to find out 
more [Failure as Specific, Success as Personal]. Thus, in response to Gabrielle’s 
queries, Tom’s initial ‘not fully correct construct’ became ‘more correct’.  

Excerpt 2: Lenny focused his own query 
During the “Marketing Through Blue Smarties Task”, students added tally marks to 
record how many blue Smarties were in their box of Smarties (See Figure 1). For 
example, the five tallies beside the top box in the second column of boxes represented 
five boxes containing six blue Smarties. 
 

 

 
 
 
 

 

Figure 1. Diagram on board: tallies of numbers of blue Smarties in boxes. 
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Lenny silently wondered why some groups had so few blue Smarties in their boxes: “I 
found that really really surprising … even the four (pause) because that is half (pause) 
what I thought it would be”. This was the start of Lenny’s thinking about chance in this 
situation. He recognized ‘average’ as relevant for examining this: “I was trying to think 
(pause) what the (pause) average was” but he was not sure how to find it. He explained 
one way he tried to find the average and why he did not think it was right:  

I think I did it wrong but … I added it all up and I think it added to twenty four and then 
… I forget what we we – I – was supposed to do then so I just counted all the ones that 
had (pause) … the ah numbers next to them and then I think there was nine and then I 
divided it by nine. 

Lenny could not recall the procedure for finding an average “I can’t remember how 
(pause) to do it properly” so tried a possibility using what he did remember (an add, and 
a divide). He knew the result was not reasonable (evaluative-analysis, identified 
‘failure’): “I counted the fifteen as one”. When asked what he did, he elaborated: “I 
added all of them [the tally marks] up like (pause) so I added this one- three sss- eight” 
and considered the size of the answer was not reasonable: “It was two and a bit … so I 
did it wrong [confident voice]”. When asked how he knew it was wrong, Lenny showed 
some conceptual understanding of the term ‘average’: “I knew the (pause) it’s- there’s- 
if there was eight (pause) six and five each (pause) mmore of them are over five so how 
is it under [around?] two?” He also knew a low number of blue Smarties in a box would 
bring down the average: “And I knew probably it would be around five six because the 
one would bring it down a fair bit …”. Lenny’s evaluative-analysis undertaken from 
more than one perspective helped him identify his ‘failure’ to work out how to find an 
average. He continued to puzzle over this [Failure as Temporary]. Lenny’s personal 
effort expended on trying to work this out was reflected in his lack of awareness of 
group interactions around him: “Yeah I didn’t really put that much into our ... promise 
because I was [soft laugh] trying to figure out the average”. Across the time of the 
interview, Lenny became more articulate in expressing why he considered he was not 
correct. It is unclear whether this happened because he had worked out ways to express 
himself more clearly, or because he had extended his thinking: “I just went one (pause) 
two and stuff but I didn’t count like (pause) … yeah I didn’t count all of them as 15 
(pause) I just counted them as one each”. 
 In this excerpt, Lenny queried what he saw on the board based initially on the 
prediction he had made. As a result, he spontaneously posed a question to help him 
consider this further: “What is the average?” As he did not remember how to work this 
out, that became his focus. He used what he did remember to develop possible 
calculations (synthetic-analysis) and made judgements about the reasonableness of the 
answers he generated (evaluative-analysis). In doing so, he simultaneously displayed 
optimistic enactment [Failure as Temporary, Failure as Specific, Success as Personal].  

Excerpt 3: Interviewer queries support Lenny’s puzzling about table  
Lenny knew there was something the matter with the procedure he was using to find the 
average, because he was counting each box as containing one Smartie. He had not 
found a way to overcome his problem though. This could have been because he did not 
understanding the table in Figure 1. Lenny continued to display intense interest when he 
had decided his answer was wrong. As interviewer, I was asking questions in a 
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‘wondering’ rather than confrontational way, and softly as though I was not expecting 
an answer: “so I wonder how many blue Smarties are there altogether?” Lenny 
responded with intensity and immediately began again to try to find this number (by 
counting tallies]:  

Lenny: I don’t know- its two (pause) three (pause) oh eight (pause) mmm thirteen …? 
[Failure Identified, exploration continued].  
Interviewer:  [Using language used previously by Lenny]: So are you counting the 
number of Smarties there, or are you counting the number of boxes?  
Lenny:  I am counting the number of (pause) how many lines.  
Interviewer: [softly] I wonder what those lines stand for (pause) whether they stand fo/?”  
Lenny: [Cut off query with excited reply] /They stan- that st- that one stands for one and 
that one [one of the tallies beside the four] stands for (pause) four”.  
Interviewer: [soft wondering] “Four what?”  
Lenny: Four [long pause then confidence answer] blue Smarties.  

Lenny was excited at the result of his synthetic-analysis. He realised he could use the 
numbers in the boxes together with the tallies to find the number of Smarties. He 
demonstrated failure was temporary and success personal as he began to interpret the 
table to answer the question he focused on (how many blue smarties?): “I’d have to 
count one … add four [correcting himself to]- and then I would have to add eight which 
would be nine and then I’d have to add five fives …”. The queries from myself as 
interviewer used language Lenny had introduced to encourage Lenny to elaborate his 
thinking. They were generally soft questions that were not necessarily intended for 
Lenny but could have just been me wondering about ideas that were developing. The 
more specific question about whether Lenny knew how to find the number of blue 
Smarties now, was based on what Lenny had been talking about in the interview. 
Lenny’s intense interest in this question was demonstrated by the emphasis in his 
response. He focused on this identified lack of knowing and continued to think about it. 
Lenny’s use of the term ‘lines’ and the interviewer’s attention to this in the subsequent 
query was almost immediately followed by Lenny’s excited realisation of how to 
interpret the table.  

Conclusions 
These excerpts illustrate queries from different sources (group member, self, expert 
other). Their role in each case was the same. They led to the student identifying a failure 
(not yet knowing) and intently continuing their spontaneous exploration. These queries 
did not contain mathematical input or hints or affirmations or contradictions, so did not 
eliminate spontaneity. They drew attention (in some way) to something that required 
further elaboration. In each case, evaluative-analysis occurred as a result as the student 
began to construct new understandings (mathematical structure, concept of average, 
meaning of table), and the activity was simultaneously optimistic. This study begins to 
make transparent some of the links between optimistic activity and learning gains:  

• Exploring further when finding something is ‘not yet known’ [Failure as 
Temporary] 

• Persevering by experimenting to find a way to find out [Success as Personal, 
Failure as Specific].  

This research adds to the body of knowledge about increasing relational understanding 
through problem solving. It illustrates the nature of queries that sustained exploration. 
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Further study of problem solving activity in other contexts would be useful to see 
whether queries of the same nature perform the same role elsewhere, and to find other 
types of questions that achieve this. This study should be useful to teachers and teacher 
educators interested in developing questions that promote problem solving activity. 
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We read books to find out who we are. What other people, real or imaginary, do and think 
and feel is an essential guide to our understanding of what we ourselves are and may 
become.  Ursula Le Guin 

 
Pre-service primary teachers‟ mathematics anxiety affects their future teaching of 
mathematics. This makes them less likely to engage with mathematics, impacting on the 
attitudes and performance of their future students. Hence, teacher education is a crucial site 
for further research. Bibliotherapy, incorporated into a fourth-year pre-service teacher‟s 
action research during her final practicum, helped identify the impact of previous 
experiences on her mathematical identity. With each cycle of her action research, supported 
by the bibliotherapy process, the pre-service teacher was able to develop greater insight, 
leading to a more positive projection into her future as a teacher of primary mathematics.  

Introduction 
Recent mathematics curriculum documents, for example, the Australian Curriculum 
(Australian Curriculum and Assessment Authority [ACARA], 2010), are based on the 
premise that all students are capable of learning mathematics. This counters the 
traditional view, in which only a few students were expected to succeed. Mathematics 
has been perceived as a critical filter (Sells, 1978), associated with elitism and social 
stratification (Tate, 1995). Beliefs that success in mathematics relates to participants‟ 
inherent worth still dominate thinking (Gates & Jorgensen, 2009). Failure in 
mathematics can have a powerful emotional impact that may extend far beyond the 
mathematics classroom (Boaler, 1997). The impacts of mathematics instruction produce 
for many an enduring state of mathematics anxiety. This anxiety has been associated 
with inappropriate teaching practices, and a prevalent belief that success in mathematics 
is determined by ability rather than effort (Stigler & Hiebert, 1992).  
 This paper, part of a larger project investigating the use of bibliotherapy, is written 
within a framework of action research, as a tool for addressing primary pre-service 
teachers‟ mathematics anxiety. This will add to existing frameworks for the study of 
affect in mathematics education (see, for example, Hannula, Evans, Philippou, & Zan, 
2004).  
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Theoretical framework and literature review 
This research is located at the intersection of the literature on the impacts of 
mathematics anxiety on primary teacher mathematics education, and bibliotherapy. 

Mathematics anxiety 
Mathematics anxiety is a learned emotional response, characterised by a feeling that 
mathematics cannot make sense, of helplessness, tension, and lack of control over one‟s 
learning. Mathematics anxiety has been associated with inappropriate teaching 
practices, and a prevalent belief that success in mathematics is determined by ability 
rather than effort. Ma‟s (1999) meta-analysis of studies of elementary and secondary 
students found significant relationship between anxiety towards mathematics and 
achievement in mathematics.  
 Theoretical models of mathematics anxiety have multidimensional forms that 
incorporate attitudinal (dislike), cognitive (worry) and emotional (fear) aspects, (Hart, 
1989; Wigfield & Meece, 1988). Baroody and Costlick (1998) suggested that children 
who develop mathematics anxiety tend to fall into a self-defeating, self- perpetuating 
cycle, and described a mathematics anxiety model that illustrates how beliefs can lead 
to anxiety, which reinforces unreasonable beliefs.  
 The impact of teachers‟ beliefs about mathematics can be far-reaching in promoting 
positive outcomes for students, and remains an important focus for educational research 
(Leder, 2007). Many primary or early childhood pre-service teachers (PSTs) have a fear 
of mathematics, and see themselves as unable to learn effectively. A great deal of 
research has been done in this area, but is outside the scope of this paper. Thompson 
(1992), in an extensive review of research into affective elements of mathematics 
education, noted that the difficulties in promoting teacher change were intimately 
connected with both what teachers know and believe. Ambrose (2004) reports that 
mechanisms that have the potential to change beliefs are those providing emotion-
packed, vivid experiences, becoming immersed in a community, and promoting 
reflection on beliefs. 
 Bandura‟s theory of self-efficacy indicates the significance of teachers‟ beliefs in 
their own capabilities on student learning and achievement. Bandura (1994) defines 
self-efficacy as “people‟s beliefs about their capabilities to produce designated levels of 
performance that exercise influence over events that affect their lives . . . Self-efficacy 
beliefs determine how people feel, think, motivate themselves and behave” (p. 71). 
People need a strong sense of efficacy before they try to apply what they have learnt or 
try to learn new things. Teachers‟ beliefs about their own ability are a significant factor 
in their approach to teaching mathematics and even militate against their willingness to 
teach upper primary classes (Wilson, 2009). High teacher efficacy leads to improved 
student performance learning and achievement (Allinder, 1995; Ashton, 1984; Gibson 
& Dembo, 1984; Madison, 1997). 
 Many students come to tertiary teacher education with limited mathematics 
understandings, and a pattern of avoidance and anxiety. Researchers of primary 
(elementary) PSTs report high levels of mathematics anxiety, low confidence levels to 
teach mathematics and low mathematics teacher efficacy. For a more detailed 
discussion of these issues see Wilson (2009).  
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Researchers have concluded that high levels of teacher mathematics anxiety can be 
perpetuated in classrooms (for example, Furner & Berman, 2005). When students are 
marginalised and do not identify themselves as confident learners of mathematics, they 
are unlikely to map mathematics into their future identities in a positive way (Boaler, 
1997). The way individuals perceive themselves as learners of mathematics is integral 
to their subsequent identity as teachers. In previous research (Wilson, 2007; Wilson & 
Thornton, 2008) many PSTs described an interaction during their schooling that led to 
them identifying themselves as persons who couldn‟t learn mathematics, and said that 
this still impacted on their self-images as future teachers of mathematics.  
 Identity brings together affective qualities and cognitive dimensions. Ricoeur (1994) 
suggests that people make sense of their own personal identities in a similar way to their 
understanding of the identity of characters in stories. Identities are mobile, and remain 
open to revision. Walshaw, (2004, p. 557), argues that “teacher education must engage 
the identities of pre-service students”, and describes the journey of a pre-service 
secondary teacher, Helen, who, “through a process of formation and transformation, 
finally at the end of the year, understood who she might become” (p. 563).  
 In summary, PSTs with mathematics anxiety are less likely to engage with 
mathematics and have low confidence and low self-efficacy, impacting on their identity 
as teachers of mathematics. It is for these reasons that teacher education has become a 
crucial site for further research. 

Bibliotherapy 
Bibliotherapy is a technique that was developed in psychology and library science. It 
involves guided reading of written materials used in gaining understanding or solving 
problems. The procedure is based on reading about the dilemmas of, and identifying 
with, the protagonist, followed by individual or group discussion in a non-threatening 
environment. The reader is an active participant in the process and interprets through 
their own psychological perspective and perceptual lenses, but feels safe because they 
are not experiencing the crisis. 
 Advocates for bibliotherapy identify both cognitive behavioural and psychodynamic 
benefits. Shrodes (1950), a pioneer in bibliotherapy, attempted to explain how literature 
could aid therapeutic work. Her psychodynamic model focused on the processes of 
identification (or universalization), catharsis (or abreaction) and insight (and 
integration) as the key steps for therapeutic benefit to occur. Many writers since then, 
for example, Morawski (1997), have used similar constructs.  

The stages of bibliotherapy used in previous research, (Wilson & Thornton, 
2008) are that the reader: 

 identifies with and relates to the protagonist (identification) 
 is emotionally involved and releases pent-up tension (catharsis)  
 learns through the experiences of the character and becomes aware that their 

problems might also be addressed or solved (insight) 
 recognises that we are not alone in having these problems (universalisation) 
 can envisage a different future identity (projection).  

In bibliotherapy, whether used in groups or individually, it is the additional work that 
goes on in the group or between the therapist and client that leverages the potential 
benefits, not just exposure to the literature. Researchers comment on the therapeutic 
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dynamics of the group, such as getting feedback from others, and hearing other 
perspectives. Hynes and Hynes-Berry (1986) describe an important feature of 
interactive bibliotherapy as “the triad of participant-literature-facilitator” (p. 11). 
 Bibliotherapy has been used in preparing PSTs to teach students with emotional and 
behavioural disorders, and students with special needs (Morawski, 1997). Previous 
research used bibliotherapy during mathematics units for PST to examine their attitudes 
towards themselves as learners and teachers of mathematics (Wilson, 2009; Wilson & 
Thornton, 2008;). The significance of the changes in response to the bibliotherapy 
process was that they contributed to the understanding of aspects that drive the 
development of their mathematical identity. Themes identified through the analysis of 
previous research strongly suggest the importance of insight as a major factor in 
bringing about a positive projective identity. The potential of bibliotherapy is that it is a 
stimulus for this revision, and the planning cycle of action research.  

Methods 
This paper reports an action research project by a primary PST, which aimed to 
investigate and develop her professional knowledge and practice. Shannon was in her 
fourth year of a primary Bachelor of Education degree. She examined how she might 
address the impact of her mathematics anxiety on her mathematics teaching practices 
during the final practicum of her course.  
 Bibliotherapy was used within the framework of action research as a tool for 
addressing her affective responses to mathematics. Action research has been identified 
as a powerful process for reconstructing and transforming practice (Somekh, 2005). 
However, Salzman, Snodgrass, and Mastrobuone (2002, p. 2), state, “in spite of action 
research‟s ability to help teachers gain unexpected and valuable insight into the realities 
of their own classrooms, there appears to be limited innovation at both the pre-service 
and in-service levels to help teachers develop action research skills.” The goal was to 
understand what had influenced Shannon in the development of her teaching practice, 
by examining the relationship between her beliefs and her classroom practice, and their 
impact on her professional identity.  
Three instruments were used in the action research cycle: 
1. Initially, working with the researcher, Shannon completed a short questionnaire 

about her self-perceptions as a learner and teacher of mathematics, and past 
experiences that contributed to these. This was repeated at the end of the project.  

2. The second procedure was a cycle of pre- and post- self-assessments of each 
mathematics lesson. These comprised a survey and short questions completed 
before and after each lesson, (including feelings, preparedness and teaching 
success, rated on scale of 1- 10; and notes on level of confidence, what went well, 
what would be changed in future). 

3. The third instrument was a journal of written reflections. Previous papers about 
mathematics anxiety were provided as part of the process of action research. The 
readings formed the stimulus for the written reflections, as one of the means of 
incorporating bibliotherapy into the action research process. The reflections were 
shared with the researcher and fellow PSTs undertaking action research projects, 
during and in a presentation and discussion after the practicum.  
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The reflections were triangulated with the answers to the questions and lesson 
assessments, and the conclusions were then reviewed in the light of student feedback, 
and related to the outcomes of previous research using the bibliotherapy framework. 

Results and discussion 
Shannon identified a critical incident around a packaging problem in a mathematics 
class “The teacher decided she didn‟t like mine and held it up to the class (with me 
standing near her) and started berating my design and my ability and saying this is the 
sort of thing that she would expect from someone much younger. I felt humiliated … I 
think that after this time, I really started to withdraw from maths.” 
 Using readings to clarify understanding of learning is central to the bibliotherapy 
technique. The reflections on readings showed strong identification: “I think this 
perfectly describes how I feel about maths – especially the tension”. Identification is 
one of the stages of the bibliotherapy process. Shannon also commented that the 
findings of the readings were interesting and relevant, for example she identified with 
the reports of mathematics anxiety starting in primary school and related this to her 
school experiences. 
 An important part of the initial reflections on the readings revolved around the view 
of herself as a learner of mathematics that Shannon had developed during her schooling: 
“I‟ve always been able to „keep up‟ but not necessarily understand what I was doing”, 
and “I found that if I understood a formula I was happy about my ability, but if I felt 
overwhelmed it would be because I wasn‟t good at maths”. 
 Her preliminary comments gave voice to the concern of researchers to ensure that 
negative learning experiences will not reinforce negative beliefs and feelings about 
mathematics in the future students she will teach, and echo the concerns of teacher 
educators who identify this as an issue. A major concern was that she would 
“inadvertently pass on my fear and anxiety of maths to my students. I don‟t want them 
having the same negative experiences that I have had”. During her presentation and 
discussion with peers, she again emphasised the strength of the concern she felt at the 
start of her practicum. “I was concerned that I would instill [sic] in students the same 
feelings about maths as what I have”. This echoes previous research findings (Wilson, 
2009), where teachers‟ comments reflect a concern for their students that negative 
learning experiences will not reinforce negative beliefs and feelings about mathematics. 
The reflections on individual lessons indicated that her assessment of her feelings 
before the lessons stayed in the range from 6 to 8 ½, but that the level after the lessons 
had a much broader range, from 2 after the first lesson, rising to 8 ½, plummeting to 4 
and then rising back to 8. Shannon commented that when she became flustered in 
lessons, the “lesson focus would change dramatically” and this lowered her assessment 
of her feelings after the lesson. She related this to her attitude. “If I felt confident before 
the lesson started, I most often felt good about it afterwards, however if I went into the 
lesson with a negative attitude, then I most often had negative feelings about that lesson 
afterwards”. Her positive experiences increased her confidence that she would be able 
to decrease her level of anxiety. “I may even be able to change my negative attitude of 
this subject over time”. 
 As the practicum progressed, the focus of Shannon‟s comments moved from 
reflections about her own inadequacy to the reassurance she felt when students 
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responded positively to the lessons. With each cycle of her action research, supported 
by the bibliotherapy process, the PST was able to develop greater insight, eventually 
leading to a more robust projection into her future as a teacher. “I found that acting 
confident in maths actually made me feel more confident and I was then able to more 
clearly convey the concepts”. 
 It might take more time for some students to go through the stages of bibliotherapy, 
although it is important to realise that everyone is unique and there is no schedule for 
the process. Shannon reflected, “I know my anxiety about teaching maths has not 
disappeared”. The positive impact of the experience is shown by her motivation to 
continue with more readings and reflections as she completes her course and begins 
teaching.  
 The final answers when the initial questions were repeated provided evidence that 
the she had shown an emotional response to the readings, had reflected on her own 
experiences and had engaged in some stages of the bibliotherapy process. Reflection on 
each lesson during the action research cycles resulted in considerable development of 
her ability to analyse and critique her own practice, and to improvements in her 
interactions with students.  
 Her reflection on her experiences was followed by a consideration of what it could 
mean for the future and the implications of her insights for her teaching. Her assessment 
of her increased confidence was authenticated for her by feedback from the class, which 
corresponded to her feelings about the lessons. In lessons that did not go well, she felt 
the class “was struggling to understand what I was talking about”. However, as the 
action research cycle progressed and she was able to demonstrate more confidence, “the 
majority of the class said they felt better about the maths when I felt better about 
teaching it”. Shannon projected herself more confidently into the classroom teaching 
situation and wrote about the importance of positive attitudes. As Carnellor (2004) 
writes, “Positive attitudes not only enhance the quality of learning, but also the degree 
to which learning and understanding become embedded in the real-life experiences of 
the individual” (p. 5).  
 The final answers and reflections demonstrate the potential of bibliotherapy to 
change the way PST feel, as the she summed up her experience by saying: “I believe my 
self-esteem has risen dramatically”. 

Conclusion  
This research connecting bibliotherapy to cycles of action research is innovative as it 
brings together analysis of reflections of a pre-service teacher with a study of the 
beliefs, attitudes and insights that shape her mathematical identities. The juxtaposition 
of bibliotherapy with action research is potentially a powerful strategy in addressing 
mathematics anxiety in PSTs. Bibliotherapy, used as part of the process of action 
research, is able to address Ambrose‟s (2004) criteria for changing beliefs, as it can 
provide emotion-packed experiences, encourage PST to become immersed in a 
reflective community and connect beliefs and emotions, and teacher practice. 
 Supporting PSTs to develop reflective and metacognitive skills empowers them to 
take these skills into the classroom, and monitor and critique their practice. The special 
feature of the bibliotherapy approach of eliciting PST reflections stems from its ability 
to call forth cognitive responses paralleled by emotional responses.  
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 The power of bibliotherapy, as exemplified in Shannon‟s action research, lies in the 
way that her cognitive responses were allied with emotional responses. It changed her 
understanding of her difficulties and anxieties in the mathematics classroom. Through 
this research she put her own experiences into perspective, developed enhanced self-
images as a learner of mathematics, and changed her assessment of her capacity to learn 
and teach mathematics. As Wolodko, Willson and Johnson (2003) write “our challenge 
is to help pre-service teachers confront their past experiences and anxieties about 
teaching and learning of mathematics. If these are openly dealt with during their 
university education, fewer teachers may be content to teach just as they have been 
taught” (p. 224).  
 Bibliotherapy, allied with action research, provides a new framework that has much 
to offer. This offers another way that the bibliotherapy process could be incorporated 
into teacher education courses. It provides teacher educators with a shared language to 
talk about cognitive and emotional responses in terms of the processes of identification, 
catharsis, insight, universalisation and projection. Hence, it provides teacher educators 
and researchers with a framework and language for communicating research outcomes.  
 Finally, negotiating this issue has the potential to transform learning and teaching 
beyond that of the PST to the future students. Bibliotherapy allows PSTs to reconstruct 
their own experiences, and re-evaluate their identities as learners and teachers of 
mathematics, potentially affecting not only their current study but also their future 
teaching of mathematics and hence the attitudes of their future students. The potential 
exists for teachers who have gained insights through this process and, an understanding 
of the process during their training, to use their experience to help their students address 
and overcome their own mathematics anxiety. 
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This paper reports on an ongoing research project investigating how problem solving can 
prepare students to think algebraically. The student examples presented highlight how 
investigating and solving mathematical problems from a structural and generalised 
perspective can develop the thinking associated with algebraic reasoning.  

Introduction 
For more than 50 years there has been a call by many experts in mathematics education 
research, curriculum design and policy development that students in primary school 
should learn and understand a level of mathematics beyond computational procedures. 
Directly related to this request has been a response to include algebra within the primary 
school curriculum. One reason why many western democracies have undertaken the 
challenge of reforming the primary school curriculum has been the steady decline in the 
participation rates of students undertaking advanced mathematics courses at a secondary 
school level (MacGregor, 2004; Stacey & Chick, 2004). Consequently, the declining 
participation rates and limited engagement with mathematics has slowly impinged on 
the availability of competent individuals who wish to, or are able to, pursue careers in 
the mathematical rich vocations offered at a tertiary level (Brown, 2009 p. 5).  The 
inclusion of algebra in primary and middle school mathematics curricula reflects the 
belief that not only is algebra needed to participate in the modern world; it also provides 
―an academic passport for passage into virtually every avenue of the job market and 
every street of schooling‖ (Schoenfeld, 1995). 
 Currently, most primary and middle years mathematics curricula do not solely 
emphasise the teaching and learning of formal algebra. Instead, the emphasis in these 
formative years is about developing a conceptual understanding of algebra and in 
particular the thinking associated with ―doing‖ algebra, often referred to as algebraic 
thinking. Algebraic thinking is the activity of doing, thinking and talking about 
mathematics from a generalised and relational perspective (Kaput, 2008; Mason 1996). 
Ultimately, algebraic thinking is founded on the ideas and concepts of elementary 
mathematics and in turn these ideas are used to solve increasingly sophisticated 
problems. It encompasses all mathematics strands and is built on a conceptual 
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understanding of number and computational fluency, the reasoning of geometry and the 
processes associated with measurement and statistics.  
 The potential value for using problem solving is that it may broaden and develop 
students’ mathematical thinking beyond the routine acquisition of isolated techniques 
and procedures (Booker 2007; Booker & Windsor 2010; Carraher & Schliemann, 2007; 
Kaput, 2008; Lins, Rojano, Bell & Sutherland, 2001). The thinking required to solve 
problems can be extended from methods tied to concrete situations—the backbone of 
primary school mathematics—to experiences that develop an ability to problem solve 
using abstractions. To consider problems from an algebraic thinking perspective 
acknowledges that students can adapt their ways of thinking, they can express 
mathematical generalisations and it can provide an entry to algebraic symbolism that is 
meaningful (Carraher & Schliemann, 2007).  

Research project 
The aim of the research project reported here is to explore and gain insights into the 
effectiveness of using a problem solving approach that facilitates and promotes certain 
aspects of algebraic thinking. The research aims to provide an improved and deeper 
theoretical understanding of algebraic thinking and how it can be developed within a 
primary school context. The intention of the investigation is to develop and implement 
lessons that actively facilitate algebraic thinking by building on students’ problem 
solving experiences. Furthermore, the research project will seek answers to the 
following questions: 

1. Can problem solving be used to develop algebraic thinking in the primary school 
context? 

2. To what extent are primary school students equipped to use algebraic thinking 
strategies when solving mathematical problems? 

3. What is the effect on students’ ability to move from arithmetic to algebra, once a 
broad problem solving approach that explicitly develops algebraic thinking has 
been implemented? 

Methodology 
Part of this study is set in a Year 7 class in a State Primary School that draws from a 
pre-dominantly lower socio-economic background. Within the cohort of 27 students 
there is a wide variation in their understanding of mathematics and this position is 
supported by their 2010 National Assessment Program – Mathematics results. 
Furthermore, results from Booker Screening Tests (Booker, 2011) re-confirm the 
diversity and wide ranging mathematical abilities within the group.  It would be 
reasonable to suggest that this class reflects many of the difficulties, challenges and 
rewards those classes and schools in similar socio-economic areas deal with on a daily 
basis. 
 This qualitative research project uses the method of design research and is greatly 
informed by the research methodology developed and used by Cobb (Cobb & 
Bauersfeld, 1995; Cobb, 2007). A key aspect of Cobb’s interpretation of design research 
is the importance of collecting primary sources of data by observing and registering 
mathematical activity by the participant observer/researcher.  In addition to this, Cobb 
also argues that by constantly reflecting on participant actions and synthesising the data 
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a cycle of enactment, analysis and further refinement can allow for generalisations 
about learning based on all the different elements found within classrooms. Within the 
context of this study, student work samples and digital video recordings of individual 
students, small group interactions and whole class presentations and discussion, form 
the basis of the observations to be analysed.  

Findings 
This is an ongoing study and it must be noted that the analysis of the data is in its 
infancy however, the view that has emerged in the early analysis and based on the types 
of problems the students can solve, the approaches they have adopted and the way they 
have discussed and presented their results, indicate a growing ability to consider 
mathematical problems from an algebraic thinking perspective. 
 At the beginning of the study, it was hypothesised that students would need to 
develop ways of thinking that moved them from the computational thinking that 
dominates much of their enacted primary curriculum. A major hurdle to overcome 
within the cohort was an assumption and behaviour that to solve mathematical problems 
simply requires numbers to be manipulated. To reduce the influence of this perception, 
one of the foci of the study was for students to share with their classmates the reasons 
why and how they developed their solutions. The emphasis to share their mathematical 
reasoning was a powerful way to motivate the students. By encouraging them to 
develop a variety of different solutions they began to see the interconnectedness of the 
mathematics, which in turn influenced their ability to generalise their solutions. The 
discourse and argumentation that took place assisted individual students to reflect on, 
modify and delve into all of their mathematical knowledge in order to solve the 
problems. The opportunities to discuss and exchange mathematical ideas allowed many 
of the students to overcome the behaviour of calculating using the numbers from within 
a problem. One particular student’s explanation for solving an assortment of structurally 
related problems was indicative of the way many of the students began to think about 
the problems. No longer did students immediately try a guess and check method but 
they attempted to find a generalised approach to the related problems.  

Nikki: It’s something you can just do for everything ... I’ve done the problems before but 
I have never really thought about them. I can do all these problems now because I know a 
way that works for all of them. 

Setting the stage – An overview of the lessons 
There is a degree of consistency with regard to the implementation of the lessons 
throughout the research project, with each 45–60 minute lesson following a similar 
cycle. Each lesson was introduced with a whole class question where each group, 
usually made up of 4 students of varying mathematical abilities, were given the same 
question. After each group had completed the question they had to explain their solution 
to the researchers, classroom teacher or peers. In preparing their explanation the group 
had to consider ―Why do you think you are right?‖ which directed them to address their 
thinking and mathematical ideas, rather than ―How did you do it?‖ which emphasises 
the procedural steps to solve the problems. The next part of the lesson cycle involved 
giving each group a contextually different yet structurally similar problem. With each 
new question the mathematics became increasingly more complex Depending on the 
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difficulty of the problems most groups would complete between two to four problems 
per lesson. The lesson would conclude with a whole class discussion in which students 
would present their solution.  
 It cannot be over-emphasised how important the group and class discussions were in 
igniting and developing different mathematical ideas. During each part of the lesson 
cycle the collaborative manner in which many of the students conducted themselves 
was highly productive. Clearly, they engaged with the mathematical discourse of their 
peers and this had a profound effect on their mathematical thinking. Within the context 
of this class, the students valued and developed a greater understanding of sophisticated 
mathematical ideas and this was highlighted by the motivating and knowledgeable 
applause that followed a mathematically significant event within the group.  

Learning and interaction 
The following two sessions described are from Weeks 11 and 12 and are towards the 
end of the teaching sessions. They demonstrate how students can build an algebraic 
perspective of problem solving. The focus of the prior lesson was to develop a broader 
understanding of equivalence, in particular the thinking required to manipulate both 
sides of an equation. At this stage some of the students were using shortened forms of 
recording and in some respects their own symbolic representations mirrored the formal 
algebraic symbolism encountered in secondary school. Keiran (2007) describes this as a 
generational activity where students actively create representation of situations, 
properties, patterns and relations and many of the symbolic meanings children assigned 
to their thinking can be viewed as algebraic.  
Whole class problem 
The following problem was given to the whole class.  

You are given a balance scale, a lump of clay, a 50 gram weight and a 20 gram weight. 
Describe how you would use these materials to produce a 15 gram lump of clay.  

The thinking described by Thomas is indicative of many students in the class. He 
demonstrates an understanding of working on both sides of an equation and understood 
the relationship between the weights and the clay.  

Thomas: Here’s what I am thinking. If you’ve got a 50 gram weight and a 20 gram 
weight, this side is 30 less than the other. Okay, so you get a lump of clay and put it on 
there and if it balances out then that is thirty and then you half and you get your 15 grams. 

This introductory question built a particular way of thinking that emphasised an 
interpretation of equivalence based on a balance scale metaphor. The idea that for every 
mathematical action there is a reaction provides a powerful basis for solving problems 
using an algebraic perspective. This understanding was then carried through to the next 
series of problems where the relationship could be expressed as two equations.   
Group questions and class discussion 
Once each group had presented their explanation they were given a choice of problems 
to solve. Each group could decide which problem they wished to solve and were 
encouraged to use their own solution process. While many of the children still used 
counters and diagrams, a number were now using their own shortened symbolic forms. 
Sarah’s group decided to solve the problem: 
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One block of weight A and one block of weight B weigh 90 kilograms. Two blocks of 
weight A and one block of weight B weigh 115 kilograms. How much do three blocks of 
weight A and one block of weight B weigh? 

Liam’s group, however, chose the following problem:  
At the Flourish and Botts bookstore the first Harry Potter book and the second Harry 
Potter book together cost $45. Two copies of the first Harry Potter book and three copies 
of the second Harry Potter book costs a total of $125. At this bookstore how much is the 
first Harry Potter book?  

Both Sara (Figure 1) and Liam’s (Figure 2) explanations highlight the significant value 
of identifying the mathematical relationships between the two unknowns. Both of them 
were able to use a system of equations to solve the problems. They were able to write 
this symbolically and their explanation confirms this understanding. Furthermore, after 
Liam had completed his explanation, Sarah, referring to Liam’s example, commented 
that her problem ―is exactly the same as the one we did before‖.  Sarah’s statement 
showed how she acknowledged the problems to be structurally similar even though the 
content and context were different. Her mathematical focus was not the specific answer 
to the problem but how both problems could be interpreted in structural terms. An 
important aspect of algebraic thinking is the ability to consider the interrelationships 
and generalisation of problem situations and if these generalisations are understood 
students’ mathematical abilities can flourish. 

Sarah: Because weight A and B are 90 kilograms, there’s two A’s and B together there 
and they weigh 115 kilograms. So you take away the 90 away from 115. It equals 25 
kilos. So 1A is 25 kilos and 1B is 65 kilograms. 

 

Figure 1. Sarah’s explanation to the class. 

Liam’s explanation follows.  
Liam: What we did was 45 double equals 90 so that means that those two together equal 
90 (circles 1 and 2). That one is 45 and that one is 45 which is 90 and the one left over is 
35 (writes 2 = 35) and that means 45 take-away 35 which means 1 equals 10. 
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Figure 2. Liam’s explanation using 1 and 2 as his symbols for the books. 

Holly and Amelia were having difficulty with this problem and they were asked to 
reflect on how they solved addition and subtraction problems involving unlike common 
fractions.  

At the local sports store, all tennis balls are sold at one price and netballs are sold at 
another price. If three netballs and two tennis balls are sold for $47.00, while two 
netballs and three tennis balls are sold for $38.00, what is the cost of a single tennis ball? 

Holly explained how she used a factorisation method when both common fractions were 
unlike and showed an example to Amelia, who through-out the prior lessons had 
demonstrated an increased awareness and recognition of the mathematical relationships 
within the problems. The two students then set about solving the problem (Figure 3) and 
referring to the two netballs and three tennis balls Amelia explained to Holly that the 
relationship would be maintained if the balls were ―increased by a factor of three‖.  

 

Figure 3. Holly and Amelia’s explanation to the class. 

In the following lesson and building on from Sarah’s, Liam’s and Holly’s explanation, 
Dougal’s group (Figures 4 and 5) developed a solution using counters and two 
calculators, whereas Emma’s group (Figure 6) showed their thinking using a very 
detailed diagram for the following problem: 

At an art store, brushes have one price and pencils have another. Eight brushes and three 
pens cost $7.10. But six brushes and three pens cost $5.70. How much does one pen cost? 

At this point in time both Dougal and Emma’s groups did not understand the 
factorisation process outlined by Holly and Amelia. However, both had developed an 
understanding of how to subtract like terms in order to isolate one of the variables. In 
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analysing their interpretation of the problems, the use of the digits 1 and 2 by Liam, 
Dougal’s counters and Emma’s diagram of the brushes and pens replaces the 
conventions associated with using x and y to represent the two variables yet the thinking 
and to a certain degree the mathematics mirrors a more formal symbolic representation. 
In developing algebraic thinking these students were capable of developing their own 
solutions. It must be emphasised that the students’ symbolism was not forced upon 
them, but reflected their own thinking. While it is tempting to move as soon as possible 
to a formal, symbolic approach as the basis of school algebra, this move may lessen the 
significance and power of algebra to many learners. The opportunity to be grasped is 
one that develops a general way of solving problems that allows students the freedom to 
internalise their thinking and builds an understanding of this symbolism. 
 

 

Figure 4. Dougal using two calculator and 
counters to complete the problem. 

 

Figure 5. Dougal’s written explanation of the same 
problem. 

  

Figure 6. Emma’s diagram to solve the problem. 

Discussion and conclusions 
The current outcomes of this research project indicate that a problem solving approach 
that develops algebraic thinking and provides students with the foundations in which to 
reason algebraically. The foundations of the approach are based on facilitating and 
encouraging students to represent and solve structurally related problems in a variety of 
ways and giving them opportunities to articulate and generalise their solutions. As a 
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student’s generalised and relational thinking develops their initial verbal descriptions 
give way to more mathematically based explanations, preparing them for the more 
concise, symbolic arguments that will eventually develop into the formal algebra used 
in further mathematics. In particular, students can be helped to construct algebraic 
notation in a meaningful way through their representations using materials, diagrams, 
models, tables and graphs in their search for patterns and generalisations.  This 
approach empowers a way of thinking about mathematics that can offer students a more 
meaningful conceptualisation of algebra. By developing algebraic thinking using a 
problem solving approach, students develop a way of thinking that builds from their 
own mathematical understanding and provides an entry point into more sophisticated 
mathematics.  
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The latest curriculum development effort of the Math in a Cultural Context, a long-term 
Alaskan project, includes Indigenous knowledge (IK). Collaborating with Yup’ik elders, 
MCC has identified a powerful set of mathematical processes used in constructing 
everyday artefacts. The knowledge of elders provides a unique way to teach Rational 
Number Reasoning. Measuring the efficacy of curriculum developed from IK requires a 
reliable and valid assessment instrument, which captures the mathematical content and 
learning trajectory established by Indigenous knowledge. An appropriate assessment 
instrument was unavailable; hence adapting questions from other instruments was 
undertaken. This paper describes the process of adapting an Australian fraction 
assessment for use in this Alaskan context. 

Context 
The underperformance of schools serving American Indian (AI) and Alaskan Native 
(AN) students and communities has been one of the most vexing and enduring issues 
in education. Federal reports have, for almost a century, advocated approaches that 
recommend educational programs connect school and community (Meriam, Brown, 
Cloud, & Dale, 1928; Executive Order No. 13,336, 2004), as a way to redress the 
continuing lower academic performance of AI/AN students, particularly in the 
mathematics domain. To address this problem, the Math in a Cultural Context (MCC) 
project has developed a long-term curriculum and professional development project in 
collaboration with Yup’ik Eskimo elders from southwest Alaska. The project has 
expanded to both urban and rural school districts and has been implemented across 
Alaska’s diverse geographical and cultural regions: Athabaskan, Inupiaq, Tlingit and 
Yup’ik. The current project takes place within five diverse Alaskan school districts. 
 MCC curriculum development is underpinned by the use of everyday Indigenous 
activities that are mathematically rich, with the potential to engage students and 
improve their understanding. Subsistence activities such as gathering berries and 
constructing a fish rack have become the foundation for a supplementary elementary 
curriculum and associated professional development materials. Positive impacts on 
AN students’ mathematics performance have been observed when using MCC’s 
supplemental curriculum (Lipka & Adams, 2004; Lipka, Yanez, Andrew-Ihrke, & 
Adam, 2009; Sternberg, Lipka, Newman, Wildfeuer, & Grigorenko, 2006).  
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 Repeatedly, elders have demonstrated how they use body proportional measuring 
and symmetry/splitting in tailoring clothing, constructing buildings, and star 
navigating. MCC’s approach is to work with Yup’ik Eskimo elders and Yup’ik 
teachers, mathematicians and math educators, educators and Alaskan school districts 
with an aim of integrating Yup’ik and Western knowledge for the purpose of 
improving students’ mathematics knowledge and performance (Lipka, et al., 2009). 
As this two-decade-old project has matured, we have increasingly recognised the 
mathematically laden ways that Yup’ik elders use their knowledge to solve everyday 
problems. Our most recent mathematics curriculum development and learning 
trajectory begins from Indigenous knowledge (IK) and the Indigenous worldview. 
Constituting mathematics curriculum from IK, that is both an authentic representation 
of Yup’ik cultural practice and school mathematics is a turnaround from the not so 
distant colonial past (Lipka & Andrew-Ihrke, 2009). 
 MCC is currently developing Rational Number Reasoning (RNR) and geometry 
curriculum materials that intertwine Yup’ik constructions with fractions, ratios, and 
proportional reasoning. Historically, elders did not and could not rely on exogenous 
tools to construct items so they employed body symmetry and body-part relationships 
as a precise form for measuring proportionally so their end-products (e.g., clothing, 
boots and kayaks) fit the user. Central to both Yup’ik everyday practices and the 
development of a RNR and geometry curriculum for elementary school students lies a 
set of generative concepts gleamed from elders’ practice. The dynamic way in which 
body proportional measuring and symmetry interact presents an integrated perspective 
on teaching measuring, geometry, patterns, numbers, and early algebraic thinking.  
 An important and common Yup’ik measure is the “knuckle”, which forms the basis 
for constructing a square, which can be transformed into geometrically pleasing 
patterns that adorn squirrel parkas or become the basis of circles used for ceremonial 
headdresses, as shown in Figure 1. In both cases, the knuckle measure is ½ the length 
of the constructed square and ½ the length of the diameter of a circle, thus 
establishing a 2:1 or 1:2 relationship. The square then becomes the base from which a 
circle is made—both are shown in Figure 2. Other Yup’ik body proportional measures 
are also used for constructing a variety of projects. For example, a kayak measure is 
approximately 3:1-Yagneq (arm span) to the length of a kayak. 
 

 
(a) Pattern on a squirrel parka (b) Ceremonial headdress 

Figure 1. Yup’ik artefacts. 
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(a) The knuckle measure (b) Square to make a circle template 

Figure 2. The knuckle measure and square to make a circle. 

Like existing MCC modules, the RNR curriculum incorporates tasks to engage 
students in creating their own representational models. Using the knuckle measure, 
students’ first construction is creating a square from uneven material. Through the 
process, students and teachers observe how symmetrical splits create congruent areas 
(see Figure 3), learn basic Euclidean geometry—2 points create a line, parallel and 
perpendicular lines. Rather than verifying the square using an Euclidean proof that the 
four sides are equal length and all angles are right angles; from a Yup’ik perspective, 
the square is verified using transformational geometry, “It is about what you do to the 
shape that stays the same … that is a reflection … the two sides of the mirror—the 
image and the original match” (Lipka & Andrew-Ihrke, 2009, p. 9). Students learn 
that one-fold creates ½, a second or recursive fold creates ¼, and a third-fold creates 
⅛, which forms a foundation for multiplicative thinking. 

 
Figure 3. Constructing and folding a square demonstrates multiplicative thinking and geometry. 

 RNR curriculum and accompanying professional development materials are being 
developed for grades 2–6. It is expected that students taught using the new materials 
will improve their conceptual understanding for the targeted mathematical content. 
Thus an assessment instrument coupled with the appropriate statistical analysis must 
answer the research question: “To what extent do the new materials support students’ 
mathematical understanding of fractions, ratios, and proportional thinking, overall and 
in each grade?” Hence this paper describes the adaptation of an Australian fraction 
instrument to create valid and reliable instruments for use by MCC. 

Assessment of efficacy 
The RNR project will adopt a similar research design to previous MCC curriculum 
development projects. Those projects employed a quasi-experimental pre/post-test 
design, in which intact classes were assigned as a control group or an experimental 
group (Lipka & Adams, 2004; Lipka, et al., 2009). All students were tested prior to 
the commencement of the teaching of the unit and at its completion. The experimental 
group were taught using MCC’s supplemental curriculum, while the control group 
used their usual curriculum materials, typically the district adopted mathematics text.  
 On previous occasions MCC have used or adapted assessment instruments 
available from other research projects. When no suitable instrument met their needs, 
pre-test and post-test instruments were constructed by selecting appropriate questions 
from the National Assessment of Educational Progress (NAEP) and Trends in 
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International Mathematics and Science Study (TIMSS). Items were also created to 
reflect the major mathematical components of the module. Instruments were also 
piloted to assess and compare the difficulty between pre-test and post-test 
instruments, and determine their reliability (Lipka & Adams, 2004).  

Assessment of fraction understanding instrument 
The Assessment of Fraction Understanding (Wong, 2009) was identified by the MCC 
team as an instrument that could be used or adapted for the RNR project. The 
instrument was intended for use to establish students’ level of knowledge and 
understanding of fraction equivalence. A learning pathway developed from empirical 
evidence enabled the three aspects of learning to be identified for students:  
(a) knowledge that has been mastered; (b) likely misconceptions that will be 
exhibited; and (c) knowledge required to further conceptual understanding (Wong, 
2009, 2010). 
 The Assessment of Fraction Understanding (AFU) comprised two forms, one for 
one for grades 3 and 4, and another for grades 5 and 6. Form A comprised 25 
constructed-response items, while Form B comprised 25 constructed-response items. 
Eighteen items were common across the two forms, which enabled students to be 
compared across grades without the need for all students to be administered all items 
(Wright & Stone, 1979). Items incorporated area models (i.e., circular, rectangular 
and square), number-line models, unit recognition, partitioning, equivalence and 
fraction language. A full description of the instrument, its development, and its testing 
is found in Wong (2009).  

Assessment Adaptation 
Modification of the AFU to meet MCC specifications required the addition of ratio 
and proportional reasoning items, and parallel forms for grades 2 to 6. MCC’s long-
standing partnership with Yup’ik elders and teachers and the development of 
assessment instruments in previous projects, provided a process from which 
instrument development/modification was undertaken. The process used to adapt the 
AFU comprised six main steps: 
1. Yup’ik elders demonstrate the cultural activity to be incorporated in the RNR 

curriculum, aligning the instrument to indigenous knowledge. 
2. Explore the mathematics embodied within the cultural activity. 
3. Present research on student learning of fractions, proportional reasoning and 

ratios.  
4. Develop an item bank. 
5. Develop/modify assessment instrument. 
6. Pilot assessment instrument. 
The first four steps of the process were undertaken at a weekend Teacher Leadership 
Workshop conducted by MCC, with Yup’ik elders, teachers and educators. Following 
introductions, Dora Andrew-Ihrke, a long-term MCC adjunct faculty and Yup’ik 
cultural expert, described and demonstrated, in English, cultural activities considered 
suitable for the RNR curriculum. Evelyn Yanez, also a long-term Yup’ik consultant to 
MCC, interjected occasionally with relevant Yup’ik words, explanations, and how 
Yup’ik stories can support RNR. They described how they visualise the process of 
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tailoring, creating patterns, and showed appropriate cultural artefacts. Both Dora and 
Evelyn responded to questions generated from their demonstrations. They then guided 
the workshop group in completing a number of activities, which enabled the 
participants to become familiar with mathematically embedded processes of body 
proportional measuring and splitting/symmetry. 
 The second step of the process was to identify and clarify the mathematics 
embodied in the cultural activity and re-contextualise the knowledge of elders to fit 
modern schooling (Lipka & Andrew-Ihrke, 2009). Discussion of the mathematics, 
such as constructing a square, how it could be incorporated in the classroom was 
undertaken. Teachers also explored how they could use the approach to develop 
fraction sets based on body proportional measuring and symmetry/splitting. 
 The next stage of the process was to present to the attendees, the learning trajectory 
or pathway identified by Confrey, Maloney, Nguyen, Mojica, and Myers (2009) for 
developing rational number understanding, and the pathway of learning linked to the 
AFU (Wong, 2009; Wong, 2010). Also, discussed were how learning pathways can 
inform teaching and learning fractions, ratios and proportional reasoning, and how the 
pathway would be recalibrated for indigenous knowledge.  
 Prior to creating items suitable for inclusion in the MCC assessment, a discussion 
of assessment design considerations was conducted; bias, common errors, types of 
problems (e.g., symbolic, pictorial, routine/non-routine, procedural, conceptual), item 
difficulty, clarity of instruction, and duration of assessment were discussed. Teachers 
and educators then worked in grade level groups to examine the applicability of AFU 
assessment items from the item bank and create items suitable for their grade, to 
assess the mathematical thinking embedded within the cultural activities 
demonstrated. Items created were catalogued and added to the item bank. 
 After the weekend workshop, pencil and paper assessments for grade 2, grade 3–4 
and grade 5–6 were created and emailed to the teachers for review. From the 
comments received, the assessments were revised and two versions, A and B created. 
Both versions comprised the same number of items, however for three grade 2 items, 
five grade 3–4 items and one grade 5–6 item, however one version incorporated a 
diagram that was absent from the other. For example, item 6 from grade 3–4 version 
B is shown in Figure 4; the diagram was omitted in the version A.  

Grade 3- 4 (version B) Grade 5- 6 (version A) 

6. For every 2 King Salmon there are 3 Reds. 

 
If a fish rack holds 6 King Salmon, how many Red 
Salmon would the fish rack hold?  

9. Mark and John have identical candy bars. 
Mark ate 4

5  his candy bar and John ate 2
3  his 

candy bar. Who ate more?  
 
Grade 5-6 (version B) 
9. Mark and John have identical candy bars. 
Mark ate 1

4  his candy bar and John ate 1
5  his 

candy bar. Who ate more?  

Figure 4. Sample items from the grade 3- 4 and grade 5- 6 assessments. 

For the grade 5–6 assessment, the fraction quantity in four items varied across 
versions. An example is shown in Figure 4. Common items, such as the king salmon 
item, were used to link the instruments across grades and versions. Items were also 
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retained from the AFU unaltered to enable comparison of learning pathways from 
different samples. 

Pilot testing of the MCC assessments 
The development of the assessment and its piloting was presented to teachers as a 
recursive process which continued until the assessments were tested and verified 
statistically to be both reliable and valid. Therefore, teachers and educators who 
attended the weekend workshop agreed to pilot the new assessments at their schools. 
Three iterations of piloting and modification of the instrument were undertaken and 
discussed as follows. 

First Iteration: Versions A and B 
The first round of pilot testing was conducted by a MCC staff member and the first 
author at the Alaska Native Cultural School, a school with a majority of AN students, 
in Anchorage, Alaska’s largest city. The assessments were administered grade 2 to 6 
students, with the number of participants and the version they completed shown in 
Table 1.  

Table 1. Sample of students tested by version and grade. 

Grade Version A & B Version C Version D 

2 18 26 92 

3 20 20 89 

4 17 12 70 

5 24 16 99 

6 23 18 (version A) 122 

 
 During test administration, students were asked to work alone; they could ask for 
clarification of questions and were offered paper for folding. Grade 2 students were 
administered each assessment item verbally, with the administrator reading each 
question aloud to the whole class. An overhead projector was also used to guide 
students through the assessment and to ensure answers were written in the correct 
location. The time taken for students to complete the assessment, their composure and 
actions were observed during assessment administration for all grades.  
 It was observed by both test administrators that students in grades 2, 3, 4, and 5 
had difficulties completing their assessment. Hence, marking the completed 
assessments at the point of data collection was undertaken. Rather than determine a 
total score for each completed assessment, responses for individual questions were 
examined, along with a comparison of responses for items with pictures and no-
picture, and grade 5–6 items with different fraction quantities. This type of review 
also provided an indication of item difficulty (Bond & Fox, 2001).  
 Responses to the king salmon question are listed in Table 2, stratified by 
picture/no-picture, grade and response. The correct answer 9 appears in bold type. 
The number of responses for answers 3, 6, and 18 are included, along with an “other” 
category, which includes whole number answers not listed, answers with fractions, 
and “non-attempts”. Of the grade 5 students who completed the picture question, 27% 
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(n = 26) answered it correctly, compared to 50% (n = 8) who completed the non-
picture version. Of the grade 6 students who completed the picture question, 36% (n 
= 28) answered it correctly, compared to 60% (n = 5) who completed the non-picture 
version. Determining whether pictures provided an advantage was not possible due to 
the small sample sizes. Review of all items within all assessments confirmed the 
assessments were too difficult for grades 2 to 5. 

Table 2. Responses to the King Salmon Question 

For every 2 King Salmon there are 3 Reds. 
If a fish rack holds 6 King Salmon, how many Red Salmon would the fish rack hold? 

Picture No-picture 

 Responses  Responses 

Grade 3 6 9 18 other Grade 3 6 9 18 other 

2 (n =9) 2 1 0 1 4 2 (n =10) 0 5 1 0 4 

3 (n = 8) 0 0 1 1 6 3 (n = 12) 0 1 2 1 8 

4 (n = 6) 0 0 3 0 3 4 (n = 11) 0 1 3 1 6 

5 (n =26) 1 1 7 1 6 5 (n = 8) 1 1 4 1 1 

6 (n =28) 0 0 10 3 5 5 (n = 5) 0 1 3 1 0 

 

 Discussions of the difficulty of the assessments were undertaken with the 
classroom teachers and MCC principal investigator, and it was decided that 
adjustments to the assessments were needed prior to visiting the second school the 
following day. From the results of the review and observations during assessment 
administration, no adjustments were made for grade 6. Major revisions as listed, were 
undertaken resulting in the creation of version C:  

 Grade 2 – Reduce the number of items and incorporate items with diagrams.  
 Grade 3-4 – Use the grade 2 versions as the basis for creating a new instrument 

and add some difficult items. 
 Grade 5 – Use the grade 3-4 versions for creating a grade 5 instrument.  
 Ensure adequate link items across all grades. 

Some items were also reworded or reorganised. For example, the fish in the king 
salmon item (see Figure 4) were repositioned vertically as they would appear in real 
life. An item aimed at addressing the paper folding process was also reviewed for 
clarity of instruction, as the pictorial representation of the process was ambiguous. 
With the assistance of classroom teachers, a number of attempts at rewording the item 
highlighted the difficulty in creating pencil and paper items which reflect the 
underlying mathematical concepts revealed by Dora’s cultural activities. Hence a 
companion performance-based, hands-on assessment (one-to-one interview) was 
created for administration to a subset of students who also completed the pencil and 
paper assessment. 

2nd Iteration: Version C 
The second round of testing was conducted at Dillingham City School, a rural school 
with a majority of AN students, within the Bristol Bay region. Version C was 
administered to students from grades 2 to 5, while versions A and B of the grade 5-6 
assessment, were administered to grade 6. The number of students tested is shown in 
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Table 1. The process of reviewing the response to individual items as undertaken in 
the first iteration was also undertaken for all grades, which confirmed the assessments 
comprised items with a range of difficulties. No items had either a 100% or zero 
percent success rate.  
 One-to-one interviews with the first author were conducted with four of the 
students: (a) to ensure questions were interpreted as intended; (b) to gauge the 
difficulty of the items and assessment overall, (c) to identify the mathematical 
thinking exposed by the question; and (d) to uncover likely strategies to be employed. 
Those students did not undertake the assessment with their class. It was found that 
item wording did not pose a problem to answering the items and different strategies 
were employed by students to answer items. 

Iteration 3: Version D 
Final changes to the assessments were undertaken to ensure consistent representation 
of items across and within forms. For example some fractions were in-text (e.g., 1/4, 
5/8), while others were in vertical format (e.g., 1

4 ); all were changed to the vertical 
format. Both authors administered Version D at five elementary schools and one 
middle school in Juneau, the capital of Alaska. Not all grades or classes within grades 
were tested at each school.  
 The analysis of grade 3-4 data was undertaken first as this instrument contained the 
greatest number of common items between the grade 2, grade 5 and grade 6 
instruments. The assessment was shown to be reliable using Cronbach’s alpha = .88, n 
= 159, calculated using SPSS v16. Using RUMM2020, all but three of the items in 
assessment fit the dichotomous Rasch model (RUMM Laboratory, 2004a). These 
items will be reviewed to determine any necessary changes.  
 Data coding and preliminary analysis for grade 6 assessments is underway. 
Although Cronbach’s alpha = .90, n = 122, review of the instrument and responses to 
items showed that further rewording of items is necessary. Two items were found to 
violate the assumption of local independence during Rasch modelling, hence were 
omitted from a second analysis. Further results showed that four items violated the 
assumptions of item fit and three polytomous items exhibited disordered thresholds 
(RUMM Laboratory, 2004b); these items require further analysis and review with 
changes to the grade 6 assessment expected.  
 Once analysis of all grade level assessments is complete, the data will be 
aggregated and Rasch modelling conducted on the entire data set. This will provide a 
preliminary learning trajectory commensurate with learning fractions, ratios, and 
proportional reasoning from indigenous knowledge. 

Conclusion 
The RNR pencil and paper assessments were designed to reflect IK knowledge. To do 
so, it was imperative that the assessment developers and teachers understood the 
cultural activities and mathematics embedded within those activities. One difficulty 
encountered in developing a culturally valid instrument was preserving the cultural 
knowledge in an authentic form. Three iterations of development and testing were 
undertaken. Preliminary analysis shows that further item development is needed to 
improve instrument reliability and validity. The adaptation of the AFU instrument to 
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another cultural context presented enormous challenges. However, the possibility of 
establishing an assessment instrument that reflects IK and calibrates a learning 
trajectory that follows the cultural activities and learning process gleamed from 
Yup’ik elders’ knowledge represents “ a first.” The refinement process is expected to 
continue during the next few years.  
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Exceptional performance, or giftedness, in mathematics is complicated by the variety of 
conceptual approaches to studies of giftedness as well as the broad and diverse nature of 
mathematics as taught in modern educational institutions. This paper outlines approaches to 
giftedness in mathematics that are based in studies of cognition within the discipline of 
educational neuroscience, approaches that conceptualise giftedness within a context that is 
sensitive to modern biology and, at the same time, inclusive of modern research in the 
social and behavioural sciences. Based on such approaches, exceptional performance in 
mathematics is discussed in relation to cognition and performance as a product of internal 
processing and environmental connectivity of the human organism. Such approaches have 
facilitated the development of an overarching framework for learning and memory that may 
enable a view, within the constraints of empirical science, of educational concepts related 
to exceptional performance. This framework may provide useful insights into the 
identification and education of students who may be gifted in mathematics.  

Introduction 
Exceptional performance, or giftedness, in mathematics appears to be a topic of great 
interest to researchers and teachers worldwide and there appears to be no lack of studies 
of the mathematically gifted. There appears to be, however, little in the way of common 
ground between many such studies, or studies of giftedness and cognition more 
generally, with the differing approaches used seemingly based in concepts and 
assumptions that appear to bear little relation to each other. There appears to be also no 
overall conceptual framework within which to compare such studies (e.g., Samuels, 
2009) and, perhaps as a result, no overarching conceptualisation of giftedness as an 
aspect of cognition and behaviour (e.g., Kaufman & Sternberg, 2008). Studies of 
giftedness in mathematics appear, additionally, to lack cohesion due to the broad and 
diverse nature of the subject of mathematics as taught in modern educational institutions 
(e.g. Davis, 2003; Organization for Economic Cooperation and Development (OECD), 
2003). There appears to be also a lack of cohesion apparent in disagreement about 
empirical, or even descriptive, comparisons of performance across cohorts in the many 
categories of the subject of mathematics. This complex situation is given an added 
dimension of arguments about whether educational institutions can function effectively 
in the educational development of the gifted (e.g., Diezmann & Watters, 2002; Ericsson, 
Nandagopal & Roring, 2009; Freeman, 2006) and by the view that studies of gifted 
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performance in mathematics may be directed only at the aspects of mathematics that are 
determined as valuable in a particular society, depending on who is making such 
determinations and on their rationale for any such determination (Hertzog, 2009; 
Kaufman & Sternberg, 2008). 
 There have been, however, attempts to investigate overarching conceptualisations of 
cognition, and to investigate gifted performance within such conceptualisations. Modern 
educational neuroscience, for example, has attempted to incorporate an evolutionary 
perspective into studies of human cognition in order to place such studies in a context of 
human interaction with environment, a context that includes social interaction and other 
aspects of behaviour (e.g., Cotterill, 2001; Edelman, 1987; Margoliash & Nusbaum, 
2009). Some such research has merged concepts derived from evolutionary biology and 
studies of cognitive function with concepts derived from education and the information 
sciences (e.g., Buss, 1999; Geary, 2005; Sweller, 2007, 2010) and some research has, in 
turn, merged such concepts with those related to connectivity of processes and pathways 
in organismal and non-organismal structures and systems (e.g., Barabasi, 2002; 
Buchanan, 2002; Sporns, Tononi & Kötter, 2005).  
 The results from such interdisciplinary and combination studies have been used to 
erect a broader, more flexible framework that describes learning and memory processes 
in terms of information processing systems more generally (e.g., Woolcott, 2009a, 
2009b, 2010a, 2010b). Mathematics education, within this framework, can be viewed in 
many ways as similar to education in any subject category at any level of a broad 
spectrum of performance. This framework suggests further that, in treating a human 
individual as a information processing system, there may be differing, but sometimes 
overlapping, component information systems that may process information in different 
ways and over different time frames, but which may contribute to an assessable 
performance in any culturally-valued subject, not just mathematics. In considering 
exceptional performance in mathematics, therefore, it may be useful to consider aspects 
of an individual’s performance that give an individual a degree of expertise, both within 
and across a number of culturally-valued knowledge domains. 

Mathematics, performance, and educational neuroscience 
In the modern age, mathematics learning is an important part of the societal 
accumulation of culture (knowledge and skills) and this learning is assessed, as is all 
learning, through observation of performances based in muscular contractions that 
indicate any resultant memory storage (Cotterill, 2001; Llinás, 2001). The types of 
performance vary from simple eye blinks to complex sequences of movement seen in 
sports performances, and include talking, reading and writing. Learning and memory 
processes and their relationship to performances in motor tasks have been the subject of 
considerable recent research both in the natural sciences and the social and behavioural 
sciences, and some of this research has been directed at examining individuals who 
demonstrate above-normal performances that are valued in particular societies. This 
includes performances that exceed the normal in pen and paper tests, such as in the 
Mathematics Olympiads, but also those performances that demonstrate other types of 
above-normal expertise, such as seen on the concert platform, in the chess arena, and on 
the sporting field; at various levels from local and national through to international (e.g., 
Ericsson, 2005; Zhu, 2007). Such assessments of expertise may be largely norm-
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referenced with standardised intelligence tests, competitions, or other types of 
performance assessments conducted with this in mind (e.g., Vialle & Rogers, 2009). 
Some such assessments may be used to grade individuals for various reasons, for 
example, in order to assign monetary or other incentive awards in competitions. 
Although such performance assessments are not always used in any directly formative 
way, they may be used to indicate progress towards a goal of increased expertise or 
expert knowledge—for example, through guided practice (Ericsson et al., 2009). In 
institutional education, such assessments may serve as a guide to the quality and content 
of education that is provided to some students within subjects or within year groups and, 
recently at least, have been used to determine the allocation of resources, including an 
improved teacher to student ratio, to individual students or groups of students identified 
as gifted, and this includes those students gifted in mathematics (Moon, 2007; Vialle & 
Rogers, 2009).  
 As well as research into examining comparative performance, there has been also 
research into the determination of potential future performance, with support obtained 
for the effectiveness of some such determinations—for example, in assessments used to 
assess potential ability in mathematics and to assist in development of training regimes 
(e.g., O’Boyle, 2005). Although results from some assessments used to determine 
potential academic ability, such as intelligence quotient (IQ), spatial intelligence, or 
crystallised intelligence assessments have been correlated with academic performance 
in mathematics, there are limitations in applying such results to programs designed to 
increase expertise (e.g., Haier, 2009). Haier and associates (see, for example, Colom et 
al., 2009; Haier, 2009; Haier & Jung, 2008) have, however, developed a neural model, 
the parieto-frontal integration theory (P-FIT) that correlates the amount of grey matter 
(neuronal cell bodies) activated across a number of different brain regions with test 
scores from several such assessments, and this model may be useful in determining 
general intelligence, at least, based on the brain’s measurable characteristics. There may 
be, however, many other factors that may play a role in both performance and ability 
(Samuels, 2009), with quick processing time—which is linked to white matter (neuronal 
connections)—also likely to play a key role in any assessment of potential intelligence 
(e.g., Haier, 2009).  
 Giftedness, including giftedness in mathematics, has been related to gender and age 
differences (e.g., Haier, Jung, Yeo, Head & Alkire, 2005; Halpern et al., 2007; Shaw et 
al., 2006) and exceptional performance in mathematics, specifically, has been linked 
with hemispheric bias and interhemispheric connectivity (O’Boyle, 2005) as well as 
developmental variation in utero (Baron-Cohen, 2003) in human males. It has been 
difficult, however, to relate giftedness to specific genetic attributes and Plomin and 
associates (e.g., Davis et al., 2007) have suggested that this is because the genes that 
contribute to superior learning and memory and related performances, may be generalist 
genes that contribute to development of many parts of the human organism. Further, 
modern research in learning and memory has also indicated that some types of 
giftedness may not be subject-specific, being related to general attributes of a human 
cortical advantage, such as a superior ability to generalise, superior attentional or 
working memory processes, or superior ability in problem solving. Some researchers, 
for example, have related superior working memory and attention to high scores in 
assessments of the general factor of intelligence (g factor) or fluid intelligence (Colom 
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et al., 2007). Such superior functionality has been considered a neuropsychological 
characteristic of gifted people (Geake, 2009a). Although executive function, including 
working memory (short-term memory) and related inhibitory processes, has been 
implicated specifically in mathematics performances (e.g., Bull, 2008), this may be 
largely because such processes relate to generalised skills that are concerned with the 
utilisation of strategies. Such neuronal processes appear to be related also to creativity, 
adding support to the suggested relationships between intelligence, giftedness, and 
creativity (e.g., Cotterill, 2001; Geake, 2009a; Jung et al., 2009).  
 Some recent studies have attempted to describe fully the neuronally-based pattern 
analysis carried out during mathematics by comparing brain function in individuals with 
savant syndrome, including individuals with autism spectrum disorder, and neurotypical 
individuals, where both are considered as gifted in mathematics (e.g. Casanova & 
Trippe, 2009; Treffert, 2009). Some such studies (e.g., Happé & Vital, 2009; Mottron, 
Dawson & Soulières, 2009) have indicated that the detection, integration and 
completion of patterns, and the requisite grouping processes, function in the negotiation 
of the phenomenological world, a tacit support for the arguments that any study of 
human cognition must be sensitive to the consideration of evolutionary processes (e.g., 
Calvin, 2004; Dehaene, 2004, 2009). In association with this pattern analysis is the 
ability to produce new material within the constraints of the integrated structure, a 
process which Mottron et al. (2009) refer to as creativity. In gifted individuals who are 
neurotypical, this integrated structure may be determined by automatic hierarchies that 
govern generalisation and memory processing through information loss and the 
limitation of the role of perception. Grandin (2009), a noted researcher who has autism 
and savant syndrome, has argued that the orientation towards pattern analysis that may 
be recognised as mathematics, as well as resulting from environmental interaction, may 
be due to differences in connectivity within individuals.  
 A better understanding of pattern analysis as a component of mathematics is, 
obviously, an important issue in understanding exceptional performance in 
mathematics. Snyder and associates (e.g., Snyder & Mitchell, 1999) have suggested, 
however, that the algebraic and algorithmic patterns and processes taught in 
mathematics may not correspond to the patterns and processes that they are designed to 
activate, and this is supported by Baars (1995) in proposing that humans use heuristic 
processes and analogies, rather than algorithmic processes, in dealing with patterns of 
environmental input. Although several capacities have been described for the brain—for 
example, problem-solving, decision-making and action control—Baars considers that 
one of the strengths of the brain, and the entire nervous system, may be in remembering 
and cross-analysing patterns observed from the real world, which is arguably an 
intrinsic mathematics capacity. 

A flexible framework for cognition and giftedness 
Although there is little in the way of consensus on how to accommodate information 
from differing studies of giftedness in mathematics, and giftedness in general, some of 
the parallels drawn between concepts within modern educational neuroscience and other 
disciplines have been used to erect a broader, more flexible framework within which to 
examine giftedness specifically and cognition more generally, (e.g., Woolcott, 2009a, 
2009b, 2010a, 2010b). This flexible framework describes learning and memory 
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processes in a broad sense in terms of information processing systems, and this is 
similar to the descriptions of human cognition and evolution in terms of natural 
information processing systems that have been used in some educational studies, such 
as those concerned with cognitive load theory (e.g., Sweller, 2007, 2010). This 
framework was developed from a consideration that learning and memory can be said to 
involve three temporally connected, but separable, stages in information flow: 
1. environmental information input to or output from an individual;  
2. processing of resultant information changes within the individual (information 

processing); and  
3. changes in the observed state of the individual resulting from any such 

information processing.  
In this flexible framework, the concepts of learning and memory have been generalised 
across both organismal and non-organismal structures, and all matter and energy 
described as information. All discrete organisations of matter and energy within the 
universe (in the sense of Gribbin, 1994) are described as information processing 
systems, with changes in information within such discrete organisations described as 
processing (Woolcott, 2010b, 2011). Learning and memory are described in terms of the 
overarching range of possibilities or potentialities of any change of matter and energy 
within such information processing systems where such change results from 
information input or output.  

Within this framework, a human can be considered as a discrete matter and energy 
entity and human connectivity can be considered in terms of interactions with 
environment of the human information processing system and, as well, any designated 
structure within the human system can be considered also as a similarly discrete entity. 
On this basis human learning and memory can be described as a function of human 
connectivity with environment, as well as a function of connectivity within the central 
nervous system and, in particular, of neuronal connectivity within the brain. This 
framework supports the consideration separately of the differing aspects of human 
cognition within a dynamic system, and allows also a formalisation of the partitioning 
of cognitive structures, which is, in practice, a common method in dealing with learning 
and memory in cognitive psychology and the natural sciences (Woolcott, 2010b, 2011). 
For example, such dynamism operates, not only during storage of discrete information 
in long-term memory, but also in spatiotemporal sequencing of memories (Calvin, 
2004; Postle, 2006) and in the linkage of emotions and chemical reward with learning 
and memory (Damasio, 1994; Le Doux, 2000; Panksepp, 1998). Neuronal patterns that 
develop with such intrinsic and dedicated flexibility act to adapt each human to a range 
of environmental inputs, including input classified as mathematics.  

Since this framework supports explanations of cognition couched in terms of the 
interaction of component systems within the human organism, it supports the view that 
learned concepts are not necessarily uniquely subject-dependent. It is well known, that, 
even though some regions of brain activation may correspond to concepts described as, 
say, mathematics or reading, many common brain regions may be activated during 
processing of information in any subject (Dehaene, 2004; Geake, 2009a, 2009b). Lakoff 
and others (e.g., Lakoff & Núñez, 2000) have referred to such commonality of learning 
processes in terms of conceptual metaphors, as well as cross-domain mappings that 
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preserve inferential structure and which are essential for linking conceptualisations 
generally, but which serve also for the linking of concepts in subject categories. 
 In considering a human individual as a type of universal information processing 
system, there may be differing component systems that may process information in 
different ways and over different time frames, but which may contribute to an 
assessable human performance, even if these systems sometimes overlap. The 
consideration of the human cognitive system as separable components suggests that it 
may be more useful to consider only those aspects of an individual’s performance that 
may be viewed as superior, where those aspects result from components of that 
individual as an information processing system, rather than to consider that a student 
who has a superior performance in any one aspect is gifted in other ways as well. In this 
way giftedness may be conceptualised as the degree of expertise that an individual may 
have obtained in a culturally-valued knowledge domain, or the potential expertise in 
such a domain for which the individual may have an assessed performance, so long as it 
is recognised also that various components of the student’s cognitive and related 
systems may contribute differentially to that expressed expertise. The consideration of 
separable information processing components may be useful also in examining aspects 
of giftedness such as motivation and emotion (e.g., Cotterill, 2001; Geake, 2009b). 
 An additional advantage of a flexible framework that supports a view of separable 
cognitive systems is that such a framework accommodates the concept of giftedness as 
the acquisition of knowledge in specialised domains in individuals that may otherwise 
have differences in cognitive connectivity, such as may occur in higher functioning in 
individuals within the autism spectrum (e.g., Casanova & Trippe, 2009; Grandin, 2006, 
2009). Differences in connectivity between component systems, such as seen in 
neuronal hyper-connectivity and hyper-plasticity, may lead to the development of 
expertise, or giftedness, or may result in lack of expertise depending on what is being 
assessed (e.g., Casanova, 2010; Markram, Rinaldi & Markram, 2006). The flexible 
framework also accommodates the differences in abilities as explained by Haier and 
associates in their P-FIT model (e.g., Haier & Jung, 2008; Colom et al., 2009; Haier, 
2009), since each component of the cognitive system, as described in the P-FIT model, 
can be treated effectively as a separate system in describing information transfer, 
storage, and recall.  

Conclusion 
Identification of giftedness, and the development of expertise based on that 
identification, may benefit from a broad approach that views human performance in a 
framework of interacting information processing systems, some of which have 
components in the environment external to the human organism. The framework 
outlined here indicates that education may have the potential to develop, through 
selective teaching to the system at large, any interacting systems that give rise to 
particular performances or abilities that are considered culturally valuable, whether 
these lie within, across or outside of the subject of mathematics or which link 
mathematics with other subjects. It may be necessary to re-evaluate our cultural 
mathematisation to more fully incorporate knowledge of brain processing that acts 
naturally across subject areas, particularly as it relates to the high level of expertise that 
is an expected result of gifted education.  
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This framework appears to offer reconciliation also of some of the disparate approaches 
that have been taken in studies of giftedness (see, for example, Perleth & Wilde, 2009) 
since the framework allows some comparison of such differing approaches through 
consideration of parallels that may be present between differing analogies and 
assumptions (e.g., Woolcott, 2009b, 2010b, 2011). Comparison and evaluation of such 
differing approaches may be useful in elucidating learning and memory processes to be 
used in education and teaching, including teaching of the gifted (Woolcott, 2009a, , 
2010b). For example, the consideration that problem solving is the main function of 
learning and memory in the human interaction with environment (e.g., Grillner, 2003; 
Tonegawa et al., 2004) may be central to any educational strategy and, therefore, an 
important aspect of giftedness in mathematics. Gifted education, as is the case with 
education more generally, therefore, should develop such problem-solving ability 
through learning, in order that each individual maximise the potential for such 
interaction and the subsequent growth of contextually-linked information connectivity 
in long-term memory (for example, see Edelman in Sylwester, 1995).  
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What is important to teach students within the mathematics discipline? Identifying the 
fundamental concepts (or big ideas) of mathematics is being looked at in the development 
of the Australian National Mathematics curriculum. But what do lecturers at university 
consider to be the “big ideas” in the mathematics courses they teach? Seventeen lecturers 
were interviewed about thirteen mathematics courses to establish what they considered 
were the key areas of learning within these courses. This paper reports on the interviews 
conducted with lecturers from two large first year classes. Their responses indicate that 
teaching mathematics involves a lot more than mathematics alone.  

Introduction 
Currently Australian schools are preparing to adopt a National Curriculum for four 
subjects, including mathematics. The Australian Curriculum—Mathematics is intended 
to focus on the fundamental concepts in mathematics that should be taught. Establishing 
what the “big ideas” or mathematical concepts that students need to grasp in 
mathematics is also relevant in a university setting.  
 How well a student grasps a new concept can be described in terms of Concept usage 
which matters in mathematics, as students are not only required to understand 
mathematics concepts, but also to use them in processes that require other abilities such 
as the use of logic and critical understanding (Moore, 1994). Concept image is the term 
used to describe how a concept is understood and seen by the student (Tall & Vinner, 
1981). The concept image is developed over many years and is influenced by the 
student’s experience from within and beyond their education. The concept image 
develops either consciously or subconsciously with more experience. Thus the student 
may have a very different understanding of the concept from that held by their 
discipline. The discipline’s understanding of the concept is described as the concept 
definition. For example, when it comes to developing formal mathematical proofs, 
understanding of concept usage becomes important (Moore, 1994). Without this 
understanding, the ability to use proof techniques diminishes. For any form of 
mathematics, concept definition, concept image and concept usage are all important 
factors.  
 Some concepts have a greater impact on a student’s learning and can be described as 
threshold concepts. A threshold concept is a term that has emerged within the literature 
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on higher education learning and teaching as a way of thinking about how students 
come to understand the key ideas of their discipline. The theory of threshold concepts 
was initially developed by Meyer and Land during a national research project in the UK 
in the economics discipline (Cousin, 2006). It was believed that understanding some 
crucial concepts, which they called threshold concepts, was essential to becoming an 
economist (Cousin, 2006). The theory of threshold concepts has now been taken up and 
developed by many other disciplines including mathematics.  
 Each mathematical concept can be described by the concept definition, applied 
according to the concept usage and seen by the student through their concept image. 
However, these concepts can be categorised into two levels of importance: core 
concepts that define important stages in learning and threshold concepts that, once 
grasped, will change the way the student thinks (Meyer & Land, 2003). Threshold 
concepts are most likely to be transformative, irreversible, integrative, bounded and 
troublesome (Meyer & Land, 2006). 
 Once a threshold concept is grasped, the student is said to gain new insight into what 
they are studying so that the material they are working on becomes clear and obvious. 
They are therefore changing from the concept image they possess to an understanding 
of the concept definition held by the discipline. In mathematics, complex numbers, 
limits, proofs and calculus have all been described as examples of threshold concepts 
(Easdown, 2007; Meyer & Land, 2003; Pettersson & Scheja, 2008). 
 The purpose of this study was to identify the “big ideas” that mathematics lecturers 
want their students to learn. For ease of communication, the term “areas of learning” 
was adopted in interviews to describe these “big ideas”. These areas of learning will be 
presented and discussed in terms of the core versus threshold classification, as well as in 
terms of the students’ progression through concept image to concept definition and 
concept usage. The areas of learning also include skills that cannot be classified as 
mathematical concepts. 

Research design 
The interviews discussed here are part of a larger integrated study being conducted at 
The University of Queensland that will use interviews, student surveys and analysis of 
course assessments to investigate how students’ behaviour and attitude affect their 
ability to understand key concepts in mathematics.  
 The lecturers were sent the following list of questions before each interview:  
1. Please list four to five main areas of learning in the course. These can be concepts, 

skills, or topics that you consider of key importance for the students to attain by 
the end of the course.  

2. Are any of these key concepts similar to those in other courses? 
3. Do you feel that students are made aware of the key concepts they are expected to 

understand? 
4. What do you do when teaching the course to aid the students in gaining 

understanding of these concepts? 
5. Does the assessment in the course encourage students to gain understanding of 

these key concepts? 
6. Does the course assessment determine whether a student has understood these key 

concepts? 
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7. How do you think the students’ grades reflect their understanding of the course 
material (and whether they have understood the key concepts)?  

Initially, responses were recorded by taking hand-written notes that were sent back to 
the lecturer for verification. Later interviews were audio recorded, which allowed for 
greater accuracy and depth of information collected. 
 The majority of lecturers interviewed have had extensive teaching experience in a 
variety of universities and had taught the courses for several semesters.  

Results 
Interviews were conducted with 17 lecturers. Two courses were selected for analysis in 
this paper. The lecturer who taught the first course, Mathematical Foundations, 
identified areas of learning similar to those in other courses, but gave very different 
reasons for his choices. The second course, Multivariate Calculus & Ordinary 
Differential Equations, is typical of courses taught by two lecturers.  

Mathematical foundations 
Mathematical Foundations is a course that caters mainly for engineering students who 
have not completed advanced mathematics at secondary school. The pace of 
mathematics covered is quite fast for some students as the content usually covered in 
two years at school is taught in one semester (13 weeks) at university. In the first 
semester of each year enrolments are around 700 students. 
 The lecturer, Tom, identified the following four major areas of learning: 
1. Limits; 
2. Recognition of different number systems; 
3. Proof by induction; and 
4. Describing physical problems in the language of mathematics. 
He pointed out that his intention was not to teach students detailed procedures in each 
area, unlike many other interviewees, but to introduce them to mathematical thinking; 
for example, he wanted students to understand how and why different number systems 
were introduced. This was to show them the relevance of the different types of numbers 
in the course, such as complex numbers. 
 Tom wanted students to be able to describe physical problems in the language of 
mathematics. He explained that this skill showed the usefulness of mathematics in 
solving “real life problems”. It also brings together the areas of mathematics in the 
course. Showing students the relevance of what they are learning has been shown to 
encourage students to adopt a deep learning approach (Entwistle & Tait, 1990). These 
four areas of learning are all used extensively in later courses, where they are classed as 
assumed knowledge.  
 Tom felt that all the areas of learning were tested for understanding in the course 
assessment. He generally found that, although most students understood limits, their 
algebra skills were poor. In the final exam, which was regarded by Tom as quite 
difficult, number systems (in the form of complex numbers), proof by induction and 
applications were always tested. Tom said that a student would need to know well all 
the areas of learning to achieve a high distinction. However some students could pass 
the course by only understanding one of the areas of learning. A credit could be 
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achieved if that area were applications. It is not possible to gather which key areas of 
learning a student had understood only by looking at their final grade. 
 Tom’s descriptions show that the course was not just about learning concepts but 
more about using the concepts to teach the students how to think and act like 
mathematicians.  

Multivariate calculus and ordinary differential equations 
This is a large first level course that usually has around 1000 students enrolled in the 
second semester. As with the previous course, the majority are engineering students, but 
there are also some students majoring in mathematics. The course complements 
previous courses by introducing students to more advanced aspects of calculus. They 
solve a variety of problems involving functions of several variables, partial derivatives 
and parameterisation of curves and line intervals.  
 Due to the large number of students enrolled, there are often several lecturers 
teaching the course. The two lecturers interviewed, Bob and Alice, have each been 
teaching this course for several semesters. Bob’s responses relate only to the part of the 
course that he taught, whereas Alice’s responses relate to the entire course. Alice 
teaches the later part of the course with much of the material related to the early part.  

Table 1. Areas of learning: the analysis of Bob’s and Alice’s responses. 

Analysis: Areas of 
learning 

Bob’s responses Alice’s responses 

Critical thinking Critical thinking  
Applications Applications: to motivate and 

show how calculus can be 
applied 

Using ordinary differential equations in 
modelling applications. 

Graphical 
interpretations of plane 
interception 

Linear algebra: looking at how 
planes intercept 

 

Vector calculus  Basic understanding of line integrals and the 
use of parametric curves in their evaluation; 
parametric representation of curves in 2 and 
3 dimensions. 

Computational aids  The use of Matlab or other computational 
aids to assist in visualisation/understanding 
of concepts. 

Understanding 
functions of more than 
one variable  

Differentiation of functions of 
more than one variable 
 Graphing functions of more 
than one variable by visualising 
graphs from functions, using 
geometric interpretation to make 
predictions 

Linear and quadratic approximations to 
functions of more than one variable 
 Using partial derivatives to analyse key 
features of functions of more than one 
variable. (e.g. tangent planes, max/min 
problems, Lagrange multipliers) 
 Rates of change of functions of more 
than one variable, interpreting this in 
graphical terms 
 

Ordinary differential 
equations 

 Solving and interpreting solutions of certain 
ordinary differential equations 

 
Critical thinking, applications, and computational aids are the three areas of learning 
that relate to the entire course. Bob stated that one of the most important skills he 
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wanted to teach students was to critically think. As he stated, “No one should graduate 
from a respectable university without being able to critically think”. Though critical 
thinking is not exclusive to mathematics, Bob felt that many students in his course 
lacked this skill, which in turn affected their ability to engage in learning mathematics. 
Although Bob saw critical thinking as a major issue that needed to be addressed with his 
students, it was not mentioned by Alice. 
 Alice often uses Matlab herself to demonstrate problems in lectures. She would 
therefore see and demonstrate the value of Matlab to her students. Bob did not see the 
necessary benefit of Matlab in the course. During the interview he mentioned that, 
though Matlab was meant to be an additional tool to aid understanding, he doubted that 
this was achieved.  
 Both lecturers valued applications but saw their use very differently. Bob saw 
applications as a means to motivate students, whereas Alice saw applications as learning 
tools that will teach students more about the course content.  
 The other responses from both lecturers relate to the course content. Both placed 
emphasis on understanding and interpreting mathematics. Alice seemed to place great 
importance on understanding course content, whereas Bob appeared more interested in 
developing students’ mathematical thinking. The students taking the course would find 
a very different emphasis placed on learning from one half of the course to the other.  
 All these areas of learning are developed and used in more advanced courses. Both 
lecturers emphasise the areas of learning when lecturing; however, Alice also mentioned 
that all hers are in the course profile.   
 To aid students to grasp the areas of learning, Bob encourages student involvement 
and discourages students from sitting in the back two rows. He said his students are well 
behaved and happy to ask lots of questions. To emphasise critical thinking, he often 
tells his students that they should “Think, think, and think again”. 
 The weekly assessment for the course contained challenging questions which Bob 
hoped extended students and encouraged understanding. However, he was not 
convinced that this was achieved as many students struggled with these questions. Alice 
was more confident than Bob that students did achieve understanding.  
 The final examination was considered by both lecturers to determine students’ 
understanding of the areas of learning they had identified. Bob explained that the final 
examination had some challenging questions different from those seen in lectures or 
assignments. He expected that a high distinction would indicate that a student had 
grasped all the areas of learning, but conceded it was possible that students could pass 
without the ability to critically reason and with only understanding about half of the 
areas of learning. He considered the students who failed to be the ones who struggled 
with most of the areas of learning and made basic mathematical errors. Although both 
lecturers were confident that student grades correlated with the level of knowledge 
acquired, they were unsure whether their students had grasped any particular important 
area of learning they had identified.  

Discussion 
Analysis of the full set of interviews indicated that lecturers not only have very different 
ideas of what is important for students to learn within their courses, but also different 
ways of justifying common choices. So two lecturers may identify areas of learning as 
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important, but for different reasons. For example, proof by induction was identified as a 
key mathematical concept in two courses, the mathematical foundations course 
described above and the first level discrete mathematics course. The same area of 
learning has very different purposes in each course. In the first course, it was to show 
students that mathematics is established on well-founded reasoning, and in the discrete 
course it was so that students would understand that proof by induction is an alternate 
method of proof that is not necessarily intuitive, but extremely useful. Sometimes the 
importance of the concept is what the concept demonstrates rather than the concept 
definition or concept usage. The way lecturers teach mathematical induction would 
create very different concept images by the students.  
 The courses included in this paper also place different emphases on core versus 
threshold concepts. For example, it was not surprising to find that in the mathematical 
foundations course, three of the areas of learning Tom described are considered 
threshold concepts (Easdown, 2007; Meyer & Land, 2003; Pettersson & Scheja, 2008). 
Many of areas of learning from both courses can be seen as core concepts, threshold 
concepts or possibly as processes with more importance placed on their concept usage. 
This interpretation will depend strongly on how they are assessed. For example, within 
the topic of understanding functions of more than one variable, a student can be 
assessed on the process, or on their understanding, or on the definition. Some areas of 
learning involve abstract ideals not necessarily related to a particular concept. These are 
more like graduate attributes such as critical reasoning or being able to convert real life 
problems into mathematics.  
 Even within courses taught by more than one lecturer there are differences in 
emphases. In the multivariate calculus course, Bob’s goal is to raise students’ 
mathematical thinking ability and not just for them to grasp the course content. He felt 
strongly that students’ lack of critical thinking skills affected their engagement in 
mathematics. However, taking mathematics courses has not been shown to increase 
students’ critical thinking skills (Terenzini, Springer, Pascarella, & Nora, 1995), even 
though critical thinking skills can be increased by student involvement in other courses 
and outside their formative study (Terenzini, et al., 1995). Alice has a different goal, 
since she seems to place more emphasis on students mastering essential content and 
skills. These differences raise interesting questions about the relative emphasis in the 
two halves of the course on developing concept usage, concept images, and concept 
definitions. 
 These lecturers and many others interviewed indicated that the assessment processes 
they used did not allow them to know with confidence whether students – apart from 
those achieving high distinctions – had grasped the areas of learning they considered 
most important. This finding suggests that it is not enough to identify the “big ideas” for 
inclusion in a mathematics course; assessment tasks must be capable of eliciting these 
ideas from students in a way that lecturers can recognise.  
 This study is currently being expanded to identify the “big ideas” of second and third 
level courses. This will establish a more detailed picture of how mathematics is taught, 
developed and connected for the undergraduate student majoring in mathematics, which 
in turn can inform teaching.  
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This study extends a previous study on spoken mathematics (Clarke & Xu, 2008) and seeks 
to compare the discursive practices in classrooms from Seoul, Shanghai, and Tokyo, with a 
particular focus on meta-discursive rules (Sfard, 2001) that regulate exchanges between the 
teacher and students. The analysis centres on the events when the topic of linear equations 
was introduced. The similarities and differences of the three classrooms suggest that while 
the shared macrocultural values and beliefs frame the social activity of the classrooms in 
similar ways, the meta-discursive rules of classroom microculture determine the 
opportunities for student learning in mathematics.  

Introduction 

The benefits of engaging students in mathematics classroom dialogues have been 
highlighted in a number of recent publications (e.g. Alexander, 2008; Walshaw & 

Anthony, 2008) and the intensity and quality of classroom discourse have been the 

focus of many studies (e.g., Mercer, 1996). While there seems to be an universal 
assumption about the significance of student mathematical talk in learning mathematics, 
our studies on spoken mathematics in 22 well-taught classrooms internationally (Clarke 

& Xu, 2008; Clarke, Xu, & Wan,  2010) revealed significant differences among those 

classrooms characterised as “Asian” in the opportunities that each classroom afforded 

for the students to employ relatively sophisticated mathematical terms in both public 

discussion and private student interactions. 
 Extending the previous study, the study reported in this paper attempts to compare 
the discursive practice in classrooms from Shanghai, Seoul, and Tokyo and to examine 
the role played by culture in the constitution of that practice. In this study, I want to go 
beyond simply considering culture as a set of values and beliefs that are brought in by 
the participants or as external influences that are imposed on them, but to see culture as 
an integral part of how the work in the classroom was carried out and sustained. For the 
clarity of the paper, I define ―culture‖ to be ―any aspect of the ideas, communications, 
or behaviours of a group of people which give them a distinctive identity and which is 
used to organize their internal sense of cohesion and membership‖ (Scollon & Scollon, 
1995, p. 127). In this paper, I distinguish microculture from macroculture. I use the 
word macroculture to refer to a set of ideas, communications, or behaviours embraced 
by the majority of people in a particular society (e.g. Chinese culture), whereas 
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microculture defines regularities and patterns of interactions specific to mathematics 
classrooms, usually from the perspective of the researcher. The main purpose of this 
paper is to examine the microculture of mathematics classrooms with a particular focus 
on the meta-discursive rules that regulate patterns of classroom exchanges between the 
teacher and the students. 

Meta-discursive rules in mathematics classrooms 
Studies of mathematics classroom microculture have been focused on the ―normative‖ 
aspects of teaching and learning. These include studies of patterns of social interactions 
and those rules and norms specific to a content area. For example, the work by Cobb, 
Yackel, and others studied classroom social norms, sociomathematical norms, and 
classroom mathematical practice (Yackel & Cobb, 1996). Examples of socio-
mathematical norms include what counts as a mathematically different, efficient, 
sophisticated, or acceptable solution. Sfard (2001) addressed more general aspects of 
the normative aspects of classrooms, and coined the phrase ―meta-discursive rules‖ to 
encompass those rules that regulate or govern discourse rather than those object-level 
rules concerning the relationships between mathematical objects. According to Sfard 
(2001), the meta-rules in mathematical discourse include those that underlie the 
uniquely mathematical ways of defining and proving; rules that regulate and guide 
interpersonal exchange and self-communication; the way symbolic tools should be used 
in the given type of communication, and so on. These meta-rules are the observer’s 
construct and mostly act ―from behind the scenes‖.  
 The importance of meta-rules of classroom discourse has been acknowledged by 
several studies. For example, van Oers (2001) argued that ―participation in a 
mathematical discourse presupposes the observation of a set of meta-rules that regulate 
the discourse and the practice in general‖ and these rules are ―culturally bound, 
intersubjective entities‖ (p. 79) that are developed as a result of participating with others 
in a community of practice. In addition, in a study of classrooms in Korea and the US, 
Pang (2000) provided evidence to show that sociomathematical norms rather than those 
general social norms determine the opportunities for student learning of mathematics.  

Methodology 
Based on the work by Yackel and Cobb (1996) and Sfard (2001), a particular focus of 
this paper is on the meta-rules underlying the discursive practice in classrooms. The 
analysis of the lessons centres on the events in which a new mathematical topic was 
introduced. I selected three classrooms located in Shanghai, Seoul, and Tokyo 
respectively, from the dataset of the Learner’s Perspective Study (LPS) because of a 
shared focus of content on ―linear equations‖ or ―linear function‖. The LPS research 
design was detailed elsewhere (Clarke, 2006). In brief, three teachers who were 
considered as competent by local standards, from three different schools, were selected 
in each city. A sequence of lessons was videotaped for each teacher using three cameras 
(teacher camera, whole class camera and focus student camera) and video-stimulated 
post-lesson interviews were conducted with both the teacher and the students. Other 
materials collected include student written work, instructional materials, and so on. 
 This paper reports the analyses of the first three lessons from each of the classrooms 
studied and the teacher interviews. The guiding question of the analysis is ―What are the 
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similarities and differences of meta-rules that regulate the discursive practice in the 
three classrooms?‖ To address this question, the data analysis was conducted in two 
phases. In the first phase, three lessons from each of the three classrooms were analysed 
to reveal the forms and functions of activities involved in introducing the new content. 
In the second phase, classroom dialogues and interview accounts were examined in 
detail to uncover the meta-discursive rules governing those exchanges. The paper 
discusses the meta-discursive rules related to:  

 The nature of mathematics: What is mathematics and who defines the rules and 
principles? 

 Ways of learning mathematics: How is mathematics learned in the classroom? 
 Mathematical language: What is considered to be the appropriate use of 

mathematical language? 
 Mathematical explanation: What counts as a valid and acceptable explanation? 
 Mathematical solution method: What is regarded as an acceptable solution 

method? 
I will discuss these meta-rules in relation to the beliefs, values and expectations from a 
broader macroculture and the traditions of a particular education system. Based on the 
comparison of the meta-discursive rules in the three classrooms, I conclude the paper by 
examining the affordances of these rules on student mathematics learning and drawing 
some implications for studies of mathematics classrooms. 
 It should be emphasized that the selection of these three classrooms is not intended to 
signify any form of national typification. Instead, I want to illustrate the distinctive 
pedagogy that each classroom employs and to show how the meta-discursive rules 
shaped the forms of knowledge allowable in each classroom.  

Introducing linear equations in the three classrooms 
Despite a common focus on linear equations, observation of the lessons showed 
different tasks and activities employed in each classroom. In the Shanghai classroom 
(SH1), the topic of the first lesson was on linear equations in two unknowns and 
solutions. Particular attention was paid to clarifying the meaning of linear equations in 
two unknowns and the concepts of a solution and a solution set. The second and the 
third lessons introduced the rectangular coordinate axes and coordinates as ―a graphical 
method‖ for solving linear equations in two unknowns. 
 In the Seoul classroom (KR1), the emphasis of the first lesson was on the difference 
in the graphs of a linear equation in two unknowns, when the condition for variable X is 
a natural number as compared to the graph when X is a real number. Lesson 2 focused 
on the notion of the intersection of the two straight lines as the solution of the 
simultaneous equations, and Lesson 3 continued this focus and introduced the method 
of elimination by addition and subtraction.  
 The three lessons in the Tokyo classroom (JP1) were conducted around the same 
task: a staircase problem, which served as a context to introduce general forms of linear 
function. In the first lesson, the teacher invited the students to brainstorm about the 
variables that can be examined in the stair problem, and the class explored the 
relationship between the number of steps and the perimeter of the stairs in three forms 
of representation: a table, a formula, and a series of figures. In the second lesson, the 
class was asked to relate the mathematical relationship between the number of steps and 
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the perimeter to the changes displayed in the figures. The students were also asked to 
formulate relationships between two variables of their choice. The definition of a linear 
function was introduced in Lesson 3.  

Meta-discursive rules in the three classrooms 
Doing mathematics as a collective activity 
The early analysis of spoken mathematics in LPS classrooms revealed both similarities 
and differences in the way classroom dialogue was orchestrated in each classroom. 
Figure 1 shows the number of teacher utterances, student utterances, and choral 
utterances in each lesson analysed in this paper. The figure demonstrates that while 
teacher talk was the most dominant form of talk in all three classrooms, there are 
significant differences in the way in which choral utterances and individual student 
utterances were valued. While very few choral utterances were found in the Tokyo 
classroom, this form of utterance was the most important means through which the 
students were given voice in the classroom in the Seoul and Shanghai classrooms.  

Figure 1. Number of public utterances in each lesson. 

Further analyses of the classroom data revealed differences in the role of the students 
and the value attached to student contribution in public classroom discourse. In the 
Shanghai classroom, despite the classroom discussion being regarded as heavily guided 
by the teacher, the students were given many opportunities to contribute to the public 
classroom discourse, usually through teacher invitation. The activities, such as drawing 
a coordinate plane or defining the quadrants, were conducted in a way that the 
conclusion could be seen as the result of the collective contribution of the whole class. 
And this was crystallized in the form of board notes. Such an approach of building on 
student contribution was expressed in this Shanghai teacher’s interview: 

One characteristic (of a typical lesson) is that the teacher is the facilitator of learning. 
This lesson shows that students are the active agent in learning, from the beginning till 
the end. That is…(I raised) questions that let them to answer, and towards the end, 
students generate their conclusions. Even when we talk about the sample problems, the 
teacher does not tell them the conclusion directly. It is the students who have to think and 
talk about the problems by themselves. The role of the teacher is only to guide them. In 
other words, students are the active agent. (SH1-IntT2) 
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While the Shanghai teacher weaved student input into a coherent ongoing classroom 
discourse, student contribution to the public discussion in the Seoul classroom was 
minimal, with most student responses consisting of a simple mental calculation or 
agreement with a statement made by the teacher. The teacher’s reluctance to the ―new‖ 
way of teaching was clearly expressed in his interview: 

These days there are many open classes in which students actively discuss in the class, I 
think the way of teaching is changing. But I think the teacher should teach. I think it is 
better. In the beginning, I teach and in the last part of the class I make students discuss 
what they learned. It is a good way to teach math. I don’t oppose to the open class. But I 
think teacher’s explanation is more important in teaching math. (KR1-IntT2)  

Compared with the emphasis on collective action in both the Shanghai and the Seoul 
classrooms, the students in the Tokyo classroom were given autonomy to generate their 
own formulation and come up with their own method of solving the problem. In the 
interviews, the teacher stated the importance of students having their own opinions and 
raising these opinions in the public discussion. For example, in one interview, she said:  

Um, it went totally different from what I have planned, so I wouldn’t be able to evaluate 
this class. But I had another thing I wanted to do in class if it had gone as I planned. That 
plan was to begin talking about a graph of a linear equation in general. So I had two plans 
for this lesson. But it was not important to do as planned. Students discuss with each 
other, and have their own opinions—that is the most important. And I think it is what was 
good about this lesson. (JP1-IntT2) 

This Japanese teacher valued the opportunity for the students to share their opinions 
with their peers, which was considered more important than teaching the lesson as 
planned. The observation of the Japanese lessons also showed that student expression of 
lack of understanding was acceptable in the classroom and adequately resolved by the 
teacher. Arguably, this classroom is a different place from the one in which students are 
rarely given the chance to voice their own opinions.  
 While all the three classrooms can be regarded as belonging to a collectivist culture 
associated with Confucius Heritage, the form of collectivism was differently performed 
in each classroom. While in the Shanghai and Seoul classrooms, the students were given 
opportunities to verbally participate in the classroom discourse as a collective, the 
teacher in the Tokyo classroom respected the different opinions of individual students, 
and orchestrated the classroom discussion so that these student opinions were voiced 
and shared within the classroom as a community.  

The use of mathematical language in the classroom 
The significance attached to the use of standard mathematical language also differs. In 
comparison with the other two classrooms, the Shanghai classroom showed a distinctive 
emphasis on the accuracy of mathematical language (see Figure 2). Through the 
classroom discursive interactions, the students were assimilated and institutionalised 
into a discourse of school mathematics that encourages the accurate use of standard 
mathematical terms. The modelling of mathematical language by the teacher was a 
deliberate strategy, and the students were expected to follow such a model.  
 The value attached to the use of accurate mathematical language and the 
completeness of student response was clearly conveyed in the teacher interviews. 
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Figure 2. Frequency of key mathematical terms employed in each lesson. 

For example, in the second interview, the teacher said: 
I asked one student to answer me. He could tell me what was the first step, what was the 
second step. The answer was quite complete, especially he said the first step is to 
transform an equation to an algebraic expression with unknown to represent another 
unknown. What he said is very good. He said the second step was…put this algebraic 
expression into another equation to substitute the unknown in that equation. That is to 
make the system of linear equations in two unknowns into an equation in one unknown. 
Then … after that … what to do after finding out this unknown. Find another unknown 
by substituting the value of the other unknown got. This language, that is this 
mathematics language, is good. (SH1-IntT2) 

The use of standard mathematical language can be regarded as a normative aspect of 
this particular classroom. This finding is consistent with Leung’s (1995) study of 
Beijing classrooms, in which he reported that 15 out of the 36 lessons observed 
demonstrate the stress placed on the use of accurate and rigorous mathematical 
language. Compared with the Shanghai classroom, the accurate rehearsal of 
mathematical language was much less prominent in the other two classrooms. This 
suggests that the emphasis on the verbalization of mathematics language may represent 
a distinct feature of Chinese classrooms.  

Mathematical explanations 
In many mathematics classrooms, it is not sufficient for students to simply provide an 
answer to a problem. Providing explanations is considered to be an essential component 
of mathematics discourse (Lampert, 1990). In the Shanghai classroom, the students 
were frequently asked by the teacher to provide explanations for their answer to a 
particular mathematical problem. Many of these explanations required the students to 
employ mathematical concepts or rules to justify their responses. This systematic way 
of defining and applying mathematical concepts (mediated by specifically designed 
tasks) could be seen as a reflection of beliefs about the nature of mathematics and 
beliefs about what students should be able to do in mathematics. This is well grounded 
in a tradition of school mathematics in China that emphasizes basic knowledge and 
basic skills. As Li (2006) observes, under this tradition, the teaching process is usually 
deliberately organized to ensure that teachers and students concentrate on concepts, 
theories, rules, skills and techniques.  
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Compared with the Shanghai classroom, in the Seoul classroom the rules or principles 
of solving a linear equation or simultaneous equations were given with little explanation 
from the teacher nor requested from the students in terms of the underlying meaning of 
the mathematical operation. The focus of the lessons was to help the students 
understand the procedures of solving particular groups of equations rather than an 
explicit focus on the meanings of concepts or the relationship between different 
representations. The emphasis on procedures in Korean classrooms was also reported in 
the study by Park and Leung (2006). Such an approach can be regarded as reflecting a 
view that mathematics is composed of a given body of knowledge and truth, and the 
task of teaching is to impart this body of knowledge to the students. In addition, such a 
―transmissive‖ way of teaching might be influenced by the male dominant culture in 
Korea in that this is a class in a girls’ school with a male teacher.  
 In the Tokyo classroom, students’ contributions were accepted and acknowledged no 
matter whether or not they were ―mathematical‖ in a strict sense. In this classroom, 
mathematics was about formulating relationships and expressing them in different 
representations such as a table, a formula or figures. The students were interrogated to 
explain their understanding of the underlying relationships between variables and 
between representations of different form. For example, in the second lesson, the 
students were probed about their understanding of the proportional relationship between 
the number of steps and the perimeter of the stairs displayed in different representations.  
 It can be argued that the rules governing the legitimacy of mathematical explanations 
in classrooms reflect the different priorities that each teacher had in developing their 
students’ mathematical understanding. In the Shanghai classroom, the intention is to get 
the students to understand the meaning of mathematical concepts, such as a solution. 
The Japanese teacher, on the other hand, tried to get the students to understand the 
mathematical relationship between two variables by using a range of representations. In 
comparison, the Korean teacher tried to get the students to understand the procedures 
for solving different types of equations. While one may argue that these differences are 
constrained by the different mathematical tasks presented in each of the classrooms, the 
meta-rules for the acceptance of certain student explanations and the rejection of others 
reveal more fundamental differences in the teachers’ pedagogy and their beliefs about 
the nature of mathematics and mathematics learning. 

Diversity and simplicity of solution methods 
Rather than restricting the class to a particular way of solving mathematical problems as 
demonstrated by the teacher in the Seoul classroom, different methods or solutions were 
encouraged by the Tokyo teacher. The encouragement of diverse ideas was 
demonstrated in two interrelated aspects: firstly, the students in this Tokyo classroom 
were given autonomy to generate their own formula about the variables of their choice; 
secondly, the students were encouraged to consider the relationships displayed in 
different representational forms from various perspectives. The teacher’s respect for 
diversity of solution methods was conveyed in her interview: 

I think it is important to make them raise their hands when we had some opinions 
opposing to each other. It is not for deciding by majority. I do this to see what each 
student has in their mind. (JP1-IntT2) 
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The Shanghai classroom also provided the students with opportunities to display various 
solution methods, but the purpose of displaying different solution methods was to 
examine which method was better and simpler in solving particular types of problems.  

In this way, we list students’ different ways of solution, and compare them. We can 
analyze which method is better and students can get the correct way in the process of 
solving the problems ... This problem, students can do it themselves. But after solving the 
problem, most of them do not think whether there is a simpler method. … Some students 
do the problem correctly, but in a very complicated way. But a few of students do it 
correctly, and use a simpler method. We encourage students to make it simpler when 
solving a problem. (SH1-IntT3) 

Arguably, the emphasis on diversity and on simplicity represent two different meta-
discursive rules, each having consequences for student learning. The respect for 
diversity of solution methods without evaluation of their superiority in the Tokyo 
classroom could foster student creativity, but it might overlook the consideration of the 
relative validity of those methods. On the other hand, the public evaluation of different 
solution methods may help students to see the merits of certain methods in terms of 
their simplicity and efficiency, but it might encourage rigid approaches to problem 
solving by fostering a belief in one single ―best method‖. Indeed, as Sekiguchi (2006) 
argued, maintaining the productivity of mathematical activity requires a delicate balance 
between the three components of a value system: validity, efficiency, and creativity.  

Conclusion 
From the outset, there are similarities among the three classrooms studied, such as 
teacher-dominated whole-class teaching as the predominant mode of instruction in all 
three classrooms. However, this superficial similarity masks the different functions of 
whole class discussion and the distinctive characteristics of such discussion displayed in 
each setting. As I have demonstrated in the above comparisons, the balance between 
uniformity and individualization was differently maintained in each classroom. While 
the Shanghai teacher expected the conclusions to be built upon student inputs, the Seoul 
teacher conceived that the role of the students was to follow the examples set by the 
teacher. Moreover, both the Shanghai and the Seoul classrooms encouraged uniform 
and collective action by the students. In comparison, the students in the Tokyo 
classroom had opportunities to raise their individual opinions. 
 The comparison of meta-discursive rules also reveals some fundamental differences 
in the criteria that each teacher used to make judgement about what is ―mathematical‖ 

and what constitutes ―student capability in mathematics‖. In the Shanghai classroom, 
the students were required to use standard mathematical language as modelled by the 
teacher. In addition, to be considered as mathematically capable, the students should not 
only be able to articulate their understanding of the mathematical concepts or principles 
in standard mathematical language, but also be able to apply their understanding in 
solving mathematical problems. In the Seoul classroom, to be regarded as 
mathematically capable, the students were required to understand the conditions of X 
and the consequence of these conditions on the solutions and the graphs of an equation. 
In this classroom, understanding means to know and to be able to apply those 
―established‖ mathematical routines and principles in solving various. In contrast, the 
students in the Tokyo classroom were interrogated by the teacher regarding their 
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understanding of the relationships between different representations. Understanding, 
here, meant being able to see the underlying relationships between the variables as 
expressed in different representational forms and the connections between these. Since 
each meta-discursive rule affords different opportunities for student learning in 
mathematics, it can be argued that students in the three classrooms were in fact learning 
different ―mathematics‖ in spite of a common focus on the topic of linear equations.  
 The similarities and differences between the three classrooms have implications for 
cross-culture comparative studies and studies of teacher competence. The findings 
suggests that while an examination of shared macrocultural values and beliefs (e.g. 
respect for authority) may help us to understand the similarities in the social 
organization (teacher-dominated whole class instruction), we need to look for meta-
discursive rules of the classroom microculture in order to understand what determines 
opportunities for student learning in mathematics. More importantly, the diversity of 
discursive practices demonstrated in the three classrooms that are usually characterised 
as ―East Asian‖ in several major international studies (e.g. TIMSS) suggests that teacher 
competence should indeed be conceived as a cultural construct reflective of local 
cultural norms, national aspirations, and traditions of particular educational systems.  
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This paper investigates views of mathematics/science teachers and higher education faculty 
interacting in professional development projects adding a community of practice 
component. Knowledge acquisition in a community of practice relates to ongoing 
interactions among members as they perform their roles and responsibilities. In particular, 
the paper reports each group’s perceptions of community and discusses implications for 
state-level programs funding professional development projects. 

Introduction 
As paradigms for teacher professional development shift from a ―training-and-coaching 
model‖ whereby university-generated research is disseminated to teachers through 
workshops and university courses (Corcoran, 1995) to a learning community model that 
promotes educators learning together about professional matters (Darling-Hammond, 
1996), professional development endeavours must reflect a community orientation. 
Projects to ―promote improved instruction in mathematics and science for Texas school 
children by providing professional development for their teachers‖ 
(http://www.thecb.state.tx.us/os/TQ/), such as those funded by the Texas Teacher 
Quality Grants Program (TQGP), rely on the experiences and expertise of higher 
education faculty. However, higher education content faculty in the United States 
seldom interact with education faculty and classroom teachers outside these programs; 
therefore, including a community of practice component may produce challenges for 
state-level programs. 

Guiding framework 
The National Council of Teachers of Mathematics (NCTM) describes professional 
development for mathematics teachers in terms of community by describing roles for 
various stakeholders in mathematics education, including higher education (NCTM, 
2000). More specifically, the National Staff Development Council (NSDC) proposes a 
community model stating that educators should organize ―into learning communities 
whose goals are aligned with those of the school and district‖ 

(http://www.nsdc.org/standards/index.cfm). Descriptions of effective professional 
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development of teachers also suggest a community design in which teachers learn in 
teams, reflect together on their learning, and connect their learning to the classroom 
(Lee, 2001; Little, 2003). Learning in a community is a theme that is interwoven 
throughout Timperley’s (2008) ten general principles for effective teacher professional 
development, in terms of student outcomes, that are based on her synthesis of ninety-
seven studies from around the world. Knowledge of content and instructional practices 
are hallmarks of most effective professional development programs, but this knowledge 
does not solve the problem of enactment (Darling-Hammond, Bransford, LePage, 
Hammerness, & Duffy, 2007). Teachers must also adapt their practice based on this 
knowledge. Providing opportunities for teachers to practice and reflect on instructional 
approaches is crucial to them moving from knowledge to action, and communities of 
practice provide a forum for this sustained, long-term professional learning.  
 As state-level programs transition to funding community-oriented professional 
development projects, many adopt the paradigm of a community of practice, that is, a 
―group[s] of people who share a concern, a set of problems, or a passion about a topic, 
and deepen their knowledge and expertise in this area by interacting on an ongoing 
basis‖ (Wenger, McDermott, & Snyder, 2002, p. 4). A basic model for a community of 
practice entails three components: domain, community, and practice. Community 
involves the social feature of the group that develops trust and contributes to learning in 
a safe environment as well as the roles and responsibilities of members (Wenger, et al., 
2002). However, models for the design of communities are difficult to describe (Barab, 
Barnett, & Squire, 2002; Barab, MaKinster, & Scheckler, 2003; Barab, Schatz, & 
Scheckler, 2004; Hung, Chee & Hedberg, 2005; and McConnell, 2005). In addition, 
aspects of communities of practice relate to members interacting in group settings 
(Glazer & Hannafin, 2006), and group interaction among teachers offers strong 
affective and supporting components to acquisition of knowledge (Rovai, 2002). As 
Little (2006) summarizes in speaking about the potential of professional communities, 
―For more than two decades, research has shown that teachers who experience frequent, 
rich learning opportunities have in turn been helped to teach in more ambitious and 
effective ways.  Yet few teachers gain access to such intensive professional learning 
opportunities‖ (p. 1). 
 Geography also poses challenges for educational endeavors. For example, the state of 
Texas is the second largest in land area in the United States and is slightly larger than 
France (https://www.cia.gov/library/publications/the-world-factbook/index.html).  The 
state’s population is over 24 million people compared to Australia with slightly over 21 
million (http://www.census.gov/). Texas educators teach a common set of standards to 
about five million students from diverse ethnic and economic backgrounds (African 
American 14%, Hispanic 48%, White 34% Others 4%, Economically Disadvantaged 
56.7%) (http://ritter.tea.state.tx.us/perfreport/snapshot/2009/state.html). Since research 
indicates that geography affects human activities such as art and culture (Hassani, 
2009), economic status (Gittell, 2009), health care (Arcury, Gesler, Preisser, Sherman, 
Spencer, & Perin, 2005), entrepreneurship (Gupta & York, 2008), per capita income as 
well as university education (Basher & Lagerlof, 2006), it seems reasonable that 
geography could also affect educators’ concept of community.   
 Thus, an issue for state-level programs is the structure of professional development 
in a community of practice designed by higher education faculty. If teachers are to gain 
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knowledge and to change their classroom practices based on that knowledge by 
interacting with and developing trust among community members, then the question 
arises ―who is my community?‖  In particular, how do higher education faculty and 
teachers who comprise a community of practice perceive community in terms of 
membership?  How do they perceive the roles and responsibilities of members?  

Method 
Exploration of the concept of community as perceived by directors and participating 
mathematics and science teachers occurred through a case-study design. Qualitative 
research through structured interviews, observations, field notes, and other ―rich‖ data 
sources offers researchers avenues to answer questions such as ―What is going on here?  
What does this mean?  Why do the participants behave this way?‖ Nine projects funded 
by the Texas Teacher Quality Grants Program comprised a case for this study that 
served as a pilot for the program’s state-wide evaluation. To account for Texas’ 
geographical influences, the projects, chosen by TQGP staff, represented six 
geographical regions of Texas.  Interviews with nine project directors and eight sets of 
teachers took place face-to-face on the campuses of the higher education institutions 
that received the funding. One set of teachers answered questions during one of their 
project’s online sessions. Table 1 depicts a summary of the projects. 

Table 1. Participating Teacher Quality Grant Program projects. 

Geographical Region Number of Teachers 
East Texas 3 

Coastal Region 3 
South Texas 4 

Central Texas 2 
North Texas 5 
West Texas 3 

 
Digital voice recordings and field notes recorded the data collected during each site 
visit. As part of the interview process, the researcher stated that TQGP views their 
projects to be communities of practice and gave each interviewee a sheet of paper with 
Wenger et al.’s (2002) definition of a community of practice recorded on it. Then the 
researcher read the definition out loud to the interviewees. Following this reading, 
project directors and teachers answered questions that asked them to state who were the 
members of their community and to describe the role and responsibilities of the 
members. Next observations of professional development activities by the researcher 
occurred and recordings of interactions between teachers and projects directors took 
place. Analysis of the data transpired through a triangulation process that compared 
project directors’ responses, teacher-participants’ responses, and observations during 
project activities as directors and teachers interacted.  

Findings 
A disconnect existed between project directors’ and teachers’ perceptions as to the 
members of a TQGP community of practice (see Table 2). Seventy percent (70%) of 
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project directors stated that both teachers and project staff are part of the community; 
however, only 32% of teachers reflected this same view. Some teachers (37%) 
described their community as one that excludes higher education faculty and consists 
only of participating teachers in the project. Other teachers (32%) ignored the TQGP 
project and described their community as teachers, administrators, and students in their 
schools. Other perceptions of community held by teachers extended the concept of 
community to include the school and the community at large; whereas another limited 
community to TQGP participants who were going through a Master’s degree program 
together.  

Table 2: Members of community. 

 
Perception of community membership 

Percent of 
project 
directors  

Percent of 
teachers  

Teachers, principal, administrations, students, parents, business 
leaders, university staff & faculty 

 
10% 

 
16% 

Teachers in TQGP projects pursuing Masters degree 0% 5% 
Teachers only in TQGP project 0% 37% 
Teachers in TQGP project & project staff 70% 32% 
1) Teachers & staff in current TQGP project  
2) Teachers in past/current TQGP projects pursing Masters degree 

 
10% 

 
0% 

Teachers, students, & administrators at school 10% 10% 
 

Both project directors and teachers described community membership in visual terms 
(see Figure 1). One project director described her TQGP community of practice in terms 
of two TQGP communities with overlapping members, but possessing different goals.  
 
Two Separate Entities One Entity Interacting within Levels 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 1: Visualisation of community by two project directors 

Interestingly, the interviewed teacher from that project who enrolled in the Master’s 
program expressed only one view—those past/current participants in the master’s 
degree program—and completely discounted other teachers who did not pursue the 

Project 

Staff/Current 

Participants 
 

Past/Current 

Participants in 

Master’s 

Program 
 

Higher Education Administrators 

School Administrators  

Teachers 
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degree. Another project director described the TQGP community as a tree whereby 
members at a particular level of branches communicate with each other but have limited 
communication with other branches. This description resembled, to some degree, 
NCTM’s community as teachers can undergo professional development with various 
stakeholders in mathematics education but not in one activity. 
 In contrast, a teacher from a different project that was conducting lesson study, a 
site-based professional development model originating in Japan (Fernandez, 2003; 
Fernandez & Yoshida, 2004; Isoda, Stephens, Ohara, & Miyakawa, 2007; Lewis, 2002; 
Takahashi, 2000) described her TQGP community in terms of concentric circles, as 
shown in Figure 2. She referred first to a very small nucleus of teachers in her 
immediate lesson study group and expanded outward to include all teachers and staff in 
the project. She then extended community membership to others outside the project who 
provided expertise and support to those in the TQGP project. Similarly, another teacher 
in a project located in a different geographical region of the state that was beginning to 
implement lesson study expressed her TQGP community completely in terms of their 
lesson study effort, identifying teachers in the project, project staff, and consultants who 
assisted them with the lesson study process. These descriptions reflected more of 
NSDC’s learning community concept. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Visualisation of TQGP community by participant. 

Perceptions about the roles and responsibilities of members in the majority of TQGP 
projects held higher education faculty as dispensers of knowledge and providers of 
classroom activities. Members who are teachers were recipients of knowledge who 
discussed the activities in the TQGP community setting, took them back to their 
schools, and worked them with their own students or with other teachers. One project 
director added that he believes these roles and responsibilities result from teachers’ 
perceptions of what constitutes professional development and not from the design 
intended by the project director who wanted teachers to take a more active role. 

1
1 

2 

3 

4 
1 Teachers in immediate lesson 
study group. 
2 Higher education and other 
teachers who are knowledgeable 
about lesson study. 
3 Teachers in TQ Project in other 
lesson study groups. 
4 Others who help and support 
teachers. 
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Members in another TQGP project perceived roles and responsibilities changing as 
project activities continued throughout the year. In this project, teachers and project 
directors were researchers in an outdoor learning environment during the summer. 
However, in the fall roles and responsibilities changed to participants being students in 
a class taught by project staff. These types of roles and responsibilities for community 
members followed more of a ―training-coaching‖ model for professional development. 
 In projects that included an outreach component requiring site-based interactions, 
both teachers and project directors tended to view roles and responsibilities of members 
in terms of each one possessing some type of expertise that is of value to the 
community. In projects implementing Lesson Study, both groups cited learning together 
with each member being a different resource for the group, providing knowledge of 
content, pedagogy, curriculum, and student misconceptions. Their perceptions of the 
roles and responsibilities in their community is a feature of the Lesson Study model, a 
model that moves teachers from recipients of knowledge disseminated by others to 
practitioner-researchers of student learning (Takahashi & Yoshida, 2004). This view of 
roles and responsibilities as group learners with access to resources aligned to 
professional development described by Lee (2001) and Timperley (2008).  

Discussion and conclusion 
Since TQGP project directors’ and teachers’ perceptions of community do not align, 
these projects offering professional development using a paradigm of a community of 
practice are not well defined. Project directors consider themselves part of the 
community; however, the majority of teachers do not. Teachers generally perceive their 
communities in terms of other teachers.  Those teachers who do include project staff 
view them as outside resources and supporters. This latter view is prevalent among 
members in projects with site-based components that require directors to interact with 
teachers in their classrooms. Although most projects do reflect community in terms of 
higher education as a stakeholder in mathematics and science education, teachers do not 
work side by side with higher education faculty to plan and contribute to their own 
professional development. Since a community of practice is about people learning 
together, this factor may contribute to teachers’ exclusion of project staff from their 
concepts of community. 
 In most projects, roles and responsibilities of members follow traditional forms of 
professional development with higher education faculty being givers of knowledge, 
designers of activities, and modellers of pedagogy and teachers being recipients of 
knowledge, takers of activities, and implementers in their classrooms. However, in 
projects where interaction among members occur in the schools, especially in those 
implementing lesson study, descriptions of the roles and responsibilities view each 
member as an expert. For example, higher education faculty offer support and provide 
knowledge of content and pedagogy; whereas, teachers provide experiences about 
students thinking, curriculum, etc. Connecting learning in a community to student 
learning is a feature of effective professional development of teachers. 
 This analysis of TQGP projects as communities of practice reveals that more thought 
needs to be put into the design of professional development by higher education faculty. 
Since most project directors who structure these projects, especially those in content 
departments, have little experience with learning communities, state-level programs 
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need to consider how to provide this experience for them. In addition, these experiences 
need to include working in schools with teachers, especially in their classrooms, in 
outreach efforts to shift project directors’ thinking from teachers as students to teachers 
who have students. Ultimately, the perceptions of project directors and teachers about 
members in their professional communities will play a major role if site-based 
professional development, which is indicative of improved teaching in mathematics and 
science for school children, materializes.  

References 
Arcury, T. A., Gesler, W. M., Preisser, J. S., Sherman, J., Spencer, J., & Perin, J. (2005). The effects of 

geography and spatial behavior on health care utilization among the residents of a rural region. Health 
Services Research, 40(1), 135–156. 

Barab, S. A., Barnett, M. G., & Squire, K. (2002). Developing an empirical account of a community of 
practice: Characterizing the essential tensions. Journal of the Learning Sciences, 11, 489–543.  

Barab, S. A., MaKinster, J., & Scheckler, R. (2003). Designing system dualities: Characterizing a web-
supported professional development community. Information Society, 19, 237–256.  

Barab, S. A., Schatz, S., & Scheckler, R. (2004). Using activity theory to conceptualize online community 
and using online community to conceptualize activity theory. Mind, Culture & Activity, 11(1), 25–47.  

Basher, S. A. & Lagerlof, N. (2006). Geography, population density, and per-capita income gaps across 
US states and Canadian provinces. University Library of Munich, Germany: MPRA Paper no. 369. 
Retrieved January 31, 2011, from http://ideas.repec.org/p/pra/mprapa/369.html 

Corcoran, T. C. (1995). Transforming professional development for teachers: A guide for state 
policymakers. Washington, DC: National Governors' Association. Retrieved January 31, 2011, from 
http://www.aecf.org/upload/PublicationFiles/ED3622H115.pdf 

Darling-Hammond, L. (1996, March). The quiet revolution: Rethinking teacher development. 
Educational Leadership, 53(6), 4–10. 

Darling-Hammond, L., Bransford, J., LePage, P., Hammerness, K., & Duffy, H. (Eds.) (2007) Preparing 
teachers for a changing world: What teachers should learn and be able to do. Jossey-Bass. 

Fernandez, C. (2003). Learning from Japanese approaches to professional development: The case of 
lesson study. Journal of Teacher Education, 53(5), 393–405. 

Fernandez, C., & Yoshida, M. (2004). Lesson study: A Japanese approach to improving mathematics 
teaching and learning. London, UK: Erlbaum. 

Gittell, M. (2009). The effect of geography, education and labor market segregation on women’s 
economic status in New York state. American Behavioral Scientist, 53(2), 193–222. 

Glazer, E. M, & Hannafin, M. J. (2006). The collaborative apprenticeship model: Situated professional 
development within school settings. Teaching and Teacher Education, 22, 179–193. 

Gupta, V. K. & York, A. S. (2008). The effects of geography and age on women's attitudes towards 
entrepreneurship: Evidence from the state of Nebraska. The International Journal of Entrepreneurship 
and Innovation, 9(4), 251–262. 

Hassani, G. (2009). The effect of geography on art and culture. International Journal of the Arts in 
Society, 4(1), 267–272.  

Hung, D., Chee, T. S., & Hedberg, J. G. (2005). A framework for fostering a community of practice: 
Scaffolding learners through an evolving continuum. British Journal of Educational Technology. 36 
(2), 159–176. 

Isoda, M., Stephens, M., Ohara, Y., & Miyakawa, T. (Eds.). (2007). Japanese lesson study in 
mathematics: Its impact, diversity and potential for educational improvement (M. Stephens & 
M. Isoda, Trans.). Hackensack, NJ: World Scientific. (Original work published in 2005). 

Lee, H. (2001). Enriching the professional development of mathematics teachers. ERIC Digest. ERIC 
Clearinghouse for Science Mathematics and Environmental Education. Columbus, OH. Retrieved 
January 31, 2011, from http://www.ericdigests.org/2003-1/teachers.htm 

Lewis, C. (2002). Lesson study: A handbook of teacher-led instructional change. Philadelphia, PA: 
Research for Better Schools. 

862



YAREMA 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

Little, J. W. (2003). Inside teacher community: Representations of classroom practice. Teachers College 
Record, 105(6), 913–945.  

Little, J. W. (2006). Professional community and professional development in the learning-centered 
school. NEA Research. Washington, DC: National Education Association.  

McConnell, D. (2005). Examining the dynamics of networked e-learning groups and communities. 
Studies in Higher Education, 30, 25–42.  

National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. 
Reston, VA: Author. 

National Staff Development Council. (2001). Standards for staff development: Revised. Oxford, OH: 
National Staff Development Council. Retrieved January 26, 2011, from 
http://www.nsdc.org/standards/index.cfm. 

Rovai, A. P. (2002). Building sense of community at a distance. International Review of Research in 
Open and Distance Learning, 3(1), 1–16.  

Takahashi, A. & Yoshida, M. (2004). Ideas for establishing lesson study communities. Teaching Children 
Mathematics, 10, 436–443. 

Takahashi, A. (2000). Current trends and issues in lesson study in Japan and the United States. Journal of 
Japan Society of Mathematical Education, 82(12), 15–21. 

Timperley, H. (2008). Teacher professional learning and development. Educational Practices Series. 
International Academy of Education (IAE) and International Bureau of Education (IBE). Retrieved 
January 26, 2011, from http://unesdoc.unesco.org/images/0017/001791/179161e.pdf 

Wenger, E., McDermott, R., & Snyder, W. (2002). Cultivating communities of practice. Boston: Harvard 
Business School Press. 

863



MATHEMATICS: TRADITIONS AND [NEW] PRACTICES • © AAMT & MERGA 2011 
 

YOUNG CHILDREN’S UNDERSTANDINGS ABOUT 
“SQUARE” IN 3D VIRTUAL REALITY MICROWORLDS 

ANDY YEH 
Queensland University of Technology 

a.yeh@qut.edu.au  

JENNIFER HALLAM 
Queensland University of Technology 

Jennifer.hallam@qut.edu.au 

 
This paper reports an investigation of primary school children’s understandings about 
―square‖. 12 students participated in a small group teaching experiment session, where they 
were interviewed and guided to construct a square in a 3D virtual reality learning 
environment (VRLE). Main findings include mixed levels of ―quasi‖ geometrical 
understandings, misconceptions about length and angles, and ambiguous uses of 
geometrical language for location, direction, and movement. These have implications for 
future teaching and learning about 2D shapes with particular reference to VRLE. 

Introduction 
When asked ―What is a square?‖ or ―What do you know about squares?‖, children 
would give a variety of responses such as: 

It has four equal sides. 
They’re a quadrilateral, a regular quadrilateral. They have four corners, four right angled 
corners. 
Squares can go onto 3D shapes, like on the bottom of a pyramid. 
Square based pyramid. 
And a cube and rectangular based prism. (Year 4s) 
 
They’re 2D shapes. 
They have four lines of symmetry. 
It’s an enclosed shape. 
Every side is the same. 
There’s four angles. 
Four right angles. (Year 5s) 
 
Is a 2D shape. It has four edges, four vertexes. 
Four sides are the same. 
Four corners of the square are 90 degrees. (Year 6s) 
 
It times a number by itself. 
It’s a regular quadrilateral means it has 4 equal sides and 4 equal angles. 
The four angles are all 90 degrees, if not 90 degrees it can’t be a square. 
All sides are even. 
It has 2 sets of parallels. (Year 7s) 
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Upon reviewing their responses, it seems that the critical properties of a square (i.e., 
four equal sides and four equal angles) are all understood by year 4-7 children. 
However, examining their understanding simply by spoken language is not necessarily 
sufficient. In order to probe more deeply into children’s thinking and understanding, the 
researchers have developed a 3D virtual reality learning environment (VRLE), allowing 
young children to express their thinking and construct their understanding about shapes 
and geometry via a variety of semiotic resources (Yeh & Nason, 2004a).  
 This study originated from the Spatial Thinking And Reasoning [STAR] project, in 
which the VRLE named VRMath 2.0 is the vehicle for investigating and developing 
young children’s spatial abilities. VRMath 2.0, puts simply, is a combination of 3D 
LOGO and Web 2.0 environments. Traditionally, LOGO turtle graphics has been a 
powerful tool for learning geometry. However, its significance has been limited by its 
2D graphics. A 2D square drawn in a traditional LOGO environment is as a square 
drawn on paper—a legitimate bird’s-eye view of a square. What we taught young 
children traditionally was also based on this mindset and communication in either 
symbolic language or visual concrete materials has focused on the top view of the 2D 
square. The geometrical understanding based on this is what we would call ―quasi‖ 

understanding that needs to be challenged and further qualified. This study is informed 
by ―new paradigms for computing, new paradigms for thinking‖ (Resnick, 1996, p. 255) 
and ―empowering kids to create and share programmable media‖ (Monroy-Hernandez 
& Resnick, 2008, p. 50), and has introduced new practices to traditional turtle graphics. 
The 3D LOGO graphics (and Web 2.01) are providing new opportunities for young 
children to develop a more holistic learning and geometrical understanding, and new 
opportunities for researchers to reveal how this new practice enables young children to 
think and do things differently. This paper reports the first trial of the STAR project 
about how young children develop their ideas of squares in VRLE. 

Literature review 
Semiotics as the epistemological stance 
This research has taken a semiotic view about meaning-making as its epistemological 
stance. Semiotics is the study of signs, where a sign (representamen), is something that 
stands to somebody (interpretant) for something (object) in some respect or capacity 
(system of signs) (Peirce & Buchler, 1955). Human cognition or ―meaning-making‖ is 
irreducible to any one element of this triadic relation among the sign, object, and 
interpretant. Signs are incomplete representations of the objects and thus meaning 
making must be an on-going process, and meaning must be constantly qualified and 
challenged.  
 The multiple semiotic resources for learning mathematics proposed by Lemke (2001) 
are of particular relevance to this research project, is. Lemke outlined three semiotic 
resources—typological, topological, and social-actional—which have informed the 
design of VRMath 2.0 for mathematical meaning-making. According to Lemke, 
typological semiotics represents meanings by types or categories such as spoken words, 
written words, mathematical symbols, and chemical species. They are discrete, point-

                                                        

1 Due to the complexity and scope of this paper, the sharing aspect of Web 2.0 is not included in this report. 
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like, and distinctive signs. In contrast to this, topological semiotics makes meaning by 
continuous variations in such as size, shape, position, colour spectrum, visual intensity, 
pitch, loudness, and quantitative representation in mathematics. Social-actional 
semiotics provides a context such as building a bridge that constantly reinforces the 
meaningfulness of mathematics in the real world situation. The epistemological 
assumption for this study thus is that better learning occurs when multiple semiotic 
resources (i.e., typological, topological, and social-actional) are provided for meaning 
making.  

Learning and understanding about 2D shapes 
Recognition of basic 2D shapes including circles, triangles, rectangles, and squares is 
usually developed quite early in lower primary years, or even before school. Children at 
this stage are able to name the above basic shapes when see them but are not noticing 
properties of those shapes such as the number of sides and angles. In terms of Van 
Hiele’s (1986) level of geometric understanding, most children in years 4 and 5 have 
understanding of Level 1 (visualisation, recognise figures by appearance) and Level 2 
(analysis, recognise and name properties of geometrical figures), but not Level 3 
(abstraction, perceive relationships between properties and between figures). 
 Concrete materials and computers have been the main resources for teaching and 
learning about 2D shapes and regular polygons. In particular, the LOGO programming 
language and its 2D turtle graphics has been widely used for learning and creating 2D 
shapes during the 1980s and 1990s (e.g., Clements, 1999; Noss, 1987). In the LOGO 
environment for example, a square has been transformed or represented typologically 
as: 

FD 50 RT 90 FD 50 RT 90 FD 50 RT 90 FD 50 RT 90 

or  
REPEAT 4 [FD 50 RT 90] 

This typological transformation of a square represented a new paradigm of thinking and 
doing, as well as a different level of geometric understanding.  
 However, as stated earlier, the traditional LOGO environment was limited by its 2D 
graphics. Furthermore, the traditional LOGO environment lacked the topological 
representations of a square. The 3D LOGO environment of VRMath 2.0 provides 
continuous viewpoints of a square in 3D virtual space, where learners’ fixed mindsets 
about a bird’s-eye view of a square can be challenged. 

Revisiting Microworlds 
The term ―microworld‖ arose in the context of introducing the LOGO programming 
language (Papert, 1980). However, the idea of a microworld is not necessarily limited to 
LOGO programming. Edwards (1995) found that microworlds were analogously used in 
a variety of environments such as simulations, intrinsic models, interactive illustrations, 
and discovery-based learning environments. He then concluded that microworlds should 
be seen as being the embodiments of mathematics. He argued that the value of 
microworlds went beyond their reifying link between the representation and the 
mathematical entity to providing the opportunity for learners to kinaesthetically and 
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intellectually interact with a system of mathematical entities, as mediated through the 
symbol system of a computer program. 
 Hoyles, Noss, and Adamson (2002) noted that the microworlds environments led 
directly to the idea of constructionism, arguing that effective learning will not come 
from finding better ways for the teacher to instruct but from giving the learners better 
opportunities to construct. This idea has been central to the development of VRMath 
2.0, aiming to provide better opportunities for learners to construct and engage learners 
in interlinked mathematical entities and representations (semiotic resources). 

The instrument: VRMath 2.0 
VRMath 2.0 is a new implementation of its predecessor VRMath (Yeh & Nason, 
2004b) enhanced by technological changes. Figure 1 is a snapshot of a square drawn in 
the prototype used in this study. 

 

Figure 1. VRMath 2.0. 

The VRMath 2.0 environment is rich in typological and topological resources. 
Typological resources include the Tool bar with icons, the Quick Command window, 
the Command field and the Message box. These resources have certain discrete 
meanings imposed on them. For example, the Quick Command has sets of icons that 
produce moving (change location) and turning (change direction) commands such as 
forward 1 and right 90. These language commands, when clicked, will produce a 
topological change of the turtle in the 3D virtual space. Another main topological 
resource is the 3D navigation. When learners navigate in the 3D virtual space, for 
example, they perceive continuous views of the square in 3D space. 
 Because it employs virtual reality (VR) technology, the 3D space is measured in 
metres instead of pixels. The 3D space also enables full 3D rotations on three axes with 
six turns, and six fixed movements (i.e., up, down, east, west, north and south). These 
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moving and turning commands can be classified into two groups as egocentric (i.e., 
forward, back, and the six turns) and fixed frame of references. 

Method 
There were 12 participants, three from each of grades 4 to 7. Each of the three students 
from the same grade were administered a lesson of 45 minutes as a small group teaching 
experiment (Steffe & Thompson, 2000). The lesson administered for this study was the 
third lesson titled ―Square in 3D space‖, which involved (1) discussion about squares; 
(2) drawing a square on paper; (3) interpreting square procedures, and (4) drawing a 
square in VRMath 2.0. Prior to this lesson, all 12 participants had been introduced to the 
interface and environment of VRMath2 in lesson 1 and 2. 
 During the lesson, the discussions were audio-recorded and later transcribed. 
Participants’ drawings were collected and their interactions (e.g., using Quick 
Command and navigation) with VRMath 2.0 were automatically logged into an online 
database. Field notes were also taken if the researchers observed any developments.  

Results 
Discussions about squares 
Participants’ responses to ―What is a square?‖ or ―What do you know about squares?‖ 
were presented in the introductory session. The critical properties of a square were all 
mentioned, with some additional information. For example: ―2D squares can be found 
on 3D shapes‖ and ―a regular quadrilateral‖ by year 4; ―four lines of symmetry‖ by year 
5; ―four edges and four vertexes‖ by year 6; and ―times a number by itself‖, ―two sets of 
parallel lines‖ by year 7. This initial assessment showed that from year 4 to 7, students 
were able to articulate some properties of a square. 
 Another question that the researchers asked was ―Is a square a rectangle?‖ All 
participants answered ―No‖, except one year 7 student who had previously said that a 
square has two sets of parallel sides. The prominent reason for arguing that a square is 
not a rectangle was that a rectangle must have two long sides and two short sides. The 
year 4s’ discussions were typical: 

Researcher:  Is a square a rectangle? 
J:  It can be. Stretched out a bit.  
N:  If the sides aren’t equal. 
J:  My brother told me this and our teacher was telling us about this too. She 

used to be a year 6 teacher. They had a argue about this [sic]. She said a 
square can be a rectangle, but a rectangle can’t be a squ ... I mean, a 
rectangle can be a square, but a square can’t be a rectangle. But now I don’t 
believe that anymore because the squares have four equal sides and four 
corners and the rectangle has two long sides and two short sides. So, I 
believe that it’s partially a square but it can never be a full square.  

Researcher: So a rectangle can’t be a square…? 
J:  Fully.  
Researcher:  But can the square be called a rectangle? 
R:  Not really.  
J:  No, they’re partially, they’re bits and pieces that are the same.  
R:  A rectangle is basically a square stretched out.  
J:  Yes, and a square has four equal sides.  
Researcher: So a rectangle can’t have four equal sides? 
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J:  No, because then it would be a square. 

Draw a square on paper 
When asked to draw a square on paper, all participants again drew quite consistent 
views of squares, as shown in Figure 2. 

  

Figure 2. Drawings of squares. 

Participants from year 4 to 7 all used the same notation. They used right-angle brackets 
to denote right angles, and a small dash on every side to denote the same length. One 
error found on the right hand side square in Figure 2 was the year 7 child who used one 
dash and two dashes to express his idea again about ―two sets of parallel lines‖. 
However, this could actually denote that the four sides are not equal. 

Interpreting square procedures 
After drawing squares on papers, the participants were given two sets of procedures and 
asked to interpret them to see if they created a square: 

Which sequence will make a square? 

 FORWARD 1 NORTH 1 
 RIGHT 90 EAST 1 
 FORWARD 1 SOUTH 1 
 RIGHT 90 WEST 1 
 FORWARD 1 
 RIGHT 90 
 FORWARD 1 
 RIGHT 90 

Because these commands had been introduced in a previous lesson, the researchers were 
testing the participants’ understanding about these commands. To our surprise, 
participants had quite different interpretations, particularly to the first procedure. A year 
4 girl drew on paper as she interpreted the first procedure (see Figure 3). 

 
                                                 

Figure 3. Year 4’s interpretation (zig-zag).  Figure 4. Year 6’s interpretation (2 squares). 

RIGHT 90 

RIGHT 90 
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A year 6 boy also misinterpreted RIGHT 90 and thus predicted the first procedure to be 
two squares (see Figure 4). Year 5 children were also puzzled by RIGHT 90 but soon 
realised it was a turn when they acted it out physically. Year 7 participants did not make 
any mistake on the first procedure. All participants were able to recognise that the 
second procedure produces a square. And from that, all agreed that using compass 
movements is easier to create a square. 

Draw a square in VRMath 2.0 
Participants first tested the two square procedures in VRMath 2.0 to see if they really 
produced squares. As they followed the procedures, they created a square in virtual 
space. But due to the perspective in the 3D environment, the square does not look like a 
square. The researchers then asked, ―Is that a square?‖ and ―How do you know that 
that’s a square?‖ Despite having just interpreted the procedures as squares, and being 
aware of the distance set to 1 metre and degrees set to 90, the participants started to give 
surprising responses. 
 Year 4s seemed to be quite confident. They thought it should be a square although it 
did not look like one. A year 4 girl said ―It looks like one. If you go up like …‖, then 
navigated above the square to get a top view. Two year 5s also navigated to confirm that 
it was a square. Another year 5 boy was not so sure. He did not navigate (claiming that 
he ―didn’t know how to move it up‖): instead he said ―I don’t know because I can’t see 
because … I don’t think it is‖. Later, this boy actually commented that ―That’s not a 
square, it’s a trapezium.‖ One year 6 was very much in doubt about the square. He did 
navigate to try to make it a square but could not get a perfect viewpoint. When the 
researcher questioned how he could be certain whether or not it was a square, this year 6 
participant tried to use a ruler and a protractor to measure the square on the computer 
screen. The year 7s were very sure that the two procedures would produce squares. One 
year 7 did not even navigate to see but simply recognised the square. A noticeable 
behaviour for another year 7 was that he navigated to a good viewpoint (top view) 
whenever he drew a line. 
  The participants were then encouraged to create different procedures for a square. 
The results were very creative. They created squares on different planes in the 3D 
virtual space. One year 7 created a very simple procedure for a square using both 
egocentric and fixed frame of reference (FOR) commands. 

FORWARD 1 EAST 1 BACK 1 WEST 1 

While the above procedure did create a square, the researchers challenged ―what if the 
turtle starts at RIGHT 45 direction? Would your procedure still produce a square?‖ He 
then predicted yes but found it to be a diamond (see Figure 5).  

 

Figure 5. Diamond shape produced by mixing two FORs. 
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He quickly realised and explained to the researcher that because ―east is always that 
way‖ and ―west is always that way‖ (pointing to west)—a step closer to the big idea that 
the fixed FOR does not change the turtle’s direction. 

Discussion and conclusion 
In this paper, we have presented our new practice that builds on the traditional LOGO. 
The traditional LOGO microworld is still a powerful field. It links mathematical 
concepts/entities with symbolic and visual representations. However, when examined 
under a semiotic framework, this tradition lacks the continuous representations of 
topological resources. In light of this, our new practice employs the 3D LOGO 
microworld with Web 2.0 technology to form VRMath 2.0. VRMath 2.0 is a vehicle for 
investigating and developing young children’s spatial abilities. After its first trial, we 
have identified the following points of discussion. 
1. Children may only develop ―quasi‖ geometric understandings within traditional 

teaching and learning. For this paper, we probed 12 year 4–7 children’s 
understandings about ―square‖. Their seeming understanding about 2D squares 
became fragile when challenged in a 3D environment. We found that the 
traditional and legitimate bird’s-eye view to be rigid. When viewing a 2D square 
from a 3D perspective, or when creating a 2D square in 3D space using LOGO 
programming language, young children’s understandings about squares could be 
changed easily, even when they were fully aware of a square’s critical properties.  

2. It was also noticed that in 3D movements, some children were confused about the 
moving (change location) and turning (change direction). In real world situations, 
we are often changing the location and direction together. However, in 
mathematics, moving and turning have to be separated. If the turtle is changing 
direction, then it will not change its location and vice versa. We would like to 
term this as ―component movement‖, which is essential for mathematical 
reasoning. 

3. In terms of language use, this study found that the word RIGHT (as a turning 
command), can be interpreted as a moving command. When this happens, the 
children have ignored the number of degrees following the RIGHT command. No 
doubt this could be a diagnostic indicator of children’s understanding, but it also 
presents a semantic, rhetorical, and communication problem of the learning 
environment. 

4. Children seemed to have developed a new definition of rectangle, which 
unfortunately is not in line with that of the wider mathematics community. The 
source of this misconception is unknown. Educators should be informed about this 
misconception so they can communicate with children using the same 
mathematical language and discuss alternate definitions with them. 

 

To conclude, we would like to return to our epistemological stance on semiotics. 
VRMath 2.0 can be seen as a complex sign system. It provides multiple semiotic 
resources including typological, topological, and social-actional representations for 
mathematical meaning-making. Due to the scope of this paper, we have not yet reported 
the sharing and social aspect of VRMath 2.0. We believe that VRMath 2.0 is a pertinent 
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vehicle for investigating and developing spatial abilities and geometric understanding, 
which, including VRMath 2.0 itself, will need to be constantly challenged and qualified. 
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The study investigated interactions between nine teachers and their Year 5–6 students 
during a lesson on the ―equal additions‖ strategy for subtraction problems involving 
difference. Two quantities were compared (e.g., $445 vs. $398), a quantity was added to 
both (rounding up the subtrahend), and students asked about the two differences ($447–
$400 and $445–$398). Teachers‘ use of so-called ―indicator words‖ was analysed. Those 
using words such as ―difference‖ and ―how much more‖ frequently had more students who 
chose the equal additions method to solve post-test problems. The findings reflect the 

challenges of bringing about deep and lasting change in teaching (and learning) 

mathematics. 

Introduction 
Mathematics education reform in western countries has resulted in a shift in emphasis 
away from training students in the use of rote-learned skills and procedures, towards 
helping students to develop deep conceptual understanding (Fraivillig, Murphy, & 
Fuson, 1999; Goya, 2006; Skemp, 2006). Problem solving processes, including 
thinking, reasoning, and communicating mathematically, have received far greater 
attention than in the past (see Ministry of Education, 1992, 2007). Sfard (2008) links 
these together, defining thinking as self-communication. 
 Researchers have become increasingly interested in the nature of the learning that 
takes place during classroom mathematics lessons, and there has been a sharpened focus 
on the interactions between teachers and their students (Rye, 2011). Discourse analysis, 
or conversation analysis, has become a popular means of gaining insights into the 
teaching and learning processes within classrooms (Cohen, Manion, & Morrison, 2007; 
Mercer, 1995; Mercer & Littleton, 2007; Perakyla, 2005). Such an analysis looks at the 
―organisation of ordinary talk and everyday explanations and the social action 
performed in them‖ (Cohen et al., 2007, p. 389). It has been characterised as a kind of 
psychological ‗natural history‘ of the phenomena that has interested researchers. Cohen 
et al. suggest that researchers need to be highly sensitive to the ―nuances of language‖. 
According to Hodgkinson and Mercer (2008) classroom talk, the means by which 
children make sense of the ideas of their teachers and peers, ―is the most important 
education tool for guiding the development of understanding and for jointly 
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constructing knowledge‖ (p. xi). Consequently more attention needs to be given to 
improving the quality of classroom talk. 
 Several writers have noted that teachers exert a high degree of control over the ways 
children engage in conversation in the context of classroom learning, and sometimes 
children are prevented from engaging productively by the actions of their teachers 
(Hodgkinson & Mercer, 2008), and in particular teachers who put a high priority on the 
management of behaviour, and who control who gets to talk, when they talk, and about 
what. 
 Classroom talk and thinking has been categorised in many different ways. For 
example, Mercer (1995) has distinguished ―Exploratory talk‖ (where speakers engage 
critically but constructively with each others‘ ideas) from ―Cumulative talk‖ (where 
speakers build positively but uncritically on what others have said), and ―Disputational 
talk‖ (which is characterised by disagreement and individualised decision-making). 
Talk can also be examined using a linguistic lens (talk as spoken text) or a 
psychological lens (talk as thought and action) (Mercer, 1995). Barnes (2008) contrasts 
―Exploratory talk‖ (new ideas being tried out that are often hesitant and incomplete) 
with ―Presentational talk‖ (well-shaped talk, adjusted to the needs of the audience).  
 Several researchers have examined the nature of classroom talk in the context of 
mathematics lessons (e.g., Mercer & Dawes, 2008; Mercer & Littleton, 2007; Mercer & 
Sams, 2006). Solomon and Black (2008) noted that children‘s opportunities to 
contribute, and the type of talk directed towards them by the teacher, varies. Their work 
focuses on the way that some children readily develop an identity of engagement with 
mathematics, while others adopt an identity of exclusion from mathematics—a process 
that may begin from quite early in a child‘s school career. Further, teacher questioning 
can narrow the range of possible responses when teachers continue to ask questions in 
order to get a pre-determined answer (i.e., ―cued elicitation‖). Mercer and Littleton 
examined the incidence of ―indicator words‖ assumed to reflect the thinking that 
occurred during the exploratory talk of students engaged in joint problem solving.  

The aims and focus of the research 
The present study set out to explore the use of language by teachers while teaching the 
―equal additions‖ strategy for solving subtraction problems with a Compare structure. In 
contrast to the more common Separate structure that involve taking away an amount 
from a single quantity, Compare problems involve comparing two different quantities to 
find the difference (Carpenter, Fennema, Franke, Levi, & Empson, 1999; Fuson, 1992) 
—see Table 1. Teachers‘ language is examined, alongside the use of the equal additions 
strategy by their students in solving post-test problems. 

Table 1. Problem structures for “Separate” and “Compare” problems from Carpenter et al. (1999). 

Separate 
(Change: 
Take from) 

Result Unknown  
Ana had 13 plums. She 
gave 5 to Sam. How 
many plums did Ana 
have left? 
13 – 5 =  
 
 

Change Unknown  
Ana had 13 plums. She gave 
some to Sam. Now she has 8 
plums left. How many plums 
did Ana give Sam? 
13 –  = 8 

Start Unknown  
Ana had some plums. She 
gave 5 to Sam. Now she has 
8 plums left? How many 
plums did Ana start with? 
 – 5 = 8 
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Compare 
(Difference) 

Difference Unknown 
Ana has 13 plums. Sam 
has 5 plums. How 
many more plums does 
Ana have than Sam? 
13 – 5 =  

Compare Quantity Unknown 
Sam has 5 plums. Ana has 8 
more plums than Sam. How 
many plums does Ana have?  
5 + 8 =  

Referent Unknown 
Ana has 13 plums. She has 
5 more plums than Sam. 
How many plums does Sam 
have? 
13 – 5 =  

Method 
Nine teachers (7 female and 2 male) of Year 5-6 (nine- to eleven-year-old) students 
from four schools (serving communities ranging from low to high socioeconomic 
status), each with one instructional group (a total of 64 students) participated in the 
study (see Table 2). One teacher from each school had previously worked with the 
researchers, and that teacher agreed to ask the other teacher/s working at the same level 
also to be involved in the study. Teachers‘ classroom experience ranged from two to 
approximately 25 years. Experience in working with the Numeracy Project approach 
ranged from two to about eight years.  
 Students were given some written assessment tasks prior to the first lesson, then a 
similar assessment after the third lesson. This study focuses on the second lesson, which 
was designed to teach the equal additions strategy for subtraction (Ministry of 
Education, 2008, pp. 38-39). During the lesson, the teacher wore a portable digital 
audio-recorder attached to a flexible belt, with a lapel microphone to pick up his/her 
language to the children (and some responses from children who were close to the 
teacher). The researchers observed the lesson and noted non-verbal (contextual) 
information that could assist with the interpretation of the transcripts of audio-
recordings. Actions with materials, written recording in the group workbook, and in 
students‘ individual mathematics books were photographed to capture some of this 
nonverbal information.  
 In the Equal Additions lesson, the first scenario used in Book 5 is as follows: 

Problem: ―Debbie has $445 in her bank account, and her younger sister Christine has 
$398. How much more money does Debbie have?‖ 
Make piles of $445 and $398. ―Now suppose that Grandma gives Christine $2 to give her 
a ‗tidy‘ amount of money. To be fair, Grandma gives Debbie $2 also.‖ Discuss why  
445 – 398 has the same answer as 447 – 400 and then record 445 – 398 = 47 on the board 
or modelling book.  

The book then provides other examples of equations that can be turned into word 
problems and solved using materials (e.g., paper money).  

Results 
Data from the transcripts of the teachers‘ language while teaching the Equal Addition 
lesson were analysed to check the use of particular terminology during the lesson. 
Students‘ responses on the written assessment tasks given after the third lesson was 
analysed to see which students chose to use equal additions to solve the Compare 
problem and other subtraction problems. Table 2 shows the frequencies for teachers‘ 
use of particular terminology and the identities of particular students in their groups 
who used equal additions for the compare problem (those who used it for another 
subtraction problem are shown in brackets). Gail referred to ―difference‖ far more often 
than the other teachers (n = 30). She was also the second highest user of ―how much 
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more‖ (n = 6). She chose to illustrate the idea of difference using small numbers (4 vs. 
2), showing what happens when one is added to both numbers (5 vs. 3), that the 
difference remained the same. Several times she referred to the way ―the distance 
between [the two numbers] stays the same‖. At the very beginning of the lesson, she 
referred to a number line activity the students had done prior to the lesson, then part 
way through the lesson she asked students to: 

Think of a number line… and you‘re looking for the difference between six and two, the 
difference there is a space of one, two, three, four, right, now if you add two to both of 
those, one, two. Has the difference between both of them changed? [A student says ―No‖] 
It hasn‘t, has it, but if we went like this and you added two to one and not the other, okay, 
it‘s bigger isn‘t it. The difference between it has changed, so it becomes bigger. 

It was interesting to note that three of the five children in Gail‘s group used equal 
additions on a post-test problem, the greatest proportion of any group. Cara referred to 
―difference‖ 12 times and was the most frequent user of ―how much more‖ (n = 7). She 
also referred to the ―distance between the two [numbers].‖ Four of her ten children used 
equal additions on the post-test. Ben started the lesson by using the Separate (―take 
away‖) structure rather than Compare, but later referred to ―difference‖ nine times. He 
only used ―how much more‖ three times. Two of his students used equal addition on a 
post-test problem, and one student (B6) used equal subtraction for one problem. Three 
teachers (Ann, Dot, and Iris) did not refer to ―difference‖ at all. 

Table 2. Number of times particular words or expressions were used by teachers and children who chose 
to use Equal Addition to solve a Compare problem (or another subtraction problem) on the post-test. 

Teacher ―Difference‖ ―How much more‖ ―Why‖ ―How‖ Group size 

Children using 
Equal 
Addition 

Ann 0 1 6 20 8  
Ben 9 3 8 39 8 B4 (B5) 

Cara 12 7 7 22 10 
C3, C4, C7 
(C9) 

Dot 0 0 32 29 8 D8 
Ed 4 4 7 31 5 E4 
Fay 1 3 3 47 6 F3 
Gail 32 6 23 31 5 G1, G2 (G5) 
Hana 2 4 14 48 7 H1, H4 
Iris 0 2 6 15 7 I5 

 

Several other key issues that emerged were the importance of teachers using consistent 
language and their awareness of problem structure. Although it was not clear whether or 
not any of the teachers understood about different problem structures, Cara and Gail 
were very careful in their use of mathematical language and special terminology with 
the children.  
 Several teachers, including Ann, Dot, and Iris, took the first example from the book 
(see description above), which was structured as a Compare (difference) problem and 
turned it into a Separate problem. Dot said: 
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Right, I had $445 right, K had, K asked me if she could have a loan of $398 and being the 
giving, caring person that I am, I said sure. How much money did I have left over? Right, 
I want you to think about the tidy numbers, using tidy numbers. 

One student (D1) was concerned that if two was added to one number, it needed to be 
taken off later. Dot explained to D1: 

[D1], what I think you‘ve been confused with is if we did it to one of these numbers, if 
we added two the one number, then yes, we do have to take it away but we did it to both 
numbers. If we just added two to 398 and 445 the same, then yes, we would have to take 
that two away, but because we do the same treatment to both numbers the gap remains 
the same.  

Several students commented at this point that they were lost, so Dot then decided to 
bring the lesson to a close as they had run out of time for further explanations. When 
Dot was asked in the post-lesson interview if she planned to follow up anything 
particular from the lesson in the future, she did not have a plan to address the confusion 
described above. It was interesting to observe later that on the post-test, D1 continued to 
subtract from the difference the amount she had added to the subtrahend initially, 
making her answers consistently incorrect. 
 Ben introduced his lesson by sharing with the group how, in preparing for this 
lesson, his own mathematics had been extended. 

This is one of these really cool exercises, now I mentioned before that since doing this, 
my understanding of maths has really improved. What this next lesson is, is actually a 
really cool lesson for an area that I think we‘ve got a bit of a weakness in as a class, 
looking at one particular type of operation. Now, so what we are going to do is, we‘re 
going to look at, looking at [Reading the learning intention for the lesson] how to solve 
subtraction problems by Equal Addition that turns one of the numbers into a tidy number. 

Ben then asked the students ―What sort of problem are we looking at?‖ One student 
(B1) suggested a missing addend structure: ―398 plus what equals 445?‖ Ben would not 
accept this missing addend structure because the learning intention in the resource book 
focused on subtraction. He said: 

Oh okay, so [B1], you‘ve gone for that first one, reversing strategy, so you‘ve gone for 
398 plus what equals 445, yeah. If we just look at the learning intention, which is to solve 
subtraction problems by using Equal Addition, are we using a subtraction problem here? 

One child answered ―No.‖ Ben continued: 
Is this still a good strategy? Yep, but we‘re going to look at just using subtraction, so 
what problem am I going to write down here to show subtraction? 

Another child suggested ―445 take away 398‖. Ben affirmed that response: 
Nice, so we are going to use 445 take away 398 equals, we think it might be 47 
[suggested earlier by one of the other students]. 

Ben then asked whether adding two to both numbers would change the answer. Some 
students thought it would increase the answer by four, but others believed that the 
answer was still the same. Ben tried to get those students to explain why: 

What are we actually looking at, we‘re looking at, what? ... So when I give the answer, 
what‘s the answer? Okay, if we take the answer we say let‘s say that‘s 47, we‘re happy 
that it‘s 47. What does the 47 actually mean? 

One student suggested ―Numbers?‖ to which Ben responded ―Excellent, nice, okay.‖ 
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There was further discussion but it did not appear to produce what Ben was wanting so 
he explained: 

Okay with subtraction, we‘re really looking at the difference between these two numbers, 
so the difference between 445 and 398 is 47, so we‘re just looking at difference, so the 
numbers here, you can change the numbers either way and it‘s not going to affect the 
outcome. Does that make sense? 

At least one child agreed, but another was concerned about what happens if different 
amounts are added to different numbers. Ben responded: 

Ah now, good question. Will that affect the answer, if you‘re not adding the same amount 
to each side—because you‘re looking at difference? But that‘s a good question, that‘s a 
very good question.  

He then gave them another problem, but did not stick consistently to either a Compare 
or a Separate structure. 

Okay, let‘s have a look. I‘m going to give you another problem. Here you go. This time 
[B1]‘s got 367 apples and [B5] would like to have some—he thought he could probably 
eat 299 apples ‗cause he‘s sort of feeling a little bit hungry, he hasn‘t eaten for a while. 
So [B1] started off with 367 and he is going to give [B5] 299 of those ‗cause he‘s quite 
generous. Now can you predict, now thinking about using that Equal Addition, will that 
help us solve the problem? 

At least one child responded ―Yes.‖ 
Keeping in mind that we‘re looking at the difference between these two numbers, not 
necessarily the numbers themselves. 

One student (B4) suggested that the answer was 68. When asked by Ben, how he did it, 
he responded: 

I gave each of them one more. 

Ben then pressed for understanding. 
So just while we are doing this, but with [B4] adding on one more, have we changed the 
difference between the numbers? 

The students responded with both ―Yes‖ and ―No.‖ 
We‘ve changed the numbers, but have we changed the difference between the two 
numbers? 

This time the students knew they were expected to answer ―No.‖ However, it was not 
clear whether or not they really understood why they had answered ―No.‖ 

Discussion 
The analysis of indicator words showed a consistent pattern in terms of the relationship 
between the frequency of teachers using the term ―difference‖ and the number of 
students from their instructional group who chose to use equal additions to solve a 
problem on the post-test at least one week later. Mercer and Littleton (2007) used the 
relative incidence of indicator words to examine improvements in children‘s talk from 
before to after a programme designed to increase the quality of their talk during group-
based learning. However, this tool has also proved useful in the present study for 
analysing differences among the teachers in their awareness of the Compare structure 
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for subtraction. Finding that the highest incidence of using equal additions on post-test 
problems (60% of students in instructional group G) was associated with the teacher 
who had the highest incidence of referring to ―difference‖ (Gail) suggests that the 
content of teachers‘ language may be important in revealing critical differences in the 
effectiveness of their teaching of mathematics. Teachers who did not refer to 
―difference‖ had no more than one student who chose to use the equal additions strategy 
on the post-test. 
The findings of this study suggest that teachers‘ understanding of problem structure 
may be an important component of their content and pedagogical content knowledge 
(PCK) in mathematics. This is consistent with the work of several writers who stress the 
importance for primary teachers of having a deep and connected understanding of 
mathematics in order to teach it effectively (Ball, Hill, & Bass, 2005; Ball, Thames, & 
Phelps, 2008). However, bringing about reform in mathematics education is challenging 
and time consuming (Anthony & Hunter, 2005). 
 Analysis of the lesson transcripts showed that teachers stuck very closely to the 
lesson description in the resource book (Ministry of Education, 2008, p. 38), mostly 
using the IRE (Initiation, Response, Evaluation) pattern in their interactions with the 
students. Although the teachers appeared committed to teaching for understanding, 
many of the lessons were taught in a fairly procedural manner. An alternative to 
following the instructions in the resource book for the scenario described in the 
procedure could have been to begin the lesson by letting the students solve the problem 
in their own preferred ways. If no student spontaneously used equal additions, then the 
teacher could suggest trying out this strategy to check its effectiveness. When this 
approach was used with Bachelor of Teaching (Honours) students, they seemed to be 
particularly impressed with the elegance and efficiency of the equal additions strategy 
after having initially tried a less efficient strategy of their own choosing. Alternatively, 
multiple ten-frames with beans, including some grouped in canisters of ten, seem to 
show far more clearly than paper money the number of beans that need to be added to 
the subtrahend to make it into a tidy number. It would have been good to see the Yr 5–6 
teachers encouraging the students in their groups to discuss their ideas with peers, 
justify their solution strategies, and resolve differences in viewpoints.  

Conclusions 
Observing the equal additions lesson highlighted for us just how complex a process like 
subtraction can be. Teachers need to have a deep and connected understanding of 
mathematics, including knowledge of problem structure and number properties. 
Although resource books such as the one used for this lesson include some useful 
activities, it is vital that the underlying purpose and structures are clearly articulated, 
and teachers realise that they need to study the lesson until they fully understand it. 
Otherwise teachers may pick up such a book and follow a lesson prescriptively, and 
because they missed the point of the lesson, cause further confusion for their students. 
The findings of this study highlight the fact that mathematics education reform is 
difficult, and it takes considerable time to shift classroom discourse patterns. 
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Most teachers believe learning how to solve problems is an important goal, and report 
teaching problem solving in mathematics lessons. Some students have different views about 
what occurs in mathematics lessons. These inconsistencies may be a consequence of 
different understandings about the purpose of school mathematics and what constitutes 
problem-solving activity. The Australian Curriculum: Mathematics F to 10 emphasizes the 
important role of problem solving in learning mathematics and has supported teachers’ 
implementation by embedding problem solving and reasoning into the content. However, 
effective implementation may only be realized when students’ and teachers’ beliefs are 
addressed. 

Introduction 
Teachers generally endorse a focus on problem solving in school curriculum and agree 
that problem solving is an important life skill for students to develop. Given the amount 
of policy advice and resource development, there are concerns about the limited 
opportunities for Australian grade 8 students to engage with problems other than those 
of low procedural complexity (Hollingsworth, Lokan, & McCrae, 2003). This suggests 
that teachers’ beliefs about the importance of problem solving are not being supported 
by actions in their classrooms. There may be good reasons why problem solving seems 
to have a less prominent place in mathematics classrooms than may be intended. 
Frequently teachers’ plans are thwarted by a range of contextual factors that include 
interruptions, and the urgent daily requirements that tend to take up so much of 
teachers’ time. Another constraint may be students’ views about problem solving. If 
teachers and students have different perspectives about problem solving in learning 
mathematics, it is possible that teachers’ best efforts may be thwarted by students’ 
actions. 

Implementing problem solving in mathematics classrooms 
Developing successful problem solvers is a complex task. According to Stacey (2005), 
there are many factors involved (see Figure 1). Students need deep mathematical 
knowledge and general reasoning ability as well as heuristic strategies for solving non-
routine problems. It is also necessary to have helpful beliefs and personal attributes for 
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organizing and directing one’s efforts. Coupled with this, students need good 
communication skills and the ability to work in cooperative groups. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Factors contributing to successful problem solving (Stacey, 2005, p. 342). 

 Since the introduction of problem solving in school mathematics in Australia in the 
1980s, teachers have had many opportunities to build knowledge about teaching 
problem solving and using problems as a focus of learning in mathematics classrooms 
(Clarke, Goos, & Morony, 2007). Advice for teachers has been provided in a range of 
publications including books and professional journals, in national curriculum 
statements (Australian Education Council, 1991) as well as in state and territory 
curriculum documents. Such advice has been accompanied by pre-service and in-service 
programs to change teaching practices from more traditional approaches to 
contemporary or reform methods where teachers use non-routine problems and 
problem-solving tasks as a focus for learning (Anderson & Bobis, 2005).  
 Problem-solving tasks can be used in classrooms in different ways. Wright, (1992) 
described two distinct approaches teachers adopt according to their beliefs about student 
learning. The ‘ends’ approach to problem solving presents students with problems at the 
end of the topic after skills and procedures have been rehearsed. This is based on a 
belief that students need mathematical content and procedures before they can solve 
unfamiliar problems; an approach also referred to as teaching for problem solving. The 
‘means’ approach to problem solving uses problems as the focus of learning with 
problems used to provide a stimulus for student thinking. This approach has also been 
referred to as teaching through problem solving. A third possibility is for teachers to 
teach about problem solving so that students learn a range of heuristic strategies. All 
approaches have merit since they involve the students solving problems at some stage 
during mathematics lessons.  

Teachers’ views about problem-solving tasks and teaching 
approaches 
The development of successful problem solvers requires regular experiences with a 
range of question types. To explore primary school teachers’ problem-solving beliefs 
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and practises including their preferences for particular questions types or tasks , the 
author collected data using a questionnaire (Anderson, 2003). If a problem is defined as 
“a task for which the students have no prescribed rules or memorized procedures” (Van 
de Walle, 2003, p. 67), then mathematical problem-solving tasks do not need to be 
elaborate or complex. However, whether a task is a problem or not will depend on the 
level of understanding of the particular students the teacher is working with. To focus 
teachers’ responses to the questionnaire, a classification of mathematics question types 
was developed for each of: exercise, application problem, unfamiliar problem and open-
ended problem (Table 1). 

Table 1. Background information categorizing question types for two-digit addition. 

Background Information: 
For the purpose of this questionnaire, the following definitions are given to assist understanding of the 
terms used. The examples are questions used by teachers when teaching two-digit addition. 
Mathematics Question Type: Example: 
Exercise 
(a routine question for practising 
skills) 

    35 
+  27 
 

Application problem If there are 32 oranges in one box, 37 in a second box, and 35 in 
a third box, how many oranges are there altogether? 

Unfamiliar problem 
(a problem type students haven’t seen 
before) 

There are pigs and chickens in a farmyard and altogether there 
are 23 heads and 68 legs. How many pigs and how many 
chickens are there? 

Open-ended problem 
      What might the missing numbers be? 

+    
  1     3      4 

 
 Teachers were asked to indicate how frequently they used each type of question 
(Table 2). Overall, the majority of teachers used application problems and exercises 
more frequently than open-ended problems or unfamiliar problems. This may be a result 
of a reliance on textbooks and worksheets, or it may be that teachers are more confident 
with these particular student question types. 

Table 2. Frequency of use of student question types (%), n=162. 

Types of Questions Rarely Sometimes Often 
Exercises 5 27 68 
Application Problems 4 26 70 
Unfamiliar Problems 37 52 11 
Open-ended Problems 22 58 20 

 
 Judgements about teachers’ problem-solving beliefs were made on the basis of their 
level of agreement with questionnaire items. The responses from 162 primary-school 
teachers to forced choice and open-ended comments were used to place each teacher in 
a category of having mostly traditional beliefs (n=23), mostly reform-oriented beliefs 
(n=20) or mixed beliefs about the use of problem solving in mathematics lessons. To 
compare teachers’ reported beliefs with their reported practices in classrooms, further 
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items on the questionnaire asked them to report frequency of use of a range of teaching 
practices (see Anderson, White, & Sullivan, 2005). 
 Generally it seems that the reported beliefs and the reported practices are linked. The 
teachers with more traditional beliefs reported using strategies that were compatible 
with a transmissive style of teaching in that they frequently had students working alone, 
they provided detailed explanations about how to do problems, and they frequently set 
exercises for skills practice. The teachers with more reform beliefs reported using 
practices that gave responsibility to the students by encouraging group work, providing 
less initial explanation, encouraging individual recording, and allowing students to 
explore mathematical ideas. Both the traditional and reform teachers reported frequently 
modelling problem-solving processes and discussing problem-solving strategies with 
their students. Perhaps the difference between the teachers is not so much on the value 
they attribute to problem solving but on how students learn to solve problems and how 
students respond to their problem-solving lessons.  
 Further analyses of questionnaire responses revealed key beliefs which impact on 
teachers’ choice of question types (or problems) and how they were presented to the 
students. In summary, for many teachers, the main beliefs impacting on, or constraining, 
problem-solving implementation were: 

• students need to learn the ‘basics’ first before they can do problem solving; 
• students give up if they cannot do a maths problem quickly; 
• open-ended problems are more suitable for gifted and talented students; 
• students with language difficulties have trouble doing application problems; 
• problem solving is more appropriate for students in the upper grades of primary 

school; and 
• problems take up too much time in the over-crowded mathematics curriculum. 

Many of these beliefs reflect the contextual nature of beliefs with teachers adopting 
different problem-solving practices based on the characteristics of the students in their 
class. For at least some primary school teachers, confidence and experience also 
impacted on whether they implemented problem solving in their classrooms. 
 Research into secondary mathematics classrooms has revealed similar beliefs with 
many teachers reporting not enough time and lack of resources as reasons constraining 
problem-solving implementation (Wilson, Fernandez, & Hadaway, 1993). Beswick 
(2005) used a survey to gather data about secondary mathematics teachers’ beliefs and a 
classroom environment survey to collect data from their students. The relationship 
between beliefs about the nature of mathematics, beliefs about mathematics teaching, 
and beliefs about mathematics learning are summarised in Table 3 (Beswick, 2005, p. 
40).  

Table 3. Relationships between beliefs. 

Beliefs about the nature of 
mathematics (Ernest, 1989) 

Beliefs about mathematics 
teaching (Van Zoest et al., 1994) 

Beliefs about mathematics 
learning (Ernest, 1989) 

Instrumentalist Content-focused with an 
emphasis on performance 

Skill mastery, passive reception 
of knowledge 

Platonist Content-focused with an 
emphasis on understanding 

Active construction of 
understanding 

Problem-solving Learner-focused Autonomous exploration of own 
interests 
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 Beswick’s (2004) investigation of ‘Andrew’s’ beliefs revealed he held a problem 
solving view of mathematics and a constructivist view of mathematics learning. 
However, his beliefs and practices varied between grades providing evidence of the 
impact of context. In addition, there were differences between Andrew’s reported 
student-centred classroom teaching approaches compared to his students’ views about 
the classroom environment, particularly for the grade 10 students. As noted by Beswick 
“the data suggest that in his grade ten class Andrew was more likely to set the tasks and 
to be the arbiter of correct solutions” (p. 115). However his students reported the 
classroom was less student-centred than Andrew reported. These differences need to be 
explored if problem solving is to be valued by both teachers and students and if real 
problem solving is to form a key component of classroom activity. 

Students’ views about problem solving 
Stacey’s framework in Figure 1 indicates that developing successful problem solvers 
requires more than choosing appropriate problems, and deciding when and how to 
introduce them to students. Teachers also need to consider students’ personal attributes 
and their beliefs about mathematics and the role of problem solving in learning 
mathematics. Students’ beliefs about problem solving may influence their reactions to 
teachers’ attempts to use problem-solving approaches in classrooms. Because of 
previous experiences, students may develop narrow beliefs about mathematics with 
problem solving viewed as not legitimate mathematical activity, particularly if it is not 
associated with working from the textbook. Schoenfeld (1992) identified student beliefs 
which do not support a problem-solving approach in classrooms. These included: 

• mathematics problems have one and only one right answer; 
• there is only one correct way to solve any mathematics problem; 
• mathematics is a solitary activity, done by individuals in isolation; and 
• students who understand the mathematics will be able to solve any problem in 

five minutes or less. 
For problem solving to be a focus of mathematics classrooms, students’ beliefs about 
the nature of mathematics may need to be challenged yet this can be frustrating for 
teachers. Identifying differences in teachers’ and students’ views about problem solving 
helps to develop teachers’ understandings about the challenges they may face.  
 More recently, Anderson (2008) used the same question types from Table 1, to 
collect data from seven teachers and the students across grades 3 to 6 to identify and 
explain which question types were problems and how frequently they were used, as well 
as the frequency of a range of teaching strategies. For the open-ended problem, few 
students in grades 4 to 6 indicated it was a problem compared to application and 
unfamiliar problems. The main reasons given suggested it only required the application 
of an algorithm with no recognition there were multiple solutions. Students’ experiences 
of these types of questions provided some indication of the source of their beliefs as 
teachers indicated they hardly ever use unfamiliar or open-ended problems, with 
students frequently doing exercises to practise skills and procedures.  
 Teachers and students were asked to report the frequency of use of particular 
teaching strategies in mathematics lessons. Several items revealed similar views about 
what was occurring. For example there was agreement between teachers and students 
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across all grades that students hardly ever posed their own problems or were able to 
choose which problems they could solve. 
 Other items revealed differences between teachers and their students. Teachers 
reported rarely having students work alone or getting students to record answers to 
problems in their own way. However, the majority of students in every grade reported 
they frequently worked alone and rarely developed individual recording methods. 
Teachers reported they more frequently showed students exactly how to solve 
mathematics problems, allowed students to use calculators and concrete materials, and 
used real-life problems with students. Students indicated these strategies were used less 
frequently. These differences were not extreme but the teachers were surprised by what 
the students suggested. Students’ responses provided an opportunity for fruitful 
discussions about problem-solving strategies and how teachers’ efforts could be further 
developed to improve students’ attitudes to problem solving in mathematics lessons. 
 Some teachers did have more traditional beliefs and used practices in their 
classrooms which reinforced a view of problem solving as doing routine exercises 
rather than open-ended or non-routine problems. While other teachers reported more 
reform-oriented beliefs, their practices did not necessarily reflect their beliefs. If 
problem solving is to become a regular component of mathematics lessons, new 
approaches will be required by all teachers of mathematics across all of the grades of 
schooling. 

Problem solving in the Australian Curriculum: Mathematics 
Problem solving is one of four proficiency strands in the new Australian Curriculum: 
Mathematics F to 10 (Australian Curriculum, Assessment and Reporting Authority, 
2010, p. 3) and is described as follows. 

Students develop the ability to make choices, interpret, formulate, model and investigate 
problem situations, and communicate solutions effectively. Students formulate and solve 
problems when they use mathematics to represent unfamiliar or meaningful situations, 
when they design investigations and plan their approaches, when they apply their existing 
strategies to seek solutions, and when they verify that their answers are reasonable. 

 This description for problem solving suggests students need to actively engage with a 
range of important processes during mathematics lessons. For this to occur teachers will 
need to select tasks which allow for student choice about the mathematics and the 
problem-solving strategies they use to model and investigate situations. Importantly, 
students also need to be able to communicate their solutions in their own ways. Problem 
solving involves investigating new and somewhat challenging situations that require 
time and effort. For many students, problem solving will need to be more than just 
doing questions which are applications of the mathematics they are learning right now.  
 It is an ongoing challenge for teachers to develop successful problem solvers given 
the constraints acting against teachers’ intentions and best efforts. The challenges for 
teachers are to: 

• ask fewer questions in each lesson but use questions or problems which require 
reasoning; 

• use rich problem-solving tasks including investigations and open-ended 
questions;  
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• discuss with students the role and purpose of problem solving in learning 
mathematics; and 

• allocate time for students to grapple with the underlying mathematical ideas. 
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We describe a pedagogical approach aimed to assist second-grade Filipino children to solve 
additive word problems in English, a language primarily encountered only in school. The 
impact of the intervention is exemplified through a case study of one child with sufficient 
understanding of additive structures but with poor English skills. The intervention provided 
linguistic and mathematical scaffolds focussed on linking the text, situation, and problem 
representations. Conveying additive part-whole concepts in Filipino using a range of 
representations strengthened knowledge of additive situations and facilitated success for 
English word problems. However, correct solutions did not necessarily imply coherent 
mappings between the strategy and the text.  

Aerwen you 8-ge yingbi. Ranhou Jun zai gei-le ta yixie. Xianzai Aerwen you 14-ge yingbi. 
Jun gei-le ta ji-ge yingbi? 

If you do not speak Chinese, how would you approach the word problem above? When 
translated to English, the word problem reads, “Alvin had 8 coins. Then Jun gave him 
some more coins. Now Alvin has 14 coins. How many coins did Jun give him?” This is 
an example of a Missing Addend problem which can be solved by many first-graders 
(Carpenter & Moser, 1984). However, with insufficient proficiency in the language of 
the problem, even a very simple problem becomes difficult, if not impossible, to solve 
with semantic understanding. Unfortunately, many children face this challenge because 
they learn mathematics in a language not widely spoken in the community. Such is the 
case in several African nations (Obondo, 2007), in remote Indigenous communities in 
Australia (Simpson, Caffery, & McConvell, 2009), and in the Philippines (Young, 
2002) where this study was conducted. 
 As part of a two-year project, we developed a series of assessments and interventions 
(Bautista, Mitchelmore, & Mulligan, 2009; Bautista, Mulligan, & Mitchelmore, 2009) 
aimed to help Filipino children solve additive1 word problems in English, a language 
they generally encounter only in school. Our intervention was based on Kintsch’s 
(1986) model of word problem solving. While the outcomes of the intervention are 
discussed elsewhere (Verzosa, in press), this paper exemplifies the instructional 
scaffolding for one child who was mathematically competent but unable to solve word 

1 Additive word problems refer to word problems that may be solved by either addition or subtraction.  The reader 
may refer to Carpenter and Moser (1984) for a taxonomy of additive word problems. 
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problems in English. We describe the outcomes of our intervention so that others may 
(1) learn the strengths and limitations of our pedagogical approach, and (2) adapt 
Kintsch’s framework for designing an instructional sequence and assess children’s 
performance in solving word problems. 

The Kintsch model 
Kintsch’s (1986) framework (elaborated by Nathan, Kintsch, and Young (1992)) was 
informed by theories on how readers process text. Within this framework, word 
problem solving consists of three inter-related mental representations—the textbase, 
situation model, and problem model. The textbase depicts the meaning of the words in 
the text and how these relate to each other. It also represents a superficial type of 
comprehension. For Kintsch (1994), true comprehension occurs when one constructs a 
representation not only of the text itself, but also of the situation described by the text. 
Called the situation model, it may contain elements not explicitly mentioned in the text. 
Finally, the problem model for additive problems is a part-whole representation of the 
given and unknown quantities in the problem.  

An example 
The textbase representation of the sentence “Alvin had 8 coins” contains representations 
of the concepts of a person (Alvin), of coins, and of possession. The situation model 
may be an image of a little boy with eight coins in his pocket. It depends on a reader’s 
prior knowledge and goals for reading text, and can differ from one person to another 
(Grabe, 2009).  
 The problem model for the Missing Addend problem given at the beginning of this 
paper specifies a mathematical part-whole relation between Alvin’s initial (part) and 
final (whole) sets of marbles. This mathematical structure elicits a corresponding 
subtraction strategy (14 – 8) to determine the unknown part.  

The situation model 
Meaningful problem solving entails carrying out a strategy based on a situation model, 
rather than simply on an incoherent textbase consisting of keywords from the text 
(Mayer, 2003; Thevenot, 2010). Additionally, an appropriate situation model promotes 
correct solutions, as children often solve problems by directly modelling the situation 
described by the text (Carpenter & Moser, 1984). These direct strategies are what 
Brissiaud and Sander (2010) call situation-based, and not necessarily connected to 
problem models. Situation model construction hinges on linguistic and mathematical 
knowledge, elaborated as follows. 

• The solver should know most of the words in the text. In a clever experiment, 
Hseuh-Chao and Nation (2000) asked 66 adults to read one of four versions of a 
673-word simple text. The versions differed in the proportion of words (20%, 
10%, 5%, 0%) replaced by nonsense words. While most of those reading the 
intact text could answer questions about the text, none of those reading the 20%-
nonsense version, and very few of those reading even the 5%-nonsense version 
could. Their analysis further suggests that at least 98% of the words in a text 
should be known in order for adequate comprehension to take place.  
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• The solver should possess an understanding of the additive part-whole 
structure of sets and a flexible understanding of number meanings. Text 
comprehension research shows how domain knowledge is important for 
comprehension (Hirsch, 2003). A reader unfamiliar with cricket, for example, 
could not be expected to comprehend a newspaper article about cricket. The same 
applies to word problems. We found that some children could not solve Missing 
Addend problems even when problems were narrated to them in their first 
language (Filipino) because they were limited to conceptualising disjoint sets with 
known quantities (Bautista & Mulligan, 2010). Further, some could only 
conceptualise number as the final number-word in the counting process. They did 
not realise that numbers may exist outside the counting activity, as when these 
represent an unknown transformation in the Missing Addend problem (Nunes & 
Bryant, 1996).  

Using Kintsch’s model for intervention design 
Guided by the three components of problem solving in Kintsch’s (1986) model, we 
designed a pedagogical approach aimed to strengthen each component as well as 
appropriate mappings between them (Figure 1). Our basic conjecture was that we could 
develop the three components of word problem solving simultaneously, rather than 
sequentially. In practical terms, this meant not having to wait for children to acquire 
skills necessary to construct a coherent textbase before providing them with 
opportunities to develop their mathematical knowledge.  
 

 

Figure 1. Pedagogical. approach based on Kintsch’s model. 

 Because the children in our study had not yet acquired communicative English skills, 
we conveyed mathematical concepts in Filipino, using a range of representations. For 
example, the tasks in Table 1 show the various ways we represented the Missing 
Addend problem at the start of this paper. In this way, it became possible to 
communicate mathematical structures while circumventing the English language 
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difficulty. At the same time, linguistic support was also provided (see strategies listed 
under Textbase in Figure 1). 

Table 1. Various representations for the Missing Addend task 8 +  = 14 

Mode of representation Typical Tasks or Activities 
Concrete Screening task (Wright, Martland, & Stafford, 2000): Briefly display 

8 blocks. “I will join some blocks to the 8, but I will not tell you how 
many.” Join 6 blocks to the original 8, without showing the child the 
number of additional blocks. “Now, there are 14 blocks altogether. 
How many blocks are in the bag?” [presented in Filipino]  

Pictorial 

 
Verbal-pictorial “Wish ko lang [I wish I had]” task (Kolson, Mole, & Silva, 2006): 

Show 8 dots. “I have 8 dots. I wish I had 14. How many dots do I 
need?” [presented in Filipino]       

Textual  Gina had 8 bags. Ramon gave her some more bags. Now, Gina has 
14 bags. How many bags did Ramon give Gina? [presented in 
English or Filipino] 

Symbolic 8 +  = 14 

Note: These representations were provided to the children in the order prescribed above, which 
correspond to increasing levels of abstraction.  

The study 
The intervention described in this paper was carried out over seven two-hour sessions 
spread over three weeks. Ninety Filipino children who had just finished second grade 
took part. This paper presents an analysis of the outcomes of the intervention through a 
case study of Vilma2, who was typical of children with sufficient understanding of 
additive structures but with poor English skills. She was nine years old and had just 
finished Grade 2 when she participated in the intervention. She completed four 
assessments. The first was a written test pre-intervention. Individual interviews were 
also administered over three stages—before, immediately after, and four months after 
the intervention.  
 The interview consisted of the following steps: 

• Step 1. Present a problem written in English. 
• Step 2. If a correct solution was not reached, present the same problem written in 

Filipino (linguistic scaffold #1). 
• Step 3. If a correct solution was not reached, narrate the same problem as if it 

were a story (linguistic scaffold #2). 
 Problems used for post- and delayed post-assessments shared similar structural 
features with those given in the pre-test, and differed only in their surface characteristics 
(e.g. using pencils instead of coins), and number triples. The number triples were all in 
the range 1-20, and were based on Carpenter and Moser’s (1984) study.  
 To determine how the intervention influenced word problem solving performance, 
data from each interview were analysed with respect to the linguistic scaffold required 

2 pseudonym 
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by the child to solve the problems and the mathematical strategy used to calculate the 
correct numerical solution. 

Intervention outcomes 
Pre-intervention written test results 
In the written test, Vilma answered two out of ten additive word problems (five in 
English, five in Filipino). She also used idiosyncratic strategies to solve word problems. 
For example, she solved the English problem Jimmy has 5 cards. Tony has 7 cards. 
How many cards do they have altogether? by multiplying 5 and 7. Moreover, she used 
the same strategy (addition) for all five Filipino word problems, even when three are 
solved by subtraction.   

Interview results: Which linguistic scaffold helped? 
Table 2 displays the stage (i.e., English, Filipino, narrated), if any, at which a correct 
solution was reached. Before the intervention, Vilma could solve problems only when 
these were narrated to her. Her understanding of the statement Rica has 12 books was 
“Notebook”, and she did not know what has meant. Filipino translations also did not 
help. Even when reading Filipino text, she could not identify the giver (Alma) in the 
Missing Addend problem in Table 2.  

Table 2. Stage during the interview where a correct solution was reached. 

Problem type Sample problem Pre-
test 

Post-
test 

Delayed 
post-test 

Join Alvin had 3 coins. Then Jun gave him 8 more coins. 
How many coins does Alvin have now? 

NA F F 

Separate Alex had 14 dogs. Then Alex gave 6 dogs to Carla. 
How many dogs does Alex have now? 

NA N E 

Missing Addend Jolina had 7 pencils. Then Alma gave her some more 
pencils. Now Jolina has 12 pencils. How many pencils 
did Alma give her? 

N E E 

Part Unknown There are 11 marbles. Four of these belong to Jimmy. 
The rest belong to Mia. How many marbles does Mia 
have? 

N N E 

Start Unknown Mark had some pan de sal3. Then he gave 6 pan de sal 
to Chris. Now Mark has 8 pan de sal left. How many 
pan de sal did Mark have in the beginning? 

N N N 

Compare Rica has 12 books. Luis has 7 books. How many more 
books does Rica have than Luis? 

X E F 

Note: E – problem solved in English; F – problem solved in Filipino; N – problem solved when narrated; 
X – problem incorrectly solved at each stage; NA – not asked. 

 
 The Compare problem was not correctly solved at any stage of the interview. It was 
difficult to convey the Compare structure verbally because she did not know the words 
“higit [more]” or “lamang [extra].”  
 There were some improvements after the intervention. She could already solve a 
Compare problem, but she continued to rely on narration strategies for most problems. 

3 A type of bread common in the Philippines. 
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She also solved two problems in English. While she remembered the meaning of some 
words (such as gave) that were taught during the intervention, she could not identify the 
giver from the Join problem text, Bing gave 6 bottles to Ted. She also still could not 
understand simple statements such as Alex had 14 dogs.  
 The delayed post-assessments show that she relied less on narration strategies. She 
solved three problems without assistance, but these did not include the Compare 
problem which was solved in English in the post-test. Similar to her post-test results, 
Vilma still required a Filipino translation for the Join problem. She interpreted the Join 
problem as a Missing Addend problem—she stated that the question was, “Ilan yung 
binigay sa kanya [How many were given to her]?,” and stated her answer as, “Tatlo 
yung binigay sa kanya [Three were given to her].” 

Interview results: Which mathematical strategies were used? 
Vilma used a range of strategies when solving problems. She did not always use an 
arithmetic operation, and she did not always need to directly model the action in the 
problem. For example, she solved the Part Unknown (pre-intervention) problem by 
performing a “bawas [take-away]” calculation, but cited an addition fact [7+5=12] to 
solve the Part Unknown problem (post-intervention) involving 12 – 5 = ? As a second 
example, she did not need to represent and concretely compare two sets when solving 
the Compare problem after the intervention—she solved the problem by performing a 
take-away strategy. 

Discussion 
We analyse Vilma’s performance by relating it to the three components of problem 
solving. Before the intervention, Vilma was a typical example of a student who already 
possessed the mathematical knowledge required to solve all problems that were 
presented to her, with the exception of the Compare problem. Moreover, she was not 
limited to solving problems that could be directly modelled. Rather, she recognised how 
the structure of the problem situation linked to her problem model representation of sets 
and operations.  
 The main difficulty was that Vilma could only access her mathematical knowledge 
when problems were narrated (in Filipino) to her. This initial profile suggested that 
Vilma could not construct a situation model from the text because she was unfamiliar 
with common English words. Additionally, her undeveloped reading comprehension 
skills prevented her from retrieving information from the text.  
 The intervention exposed Vilma to a range of additive situations. Thus, she 
developed mathematical knowledge (a problem model) related to comparisons, allowing 
her to solve a Compare problem, post-intervention. Moreover, she solved two problems 
in English. These findings strengthen the argument we presented at the outset, about 
how domain knowledge (in this case, knowledge about various additive situations) 
contributes to enhanced situation models, and thus, correct solutions for English 
problems.  
 However, our findings also suggest that an appropriate situation model may not 
necessarily be based on a coherent textbase. For example, Vilma solved two problems 
in English, and yet she still could not understand the statement Alex had 14 dogs. A 
plausible explanation could be that, upon reading the text, Vilma recalled some of the 
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additive situations discussed during the intervention, and based her situation model on 
her recollection. This assertion is supported by Vilma’s performance in the post- and 
delayed post-assessments. While she could correctly solve a Missing Addend problem in 
English, she required a linguistic scaffold to solve the Join problem which was 
definitely easier—of the 88 children in Carpenter and Moser’s (1984) study, none could 
solve Missing Addend, but not Join, problems. Thus, a glaring limitation in Vilma’s 
progress was in the mapping between the textbase and situation model. The minor 
intervention of providing Filipino translations of English words commonly found in 
word problems did not seem to help.  
 Unless the language difficulty is addressed, Vilma would have no other option but to 
base her situation model on a few words and the given numbers in the text. Returning to 
the Alvin problem at the start of this article, a non-Chinese speaker may be forced to 
impose a situation on the text, and perform a calculation based on this situation.  

Implications 
This case study cannot be generalised to all children learning mathematics in an 
imported language. However, we consider the results to be a good description of how 
linguistic difficulties impede performance. Results also show how it is possible to help 
children conceptualise a wider range of additive situations in spite of difficulties in 
language and reading comprehension. The findings point to several implications, as 
follows: 

• It should be recognised that learning in an imported language is challenging for 
both teachers and students. Recall that we used Filipino to convey mathematical 
situations and concepts. If we had to carry out our intervention in English, the 
children’s unfamiliarity with the language would have forced us to remain at a 
textbase level of discourse, focusing on key words as cues for a strategy. 

• Because language policies may take time to change, other avenues for providing 
language support such as code-switching or targeted professional development 
programs need to be explored and prioritised. Otherwise, children may have to 
cope with learning mathematics in an imported language in their own ways.  

• Language difficulties should not be an excuse to delay mathematics teaching of 
developmentally appropriate content knowledge. Mathematical concepts should 
still be conveyed, using various representations as a way to circumvent the 
language barrier. 

• Interviews or informal conversations that scaffold children towards correct 
solutions are necessary to help teachers identify mathematical strengths or 
weaknesses that may be initially masked by language difficulties.  

• As we have done, teachers may adapt our pedagogical approach, based on 
Kintsch’s (1986) framework, to design an instructional sequence and identify both 
children’s progress and pervasive difficulties with respect to the three components 
of problem solving. 
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Over the past decade there has been growing interest in describing and measuring the kinds 
of mathematical knowledge needed by teachers. Such efforts are in parallel with the 
development of national standards for teachers, indicating levels of expectation across the 
years of teachers’ careers. This presentation provides an opportunity for teacher educators 
and teachers to consider the nature of mathematical knowledge needed by beginning 
teachers at all levels of schooling. Discussion will be informed by data from an ALTC 
funded national project that aims to improve the quality of pre-service teachers’ outcomes 
in mathematics and by the AAMT Standards framework.  

Introduction 
Interest in beginning teachers’ mathematical knowledge is not new. At the first 
MERGA conference, Brown (1977) described growing concerns about the mathematics 
knowledge of pre-service teachers and what he described as “anti-mathematical” 
backgrounds. In response to these concerns a remediation program was described 
“which is almost identical to that necessary in the lower secondary or upper primary 
schools” (p. 45).  
 In 1987, Shulman’s seminal work identified three domains of teacher knowledge: 
subject-matter knowledge, pedagogical content knowledge, and curricular knowledge. 
Subject-matter knowledge includes all of those ideas fundamental to the domain, 
pedagogical content knowledge extends to such matters as useful forms of 
representation, explanations and examples of the domain, and curricular knowledge 
includes understanding of how the subject-matter is organised over the years of 
schooling (Shulman, 1987).  
 A number of studies have deepened understanding of the kind of knowledge that 
teachers need for teaching. Mewborn (2001) showed that crude measures of teacher 
knowledge, such as the number of mathematics courses taken, were insufficient to 
characterise teachers’ mathematical knowledge for teaching. Hill, Schilling and Ball 
(2004) developed measures of teachers’ mathematical knowledge for teaching (MKT) 
using multiple choice items that could be described broadly as mathematics content 
knowledge set in a classroom context. Watson (2001) used a profiling approach with a 
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range of questions that addressed all of Shulman’s (1987) knowledge types. Using a 
similar instrument, Beswick, Callingham and Watson (2011) demonstrated that the 
different knowledge types could be considered as a single domain, providing an holistic 
conception of teacher knowledge for mathematics teaching that included beliefs about 
and attitudes towards mathematics as well as classroom focussed mathematics 
understanding. Further, they showed that the domain had a hierarchical structure in 
which general pedagogical knowledge and pedagogical content knowledge (PCK) 
related specifically to teaching mathematics were at the upper end of the scale and 
everyday numeracy was at the lower end.  
 Callingham and Watson (in press) focussed on pedagogical content knowledge 
restricted to the area of statistics. They used items of two main types – those in which 
teachers were asked to identify likely responses from their students to a particular 
question, and then to suggest appropriate interventions to one of these responses, and 
secondly, those in which they chose their “next steps” in response to questions showing 
students’ actual answers. These items attempted to capture both the diagnostic element 
of teachers’ knowledge and their understanding of students’ learning in the domain of 
statistics. A four-level hierarchy of teachers’ PCK was identified which could be used to 
both identify teachers’ understanding and also measure teacher change.  
 The Australian Association of Mathematics Teachers (AAMT) developed a rich 
description of the characteristics of exemplary mathematics teachers (AAMT, 
2002/2006) through a project that brought together teacher expertise and research 
findings. This description of Standards for excellence in teaching mathematics for 
Australian Schools has three domains: Professional Knowledge, Professional Attributes 
and Professional Practice. These domains address the various knowledge types 
described by Shulman (1987) and aim to provide a basis for identifying exemplary 
teachers of mathematics. More recently, the Australian Institute for Teaching and 
School Leadership (AITSL) (2011) published a set of generic teaching standards that 
described seven standards across three domains: Professional Knowledge, Professional 
Practice and Professional Engagement. Of particular interest is that the AITSL 
document included four levels to describe different career stages, including graduate 
standards. The graduate standards are particularly relevant to the project reported here, 
which has a focus on improving pre-service teachers’ mathematical outcomes. 
 These various recent developments describe a rich context in which the collaborative 
project described here takes place. An increased attention to the forms of knowledge 
required for teaching mathematics, along with explicit descriptions of teaching 
standards at various levels, and a new mechanism for the accreditation of teacher 
education courses together require thoughtful responses by those engaged in 
mathematics teacher education. The systematic use of evidence to support professional 
opinion in the shaping and refining of mathematics teacher education programs is a 
critical part of that response, and the major focus of the project. 

Background to the study 
Building the Culture of Evidence-based Practice in Teacher Preparation for 
Mathematics Teaching (CEMENT) is a two-year project that aims to produce: 
1. Evidence-based changes to mathematics education teaching within participating 

universities; 
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2. Recommendations about effective models of teacher education for teaching 
mathematics; 

3. Processes for bringing about change at unit and course levels; and 
4. Progress towards a national culture of evidence-based practice in relation to 

mathematics teacher education. 
 The project team (authors) represent seven universities across all states and the 
Northern Territory, which include diverse institutions delivering a wide variety of 
teacher education courses. The mathematics education taught within the differing 
programs varies in the amount of time allocated, the nature of the content and delivery 
and the placement within the overall course structure. In order to meet the aims of the 
project, data were needed about what pre-service teachers at the end of their course 
knew and understood about mathematics teaching. There were limitations on the nature 
and amount of data that could be collected. Because of time and manpower constraints 
and the national nature of the study, it was decided that an automatically scored web-
based survey would be used, which in turn limited the nature of the items. The focus of 
the survey needed to go beyond content knowledge of mathematics alone, and to 
include aspects of pedagogical content knowledge. In addition 10 items addressing 
teacher beliefs about mathematics and its teaching were included. Collaboratively, the 
team developed items that included all of these domains. A selection of these items was 
piloted with students at the University of Tasmania who were undertaking mathematics 
education units over the summer semester. This pilot study is the focus of this report.  

Method 
Sample 
The students in the sample were all undertaking a pre-service course for primary 
teaching. The majority (n = 52, 86.7%) were studying off campus and were split almost 
equally between part-time (n = 29, 48.3%) and full-time (n = 31, 51.7%) study. Of the 
respondents, one-quarter (n=15, 25.0%) were aiming to graduate in 2011, with a further 
29 students (48.3%) aiming to graduate by 2013. 
 Students were asked about their previous educational experience. Of the 55 students 
who responded, 23 (41.8%) had secondary schooling only, and 25 (45.5%) had a 
certificate level qualification, possibly reflecting some vocational training prior to 
university entrance. When their mathematics backgrounds were considered, 21 (38.2%) 
had only studied mathematics to Year 10, 11 (20.0%) had studied a non-pre-tertiary 
mathematics subject and 17 (30.9%) had studied a pre-tertiary mathematics subject in 
Year 11/12.  
 The sample was, therefore,towards the end of pre-service teacher education and had 
educational and mathematics backgrounds that have been reported elsewhere as typical 
of pre-service teachers (e.g., Ainley, Kos, & Nicholas, 2008). No information was 
collected about gender but the enrolment in primary education is predominantly female.  

Instruments 
A 45-item online test was undertaken by 60 pre-service primary teachers at the 
University of Tasmania. The instrument consisted of 10 items addressing beliefs about 
mathematics, 13 items addressing mathematics content and 23 items that addressed 
pedagogical content knowledge (PCK). Examples of items are shown in Table 1.  
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Table 1. Examples of items used in the pilot test. 

Item category Example 
Beliefs Mathematics is a beautiful and creative human endeavour 
Beliefs Students learn by practicing methods and procedures for performing 

mathematical tasks 
Content knowledge Which one of the following contains a set of three fractions that are evenly 

spaced on a number line? 

A)    B)    C)    D)  

Pedagogical Content 
Knowledge (PCK) 

A Year 5 teacher asked her pupils to determine the value of the following 
calculation on their calculators: 
2   +   3   x   4   =  
      
The class was surprised to find that some student calculators gave a result of 14, 
while others gave a result of 20. Which of the following best matches your 
likely response to this situation? 
A. Use the difference as a motivation to teach the students how to use the 
correct order of operations, highlighting an acronym such as BODMAS. 
B. Show the students how to use parentheses or brackets when entering 
expressions into their calculators. 
C. Check school booklists and supplies to make sure that only one kind of 
calculator was available to students in the class. 
D. Ask the pupils to explain the different results, and use their explanations to 
discuss the order of operations as an arbitrary convention. 

 
 The Beliefs items used a five-point Likert scale from strongly disagree to strongly 
agree; content items were scored right or wrong. Following discussion among the 
project team, the PCK items were mostly scored dichotomously as right/wrong. Some 
PCK items, however, provoked considerable discussion and scoring was determined on 
the basis of an agreed hierarchy. The PCK item shown in Table 1, for example, was 
scored as A = 1, B = 2, C = 0 and D = 2 on the grounds that the responses for B and D 
both represented good “next steps” for developing understanding, and the response to A 
was reasonable but not of the same quality as the two scored at 2.  

Data analysis 
Data were analysed in various ways to provide a range of information. First the scored 
responses were analysed using Rasch measurement to provide quality control 
information about the items by a consideration of fit to the Rasch model (Bond & Fox, 
2007). Three scales were produced: Beliefs about mathematics (BELF, 10 items), 
Mathematical Content Knowledge (MCK, 13 items); and Pedagogical Content 
Knowledge (PCK, 23 items). From each of these scales a measure of performance for 
each student was obtained in logits, the unit of Rasch measurement. These measures 
were used as a basis for comparisons between groups based on the background 
variables. Finally, frequency counts of students’ choices provided some diagnostic 
information.   
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Results 
All of the three scales showed excellent fit to the Rasch model indicating that within 
each scale the items worked consistently together to measure a single construct that 
could be used to make inferences about students’ performances. Performance measures 
were obtained for every student on each one of the three scales and used for further 
analysis. 

Between groups analysis 
Comparisons were undertaken between groups based on full-time/part-time enrolment, 
education background and mathematics background. No comparison was made between 
distance and face-to-face students because of the low numbers of students studying on-
campus. No statistically significant difference was found among any of the groups on 
any measure. This finding is not surprising given the homogenous nature of the sample. 

Performance on different kinds of scale 
Boxplots of the distributions of students’ performance measures on each of the three 
scales are shown in Figure 1. The scales show a monotonic decline in median score 
from BELF, to MCK to PCK indicating that of the three scales students found the 
pedagogical content knowledge more difficult than straight mathematics content 
knowledge, which was more difficult than endorsing beliefs about mathematics.   

 

Figure 1. Distributions of students’ performance measures (with outliers shown). 

 To explore this finding further, results from the Rasch analysis output were 
examined to identify specific items or groups of items that students found difficult. 
These findings are reported for each of the three scales.  
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Beliefs about mathematics 

The most strongly endorsed items were those indicating a broadly student-centred view 
of mathematics learning, such as “The teacher must be receptive to the children’s 
suggestions and ideas” and “Teachers must be able to represent mathematical ideas in a 
variety of ways”. Students, however, also strongly endorsed “Acknowledging multiple 
ways of thinking may confuse children”, in apparent contradiction to the other two 
items. At the other end of the scale, students found it difficult to endorse “The 
procedures and methods used in mathematics guarantee right answers”, possibly 
reflecting an emphasis on process rather than product. “Mathematics is a beautiful and 
creative human endeavour” was also difficult for students to endorse, although it is not 
clear whether they disagreed with the beauty and creativity or with the human 
endeavour. “Mathematical ideas exist independently of human ability to discover 
them”, however, was also fairly difficult to endorse, suggesting that students understood 
mathematics as a human activity but did not see it as creative or beautiful. 
Mathematical content knowledge 

Among the MCK items, the most difficult was identifying the prime factors of 30. 
Unexpectedly, however, a majority of students (n = 30, 54.5%) chose the option listing 
all factors of 30 rather than the anticipated attractive distracter of “1, 2, 3, 5” suggesting 
that the students understand the notion of factor but not the idea of prime factor. The 
next most difficult item was the fraction item shown in Table 1. Only 15 (27.3%) 
students answered this correctly. Surprisingly, at about the same level of difficulty was 
“The product of an odd number and an even number is odd”, to which students had to 
choose from the options “always true”, “sometimes true” and “never true”. Only 16 
students (29.1%) responded correctly. Whereas the prime number item was based on 
knowledge of mathematical language, both of the other two items were more conceptual 
in nature, raising issues about students’ underlying understanding. 
 At the other end of the scale, the easiest items were combinations based on a menu, a 
definition of congruence, identifying an incorrect representation of ¾, and a two-step 
computation based on reading currency conversions from graphs. The remaining items 
were all at about the mean difficulty level and consisted of a number of items based on 
geometry including an angle calculation, and one requiring an algebraic expression to 
describe a linear pattern. It seems that for this group of respondents, work on geometry 
and algebra would benefit them in terms of their mathematical development.  

Pedagogical content knowledge 

The easiest PCK items included the item shown in Table 1 about teaching an algorithm, 
and an item about choosing an appropriate representation to develop children’s 
understanding of proportional reasoning that was also scored with multiple codes. It is 
possible that by rescoring these items to try to allow for all reasonable possibilities that 
the items have lost their discriminatory power.  
 The other items all tended to bunch together on the scale which means that they 
provided a lot of information across a narrow range. It is possible that with a larger and 
more diverse sample, this difficulty might be overcome.  
 Of all the items, those addressing teaching aspects of measurement and geometry 
appeared slightly more difficult. Respondents could not, for example, identify rhombi 
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from a collection of 2D shapes, and suggested incorrect teaching explanations for 
students. One surprising item addressed materials suitable for developing subitising 
skills. Students were provided with a description of subitising and a choice of five 
possible materials: number line, dominoes and dice, number expander, MAB, and a 
large collection of objects, all represented pictorially. Of the 48 respondents, 17 (35.4%) 
chose MAB and 18 (37.5%) chose the large collection rather than the dominoes and 
dice (n = 9, 18.8%).  

Discussion 
This pilot study is part of a much bigger project that aims to provide useful tools to 
universities so that they can monitor their pre-service teachers’ mathematical 
development in three domains: beliefs and attitudes, mathematical content knowledge 
and pedagogical content knowledge. The items trialled produced coherent scales but 
additional work is needed on the PCK items to ensure that they discriminate more 
effectively. As a first attempt, however, the project team was relatively satisfied with 
the instrument.  
 The finding that PCK was more difficult than MCK and BELF is consistent with 
other research in the area (Beswick, Callingham & Watson, 2011). This finding raises 
issues for mathematics education about how best to develop PCK in pre-service 
teachers. Although MCK and PCK are inextricably linked, it seems that mathematics 
understanding alone is not sufficient. 
 The nature of the items that respondents found difficult provides information that can 
be used to revise courses in the relevant university. More work is needed in areas such 
as geometry and measurement, which have received little explicit focus compared with 
fractions and proportional reasoning, for example. Students appear to have difficulty 
with choosing appropriate representations and materials for teaching, and this could be 
addressed in workshops and online activities.  
 The standards and frameworks available at present (e.g., AAMT, 2002/2006; AITSL, 
2011) provide useful information about desirable attributes but little support for 
developing these. The instrument described represents a starting point for providing 
data about some aspects of these attributes so that pre-service teacher education can 
develop courses and approaches based on information rather than solely on the opinions 
and beliefs of teacher educators. Further items have been developed by the project team, 
as well as similar instrument intended for high school mathematics pre-service teachers, 
including those who are likely to be teaching outside their specialisation. These 
instruments will be trialled and modified throughout 2011, and information provided to 
all participating universities to inform future course development.  
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This paper provides an outline of the work done by ACER Mathematics test development 
staff for NAPLAN Numeracy in 2009 and 2010. It examines how the NAPLAN Numeracy 
construct can be further refined and its relation to psychometric and construct validity. The 
paper discusses some of the test development processes of NAPLAN Numeracy, some of 
the difficulties in constructing the test and some of the processes used to establish the 
validity of the measurement. 

A brief overview of NAPLAN Numeracy 
NAPLAN is the Australian National Assessment Program for Literacy and Numeracy. 
It has been operating in Australia since 2008 and is currently managed by the Australian 
Curriculum, Assessment and Reporting Authority (ACARA), who have issued 
guidelines for implementing the numeracy components. (ACARA, 2010) Prior to 
ACARA, NAPLAN was managed by various agencies under the joint oversight of the 
Australian States and territories and the Federal Government. In 2009 and 2010 the 
Australian Council for Educational Research (ACER) was contracted to conduct test 
development for NAPLAN 2010 and NAPLAN 2011. The paper describes some of the 
issues encountered by the team of ACER staff engaged in developing NAPLAN 
Numeracy, from a test development and test design perspective,. The views expressed 
are not those of ACARA or necessarily those of ACER. 

Numeracy as a test construct 
Presenting mathematics problems in something like a real world context possibly dates 
back nearly as far as the existence of writing (Gerofsky, 2004). Formal testing is at least 
two-thousand years old (Black, 1998). In recent years large scale testing of numeracy 
and mathematics at points in schooling has been undertaken in most developed nations. 
Such testing has included international tests of samples of students such as TIMSS 
(Trends in International Mathematics and Science Study (TIMSS), 2007) and PISA 
(Organisation for Economic Co-operation and Development (OECD), 2005). In three 
large, English speaking countries (the UK, the United States and Australia) large cohort 
tests have been implemented at a state level to monitor student progress and school 
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performance. However the fact that many developed nations engage in 
numeracy/mathematics testing does not by itself establish the validity of such tests.  
 Messick (1989, p. 13) defines validity as: “An integrated evaluative judgement of the 
degree to which empirical evidence and theoretical rationales support the adequacy and 
appropriateness of inferences and actions based on test scores.” The dominant view of 
validity within the field of psychological and educational testing is known as construct 
validity (Kane, 2006). 
 The full implications of the issues around what inferences will be made and what 
actions taken in respect to NAPLAN test scores is a complex one that extends into 
questions of educational policy. Consequently a full discussion of the construct validity 
of NAPLAN Numeracy is beyond the scope of this paper. More narrow approaches to 
validity include the concept of content validity. Kane (2006, p. 19) describes the content 
validity model in these terms: 

The content model has most frequently been applied to measures of academic 
achievement. A content domain is outlined in the form of a test plan or blueprint, which 
may involve several dimensions (e.g., content per se, cognitive level, item type), with 
different numbers of items assigned to each cell in the plan.  

 This model has been implemented in NAPLAN Numeracy with a set of assessment 
guidelines (ACARA, 2010) outlining content aspects, cognitive aspects and item format 
aspects of the assessment.  
 In addition to the assessment guidelines and as a means to clarify further the 
assessment guidelines, there are several other features and process that are relevant to 
the validity of NAPLAN Numeracy: 

• clarifying the nature of what is being tested; 
• using a psychometric model against which the quality of items can be judged and 

data analysed after trial; 
• expert item writing, item writer training and item writing guidelines; 
• The use of expert review to moderate the appropriateness and correctness of 

content; 
• ongoing study of test results to inform future test development. 

All NAPLAN items undergo a trialling process. Post-trial items are analysed using the 
Rasch model (Wright, 1980). The Rasch model is a mathematical model of test scores 
for tests that satisfy a number of important pre-conditions. Using the Rasch model to 
analyse tests allows for sensible comparisons of test scores between different year 
groups, cohorts and test papers. Use of the Rasch model requires that the items in the 
test are: 

• one-dimensional: the items all test the same underlying skill or ability; 
• locally independent: individual items should not affect the probability of 

answering other items correctly; 
• uniformly discriminating: the chance of answering an item correctly should 

increase in a uniform way for students of increasing ability. 
These conditions insure that students are assessed against a standard that is both 
consistent and stable across a series of tests.  
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NAPLAN and numeracy 
NAPLAN tests two major domains: literacy and numeracy. Numeracy has been 
historically defined in multiple ways (Doig, 2001). Perhaps the most relevant Australian 
definition is the one produced by The Australian Association of Mathematics Teachers 
(AAMT): 

In school education, numeracy is a fundamental component of learning, discourse and 
critique across all areas of the curriculum. It involves the disposition to use, in context, a 
combination of:  
• underpinning mathematical concepts and skills from across the discipline (numerical, 

spatial, graphical, statistical and algebraic); 
• mathematical thinking and strategies; 
• general thinking skills; and 
• grounded appreciation of context. (AAMT, 1998) 

This definition has been widely used by many Australian agencies and reports including 
the National Numeracy Review (Council of Australian Governments (COAG), 2008). 
 The AAMT definition also provides a useful description for test developers for the 
variation in styles of items that should be found in a test of numeracy: 

• some items that address underpinning mathematical concepts; 
• some items that address mathematical thinking and problem solving strategies; 
• some items that include general thinking skills—including general reasoning; 
• some items that are grounded in a directly meaningful context. 

Of course many items will fall in more than one of those categories and it is unlikely 
that any one item will address all of those categories well. The exact proportion of each 
of those categories is not pre-defined and clearly variations in the extent to which a test 
has items that cover these categories will determine the ‘flavour’ of numeracy test 
actually produced. The balance for 2010 NAPLAN Numeracy was, to some extent, 
determined by the existing forms of the test in 2008 and 2009. For purposes of accurate 
comparison of achievement over time there was a clear need for this later test not to 
vary too much from the effective construct created by the first two years of testing. 

Content structure of NAPLAN Numeracy 
The primary content source for NAPLAN are the Statements of Learning (MCEETYA, 
2006)—the set of nationally agreed curriculum outcomes between the Australian States 
and Territories. These statements describe content Australian students should have met 
by the ends of Year 3, 5, 7 and 9. Testing occurs in May, so students have effectively 
only had one term in those respective years. Ideally NAPLAN content would be 
determined by content statements for Years 2, 4, 6 and 8 respectively. This issue is most 
pronounced in Year 3, where no statements of learning for a preceding year level exist. 
Consequently to sample adequately numeracy content for NAPLAN, other documents 
need to be considered. 
 The Statements of Learning already describe a common core between state curricula 
and so provide a way to cross-compare state curricula. In theory by cross-checking 
individual statements with curriculum documents, content can be categorised as either 
taught at the target year or before the target year. For example a Year 9 Statement of 
Learning could describe content in a given curriculum targeted at Year 8 or at Year 9. If 
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targeted to Year 8 then this would suggest that it was suitable content to be tested in 
Year 9 NAPLAN—at least in that state. 
 By examining all state curricula, the Statements of Learning content common to 
Years 2, 4, 6 and 8 could, in theory, be deduced. However that approach would rely on 
curricula organising content overtly on a Year by Year basis. For sound pedagogical 
reasons many state curricula are not organised that way and instead group content into 
stages that cover more than one year and that allow for more flexibility in student 
development. Even so those stages are not necessarily the same two year intervals as the 
Statements of Learning and some classification along these lines can be done. For 
example Pythagoras’ Theorem described in the Statements of Learning within Year 9 
Measurement, Chance & Data (MCEETYA, 2006, p. 15) and in the New South Wales 
7-10 Syllabus (NSW Board of Studies, 2003, p. 124) Pythagoras appears in MS4.1, that 
is at Stage 4. Stage 4 in NSW is a stage the majority of students are expected to have 
completed by the end of Year 8 (NSW Board of Studies, 2003, p. 5). However in the 
Queensland Scope and Sequence Year 1–9 document (QSA, 2008) Pythagoras is cited 
at Year 9 of the Measurement sequence. Both NSW and Queensland documents are 
consistent with the Statements of Learning, but in the case of Pythagoras it would 
clearly not be content that could be equitably tested in Year 9 NAPLAN.  
 To turn the Statements of Learning into a practical tool for guiding test development 
and content sampling requires some re-organisation. For each sentence in the 
Professional Elaborations section, multiple, distinct ‘topic points’ were identified by the 
team. A topic point was written so that: 

• it reflected the language of the statements; 
• it could be potentially mapped to other curricula; 
• it was more general than a item descriptor but specific enough that item 

descriptors could reflect the language of the topic point. 
This process was to enable a set of content descriptions to which items could be at least 
partially mapped and from which in turn, mappings to other curriculum could be made. 
Topic points were then classified as active or inactive depending on their suitability. 
Inactive topic points included content that could not be directly tested (for example 
constructing three-dimensional models) or which fell beyond the content scope (such as 
Pythagoras’ theorem, as explained earlier). 
 Year level classification of topic points was done firstly on the basis of The 
Statement of Learning Year (3, 5, 7 or 9) then modified by reference to state curricula 
and other sources and from feedback from external review of items. Topic points were 
further moderated by internal review and an on-going process of additions, deletions 
and modifications.  
 All NAPLAN Numeracy items are reviewed multiple times both by the contractor (in 
this case ACER), the managing organisation, and by State, territories and key 
stakeholders. Feedback on items allowed us to refine the topic points further. Topic 
points were arranged in a basic database with multiple fields of metadata. They were 
grouped first by the four main categories used in the Statements of Learning: Number; 
Algebra, Function and Pattern; Measurement, Chance and Data; Space. Each of those 
categories could be further subdivided to establish categories of more practical use for 
test balancing, content tracking and curriculum mapping. 
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 Item writers were obliged to classify all items against one or more topic points. More 
complex items might be classified against multiple topic points. This allowed item 
writers to concentrate on only one direct source of content, while still allowing for 
mapping of items to curricula. 

Item difficulty 
Items developed for NAPLAN are required by the assessment guideline to be classified 
by “quarters.” Quarters are defined by firstly measuring the trial sample population on a 
Rasch measurement scale. The ability range of that sample is then divided into four 
intervals of equal size when measured in logits. These intervals (quarters) are numbered 
by descending order of difficulty, i.e., quarter 1 is the highest difficulty and quarter 4 
the lowest. The aim of this process is to create a broad classification of item difficulty 
that reflects the spread of ability in the population. 
 The relation between facility (as per cent correct) and a Rasch logit scale is 
intrinsically non-linear (Wright & Stone, 1979). However when scores at either extreme 
are ignored the relation between scores and logits can be approximated to a linear 
relationship. Consequently a more intuitive description of the quarters can be given in 
Numeracy (not that this necessarily follows for other domains in NAPLAN). 

• Quarter 4: Items with greater than 75% correct facility. 
• Quarter 3: Items with less than 75% correct but greater than 50%. 
• Quarter 2: Items less than 50% but greater than 25%. 
• Quarter 1: Items less than 25% correct. 

 Actual difficulty is determined by trialling but an estimate of difficulty is required to 
ensure an adequate spread of items. One approach is to examine the past performance of 
existing items in NAPLAN Numeracy. To this end we developed a simple database of 
the numeracy items that appeared in NAPLAN 2008 and NAPLAN 2009 and then 
added data about these items from publically available sources. However these data on 
past performance provide only a crude way of judging item difficulty. With more novel 
items difficulty can be hard to estimate prior to trialling. 
 Although no substantive model exists for predicting item difficulty of NAPLAN 
Numeracy items prior to trialling, it can be inferred that, as items are classified on the 
basis of content and cognitive domains, these two aspects (mathematical content and 
cognitive processes) are the basis of item difficulty. This inference though, assumes that 
these two domains provide a sufficient description of NAPLAN Numeracy items. Other 
aspects such as cognitive load (Sweller, 1999) may play a role also and non-
mathematical aspects, in particular reading/language demand may affect item difficulty. 
Although sources of non-mathematical difficulty should be minimised it is inevitable 
that some will persist as the test has to be communicated via a linguistic medium (in this 
case written words and symbols). An important priority for future research in NAPLAN 
should be an examination of the underlying properties of items that affect difficulty. 

The cognitive domain of NAPLAN Numeracy 
Using the AAMT’s definition of numeracy it should be expected that a test of numeracy 
includes items that address mathematical thinking, problem solving strategies and 
general reasoning. The assessment guidelines for NAPLAN Numeracy include a 
cognitive dimension (Knowing, Applying, and Reasoning) and the Statements of 
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Learning include a substantial section on Working Mathematically. Also the proposed 
Australian Curriculum: Mathematics includes ‘proficiency strands’: Understanding, 
Fluency, Problem Solving and Reasoning (Australian Curriculum, Assessment and 
Reporting Authority (2010b). Of those four strands, Understanding has an overarching 
role (Kilpatrick, 2001).  
 The cognitive dimension given in the guidelines uses the same terminology as the 
TIMSS assessment framework Cognitive Domain (TIMSS, 2007) but similar structures 
can be found in the PISA assessment framework for Mathematical Literacy (OECD, 
2005) which includes three competency clusters: reproduction, connections and 
reflection. The models used in TIMSS, PISA and the Proficiency Strands are not 
identical nor are they necessarily commensurate but they each use a three part structure. 
That structure includes a level at which routine knowledge and skills are included (e.g., 
fluency, knowing or reproduction); a level at which more problem orientated skills are 
included (problem solving, applying, connections) and a level at which more complex 
cognitive skills are included.  
 The TIMSS assessment framework (2007) provides the closest match to the 
NAPLAN Numeracy assessment guidelines. The three levels are described thus: 

The first domain, knowing, covers the facts, procedures, and concepts students need to 
know, while the second, applying, focuses on the ability of students to apply knowledge 
and conceptual understanding to solve problems or answer questions. The third domain, 
reasoning, goes beyond the solution of routine problems to encompass unfamiliar 
situations, complex contexts, and multi-step problems. (p. 33) 

 The extent to which a test item is knowing, applying or reasoning is clearly relative 
to the student’s experience of the task. A task classified as ‘reasoning’ may actually be 
better classed as ‘applying’ if they have experienced similar problems before. Similarly 
what may be ‘knowing’ for some students may require a degree of application of 
knowledge for students less familiar with the content. 

Context 
Numeracy is grounded in context (COAG, 2008). Whereas mathematical skills underpin 
numeracy, numeracy also requires that people be able to apply those skills flexibly and 
efficiently. Consequently some NAPLAN Numeracy items demand that students apply 
their skills to non-abstract problems. Context may also be used as a means of engaging 
students in the tasks. These uses of context are different but complementary and the role 
a given context may play in any particular item for any particular student may vary. Use 
of context in problems can add a level of difficulty to a task by requiring students to 
make sense of the situation, and then model it mathematically. Some tasks may involve 
a further step where an abstract ‘answer’ has to be re-interpreted in light of the context 
(for example the context may determine whether to round up or round down the result 
of a division). 

The influence of calculators on content 
Since 2008 NAPLAN Numeracy has followed a policy where the Year 3 and Year 5 
papers were to be conducted without the use of calculators. The Year 7 and the Year 9 
papers are presented in two sections: a calculator-allowed section and a non-calculator 
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section. The two sections allow students to experience tasks with and without 
calculators.  
 Simply dividing papers into calculator and non-calculator sections, however, is not 
sufficient to specify the exact approach of both sections. The approach taken with the 
2008 and 2009 papers can be seen, by inspection, to be two sections that have a similar 
spread of skills and content but which vary in style only in a small number of items. In 
this approach students encounter a mix of items in the non-calculator paper some of 
which require no calculation and some of which require some calculation (using either 
mental or pencil and paper strategies). The calculator-allowed paper then follows a 
similar structure, with a mix of items, some requiring no calculations, some requiring 
calculations that could be attempted without a calculator and some which could not 
reasonably be solved in the time without a calculator. This approach presents students 
with a situation where they must decide what arithmetic tools (cognitive or mechanical) 
they need to employ for any given item. 
 The calculator status of items was classified using a modified form of a scheme used 
in the National Assessment of Educational Progress [NAEP] (2008) assessment 
framework. This scheme categorised items as Inactive, Active or Neutral with respect to 
calculator use. However given the ambiguous nature of the “Neutral” category we found 
that the scheme had to be further refined as follows: 

• Calculator inactive: items for which calculators are irrelevant, for example an item 
asking students to identify a square. 

• Calculator neutral: items that could be reasonably answered with or without a 
calculator but for which some students would choose to use one (if permitted). 

– Neutral non-calculator: a neutral item designated for the non-calculator 
paper. 

– Neutral calculator allowed: a neutral item designated for the calculator 
allowed paper. 

• Calculator active: items which, within reason, require the use of a calculator or 
would be too time-consuming for students to complete. 

Item writing guidelines 
For the purpose of training item writers and to create a set of consistent standards to 
judge items by, a set of item writing guidelines was produced based on published best 
practice from a number of authoritative sources. The key sources were the following: 

• Thomas Haladyna’s (1999) 30-point checklist. The most substantial study of 
multiple-choice writing rules has been conducted by Thomas Haladyna of Arizona 
State University.  

• National Mathematics Advisory Panel (2008). In 2008 the National Mathematics 
Advisory Panel produced a report on school mathematics in the USA. The 
Assessment Task Group studied some of the issues relating to formal system-wide 
assessment including State-wide assessment and the NAEP national (sample) 
assessment. The task group’s report identified seven “Non-Mathematical Sources 
of Difficulty or Confusion in Mathematics Test Items That Could Negatively 
Affect Performance”. 
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• Educational Testing Service (ETS) International Principles for Fairness Review: 
guidelines (2007). This major testing agency in the USA publishes a set of 
principles for fairness designed to avoid bias at a content level and at item review. 

Language 
NAPLAN Numeracy is intended as a test of numeracy not literacy. However English is 
the medium in which the test is set and items will necessarily involve some language 
demand, particularly items with some context. Our aim was to ensure as far as possible 
that language is not what makes a difference in item performance. As well as general 
research on language issues within mathematics and surveys of terminology use across 
states (see Connolly, 2009), we also examined research specific to language issues in 
item development—specifically Abedi and Lord (2001). From these sources and from 
the stipulations of the Assessment Guidelines we derived a set of language guidelines. 

Discussion and conclusion 
Describing NAPLAN Numeracy as a numeracy test is not sufficient to define the 
construct nor do the established Assessment Guidelines give a clear definition of the 
test. Complex choices have been made in the establishment of NAPLAN Numeracy, 
which have overt and hidden implications on the nature of the test. To establish fully the 
validity of the test requires not only further research but also clear statements as to the 
intended purpose of NAPLAN Numeracy as a form of assessment. Established theories 
of construct validity emphasise that validity needs to be judged not only against content 
but also against the nature of the inferences made with regard to the test data and the 
actions taken with regard to those inferences. 
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VIC CZERNEZKYJ 
 
 

JOHN MACK 
University of Sydney 
<j.mack@usyd.edu.au> 

 
This paper covers material relevant to a number of topics in the Measurement and 
Geometry content strand of the K–10 Australian Curriculum: Mathematics, as well as 
embracing ideas and skills linked with the proficiency strands of Problem Solving, 
Understanding, Fluency, and Reasoning. It uses material in some current 11–12 
mathematics curriculum documents. It also asks the reader to work through a non-trivial 
spreadsheet computation and verify that it does compute the required output correctly. It 
also introduces readers to one significant and useful problem-solving skill that is not 
mentioned in the above content strand—although Euclidean geometrical ideas, coordinate 
geometry and trigonometry all appear before Year 10, no suggestion is made regarding the 
possibility of attacking a problem given in one of these areas by transforming it into an 
equivalent problem in another area. (In general, changing the representational system in 
which a problem is presented, in order to re-pose the problem in a different relevant system 
in case this might facilitate a solution, is a useful problem-solving tool.) This sort of 
flexibility in thinking is very useful in mathematics and other fields. 

 
 

Dedicated to the memory of Vic Czernezkyj 
 
 
In the mid 1980s, Mr Joe Keating, a Sydney accountant, first contacted John Mack to 
discuss with him the three classical geometrical construction problems. These are to 
duplicate the cube, to square the circle and to trisect an arbitrary angle, using only a pair 
of compasses and a ‘straight edge’—i.e., a ruler without distance markings on it, used 
only to draw an arbitrary line or a line through two given points. During the 19th 
century, results in the theory of equations were used to show that none of the above is 
possible, although each can be done with only a slight relaxation of the above rules. 
 The challenge to produce valid constructions was taken up by many interested people 
prior to and after the impossibility result was proven, often with extremely accurate 
approximate constructions being developed. 
 Keating became interested in the angle trisection problem and has over the years 
proposed several constructions for it. Sometimes, when asked to analyse such a 
proposal, it is possible to demonstrate that a claimed geometrical property of it, which if 
true would give an exact method, is in fact false. In this case and in other cases, it is 
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now possible, thanks to good geometrical and mathematical software packages, to 
coordinatise exactly the proposed method and, say, compute accurately the values given 
by it when applied to angles at one degree intervals between 0° and 90°. These values 
may then be compared with the exact values of one-third of the given angle. 
 In 2009, Keating provided a new trisection construction for analysis and recently 
offered a simplified version of it. In this article, we shall coordinatise his methods and 
then compute the results obtained by applying them to the angle values given above. 
Some of the lettering of his original drawing has been preserved in the diagrams below. 

The first method 
Essentially ∠KCX θ, the angle to be trisected. KOML is a hinged parallelogram. As 
the angle θ varies, the arm KL swings, but the two short sides of the parallelogram KO 
and ML remain parallel to the line ACX. LM varies in length, and OK stays equal in 
length and parallel to LM. The angle ∠ OAX α is the ‘trisection’ of ∠KCX.  

 

Figure 1. Keating’s Method 1 construction of α, an approximate trisector of angle θ 

 In terms of the diagram (Figure 1), where we have set C as the origin (0,0) and CA as 
the x-axis, we have the relevant data: 
 
C = (0,0),    A = (2,0),    AF = AC = 2,    GF = CD = 1 
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From these points we can determine by trigonometry that G has coordinates (2 – √3, 0), 
from which CG is 2 – √3 units. The coordinates of K are ( cos θ sin θ), and the 
coordinates of L are (cos θ, -sin θ  × (2 – √3).  
 There are two circular arcs, (centre C, radius 1), (centre A, radius 2) and a derived 
circular quadrant centred on C, radius 2 – √3. (CG + GA = 2, and GA = 2 cos 30° = √3.) 
 From Figure 1 and information, we have that the distance  

 LM = (2 – √3)(1 – cos θ).  

Now, tan α = 
 

OY
AX – XY

  

  = 
 

KX
AX – ML

. 

But KX = sin θ, 

and AX – ML = 2 + cos θ – (2 – √3)(1 – cos θ)  
  = 2 + cos θ – (2 – √3) + (2 – √3) cos θ 
  = √3 + (3 – √3) cos θ 

and so tan α = 

 

sinθ

3 + 3− 3( )cosθ
.  

 

The question then arises: How different is α from ?  

A spreadsheet was used to evaluate and graph these two values. The columns of the 
spreadsheet (available with the electronic copy of these proceedings and as a resource at 
www.aamt.edu.au/Professional-reading/AAMT-conferences/AAMT-MERGA-2011-
files) and a description of each column are: 
 

Theta (θ) Angle θ varied by rows  
from 0° to 90° 

Tan(theta) Tan θ  

Sin(theta) Sin θ  

Cos(theta) Cos θ  

Tan(theta/3) Tan  
 

Tan(alpha) Tan α  
Delta = Tan(theta/3) – Tan(alpha) 

or, δ = Tan  – Tan α 

Difference between tangents of 
‘trisected’ angle α and actual third of θ 

Arctan(tan(alpha)) α° Actual angle α in degrees 
Delta2 = Theta/3 – alpha (deg) 

or, δ2 = Tan  – α° 

Actual degree difference between 
‘trisected’ angle and actual third of θ 
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 This is a good spreadsheet exercise in the sense that it involves careful formula 
construction. Once an initial row is complete, however, it may be replicated 
downwards. From the spreadsheet, a graph was produced showing the values of Delta 
and Delta2 as defined above. 

 

Figure 2. Graphical representation of errors associated with Keating’s Method 1. 

In summary, the model works really well, giving a maximum error of –0.1227° at 71° 
for theta (θ). However, like all ‘classical constructions’ it cannot be perfect. 

Second simplified method 
Keating’s original drawing has been modified in terms of lettering only, to conform to 
the lettering used on the diagram above, and to keep some similarity in angle names and 
measures (Figure 3). As before, θ is the given angle and α is the constructed ‘trisection’. 

 

Figure 3. Keating’s Method 2 construction of α, an approximate trisector of angle θ  

In this diagram, DC = EC = 1, AC = 2, KG is parallel to DCA, KX is parallel to EC 
which is perpendicular to ACD, OA = AX. 
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We can calculate that AX = OA = 2 + cos θ and KX = sin θ. From this we have: 

sin α =  

Our spreadsheet analysis is given in the same table, and shows the simplified second 
construction is less accurate than the first. The greatest difference in this case occurs at 
about 72° with a difference between constructed and actual angle of approximately  
–0.3235°. 

 

Figure 4. Graphical representation of errors associated with Keating’s Method 2 

 There are available many approximate trisection constructions, as well as exact 
constructions that break the classical ‘rules’. The book by Yates (1971) is a good source 
for these. But it is an interesting exercise to challenge students to devise their own 
constructions (using, for example, one of the geometry software packages) and to see if 
they can explain or calculate the errors produced by them. For example, why is it that 
the ‘obvious construction’, namely by trisecting the chord DK shown in the diagram for 
the second method, does not give a trisection of the angle θ? 

John Mack’s rolling circle 
During discussions about this paper, John suggested that a description of an old, simpler 
method involving a rolling circle, be included. While going beyond the permitted 
Euclidean tools, it provides an easier means of trisecting, or in fact manipulating any 
angle by reducing the circular arc to a straight line. Exact distances, which are multiples 
or rational fractions of a given distance on a given line can be constructed within the 
rules of the game. 
 Assume we have a unit circle with angle θ defined. Also assume we can roll the 
circle along the line x = 1 without slipping, allowing every angle θ to be mapped to a 
unique position on the line x = 1. Define the rolling transformation by: 
 

Roll (K(cos θ, sin θ)) = (1,θ) 
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Figure 5. Rolling transformation of unit circle to line. 

 Every angle on the unit circle can be transformed to a point on the line. To trisect an 
angle on the circle one can transform it to the line, trisect the line segment and then use 
the inverse function: 

Unroll (1, α) = K–1(cos α, sin α)

 The trisection of a line segment is a classic construction. In this case extend the base 
line along the x-axis by three units. Join the derived point (1,θ) to (4,0). Then construct 
parallels through (2,0) and (3,0). By similar triangles, this cuts the line segment from 
(1,0) to (1,θ) into thirds. This construction can be modified from thirds to any integral 
fraction. 

 

Figure 6. Trisecting a line segment.

 This method provides the following, which are asserted and left as exercises for the 
reader: 

• 1 radian can be accurately ‘constructed’; 
• 1° can be accurately constructed and in fact any commensurable number of 

degrees or radians can be accurately constructed; 
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• π can be accurately constructed, and hence the circle can be squared, as it is 
possible to construct, using classical methods, a square whose area is equivalent to 
a rectangle of sides π and 1. 

Eves and Dürer  
Howard Eves has published many books and other papers on geometry. Two of them (at 
least) (see Eves (1969) and Eves (1972)) give a number of angle trisection methods, 
including citations from various sources. Notably Eves quotes Albrecht Dürer’s 
construction. The following is taken from Eves (1969, p. 87). 

An excellent example is the construction given in 1525 by the famous etcher and painter, 
Albrecht Dürer. Take the given angle AOB as a central angle of a circle (see diagram 
below). Let C be that trisection point of the chord AB which is nearer to B. At C erect the 
perpendicular to AB to cut the circle in D. With B as centre and BD as radius draw an arc 
to cut AB in E. Let F be the trisection point of EC which is nearer to E. Again, with B as 
centre, and BF as radius, draw an arc to cut the circle in G. Then OG is an approximate 
trisecting line of angle AOB. It can be shown that the error in trisection increases with the 
size of the angle AOB, but is only about 1" for angle AOB = 60° and about 18" for angle 
AOB = 90°. 

 

Figure 7. Howard Eves’ version of Durer’s trisection construction. 

 We close by asking: Why is it that the following obvious construction does not 
work? Construct an isosceles triangle with the given angle as vertex. Using classical 
methods, trisect its base and join the points of trisection to the vertex, thus trisecting the 
angle there. 
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Gifted, regional or online, each would surely be challenge enough. But a handful of high 
schools in regional WA formed a cluster to deal with all three variables! Here is the story of 
our evolving program to extend more able students, I talk about the strategies we have used 
to find the students, run an online course and provide enriching activities for a group spread 
over two or three hundred kilometres in half a dozen schools. Practical and positive, this 
session looks at where we have come from, how we have met the challenges so far and 
where we go from here. 

Our situation 
As they all do, our state education system has been going through more changes. This 
has included much decentralization, with little to do with curriculum coming out of the 
central office of the Western Australian Department of Education and Training, and 
more recently, regional offices being closed or restructured. Schools now need to make 
their own provisions. Sensibly, our schools within the Great Southern region of WA 
have recognized that a cluster of schools is more likely to be able to provide for diverse 
groups of students than the separate schools working individually. By the formation of a 
cluster and by providing funding for co-ordination, a number of smaller schools have 
been able to deliver normal Economics and Literature courses using an online mode to a 
group of students drawn from a number of schools. Almost by accident, the suggestion 
of a course for gifted students of mathematics was made. The target audience was Years 
8-10 from senior high schools (catering for Years 8-12), high schools (Years 8-10) and 
district high schools (Years K-10). I was asked to provide some mathematics 
enrichment for gifted students. Unlike the other teachers working in Literature and 
Economics, who were delivering accredited courses to senior secondary school 
students, there was no set course and no particular outcomes - the world was my oyster! 
 This paper describes the nature and development of the resulting mathematics 
enrichment course to cater to the needs of the students identified as gifted. 

Selection of participants 
So we wanted to provide a course for gifted maths students in the geographically 
diverse cluster of schools in our region. Who are the students? It is not a matter of just 
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talking to the top few performers in each year. Some courses I had completed with 
GERRIC (Gifted Education Research, Resource and Information Centre) some time ago 
made me aware that many gifted kids are underachieving in our schools. We wanted to 
make some provision for the bright kids who might not have been inspired or 
challenged for a while. GERRIC also taught me the value of parents – sometimes they 
will observe details that a teacher has not been able to observe. So in 2010, we asked 
each of the regional schools to forward information about the planned opportunity to all 
of the students in the age group. The following year, in 2011, we have asked schools to 
pass the information to students in the top third or half of the cohort.  
 A letter outlines the opportunities that are available, as well as the process through 
which a student can apply to take part. Generally this involved seeing the Deputy 
Principal or the school office to collect an application package. The package required 
input from the student, a parent and two teachers. Table 1 shows the input requested 
from teachers. It is interesting that no matter how hard one tries, there will always be 
people whose responses are not very helpful. When responding to the issues below, for 
example, one teacher could only manage one “Good” on the form; not too helpful, 
really. 

Table 1. Teacher input. 

Ability in this subject 
Briefly describe a situation demonstrating the student’s ability in this subject area. 
 
Work ethic 
Describe the student’s work habits, organization and preparation for class. 
 

 
 Parents were asked to say why their child should be in the program, with reasons 
offered including the need for challenge, the ability of the child or the importance of 
mathematics. 
 Students were asked to handwrite responses to these three stimuli. 

• Please describe your understanding of the term mathematics. 
• What do you consider to be the most important part of mathematics? Explain your 

reasons. 
• What part of mathematics do you find most interesting? Please give reasons for 

your answer. 
 Imagine my excitement when I kept seeing algebra or problem solving referred to as 
important and even interesting on the forms of the students applying. These were not 
typical Year 9s! The fairly narrow view of mathematics as number or measurement set 
me the challenge – could I lead these students to an understanding of the richness of 
mathematics? Would they be happy to consider mathematical ideas, and think, talk and 
write about them? 

Activities 
Students who applied for mathematics enrichment were offered a couple of additional 
project opportunities during the year. The Mathematical Association of Western 
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Australia (MAWA) ran Mathoquest, which involved different project topics for teams 
of students at different year levels. Support was offered for anyone wanting to have a go 
– but none did. I tried again later in the year with a project based on some material on 
medicine from the UK, once again with a resounding response of silence. Even the 
thought of prize money was not enough. Is it just me or are students less prepared to do 
that bit extra these days? Maybe it’s the part-time jobs that so many students have these 
days —they have no time left for any extra from school. 
 At the end of the year, a day camp was offered to all applicants. Most, but not all, of 
the students who attended had been involved in one of the courses. A teacher from each 
of the participating schools brought the students to our coastal campsite for the day. The 
program involved a guest speaker who spoke about mathematics in his job as a 
surveyor. Students were then randomly allocated to teams of four for the remainder of 
the day. A number of problem solving and mathematical activities and races were 
conducted before a sausage sizzle lunch. After lunch, teams participated in a strategy 
game competition, the format of which is based on the games camps that MAWA runs 
each year. Some limited sponsorship allowed for the provision of some small prizes for 
the winning teams, with every child going home with a bag of goodies. Students 
enjoyed the day, relishing the competition and the day out of school doing something 
they, but often not many others, enjoyed.  

Course 
Most of my time went into the Mathematics Enrichment Course, which was entitled 
Flatland and beyond. Thankfully, with the resources to run three separate courses 
during the year, I was able to offer a place to all the Year 9 and Year 10 students that 
had applied, as well as a couple of the outstanding Year 8 students. 
 I have been a fan for many years of Edwin A. Abbott, the author of Flatland. (Did 
you know the A also stands for Abbott?) The great animated film from 1965 with 
Dudley Moore narrating provides a lot of scope for discussion about shapes, people, 
dimensions, ideas, convincing – it’s a pretty rich source. For me, it is the ideal vehicle 
to get kids talking about mathematical ideas.  
 So we started the course with viewing the film. The kids found the language hard to 
manage; they needed repeated viewing to even get some idea of what is going on. I also 
suggest that they may like to watch a more recent film on Flatland –The Movie. This 
has a different slant from the original film, but at least seems more in touch with the 
modern world and much more accessible to the students. Table 2 shows the outline 
program used for the course that was developed. 
 The second session involves discussion of various concepts raised in the film, 
including social issues. By the third session, I have asked students to also read some of 
the original text of Flatland. We move the focus more to the idea of dimensions, 
particularly the assumptions we make when existing within a particular world. The 
consequences of different sets of assumptions and the importance of making them 
explicit are stressed.  
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Table 2. Outline program. 

Week Activities Follow up activities 
1 Face to face meeting, technology, view film Prompt sheet questions 

2 Discussion of Flatland issues – social class, different 
ideas 

Read excerpts from Lineland, Sphere 
visit 

3 Lineland visit – parallels to sphere, higher dimensions  
4 Assumptions – truth  

- setting boundaries of problem 
 
 

5 Assumptions in problem solving 
Problem solving model  
Breath problem 

Complete solution to problem  

6 Discuss breath problem 
Brick problem using structure 

Complete solution to problem 

7 Discuss brick problem 
With assumptions made, move on to the result 
Justification 
Language - rectangles 

Complete solution to problem 

8 Convincing and proving 
If … then statements 
Digits problem 
Squaring problem 

Complete solution to problem 

9 Convincing  
Cubing problem 

Complete solution to problem 
Reflection 

10 Reflection 
Assumptions 
Problem solving model 

 

 
With the focus on the assumptions, I introduced students to a model of problem solving 
used extensively in WA senior secondary school courses for a number of years. The 
model involves steps of  

• Clarify 
• Choose 
• Use  
• Interpret and check. 

While the original model also included the aspect of Communicate, I emphasize the 
need to communicate thinking throughout the process. It is not something that is just 
done at the end. I find myself using this structure with all of my students, knowing that 
a student is more likely to have a successful problem solving experience when using a 
specific process, particularly when the steps are few, clear and manageable. 
 Quite a bit of time is also spent on justification, the use of “If… then” statements to 
draw conclusions and the fact that the problem is being solved for an audience. As a 
consequence, the solution needs to be presented to the audience in a manner such that 
they are convinced by the argument. I aim to present problem solving as a human 
endeavour with a purpose more significant than merely passing a maths test. 
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 In the process of the course, students grapple with a number of problems, mostly 
ones that are simply stated, and also ones that involve accessible concepts. The students 
all have something they can bring to bear on the problem. The advantage of the online 
medium is that at this point, the students are able to share their ideas. Hearing what 
others have to say often triggers more thought. The interactive nature of the session, 
where I am watching what each student has to offer is also important: I am able to direct 
students to paths they may have missed, thereby ensuring success with the problem.  
 While some students are happy to follow up on sessions with thorough attempts at 
writing up a solution to the problems, all of them become very engaged in the 
discussions. I am convinced that the social nature of the problem solving leads to 
student success. The level of response from students to the early problems is quite 
disappointing. By the end of a course, the responses are much richer. While some of this 
richness can be attributed to individual thinking, my sense is that the progress is largely 
a result of the student interaction in a safe environment with other students who are not 
ashamed to admit to an interest in problem solving. 

Online medium 
The Cluster of schools provided access to Centra, an online meeting tool. Students use a 
microphone and headphones so they are able to hear and speak to other participants. 
They are also able to type and write onto their computer so it is shared with the whole 
group. We were also encouraged to use OzProjects, a Moodle-based site for Australian 
educators that allows students to download materials, among other things. With a day 
for professional development on Centra and one for OzProjects, I began the 
construction of a site, figuring how to put up the materials that we would use and how 
to get kids to access them. With no prior experience of online learning, I decided to find 
some guinea pigs. Three lovely top Year 9 students in my class and a similar group 
from Katanning, some 250 km away, volunteered to join me for a couple of trial 
sessions. We were able to spend a couple of hours looking at some useful problem 
solving skills while I got used to the new format for lessons. 
 One of the most significant issues for me was that I did not realize how much I 
usually rely on visual cues in my normal classroom. Take away the eye contact – you 
don’t see the spark or the confusion, you are not aware of the day dreamer and you 
don’t see interactions between students. The use of a response grid like that in Table 3 
helped me ensure that all students were accountable and that they were actually engaged 
most of the time. Each time there is a question or issue, every student writes his own 
response in his section of the screen. With a signal to indicate that you have finished, I 
only have to wait for the last signal to be able to move on. This way, I get feedback 
from every student. I am often able to follow up on all kinds of ideas, not always the 
ones that I expected.  

Table 3. Response grid. 

Fred George Harry 
Anne Mary Fran 
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 The use of video conference will alleviate these issues to some extent, hopefully, as 
we move into a trial of these kinds of media. The ability to see who you are talking to 
and the availability of visual cues certainly make it easier to have conversations. I have 
found, though, that the use of the grid, with its inherent accountability and the fact that 
in a short space of time everyone knows what everyone else is thinking is just too 
valuable to give up. So my choice, as I move into the era of using the video conference 
facilities, is to also have students with a laptop connected to meeting software, in our 
case Ebeam. My slides and presentations are in front of every child, as too are the 
responses of their peers. We still have the accountability and the scope provided by the 
grid without having to go around the whole group speaking about the issues. 
 The students generally responded well to using the Centra – it provided them a 
chance to interact with different students. Its use within school time has thrown up a 
few interesting issues: 

• Support within different schools can be quite variable; for example, one librarian 
did lots to help students with all sorts of technical issues while another would not 
hand out headphones and sent students out during sessions in order to shut the 
library for lunch time. 

• Withdrawal from a regular class caused some issues for students having to keep 
up to date with the class – which made the workload much more of a burden. 

• Schools do not see the need to provide supervision or availability of help, so 
students are on their own, which can be fortunate. For example, in the first stages 
of one course, two girls were working together; one of the girls could not get 
Centra to play the game. So they shared headphones and workspace, and both 
participated in the lesson via a single computer. 

 The learning management system (OzProjects) also brought with it some concerns:  
• Not all students saw the need to use it! They were asked to access materials from 

the site for the next session, or upload responses to the site for my perusal. 
Despite very explicit, repeated instructions, some students did not access it. This 
was common to other courses – there was a need to have a person physically 
present to remind them of these expectations. Year 9 students, no matter how 
bright, are not the mature, responsible beings we might wish them to be. 

• There were difficulties with uploading or downloading from the site. Knowing 
that schools had help available, I have suspicions that this may have been an 
excuse for not doing things. 

Feedback 
I believe that it is important to value the efforts made by students and to acknowledge 
their successes. At the completion of each course, each student receives a two-page 
certificate. The first is a generic certificate of participation, including dates and basic 
details of the course. Every student is able to use this in their portfolio. The second page 
specifies attendance at, for example, 7 out of 10 sessions, and the completion of, for 
example, 4 out of 6 tasks. A paragraph of specific comments about the participation, 
learning or achievements of the student is also included. There are some students for 
whom this page will not be very complimentary, while for others, it is outstanding. A 
copy of this feedback also serves as valuable information for the school, particularly in 
the few cases where the student performance was fabulous. 
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Reactions 
Discussion of a film is not what students expect in a maths course. Even when the 
introductory information is quite explicit, the message doesn’t seem to hit home very 
well. So they are out of their comfort zones—and I am fairly sure they do not see 
immediately the value of what they are doing. They generally find it interesting, get 
quite involved and feel as if they learn something about dimensions but underneath it 
all, I don’t think they see their learning as having much to do with maths. Quite 
differently, the problem solving process is something they see as having direct value to 
themselves. Almost all of the students quote the problem solving model as one of the 
positive aspects of the course.  

Where do we go from here? 
2011 is seeing the fourth course run, this time using video conferencing as the main 
tool, with meeting software to provide a computer link for each student as well. Each 
time a course is advertised, a small group takes up the opportunity. While many parents 
contact me for applications or see teachers in their own schools, very few follow 
through to the courses. Problem solving sessions for students who had previously done 
courses have been offered, to no avail. Many able students seem not to want to commit 
to something that involves work outside class, or extra work from normal classes.  
 For a small group of students, however, the courses provide an opportunity to work 
in an area that interests them, to unashamedly revel in mathematical ideas without 
ridicule, to ask questions that are thoughtful and deep and to have them answered 
extensively, to receive accolades for their thinking, not just marks for a task; these are 
the students who provide me with a sense of purpose and the thrill of having watched a 
child make a mathematical discovery or grapple successfully with a complex idea. 
Every student takes away something positive from the course, usually some techniques 
for use with problem solving. Some students, though, make huge intellectual growth 
and achieve a great sense of joy of learning. So the question remains, how can we 
provide better opportunities that are more attractive to gifted students, particularly when 
we have been able to overcome many of the issues associated with the isolation of small 
schools through the use of ever-improving technology? 
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Work carried out under the banner of mathematical modelling, usually deals only with parts 
of the modelling process, overlooking that aspect most crucial to developing expertise – 
formulating a mathematical problem from a messy real world context. There is a dual 
purpose in this enactment of real world modelling: to solve a problem at hand, but over 
time to enable students to become better and more independent modellers of problems. The 
presentation will identify or reinforce essential components of modelling activity using 
illustrative examples, including how some students have approached a modelling task.  

Introduction 
A stated priority within the forthcoming Australian Curriculum: Mathematics indicates 
that “mathematics aims to ensure that students are confident, creative users and 
communicators of mathematics, able to investigate, represent and interpret situations in 
their personal and work lives and as active citizens” (Australian Curriculum, 
Assessment and Reporting Authority, 2010). Such abilities can only develop if 
mathematical experiences are drawn genuinely from these same areas of personal, 
vocational, and civic contexts. Whatever other purposes they serve, text book problems 
cannot meet this need.  
 Much work carried out under the banner of mathematical modelling, skates over the 
aspect most crucial to developing expertise—formulating a mathematical problem from 
a messy real world context. This essential component is also referenced elsewhere in the 
modelling process—such as interpreting mathematical results, and evaluating whether 
an alleged solution fits the needs of the original problem.  
 The intention here is to highlight components of modelling activity essential to the 
above curricular goal using illustrative examples, including how some students have 
approached a modelling task.  

Modelling as real world problem solving 
This perspective derives from the use of mathematics to model problems in fields 
outside education. Some, such as Pollak (telecommunications), Burkhardt (physics), and 
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early ICTMA1 contributors, have taken their insights specifically across into education, 
(Pollak, 2007; Burkhardt, 2006). Others (e.g. Pedley, 2005) provide external reference 
criteria for those working within the educational field. Modelling in this vein has two 
concurrent purposes – to solve a particular problem at hand, and also over time to 
develop modelling skills that empower individuals to solve problems in their world 
(personal, vocational, and civic). Characteristic of this approach is a cyclical modelling 
process – containing elements such as the following (Figure 1) drawn from (Pedley, 
2005) in his Presidential address to the Institute of Mathematics and its Applications.  
 
 1. Understand the real problem situation.  

 2. Frame an appropriate mathematical question 

 3. Formulate a model, using simplifying assumptions etc 

 4. Analyse the model 

 5. Compare mathematical outcomes with reality 

 6. Modify and repeat until an adequate solution has been found. 

Figure 1. Modelling process.  

The arrows on the right indicate that iterative back tracking may occur between any 
phases of the modelling cycle. This diagrammatic translation of Pedley’s message is a 
compact version of the modelling chart familiar from many sources (e.g., Galbraith & 
Stillman, 2006). Such diagrams both describe the modelling process, and act as a 
scaffolding aid for individuals or groups while developing modelling skills through 
successive applications. The solution to a problem must take seriously the context 
outside the mathematics classroom within which it is introduced, and its evaluation 
involves returning to that context. It cannot live entirely in a classroom.  

Sources of problems 
Real world problems need to start and finish exactly there – in the real world. Examples 
include: a primary school class collected data on passing traffic and successfully 
mounted a mathematical case to the council for lights at the school crossing. A girl 
provided a convincing case to her parents that she could finance and care for a pony she 
had set her heart on. A student redesigned the culture that he used for growing tomatoes 
hydroponically. Senior students investigated the problem of siting speed bumps along a 
new college drive. Students enacted moves associated with optimising goal shooting 
opportunities in soccer, and in an unrelated context, Australian Rules football. Many 
problems can be stimulated by newspaper reports on various topics, and the web is a 
superb resource on almost any issue of current interest – such as climate change. 
Whatever the motivation, an essential need is for students to be thoroughly familiar with 
the context surrounding any problem, and this may involve anything from careful 

1 International Conference on Teaching Mathematical Modelling and Applications 
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reading of material to physical relocation and enactment outside the classroom, as 
described above. 

Sample modelling problems 
Excerpts from two modelling activities are given below. One is an historical case 
reviewed by a mathematician (Pedley, 2005), the other concerns a problem undertaken 
by a group of year 10-11 students in 2009. 

Example 1 
Geoffrey Taylor’s analysis of the atomic bomb test in New Mexico in 1945 followed 
the publication in Life magazine in 1947, of photos of the expanding blast wave (Figure 
2), taken over a succession of small time intervals.  

 

Figure 2. Blast wave photo. [Source: http://en.wikipedia.org/wiki/Nuclear_weapon_yield] 

 From the photographs Taylor estimated the energy of the blast, using mathematics 
accessible to senior high school mathematics. The fundamental assumption is that the 
radius of the blast wave (R) depends on the time elapsed since the explosion (t), the 
instantaneous energy released (E), and the density of air (ρ). 
 
Thus R = C (ta Eb ρc ), where C is a dimensionless constant .  
Now dim R = [R] = L, [t] = T, [E] = ML2 T-2, and [ρ] = ML-3  
Thus dimensionally we need: L1 = M(b+c) L(2b-3c) T(a-2b).  
Equating dimensions: b + c = 0; 2b - 3c = 1; a – 2b = 0; and hence  
a = 2/5, b = 1/5, and c = -1/5. So R = C (Et2 /ρ)1/5, where C ≈ 1 from known data.   
 
From the photographs corresponding values of t and R were known, and used in a plot 
of log R against log t: log R = log (E /ρ1/5) + 2 log t.  
 The unknown, E, can be calculated from the intercept on the vertical axis – again 
requiring no more than secondary school mathematics.  
 Indeed a single estimate for (E = R5ρ/t2) can be obtained directly from the 
photograph above, which contains a scale representing 100 m, and a label indicating 
that it was taken at t = 0.025 (s). Expanding the photo from the link, taking 
measurements, and using the given scale to estimate the radius suggests a value for R of 
about 132 m. Given that the density of air is 1.2 kg/m3 we obtain a value for E of about 
7.7 × 1013 joule. This converts to an energy equivalent of about 16.7 kilotonnes of TNT. 
Taylor’s subsequent letter .to the Americans that “I see that the atomic bomb you 
detonated had a power equivalent of about 17 kilotons of TNT”, or some similar 
wording, caused great consternation at such a revelation of classified information!  
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Reflection on modelling matters  

This is a striking example of a modelling problem that was identified and developed 
from an article in a magazine. It reinforces that the popular press is a fertile source of 
problems, many of which are suitable for school students to address, sometimes using 
alternative approaches. We note that the mathematics needed above is no more than 
secondary level, yet the problem itself was a significant one. Again we focus attention 
on the formulation stage; for it was there that deep understanding of the context was 
essential; for example in knowing which three input variables were sufficient, and why 
other potential candidates such as specific heats could be ignored. And the assumption 
that C = 1 was based on knowledge of a combination of factors that had previously been 
assessed. Similarly, in any authentic modelling situation, time must be allocated to 
engage the context thoroughly, for this is necessary if a viable mathematical question is 
to be identified, appropriate assumptions made, and an appropriate model formulated. It 
is a far cry from “read the question carefully”.  

Example 2 
This problem was developed by a group of four students (Years 10–11) participating in 
the modelling challenge at A. B. Paterson College in November 2009. The modelling 
took place over two days and involved seven scheduled class hours—including 
requirements to produce a poster and make a presentation. Additional time was at the 
initiative and discretion of students. Internet access to material on climate change 
stimulated initial interest in the topic, together with the fact that the students lived on 
the Gold Coast, and were directly familiar with the object of their study. Edited 
descriptions from the students’ modelling report (that included a 28 page PowerPoint 
presentation) follow. 
Real world problem 

Climate change is used to describe the changing nature of the world's weather patterns. 
Increasing temperatures due to climate change have been reported to cause rising sea 
levels due to the expansion of water around the world.  
Mathematical question 

At what point in time will the Q1 (or a later building) lobby2, which is 3 m above sea 
level, be submerged due to sea level rises, and what will be the mean maximum 
temperature of that month in Surfers Paradise at that time? 
Defining the variables 

The independent variable, x, is the time in months, in one month intervals, since January 
1938. Therefore: x = 0 denotes January 1938; the first month of temperature recorded.  
The dependent variable, y, is the mean maximum temperature of Surfers Paradise over 
one month measured in degrees Celsius. (Using mean temperature or mean minimum 
temperature, would give a similar pattern of results.)  

2 Q1 is a recently completed building at Surfers Paradise. 
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 Assumptions 

1. The influence of rainfall and evaporation in the ocean is negligible since this 
would only contribute to the water cycle, in turn feeding back into the oceans.  

2. The whole surface of Surfer's Paradise is a flat plane 3 metres above sea level that 
contains no obstructions to the path of the ocean as it rises.  

3. The trend demonstrated in the data set used continues into the future.  
4. There is a correlation between temperature and rising sea levels.  
5. The melting of the polar ice caps does not contribute to the rise of the sea level 

which is entirely caused by expansion of water due to heat. If this assumption 
proves invalid, the predicted time will be too far in the future.  

Comment 
The assumptions are careful and relevant, containing additional justifications not 
included here. They foreshadow potential limitations as well as necessary 
simplifications.  

Finding a pattern: A suitable model 

Visual analysis of the temperature data would indicate them to be periodic, since the 
temperature during a year would rise and fall depending on the seasons (Figure 3).  
Building a model 

1. The general form for a periodic function is y = asin2π/b(x-c) +d, where a is the 
amplitude, b is the period, c is the phase shift, and d is the vertical translation of 
the function. Thus it would not be possible to predict a change in the mean 
maximum temperature of Surfers Paradise unless an equation representing the 
general change in the climate was used in place of the constant d value.  

2. To obtain the equation for d, one must determine the average rate at which the 
temperature increases. A linear regression performed upon the data gave an 
equation of y = 0.001x + 24.64. This equation shows that the equilibrium line of 
the periodic function for the mean maximum temperature over time graph is 
sloping upwards.  

3. This linear equation can be substituted into the general periodic equation instead 
of d.  

4. The a value in a periodic equation is the amplitude of the wave; essentially half 
the range of values for the y axis.  

5. The b value in a periodic function is the period of the function being the average 
distance between two crests (or troughs) on a wave.  Calculating the period as 12, 
the b value for the periodic equation is 0.5235. To determine the value of c, the 
equation can temporarily exclude the c value and be used to predict values for y. 
Because these values will have been translated incorrectly due to the lack of a c 
value; they can be matched up with corresponding y values and the x distance 
between these selected corresponding points can be used to determine the value 
of c.  
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Figure 3. Mean maximum temperature graphs. 

 One pair of crests and one pair of troughs have been identified for analysis. The 
adjacent troughs have x-values of 605 and 609—indicative of a horizontal phase shift of 
4 months. This indicates that predicted y values have been shifted 4 months forward, 
and thus the c value is –4. Thus the equation to predict the mean maximum temperature 
over a month in Surfers Paradise becomes y ≈ 5.75sin(0.5235(x+4)) + (0.001x + 24.64). 
Comment  
Some innovative thinking is apparent here, particularly in the replacement of d by a 
linear expression to capture the slowly increasing base temperature. There is some loose 
description that entangles the period with the coefficient, but the students have the 
mathematics right. Their incorporation of the translation constant c is clever. Here they 
inferred a value of 4 from the graph—the actual value is 3 (1/4 of a period).The 
numerical impact on outcomes is miniscule. 

Evaluating the model 

A perfect model would have an actual versus predicted equation of y = 1x + 0, whilst a 
linear regression performed upon the data in this graph (below) gave an equation of  
y = 1.3x – 7.554, with an R2 value of the linear regression to be 0.89 (Figure 4). 

  

Figure 4. Regression of model values on actual values. 
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Test: When used to generate the mean maximum temperature of Surfers Paradise over 
the 80th month from January 1938 the model equation:  

y ≈ 5.75sin(0.5235(x+4)) + (0.001x + 24.64) 

gave a value of y ≈ 24.702, within approximately 0.0977 of the actual recorded value of 
24.8. Thus it would be reasonable to assume that the model could predict the future 
trend of the mean maximum temperature of Surfers Paradise.  

Comment 
Conceptually they should have regressed actual values onto model generated values, 
which also gives a positive y-intercept. The purpose was to show that the model was 
globally doing the right thing, so the subsequent use of the wave formula was justified. 
This was also tested, although a range of points rather than a single point should have 
been used here.  

Solving the mathematical problem 

Water at 100 C increases in volume by 0.0088% when heated by 1 degree. The volume 
of Earth’s water is approximately 1.3 billion km3, and its surface area is  
361 million km2. 
Using: v = lwh. 
Temp increase × 0.00088 × 1300000000 = 361000000000 × h 
 Assuming a height increase of 3 metres to reach the lobby of the Q1, the equation 
gives a required temperature increase of 0.94667° C. 
 Such a change in temperature must be sustained; it should be the mean of the mean 
maximum temperatures generated by the model.  
 The equation for its equilibrium line is y ≈ 0.001x + 24.64, enabling calculation of 
the time at which the mean of the mean maximum temperatures will have increased to 
the point where the sea level has risen by 3 metres.  
 Adding increase to current temperature we need 26.2217 = 0.001x + 24.64, which 
gives x = 1581.7. This is 132 years (approx) from 1938, or 61 years time. It is therefore 
apparent that the sea level calculation above was incorrect. (Recalculation gave a 
temperature increase of 9.4667 degrees, and x = 10101.7 (842 years); i.e., in 771 years 
time.) At that point the predicted mean maximum temperature from the wave formula is  
35.05 degrees.  
Conclusion 

This involved summarising the findings, comparing them with a prediction of around 
400 years by Kurt Wayne, and revisiting the possible additional effects of melting ice 
not considered in this model. Four limitations of the model were listed, and 
recommendations made concerning preparations for rising sea levels in residential 
areas. (Substantial additional material presented by the students cannot be included 
here.) 
Comments  
The students picked up an arithmetic error, caused by misreading expansion data, by 
realising their predicted date was not feasible, and subsequently corrected the error. 
They revisited their original caveat concerning the possible impact of melting ice. Other 
predictions can be generated using Pacific Ocean data, expansion rates at warmer 

937



GALBRAITH 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

temperatures etc. These give wide ranging predictions from about 300 years from the 
present time upwards. Indeed this serves to illustrate why there is so much debate about 
the impact of climate change—itself a worthy outcome.  
 A feature was the way the students continually spun between phases three and six of 
the modelling process—testing, evaluating, and revisiting was a way of life for them. 
Apart from the modelling, the students deepened their understanding of mathematics 
topics they invoked as part of the solution process—sometimes extraordinarily so. 

Seeing is believing 
Curricular goals for students to use mathematical knowledge productively in vocational, 
personal, and civic contexts require official commitment and support that has not in the 
past been seriously provided. At the coal face a crucial element is found in the 
contrapositive of the adage “seeing is believing” namely “not believing means not 
seeing”. We will not see it happen until belief in what students are capable of achieving 
means that the right conditions, encouragement, and priorities are provided. Are we up 
for the challenge? 
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Ballarat Grammar staff have been using computer algebra systems [CAS] in classrooms 
since the first Victorian Certificate of Education [VCE] exams permitted the use of CAS in 
2002. The question now is whether all staff have taken teaching and learning with CAS as 
an integral part of their teaching throughout the school, and whether the students are way 
ahead in the process. And, importantly, where does this process fit into the Australian 
Curriculum: Mathematics? The use of technology in that curriculum will provoke an 
interesting debate amongst the states. 

Introduction 
Computer algebra systems, with the full use of a symbolic manipulator along with a 
grapher and a statistical platform, have been in use in senior mathematics externally set 
examinations in Victoria since 2002. This makes 2011 the tenth year of using CAS in 
Year 12 classrooms and examinations. In 2010, the CAS in examinations became the 
handheld technology of choice, with its use assumed in all technology-active 
assessments across all three VCE Mathematics subjects: Further Mathematics, 
Mathematical Methods (CAS), and Specialist Mathematics. To create the situation 
where such an innovative instrument became mainstream, the experience with this 
particular technology since 2002 has been somewhat perplexing. From the heady days 
of ‘I Can do Maths Now’ (Garner, 2002) and the more evenly stated ‘CAS: A Time for 
all Seasons’ (Garner & Pierce, 2005) the argument about what comes first, the 
mathematics or the technology, still rages. A comment often heard is: “We are just 
teaching technology now”. As a strong believer in teaching with CAS, and not just 
performing tricks and checks with CAS, I write this paper with a different perspective, 
that of an observer of the use of CAS in the middle years. 
 The Australian Curriculum: Mathematics (Australian Curriculum and Assessment 
Authority (ACARA), 2011) mandates technology in its various forms as a vital part of 
any mathematics classroom. In his keynote address to the 2009 biennial conference of 
the Australian Association of Mathematics Teachers (AAMT), Peter Sullivan spoke of 
“challenges within the national mathematics curriculum” (National Curriculum Board in 
Sullivan, 2009, p. 36). An example he presented is an open-ended number exploration 
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used to introduce the idea of equations with unknowns. “Often students can be posed 
the following task: For the equation 3a + 2b = 70, what might be the values of 
a and b?” (Sullivan, 2009, p. 39) These tasks have a problem solving dimension 
allowing the student to decide his or her own path towards guessing and checking. 
Technology is one way in which students can not only systematically guess and check, 
but also record their answer. Sullivan summarised by saying the tasks presented can be 
useful “especially if accompanied by the associated pedagogical actions by teachers” 
(Sullivan, 2009, p. 41). The link between technology and teacher action appears vital. 

Change in pedagogy? 
Garner and Leigh-Lancaster (2003, p. 375) explored the thesis that “teaching with CAS 
necessarily entails significant new pedagogy rather than an extension of existing 
approaches” and that in using CAS in the classroom “issues of locus of control and 
ownership of the technology arise … CAS unexpectedly empowers students”. Garner 
(2007, p. 100) reported that, “[I]t is clear that, for some teachers, this movement of 
control to the learner can be frightening and challenging” (Garner, 2007, p. 100). The 
pressure teachers feel is reflected in Chick’s (2007, p. 14) writing about Pedagogical 
Content Knowledge (PCK) and the importance of teachers understanding the depth of 
mathematics of the current topic, so that if the students take them somewhere outside 
what is planned, then the teachers can be part of that discussion.  
 While the power is with the student, it is also with the teacher. A range of strategies 
can be employed by the teacher, deciding which to use when. “Such decisions will be 
influenced by … the teacher’s perceptions of the value of using technology such as 
CAS for students’ learning” (Wander & Pierce, 2009, pp. 168–169). 
 A search for ‘calculators’ on the ACARA website (www.acara.edu.au) yielded five 
entries: 

• Finalising Phase One of the Australian Curriculum 
• Phase 1 - The Australian Curriculum 
• Survey Results 
• K–10 Curriculum Directions for Revision 
• Framing Paper Consultation Report: Mathematics.  

From the following comment (ACARA, 2011), it is clear that the use of CAS has created 
discrepancies across the states: 

the issues raised have been resolved and work is underway to make the agreed 
adjustments … in the use of calculators this has involved a formulation that will support 
the variation in practice that currently exists across the states and territories.  

It is suggested that the curriculum “assumes teachers will make use of available digital 
technology, including calculators, in teaching and learning contexts”. The survey of 
stakeholders reports a need for “a change in thinking and not just a change in the tools 
used.” And it was also noted that “guidance was sought around the appropriate stage 
and level to introduce calculators. Feedback highlighted the fine line between 
introducing calculators too early, which may not allow students to develop their own 
mathematical skills” (ACARA, 2011). 
 The decision of CAS first, or by-hand skills first, is an ongoing dilemma amongst 
teachers. Some worry that the teaching of calculator syntax will take precious time 
away from time-poor mathematics classes. Within the crowded curriculum, one could 
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say that yet another demand on teachers’ time is one demand too many. The other end 
of the spectrum is that calculator syntax can be ‘taught’ as an ongoing process while 
students, and importantly also their teachers, use CAS for everyday tasks. Many 
teachers seem to fear change. Well-honed skills in presenting mathematical arguments 
are at risk of being superseded. A pre-service teacher initially felt that this new tool, for 
her, “devalued her own hard won mathematical prowess” (Garner, 2009, p. 86). Pierce, 
Ball and Stacey (2009) write about CAS use in the middle years: 

teachers with strong backgrounds in both mathematics and teaching were the most 
difficult to convince to use CAS in their teaching… If a teacher’s current practices are 
already successful, then they may question the need for change. (p. 1163)  

Some literature 
Susie Groves, in her keynote address to the 1996 annual conference of the Mathematics 
Education Research Group of Australasia (MERGA), which focused on technology, 
concluded “Research … has established that technology can alter the nature of 
classroom mathematics … appear(ing) to show that the use of technology leads to 
positive learning outcomes” (Groves, 1996, p.17). Jones and McCrae, on assuming 
graphics calculators in VCE examinations, state “the effect has not been to trivialise the 
majority of questions, but rather to broaden the methods available to answer many 
questions” (Jones and McCrae, 1996, p. 307). Pierce, Ball and Stacey (2009) write: 

CAS is valued for calculation and manipulation capabilities, the option of alternative 
representations, the opportunity for systematic exploration, and for prompting rich 
discussion. However the technical overhead, initial workload for the teacher and 
unresolved questions about the perceived relative contribution of machine and by-hand 
work to learning currently pose obstacles to teaching with CAS in the middle secondary 
years (p. 1149). 

 The efficacy of introducing CAS in the middle years as a learning tool, rather than 
solely or mostly for preparation for VCE study, is discussed. Edwards (2003) comments 
on “the tendency of CAS to simplify expressions in unexpected ways and to provide an 
output that is not presented in the fashion that students are used to seeing in standard 
texts” (Pierce, Ball and Stacey, 2009, p.1157). Some teachers say the varied forms of 
output are a stimulus for learning. For example, Garner (2009, p. 86) writes, “While 
some teachers describe working with CAS as ‘just button pushing’, others see the power 
of CAS to connect the continuum of the multiple representations of a function and 
thereby provide a powerful teaching and learning tool.” 

Use of technology in a 2011 middle school classroom 
At Ballarat Grammar in Victoria, the Casio ClassPad is adopted at the beginning of 
Year 9 as the handheld calculator of choice for use in the mathematics classroom. 
Garner (2009) wrote about two Year 12 students. 

Jack: I don’t know. We just are pleased that we are allowed to use CAS. 
Jai: … cos we are very familiar with it ‘cos we have been using it since Year 9.  
Jack: … and yeah, we learned very quickly how to use it. 
Jai: at Year 9 the teachers taught us how to do stuff, but by Year 10 we knew more than 
the teachers did. 
Jack:… and after we got over putting all these games on it, we started to use it for Maths. 
(p. 84) 
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 In consultation with a colleague about an upcoming assessment task for her Year 9 
mathematics class, we discussed the three components of increasing difficulty of a VCE 
Application Task in Victoria. Teacher C wrote a task mimicking a VCE Application 
Task, using the theme of speed cameras. I observed Teacher C’s class, with a particular 
interest in whether the students could work cooperatively while completing the task, and 
if, and when, they picked up and put down their calculators. I had the students’ and the 
school’s permission to observe, take notes and photographs. 

Year 9 Application Task 
Here is a summary of the Application Task that was given to students. 

Speed cameras  

There has been a large amount of debate about speed cameras in the news recently. 
Graham and Caroline have frequently been pulled up for speeding and have decided to 
do some research into the different types of speed cameras currently used. They 
discovered there are three different types of speed cameras: point-to-point, fixed speed 
and mobile speed cameras.  
Question 1 
There are a large number of point-to-point speed cameras on 
the Hume Freeway. Graham regularly travels along the 
Hume Freeway. Graham estimates that it takes 90 minutes to 
cover the distance from Wodonga to Benalla. Using the road 
sign, calculate Graham’s average speed in km/h. If he 
travelled at an average speed of 90 km/h from Wodonga to 
Melbourne it would take three hours and 20 minutes. How 
far is it from Wodonga to Melbourne? 

 

Figure 1. Road sign. 

Question 2 
The scale of the map is 1: 2 000 000. After 
measuring the distance on the map, find 
the distance from Seymour to Benalla in 
kilometres. There are point-to-point speed 
cameras in Seymour and Benalla. Caroline 
passes the camera in Benalla at 1:10 pm 
and again at Seymour at 2:30 pm. Decide 
whether Caroline is speeding, given that 
the speed limit along the freeway is 110 
km/h. 

 

Figure 2. Map of Victoria from Seymour to 
Benalla. 

Question 3 
Graham and Caroline drive from Wodonga to Canberra, a distance of 350 km. They 
divide the driving in the ratio of 3:4 (Caroline to Graham). How far does Caroline have 
to drive? Along the Hume freeway from Wodonga to Canberra there are numerous 
point-to-point cameras so they record their distance from Wodonga every 45 minutes. 
Display this information graphically. Describe the journey from Wodonga to Canberra 
stating average speeds and break times. 
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Time Time in hours from trip start Distance from Wodonga (km)

10 am 0 0

10:45 am 0.75 80

11:30 am 160

12:15 pm 2.25 160

Figure 3. Part table with 45 minute splits. 

Question 4 
Sue is a terrible lead-foot and lucky to have her licence. The distance-time graph below 
shows a sixty-minute journey. A tangent line is drawn at 45 minutes. 

 

Figure 4. Sue’s journey. 

Find the average speed in km/h for the first and second 30 minutes, given that the 
tangent line passes through the points (30,37.5) and (60,105). Is Sue speeding up or 
slowing down in the second 30 minutes? A mobile speed camera clocks Sue’s car. She 
has been travelling for 45 minutes and has gone 80 km into her journey. She is in a 
110 km speed zone. Is she speeding? 

Year 9 application task observations 
All students immediately took out their ClassPad appearing ready to use them. The 
questions they asked showed a good level of awareness of the size of expected answers. 
Questions asked were: 

• Is Seymour to Benalla that far away? 
• Why have I got 10 000 kilometres distance? That can’t be right. Do I just write it 

down because that is what we are told? 
 At first, there was not much calculator work. Mathematical talk was evident but two 
tables were quite distracted. One group of students engaged in discussion while 
attempting to recreate the graph in Figure 4. Some class work had previously been done 
solving linear equations with a ClassPad. The students were stumped by their inability 
to link that experience to the curved function on the graph. The statistics facility was 
suggested as a mode of investigation, but was not pursued. The concept of a tangent was 
understood and some students investigated the equation of the line using the symbolic 
facility. In defence of their limited use, these students have only had their calculators 
since the beginning of 2011, but compared with some other Victorian schools, this is 
quite early. Teachers often discuss when schools should introduce CAS into the maths 
classroom. Some schools are concerned that, if they start using CAS in Year 11, 
ostensibly in preparation for Year 12, they will be behind the schools that start with 
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CAS in Year 7. What is the correct approach? Most of what the students did could be 
done with a scientific calculator. This is somewhat surprising given that CAS is used in 
this classroom, which is taught by a teacher who is competent with CAS. Given that 
students of today are extremely technology literate, can we expect the same facility, or 
importantly interest, with a calculator? Garner (2007, p. 99) writes of “an ambivalence 
amongst students in their use of CAS at Years 9 and 10… the initial student experience 
of CAS can be very much a reflection of the individual teachers’ approach”. 

CAS in the middle years 
Students attempting the Application task showed limited use of the symbolic aspect of 
the CAS, not yet appreciating the potential of the technology. The teacher is a vital link 
between the technology and the students, and the modelling of the use of technology is 
an important step for students’ future independent use. Teacher C began the year with 
teaching about the Theorem of Pythagoras, using dynamic geometry; Teacher C used 
the CAS to explore the concepts, as against teaching the formula and using CAS 
afterwards to check the answers. Pierce, Ball and Stacey (2009) write 

we are … mindful of the little use that these teachers … actually made in the first year. 
However, for schools that have good access to CAS technologies and teachers who are 
already familiar with their use (for example through teaching at senior levels) (my 
emphasis), CAS can support skill development and contribute to deeper learning in the 
middle years of secondary school. (p. 1166) 

 Teacher C is an experienced, well qualified mathematics teacher who was one of the 
team of teachers in the VCAA CAS Pilot Study.  She no longer teaches in the Year 12 
classroom but, because of this experience, has a respect for the technology and the 
ability to adopt CAS in any classroom setting. It is difficult to say the same for all other 
Year 9 and 10 staff. Some do ask if the extra effort is worth it. 
 Jill Adler, in her keynote address to the AAMT 2009 biennial conference, stated that 
mathematics teacher education is being challenged by the “professional knowledge base 
of teaching”: “The profound insight of Shulman’s work (Lee Shulman, mid-1980s) was 
that being able to reason mathematically was necessary but not sufficient for being able 
to teach others to reason mathematically” (Adler, 2009, p. 3). There is a constant call for 
better educated maths teachers. Adler argues that “strengthening our understanding of 
the mathematical work of teaching, (mathematics for teaching) is a critical dimension of 
enhancing its teaching and learning” (Adler, 2009, p. 4). Yet the reality of textbooks 
and classrooms falls short of this ideal. Adler adds “despite the longevity and 
consistency of elementary algebra in school mathematics curricula worldwide, large 
numbers of learners experience difficulty with this powerful symbolic system” (Adler, 
2009, p. 4). Classroom teachers have only begun to realise the potential of a handheld 
symbolic manipulator in elementary algebra. 

Technology in the Australian Curriculum: Mathematics 
The Australian Curriculum: Mathematics1 describes successful learners as having 
“essential skills in literacy and numeracy” and being “creative and productive users of 
technology”. Also as an intended educational outcome, the general capability of ICT 

1 http://www.acara.edu.au. Box 2(a): Educational goals for young Australians. Box 3: Intended educational outcomes 
for young Australians, 71. 
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competence states “students develop ICT competence as they learn to use ICT 
effectively and appropriately”. Technology is described as central to Australia’s skilled 
economy, providing “crucial pathways to post-school success” (ACARA, 2011). 

Framing paper consultation report: Mathematics 
The public consultation on the mathematics framing paper released by the National 
Curriculum Board ended on 28 February 2009. Points of discussion about the 
“Application of technology and incorporation into the curriculum” were, in brief: 
1. Respondents commented that digital technologies should be used purposefully as 

a tool to support learning in mathematics, not to replace knowledge of the basics. 
2. The interaction between technology and curriculum is changing. New 

technologies provide possibilities for new pedagogical approaches (my 
emphasis). 

3. The equity of access, teacher training and resource funding was addressed.  
4. Teacher training would be required if proposals in the Paper were to be adopted. 
5. There was uncertainty around the assertion that the curriculum needs to “embed 

digital technologies so that they are not optional extras”. A number of respondents 
perceived the framing paper proposal to imply a mandate for CAS calculators.2  

ACARA sought advice from expert mathematicians on key issues raised through the 
consultation. The position on inclusion of technology in the mathematics curriculum has 
been affirmed and “strengthened advice to reiterate the position and appropriate use of 
technology” is embedded in the curriculum (ACARA, 2011). 
 The embedding of CAS has happened in the VCE in Victoria. It has been reported 
that the use of CAS has changed how teachers and students viewed their mathematics. 

The unrestricted use of CAS has led to dramatic changes in pedagogy and assessment … 
Unrestricted access to CAS has challenged us, as educators, to start inventing new 
paradigms for the teaching and learning of senior mathematics. (Garner, McNamara & 
Moya, 2003, p. 271) 

Despite this view, in one VCE classroom a student commented, “why should I have to 
rely on this futuristic piece of technology when I will never carry it with me for the rest 
of my life?” (Garner, 2009, p. 89) And a Queensland study noted, “it is not clear 
whether teachers already convinced of the benefits of technology simply embraced… 
calculators when they became available” (Goos & Bennison, 2008, p. 124). Do we 
expect this to happen with CAS throughout the school? Will there be delineation in 
teachers who do and teachers who don’t? 
 Herein lays the dilemma. Will the teacher who embraces change in pedagogy do so 
easily, or are there particular features of teaching with CAS that open up possibilities 
never before considered? Have all teachers taken up teaching and learning with CAS as 
an integral part of their teaching, or as some sort of add-on? 

Conclusion 
The use of CAS with students in the middle secondary school years is a complex issue. 
Pierce, Ball and Stacey (2009) write of teachers reporting their perception of success, or 
not, of CAS use, rather than hard evidence of success: “However perception data is 
important because teachers’ beliefs about the potential costs and benefits of any 

2 http://www.acara.edu.au. Application of technology and incorporation into the curriculum, 7.0 
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initiative will contribute to whether they incorporate it in their teaching” (p. 1173). This 
echoes earlier results that the use of CAS “sinks or swims with the teacher” (see Garner 
& Leigh-Lancaster, 2003; Garner, 2004; 2009). The teachers in Pierce, Ball and 
Stacey’s (2009, p. 1174) study recognise that “adequate access to the CAS, and 
recognition that learning to use CAS syntax and commands is a substantial task” are 
barriers to students gaining benefit from CAS. Teacher C’s classroom seems to meet 
these constraints: she has had teacher training using CAS; there is adequate access to 
the CAS for her students; and she is skilled at teaching CAS syntax. But, still it appears 
that the students have not yet absorbed CAS into their middle school classroom. 
 Hughes-Butters pleas for technology use to be genuine. She writes of the importance 
of embedding technology in the lesson, echoing the Australian Curriculum: 
Mathematics, creating an authentic learning experience. “Technology should be used 
when its application enhances … the contrived application of technology will actually 
take away from the meaning of a lesson as the students focus on the technology and not 
on the learning” (Hughes-Butters, 2009, p. 239). 

The teacher’s challenge 
Wander and Pierce (2009) studied two approaches to a lesson, highlighting the choice 
that a teacher makes between by-hand or CAS-enabled algebra. Teachers now need to 
decide upon their approach. “In a CAS-enabled mathematics teaching environment 
several approaches to a lesson may be possible. The class teacher must now make even 
more decisions in order to choose the best path for her or his students” (p. 173). A state 
of “constant conflict between CAS and pen and paper methods” is described by Geiger, 
Faragher and Redmond (2007, p. 13).  
 To answer the initial question about whether all staff have taken teaching and 
learning with CAS as an integral part of their teaching, I would say, “No.” We are yet to 
see where this process fits into the Australian Curriculum: Mathematics. I suspect much 
discussion is forthcoming. 
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Spatial visualisation is an important skill required in the study of geometry. Most 
mathematical software used in mathematics classrooms in Singapore is non-immersive in 
nature. VR Elements is a three-dimensional immersive computer software to assist students 
in perceiving three-dimensional geometrical figures from their two-dimensional 
representations and envisioning geometrical properties within them. This paper will 
elaborate on how VR Elements was developed in tandem with curriculum materials on the 
topic of three-dimensional trigonometry. In particular, the constructivist approach was used 
to develop these materials to meet the needs of mathematically gifted students under the 
School Based Gifted Education Programme.  
 

Spatial ability and spatial visualisation  
The definition of spatial ability has been discussed and re-defined by various scholars in 
the last century, with the first definition coined by McGee in 1979 as the ability to 
mentally manipulate, rotate, twist, or invert a pictorially presented stimulus object. 
Lohman (1979) later related spatial ability to that of arranging the pieces of an object to 
complete paper folding or overall shape, while Linn and Petersen (1985) defined spatial 
ability with mental processes being used in perceiving, storing, recalling, creating, 
arranging and making related spatial images. In more recent years, Noraini Idris (1998) 
has defined it as the ability to perceive the essential relationships among the elements of 
a given visual situation, and the ability to mentally manipulate one or more of these 
elements, and Spock (2010) has defined spatial ability as skill in perceiving the visual 
world, transforming and modifying initial perceptions, and mentally recreating spatial 
aspects of one’s visual experience without the relevant stimuli.  
 Others, however, have tried to divide spatial ability into various independent 
components. Both Guilford (1967) and McGee (1979) divided spatial ability into two 
elements: spatial visualisation and spatial orientation. Lohman (1979) classified spatial 
ability into three components: spatial relation, spatial visualisation and spatial 
orientation. Linn and Peterson (1985) divided spatial sense into spatial perception, 
spatial rotation and spatial visualisation, and Spock (2010) has distinguished three 
categories of spatial abilities: (1) spatial orientation, the ability to keep track of objects 
or locations in space even after a rotation or movement to a new location; (2) spatial 
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perception involving determining spatial relationships with respect to gravity or one’s 
own body in spite of distracting information; and (3) spatial manipulation involving the 
ability to mentally rotate two- or three-dimensional figures rapidly and accurately. 
Amongst the various definitions and elements that define spatial ability, these 
researchers seemed to have identified one common component, which is spatial 
visualisation, and this element is the focus of this paper.  

Importance of spatial visualisation in the learning of geometry 
Geometry is a branch of mathematics concerned with the study of spatial properties of 
various figures abstracted from the concrete world of physical objects (Noraini Idris, 
1998). The geometry curriculum constitutes many of these visual components that 
require students to have the ability to visualise spatially (Noraini Idris, 1998). Hence, 
this ability is a critical skill to have and develop in all students.  
 Yakimanskays (1971) believes that visualisations are used as a basis for assimilating 
abstract geometrical knowledge and individual concepts. Hoffer (1983) adds that the 
lack of basic visualisation skills sometimes results in insecurity that causes many 
students not to do well in geometry. Many students who have not had ample prior 
concrete experiences with solid objects tend to have problems when it comes to 
visualising three-dimensional objects from a two-dimensional perspective, especially so 
for visualising cross sections of solids (Ben-Chiam, Lappan & Houang, 1989). Due to 
their limited geometrical experiences, some students may not have had enough 
opportunities to develop and exercise their spatial thinking skills to help them learn 
geometry effectively. This inability to visualise can be regarded as an obstacle to the 
learning of geometry as there are concepts in geometry which require the student to 
visually perceive the objects in three dimensions and identify their properties by 
comparing them with their previous experiences involving similar objects. These 
geometrical concepts also require visual interpretations as many geometry problems are 
presented in a two-dimensional format on paper. Thus students who are not able to 
extract geometrical information about solid objects which are three-dimensional and 
that are drawn on paper will face difficulty in interpreting and solving questions 
involving solid geometry (Lappan, 1984). 

Achievement in geometry  
Presmeg (1986) has performed significant research on spatial visualisation ability in 
mathematics for various groups of students, including mathematically gifted students. 
She notes that specific research on spatial visualisation of the mathematically gifted 
seemed to be insufficient. According to Greenes (1981), mathematically gifted students 
differ from the general group of students studying mathematics because they are better 
at, or show more creativity and flexibility in, the following abilities: spontaneous 
formation of problems, flexibility in manipulating and analysing data, mental agility 
with ideas, mental data organisation and re-organisation, originality in interpreting 
possible solutions, transferring from one situation to another, and being able to 
generalise.  
 Kruteskii (1976) says that mathematically gifted students tend to view the world 
through a “mathematical lens” and uses the term “mathematical cast of mind” to 
describe this characteristic. He further identifies mathematically gifted students into 
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three types, namely, the analytic, geometric, and harmonic. The analytic type tends to 
think in verbal-logical terms. This is the student who is able to think abstractly and does 
not rely on visual supports for visualising objects or patterns in problem solving. 
Geometric thinkers, however, strive to solve a problem using visual supports and to 
interpret abstract mathematical relationships visually. These students tend to relate 
problem solving to the analysis of spatial concepts. The harmonic type displays both 
characteristics and is successful at using both approaches to solving problems.  
 Studies by Diezmann and Watters (1996) showed that spatially gifted students may 
underachieve in classrooms due to the typical emphasis on analytical tasks and may 
experience significant difficulty verbalising their reasoning. Researchers such as 
Diezmann and Watters (2002) urged educators to increase sensitivity to the types of 
tasks that will allow spatially-gifted students to demonstrate their ability and the 
provision for appropriate tasks and procedures. A study by Ryu, Chong, and Song 
(2007) used Geometer’s Sketchpad to examine the spatial visualisation ability of 
mathematically gifted students using geometrical tasks that require distinction of parts 
of a solid figure. Conducted at Konkuk University and Gyeogin National University of 
Education on seven Grade 7 mathematically gifted students in Korea, it was found that 
some had difficulty imagining a three-dimensional object in space from its two-
dimensional planar representation. These students were confused when trying to 
distinguish the edges of a spatial object from the depicted picture, and were unable to 
distinguish planes of a three-dimensional object from its two-dimensional 
representation. These researchers were surprised to find such dependency on the visual 
facts represented in a plane picture. 

Aim of the study 
This study depicts the exact problems that I faced when teaching my group of 
mathematically gifted students on the topic of three-dimensional trigonometry. When 
dealing with two-dimensional representations of three-dimensional objects, comments 
like, “I can’t see it” or “How can you tell if that (pointing to an angle) is a right angle?” 
are frequently heard when taught using the traditional ‘chalk and talk’ method. Because 
they are unable to grasp mentally geometrical concepts in three dimensions, these 
mathematically gifted students are ‘bored’ and ‘restless’ in the classroom and do poorly 
as a result. Hence, the challenge for me as a mathematics teacher would be to develop 
or use existing spatial visualisation tools to aid the teaching and learning of geometry, 
so that these mathematically gifted students would be able to see and understand 
geometrical problems in three dimensions and so help them solve these problems more 
efficiently and easily.  

Non-immersive and immersive technologies  
Since the implementation of use of information communication technologies in the 
mathematics classroom, numerous studies, both local and overseas, have been 
conducted from elementary to tertiary level. Backed by constructivist learning theories, 
learners’ prior experience and their ability to build their own cognitive structures during 
the course of their learning experience have been emphasised, especially for the optimal 
understanding of mathematics (Battista, 1999; Greeno et al., 1996). Lim and Hang 
(2003) found that students using technological tools have higher learner autonomy. 
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Another study by Lim and Chai (2002) found that students using information 
communication technologies are positively engaged in higher order thinking activities. 
Researchers like Al-Rami (1990), Fodah (1990), and Renaud (1997) found that the use 
of computers has positively influenced the achievements of students in mathematics. 
Because of this widespread use of computers in education there has been a proliferation 
of many powerful technological tools such as Geometers’ Sketchpad and Cabri 3D that 
have been designed to facilitate the learning of geometry. These tools have been 
described by Patsiomitou (2008) as “computational environments that can link symbolic 
and graphical representations” thus allowing students to explore the various solution 
paths, make decisions and receive feedback on their ideas and strategies individually or 
in small groups.  
 However, some researchers have questioned whether it is still applicable in today’s 
world, where students are such ‘digital natives’. Some other researchers have looked at 
technologies that are immersive in nature, allowing the user to access external 
information (e.g., the actual source code) without leaving the environment and the 
context of the representation (e.g., using a palmtop or laptop). Such immersion has been 
found to allow the user to take advantage of their stereoscopic vision which helps the 
viewer to judge relative size of objects and distances between objects. The work of 
Hubona, Shirah and Fout (1997) suggests that users’ understanding of a three-
dimensional structure improves when they can manipulate the structure. One of the 
defining features of virtual reality representations is the ability of the user to manipulate 
the visualisation, by being immersed in the environment. The work of Ware and Franck 
(1994) also indicates that displaying data in three dimensions instead of two can make it 
easier for users to understand the data. With this background, it is therefore pertinent 
that suitable immersive computer software be selected in order to develop spatial 
visualisation skills for our mathematically gifted students. For this study, new three-
dimensional spatial visualisation software, VR Elements  (Zepth Pty. Ltd.) would be 
used. Curriculum materials on the topic of three-dimensional trigonometry will be 
developed jointly by existing teachers from Hwa Chong Institution teaching 
mathematically gifted students under the School Based Gifted Education Programme 
and researchers from Zepth.  

VR Elements  
The hardware consists of a stereographic and an interactive sub-system (Figure 1). The 
interactive sub-system has (1) a control pad to input commands and numbers; and (2) a 
3D pen to create, edit and manipulate the 3D elements. It has 6 degrees-of-freedom 
(6DOF) tracking and 3D digitising, and allows various modes; e.g., insertion, selection, 
and transformation. In insertion mode, basic geometrical elements can be created. In 
selection mode, each geometrical element can be selected for modification. If the 
selection contains two elements, their relationship can be derived. In transformation 
mode, objects can be rotated, translated or scaled. Figure 1 shows a user in front of the 
3D screen.  

951



GWEE 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

 

Figure 1. VR Elements. 

 The software comprises a core layer and an application layer. The core layer is for 
users to develop the application. The application layer is designed for the learning of 
fundamental geometry topics in both 2-dimensional and 2-dimensional space. The basic 
geometrical elements of VR Elements are points, lines, planes, cubes and spheres (Table 
1). The relationship between two elements can be obtained with the VR Elements.  

Table 1. Properties of basic geometrical elements of VR Elements. 

Elements  Properties  
Point  Position  Point thickness  Point color  
Line  2 end points  Line thickness Line color  
Plane  3 locations  Four sides  Plane color  
Cube Centre Width, height, and depth Cube color 
Sphere Centre Radius Sphere Color 

 
Distance 

In VR Elements, the distance between two elements can be measured with the 3D pen 
(see Figure 2). 
 

 
(a)             (b)          (c) 

 
(d)      (e)     (f)  
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Figure 2. The distance between two elements can be measured in VR Elements: (a) point-point distance; 
(b) point-line distance; (c) point-plane distance; (d) line-line distance; (e) plane-plane distance; and (f) 

line-plane distance. 

Angle 

In 3-dimensional space, two lines may or may not intersect. A line can either intersect 
with or be parallel to a plane; two planes always intersect. The angle formed by two 
intersecting elements can be similarly measured using the input pen. 
Dynamic feature 

VR Elements has a feature which allows the users to dynamically transform geometric 
entities. For example, a line segment can be rotated in 3-dimensional space. During its 
rotation, its associated distance or angle will be dynamically updated.  

Curriculum materials for virtual reality elements  
There is a general consensus (Battista, 1999; Greeno et al., 1996) that for optimal 
learning of mathematics, ideas must be constructed by the learner. The National Council 
of Teacher of Mathematics (NCTM) Standards (2000) suggest that students should be 
given opportunities to engage in scientific inquiry and in problem solving, and in order 
to do this, students should be given the necessary scaffolding and allowed to collaborate 
with their peers. This is in line with the constructivist theory of learning. Constructivist-
based theories are well suited for use in a digital classroom. Combined with appropriate 
use of pedagogy, a rich learning culture can be established: one where learning is 
authentic and learner centred, encourages students to explore and discover ideas and 
concepts and to share them in collaborative projects. Curriculum materials, based upon 
the syllabi of the School Based Gifted Education Programme (Table 2), have been 
developed by a team of teachers and researchers to provide the necessary scaffolding for 
the students to use the software. Students will also be given opportunities, both 
individually and collaboratively, to build this new knowledge.  

Table 2. Topic and specific instructional objectives of school based gifted education programme for a 
topic on three-dimensional trigonometry. 

Topic and Specific Instructional Objectives 
Trigonometry Unit 2: 2D and 3D Problems 
 
At the end of the unit, students should be able to 

• solve triangles through Sine Rule & Cosine Rule 
• find area of triangles  
• understand concept of bearings, solve problems in 2D and 3D including those involving angles of 

elevation and depression and bearings 
• derive Heron’s formula 
• relate geometry to concepts on longitude and latitude  
• calculate angles between two planes or the angle between a straight line and a plane. 
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A sample teaching plan using VR Elements is shown in Table 3.  

Table 3. Sample teaching plan. 

Teaching Plan 
Lesson Objectives:  
At the end of the lesson, students should be able to  
calculate angles between two planes  
calculate angles between a straight line and a plane  
Lesson Aims: 
1. Introduce VR Elements as a tool for classroom teaching and learning 
2. Using VR Elements to support the learning of Geometry through a visual and interactive manner 
Time Plan Remarks 
5 mins Introduction Generate students’ interest by finding out their personal 

experience with Virtual Reality for e.g. Omni-Max Shows, 3D 
movies 
Teacher to show real life products created using VR Elements 

10 mins Teacher 
demonstration 

Teacher to demonstrate the use of VR Elements with aid of 3D 
pen 
Teacher to define the following geometrical concepts and to 
emphasise that seeing is NOT believing with use of examples 
and non-examples. 
Line – Plane Relationship 
Plane – Plane Relationship 
Rotation of Plane or Points 
Measurement of Distances and Angles 

15 mins Student Participation Some students invited to try out using the VR Elements software 
10 mins Teacher 

demonstration 
Teacher to use some examples from PowerPoint slides and 
worksheets to show students how to calculate angles between 
two planes or straight line and plane 

15 mins Problem Solving Students to solve problems on worksheet involving angle 
calculation  
Students invited to the whiteboard to share their answers  

5 mins Lesson Closure Teacher to gather feedback from students 

Geometry achievement test  
To evaluate the effectiveness of the VR Elements software, a geometry achievement test 
has been designed by the same team of researchers aforementioned. This test has been 
formulated according to specific instructional objectives as prescribed by the syllabi of 
the School Based Gifted Education Programme. The professional judgment of senior 
mathematics teachers at Hwa Chong Institution has been sought to ensure content 
validity and to evaluate the level of difficulty of the questions. Necessary revisions to 
the test will be made before its use in the study. Designed conscientiously by the team, 
the test can be said to be of high face validity. This test is made up of six questions, 
consisting of four short and two long questions that test students’ understanding of the 
geometrical concepts taught during the study. Students will need to spend an estimated 
half an hour on the test and the scores they achieved for the test will not be taken into 
account in their assessment for their promotion to the following year. A sample question 
has been included. (Figure 3) 
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The figure below shows a right pyramid VABCD with a square base.   

All the edges are 4 cm long. Find the angle between 
a. the slant edge VB and the base. 
b. the face VBC and the base 
c. two adjacent lateral faces.  

Give your answers correct to the nearest 0.1°. 

Figure 3. Sample question from geometry achievement test. 

Conclusion  
The use of such immersive technology would allow learning to be more learner-centred 
and can be used for collaborating, retrieving information and expression of ideas, 
leading to higher levels of cognition, building on previous knowledge and deeper 
understanding and ownership of concepts. However, the key to the success of such 
digital classrooms still lies with the teachers to use an effective pedagogy to combine 
the power of new digital tools available in a rich multimedia learning environment with 
the learning style of today’s students. Informed by constructivist-based theories, it 
would be up to educators to use these platforms to merge the new learning styles of 
today’s students with the power of emerging digital tools to produce a new generation 
of independent problem solvers. It is hoped that the Virtual Reality Elements software 
used in this study, merged with the high-end three-dimensional immersive technology 
and curriculum materials designed based on constructivist theories, would be the first of 
its kind to lead the way for this new learning climate for the mathematically gifted 
students, and for the rest of the learning community.  
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In 2011 many Australian mathematics teachers will ‘meet’ for the first time two key 
national initiatives: The Australian Curriculum: Mathematics (ACARA, 2010) and the 
National Professional Standards for Teachers (AITSL, 2011). This paper will explore the 
practicalities of coming-to-know these initiatives, their relationship to each other, and links 
to related documents such as the AAMT Standards for Excellence in Teaching 
Mathematics in Australian Schools (AAMT, 2006). The intent of the authors paper is to 
encourage teachers to reflect on current classroom practices, and consider future visions 
and new practices that might emerge from their interaction with these initiatives. The 
discussion will focus specifically on what excellence in primary mathematics teaching 
might look like. 

Introduction 
Over the next few years, the work of mathematics teachers in Australia will be shaped 
by the implementation of two key national initiatives: The Australian Curriculum: 
Mathematics (Australian Curriculum, Assessment and Reporting Authority (ACARA), 
2010), and the National Professional Standards for Teachers (Australian Institute of 
Teaching and School Leadership (AITSL), 2011). While these initiatives have different 
purposes, with one describing a national mathematics curriculum and the other 
articulating what teachers are expected to know and be able to do at different career 
stages, teachers will need to embrace both simultaneously as they do the work of 
teaching students mathematics. 
 The purpose of this paper is to begin conversations about ways the two initiatives 
relate to one another and ways primary mathematics teachers might effectively embrace 
them. The conversations that are presented follow a trajectory typical of ‘first 
meetings’, to include discussions related to: where the initiatives come from; how they 
relate to the current context; what they look like and how they work; how the initiatives 
might promote and support excellence in primary mathematics teaching; and, what’s 
involved in moving towards this kind of excellence. 
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Where the initiatives come from 
The National Professional Standards for Teachers 
Over recent years, there has been accumulating national and international evidence 
signalling the powerful impact that a teacher’s effectiveness has on students (see, for 
example, Hattie 2003; Hattie 2009; Jensen 2010). Recognising that teachers “have the 
greatest impact on student learning, far outweighing the impact of any other education 
program or policy” (Jensen, 2010, p.5), education systems across the world are 
developing professional standards for teachers as a mechanism for attracting, 
developing, recognising and retaining quality teachers (AITSL, 2011, p.1). 
 Work on the National Professional Standards for Teachers (AITSL, 2011) 
commenced in 2009, under the auspices of the Ministerial Council for Education, Early 
Childhood Development and Youth Affairs (MCEEDYA). That work continued during 
2009-10 through the Australian Education, Early Childhood Development and Youth 
Affairs Senior Officials Committee (AEEYSOC), and in July 2010, responsibility for 
validating and finalising the Standards was assumed by the Australian Institute for 
Teaching and School Leadership (AITSL). 
 The National Professional Standards, endorsed by MCEEDYA in December 2010, 
articulate what teachers are expected to know and be able to do at four career stages. 
They are intended to guide professional learning, practice and engagement, facilitate 
improvement of teacher quality, and contribute positively to the public standing of the 
profession (AITSL, 2011, p.1). 

The Australian Curriculum: Mathematics 
The development of the Australian Curriculum: Mathematics (ACARA, 2010) is 
guided by the principles outlined in the Melbourne Declaration on Educational Goals 
for Young Australians (MCEEDYA, 2008). This policy statement, adopted by the 
council of state and territory ministers in 2008, emphasises the importance of 
knowledge, understanding and skills of learning areas, general capabilities and cross-
curriculum priorities as the basis for a curriculum designed to support 21st century 
learning. The focus of the Australian Curriculum, developed by ACARA in 
consultation with education authorities, professional education associations, academics, 
business, industry, parent bodies and community groups, is to provide each Australian 
student with a foundation for successful, lifelong learning and participation in the 
Australian community.  
 The Australian Curriculum sets out what students should be taught through the 
specification of curriculum content, and the learning expected at points in their 
schooling through the specification of achievement standards (ACARA, 2011). 
Mathematics is one of the initial learning areas of the Australian Curriculum to be 
developed. The Australian Curriculum: Mathematics was published in December 2010 
for implementation in 2011 and 2012. 
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How the initiatives relate to the current context 
Links with the AAMT Standards for Excellence in Teaching Mathematics 
in Australian Schools 
The National Professional Standards for Teachers are the first professional standards to 
be nationally endorsed by the Education Ministers from all States and Territories 
(MCEEDYA). However, mathematics teachers in Australia have had the opportunity to 
be guided by the Australian Association of Mathematics Teachers (AAMT) Standards 
for Excellence in Teaching Mathematics in Australian Schools since they were first 
adopted in 2002. How are the two sets of Standards related? 
 The AAMT Standards, describe the knowledge, skills and attributes required for 
good teaching of mathematics as specified “by the profession for the profession” 
(AAMT, 2006). They are intended to provide “targets to which all teachers of 
mathematics can aspire and work towards in their professional development”. Aspirant 
teachers wanting to be acknowledged for reaching the high standards they describe, can 
participate in an established program of assessment that allows them to be awarded the 
AAMT’s Highly Accomplished Teacher of Mathematics credential; this is the only 
program of assessment and accreditation against the Standards for Excellence endorsed 
by the AAMT (AAMT, 2006). 
 The National Professional Standards for Teachers “represent an analysis of 
effective, contemporary practice by teachers throughout Australia” (AITSL, 2011, p. 1). 
Their development included “a synthesis of the descriptions of teachers’ knowledge, 
practice and professional engagement used by teacher accreditation and registration 
authorities, employers and professional associations” across Australia (AITSL, 2011, p. 
1). The purpose of the National Professional Standards is threefold. They are a public 
statement of what constitutes teacher quality, providing a framework which makes 
explicit the knowledge, practice and engagement of teachers across career stages. They 
inform the development of professional learning goals, providing a framework by which 
teachers can judge the success of their learning and inform reflection and directions for 
future achievements. And, they provide the basis for professional accountability, 
helping ensure that members demonstrate certain levels of performance across four 
defined career stages. The purpose of the National Professional Standards, is therefore 
broader than that of the AAMT Standards for Excellence, covering registration and 
accreditation for career staging in addition to professional development. A question of 
interest is how the two will work alongside one another in the future. 

Links with existing State and Territory curriculums 
There are four stages in the development of the Australian Curriculum. The first stage, 
The Curriculum Shaping Stage, involved the development of a paper titled, Shape of the 
Australian Curriculum. This presented a broad outline of the curriculum K–12 and 
curriculum design advice for each of the learning areas. The second stage, The 
Curriculum Writing Stage, involved teams of writers, supported by expert advisory 
panels and ACARA curriculum staff, developing the Australian Curriculum, which 
includes content descriptions and achievement standards K–12. Writers were guided by 
information presented in ACARA’s Curriculum Design Paper, and advice from the 
ACARA Board. Writers were expected to refer to national and international curriculum 
and assessment research, State and Territory curriculum materials, and research on the 
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general capabilities described within the Shape of the Australian Curriculum paper. The 
draft Australian Curriculum: Mathematics was released for public consultation and 
subsequently modified in the light of feedback. The third stage, The Implementation 
Stage, has seen the Australian Curriculum: Mathematics delivered in an online 
environment for school authorities, schools and teachers to implement. ACARA will 
work with State and Territory curriculum and school authorities to develop 
implementation plans. Still to come is the fourth stage, The Evaluation and Review 
Stage, where processes will be put in place to monitor and review the Australian 
Curriculum based on implementation feedback.  

What the initiatives look like and how they work 
The National Professional Standards for Teachers 
The National Professional Standards for Teachers are organised into four career stages 
that reflect the continuum of a teacher’s developing expertise—“from undergraduate 
preparation through to being an exemplary classroom practitioner and a leader in the 
profession” (AITSL, 2011, p. 2). They comprise seven “interconnected, interdependent 
and overlapping” Standards that outline what teachers should know and be able to do 
(AITSL, 2011, p.3). These Standards are grouped into three “Domains of Teaching”: 
Professional Knowledge, Professional Practice and Professional Engagement. Within 
each Standard further illustration of teaching knowledge, practice and engagement is 
provided in “Focus” areas and these are separated into “Descriptors” specific to each of 
the four career stages: Graduate, Proficient, Highly Accomplished and Lead. To support 
implementation of the National Professional Standards, content-specific elaborations of 
the “Descriptors” (including mathematics elaborations) are currently being prepared to 
provide detail about what each one looks like. 
 The AAMT Standards for Excellence in Teaching Mathematics in Australian 
Schools are organised into three domains: Professional Knowledge, Professional 
Attributes and Professional Practice. Within each domain there are three or four 
Standards that describe what excellent teachers know or do with respect to specific 
aspects of the Domain. The Standards, therefore, are all “high standards” providing 
targets to which all mathematics teachers can aspire. 
 Table 1 highlights the relationship between the structure of the National Professional 
Standards for Teachers (AITSL, 2011) and the Standards for Excellence in Teaching 
Mathematics in Australian Schools (AAMT, 2006). 

The Australian Curriculum: Mathematics 
The aims of The Australian Curriculum: Mathematics are to ensure that students: 

• are confident, creative users and communicators of mathematics, able to 
investigate, represent and interpret situations in their personal and work lives and 
as active citizens 

• develop increasingly sophisticated understanding of mathematical concepts and 
fluency with processes, and are able to pose and solve problems and reason in 
Number and Algebra, Measurement and Geometry, and Statistics and Probability 

• recognise connections between the areas of mathematics and other disciplines and 
appreciate mathematics as an accessible and enjoyable discipline to study 
(ACARA, 2010, p.1). 
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Table 1. Comparison of the two Standards documents. 

Domains of 
Teaching 

National Professional Standards for 
Teachers (AITSL, 2011) 

Standards for Excellence in Teaching 
Mathematics in Australian Schools 
(AAMT, 2006) 

Professional 
Knowledge 

1. Know students and how they learn 
2. Know the content and how to 

teach it 

1.1 Knowledge of students 
1.2 Knowledge of mathematics 
1.3 Knowledge of students’ learning of 
      mathematics 

Professional 
Practice 

3. Plan for and implement effective 
teaching and learning 

4. Create and maintain supportive 
and safe learning environments 

5. Assess, provide feedback and 
report on student learning 

3.1 The learning environment 
3.2 Planning for learning 
3.3 Teaching in action 
3.4 Assessment 
 

Professional 
Engagement 
(Professional 
Attributes, 
AAMT, 2006) 

6. Engage in professional learning 
7. Engage professionally with 

colleagues, parents/carers and the 
community 

2.1 Personal attributes 
2.2 Personal professional development 
2.3 Community responsibilities 

 
 The Australian Curriculum: Mathematics is organised around the interaction of three 
content strands and four proficiency strands. The content strands describe what is to be 
taught and learnt, and include Number and Algebra, Measurement and Geometry, and 
Statistics and Probability. The proficiency strands, Understanding, Fluency, Problem 
Solving and Reasoning, describe how the content is to be explored or developed—that 
is, the thinking and doing of mathematics. They have been incorporated into the content 
strand descriptions to provide the language to build in the developmental aspects of the 
learning of mathematics (ACARA, 2010, p.2). Although the curriculum is described 
year by year, the curriculum provides advice on the nature of learners and the relevant 
curriculum for the following four groupings: Foundation–Year 2; Years 3–6; Years 7–
10; Years 11–12.  
 “Content descriptions” are included at each year level, describing the knowledge, 
concepts, skills and processes that teachers are expected to teach and students are 
expected to learn. These are grouped into “Sub-strands” to illustrate the clarity and 
sequence of development of concepts through and across the years of schooling. Other 
aspects of the curriculum include: “Year level descriptors” (statements that provide an 
overview of the relationship between the proficiencies and the content for each year 
level); “Content elaborations” (to illustrate and exemplify content) and “Achievement 
standards” (comprising a written description and student work samples that indicate the 
quality of learning that students should typically demonstrate by a particular point in 
their schooling) (ACARA, 2010). 
 The Australian Curriculum: Mathematics is designed to provide students with 
carefully paced, in-depth study of critical skills and concepts. Its design encourages 
teachers to support students to become self-motivated, confident learners of 
mathematics through inquiry and active participation in challenging and engaging 
experiences. The following section explores ways this curriculum initiative and the 
National Professional Standards initiative might promote and support excellence in 
primary mathematics teaching. 
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How the initiatives can promote and support excellence in 
primary mathematics teaching 
The two initiatives described in previous sections offer opportunities for teachers to 
reflect on their current practice and focus on improving the effectiveness of their work 
with students. The Australian Curriculum: Mathematics identifies key important areas 
of mathematics that students need to learn, the types of mathematical activity students 
should engage in as they learn these important areas (the proficiency strands), and how 
the key content identified should be sequenced across the years of schooling. Teachers 
can consider the extent to which their existing practice aligns with the key content and 
proficiency strands outlined in the Curriculum, and over time refine their practice to 
meet the expectations of the ‘new’ Curriculum. The National Professional Standards 
for Teachers, provides a framework to support teachers to identify professional 
development goals and focus improvement efforts for the specific purpose of 
professional learning or for accreditation associated with the career stages. A potential 
‘marry’, therefore, exists between the two initiatives. 
 To begin the conversation about how these initiatives might work effectively 
together to promote and support excellence in primary mathematics teaching, the 
authors have selected one aspect of content and practice to focus upon. The discussion 
that follows focuses on ways the two initiatives could prompt teachers in the early years 
to: (i) engage in reflection about current practice related to supporting students’ 
developing number sense, and (ii) select goals for increasing their effectiveness in 
teaching this area. 
 The Australian Curriculum: Mathematics emphasises that the early years, 
Foundation-Year 2, lay the foundation for learning mathematics. It states that in these 
years, children should “have the opportunity to access mathematical ideas by 
developing a sense of number” (ACARA, 2010, p.5). Howden (1989) described number 
sense as “a good intuition about numbers and their relationships. It develops gradually 
as a result of exploring numbers, visualising them in a variety of contexts, and relating 
them in ways that are not limited by traditional algorithms” (p. 11). One aspect of 
supporting children’s developing number sense involves helping them connect different 
meanings, interpretations, and relationships to the four operations of addition, 
subtraction, multiplication, and division. Helping children develop a highly integrated 
understanding of the four operations and the many different but related meanings these 
operations take on in real contexts enables them to develop operation sense (Van de 
Walle, Karp & Bay-Williams, 2010). 
 In Foundation-Year 2, the focus of work on the operations is on addition and 
subtraction. Table 2 displays the Proficiency statements, Content descriptions, and 
related components of the Achievement standards associated with addition and 
subtraction across these years in the Australian Curriculum: Mathematics. Teachers of 
the early years, need to effectively organise and support students’ learning of addition 
and subtraction so that they successfully reach the stated Achievement standards. What 
do teachers need to ‘know and do’ to do this well? 
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Table 2. Australian Curriculum: Mathematics, addition and subtraction across Foundation-Year 2. 

 Foundation Year 1 Year 2 
Proficiency 
Statements 

Problem Solving 
includes using materials 
to model authentic 
problems... discussing the 
reasonableness of results 

Understanding includes... 
partitioning numbers in 
various ways 
Problem Solving includes 
using materials to model 
authentic problems... 
discussing the reasonableness 
of results 

Understanding partitioning 
and combining numbers 
flexibly, identifying and 
describing the relationship 
between addition and 
subtraction... 
Problem Solving includes 
formulating problems from 
authentic situations, making 
models and using number 
sentences that represent 
problem situations... 
Reasoning includes... 
comparing and contrasting 
related models of operations 

Content 
Descriptions 

Represent practical 
situations to model 
addition and sharing 
(ACMNA004) 

Represent and solve simple 
addition and subtraction 
problems using a range of 
strategies including counting 
on, partitioning and 
rearranging parts 
(ACMNA015) 

Explore the connection 
between addition and 
subtraction (ACMNA029) 
Solve simple addition and 
subtraction problems using 
a range of efficient mental 
and written strategies 
(ACMNA030) 

Achievement 
Standards 

 By the end of Year 1... they 
solve simple addition and 
subtraction problems... 

By the end of Year 2... 
represent problems 
involving addition and 
subtraction by number 
sentences 

 
 Both the National Professional Standards, and the AAMT Standards for Excellence, 
include Domains of Professional Knowledge. Among those aspects of Professional 
Knowledge considered crucial to effective teaching are knowledge of the content, how 
to teach it, and how students learn it. In the National Professional Standards, Standard 
2, Focus 2.1, Content and teaching strategies of the teaching area, the description of the 
Highly Accomplished teacher includes “current and comprehensive knowledge of 
content and teaching strategies to develop and implement engaging learning and 
teaching programs”. How deep is our own knowledge of addition and subtraction, and 
how might this impact the learning opportunities we provide students? 
 Researchers and educators suggest that teachers need a deep understanding of 
addition and subtraction situations and structures in order to properly sequence 
programs to support students’ full grasp of the meaning of these operations (see for 
example, Ma, 1999; Van de Walle et al., 2010). This might seem quite obvious, 
however the complexity associated with understanding these operations in a deep way, 
is often not fully understood. Van de Walle et al. (2010), for example, explain that 
researchers have separated addition and subtraction problems into four categories based 
on the kinds of relationships involved. These include: 

• join problems – involving an initial quantity, a change amount (the part being 
joined) and a resulting amount 

963



HOLLINGSWORTH & PEARN 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

• separate problems – involving an initial quantity, an amount being removed (the 
part being separated) from the initial value and a resulting amount 

• part-part-whole problems – involving two parts that are combined into one whole 
• compare problems – involving the comparison of two quantities, where the third 

amount doesn’t actually exist but is the difference between the two amounts. 
Each of these problem structures involves a number “family” such as 4, 8 and 12, and 
any one of the numbers can be unknown in a story problem. Table 3 provides examples 
of the join problem structure with different numbers unknown. Van de Walle et al. 
provide similar examples for each of the other three problem structures. 

Table 3. Examples of “join” problems – source Van de Walle et al., 2010, p. 146. 

Join: Result unknown Join: Change unknown Join: Initial unknown 
Sandra had 8 coins. George gave 
her 4 more. How many coins 
does Sandra have altogether? 

Sandra had 8 coins. George gave 
her some more. Now Sandra has 
12 coins. How many did George 
give her? 

Sandra had some coins. George 
gave her 4 more. Now Sandra 
has 12 coins. How many coins 
did Sandra have to begin with? 

 
 Van de Walle et al. suggest that although students would not be expected to master 
knowledge of all of the structures, teachers are expected to learn them, as they are part 
of the Pedagogical Content Knowledge (Shulman, 1986) needed to teach addition and 
subtraction effectively. They point out that the overwhelming emphasis in most 
curricula is on the easier join and separate problems with the result unknown, and that 
these become the “defacto definitions of addition and subtraction: Addition is ‘put 
together’ and subtraction is ‘take away’” (2010, p. 147). These limited definitions pose 
problems for students later when they need to use other structures, so it is important that 
children be exposed to all forms within the four problem structures, and that they are 
guided towards accurate definitions for addition and subtraction. Van de Walle et al. 
also highlight that there are many more things to know about teaching and learning 
addition and subtraction. For example: how contextual problems support learning; how 
to choose appropriate numbers for problems; when and how to introduce symbols; using 
model-based problems; and, properties of addition and subtraction. 
 When we begin to explore mathematical content in a deep way, it becomes apparent 
that teaching even ‘the basics’ is not as simple as it might seem. This may be 
highlighted if we reflect on our own knowledge and practice of the content just 
discussed. For example, are we able to: Write problems similar to those displayed in 
Table 3 for the other problem structures? Use counters to model or solve the problems 
as we think children in the primary grades might do? Identify the difficulty levels of the 
various types of problems? Design learning opportunities that draw on these different 
problem structures, and combine the use of contextual problems and models to help 
students construct a rich understanding of the two operations? And, does our current 
practice reflect a depth of understanding about addition and subtraction that will best 
support students to develop operation sense? If the answer to all of these questions is 
“yes”, then we might be considered well equipped to provide students with rich and 
balanced learning opportunities related to addition and subtraction operation sense. If, 
however, some answers to the questions above are “no” and our understanding of this 
area is not as deep as it could be, there are implications for future professional learning 
in this area. 

964



HOLLINGSWORTH & PEARN 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

 In the conference presentation associated with this paper, the conversation about 
what good tasks and lessons built around addition and subtraction might look like will 
be continued. As emphasised in the Australian Curriculum: Mathematics, the 
Proficiency Strands focus on the thinking and doing of mathematics, and provide the 
language to build in the developmental aspects of the learning of mathematics. When 
students not only solve problems, but also use physical materials, words, pictures and 
numbers to explain how they went about solving the problems and why they think they 
are correct, they develop understanding and reasoning, and are able to make 
connections between the operations. These ideas will be explored further in the 
conference presentation. 

Next steps in using the initiatives to move towards excellence  
The Australian Curriculum: Mathematics focuses attention on key important areas of 
mathematics learning across the stages of schooling, and the National Professional 
Standards for Teachers provides a framework for making judgements about current 
teaching practice and future goals. The two initiatives offer opportunities for teachers to 
reflect on their current practice and focus on increasing the effectiveness of their work 
with students. 
 Over coming months, teachers will need to get-to-know these initiatives, develop 
shared understandings of them, and begin to use them. In doing this, teachers are 
encouraged to take advantage of professional learning opportunities and contribute to 
research programs to determine ‘what works’. The authors are interested in forging 
collaborations across organisations and locations to support the implementation of these 
initiatives. An invitation is extended to interested groups and individuals to continue 
conversations related to the initiatives via projects and networking. Possibilities for this 
kind of professional engagement will be explored further in the conference presentation 
associated with this paper. 
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In developing rational number understanding the use of an activity focussing on ragged 
decimals provides important experiences which can assist students to develop sound place 
value concepts. Samples of student work are analysed showing a range of conceptions. This 
material is linked to research in the area. 

Introduction 
Rational number is one of the ‘problem’ areas in middle school mathematics. Rational 
number includes both the decimal and common fraction forms of numbers which 
describe combinations of whole numbers and parts of one. A rational number is any 
number that can be written as 

 where a,b ε Z and b ≠ 0 (Z = {integers}) 
This paper focuses specifically on the connection between fraction and decimal 
representation and the use of a classroom activity that can provide a rich source of 
assessment data. 

Rational number in the Australian Curriculum 
The Australian Curriculum: Mathematics (Australian Curricululum, Assessment and 
Reporting Authority, 2010) has a substrand under the Number strand called Fractions 
and decimals which begins in Year 1 with recognising and describing a half as two 
equal parts of a whole, introduces decimal notation in Year 4 with “Recognise that the 
place value system can be extended to tenths and hundredths. Make connections 
between fractions and decimal notation” (Year 4) and in Year 6 has the decimal content: 

• Add and subtract decimals, with and without digital technologies, and use 
estimation and rounding to check the reasonableness of answers (ACMNA128)  

• Multiply decimals by whole numbers and perform divisions that result in 
terminating decimals, with and without digital technologies (ACMNA129)  

• Multiply and divide decimals by powers of 10 (ACMNA130)  
• Make connections between equivalent fractions, decimals and percentages 

(ACMNA131). 
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 After Year 6 the substrand Fractions and decimals ceases and rational number 
knowledge continues under the substrand Real numbers with Year 7 covering 
multiplication and division of decimals, rounding and simple conversions between 
fractions, decimals and percentages. Year 8 content for decimals is to “Investigate 
terminating and recurring decimals” and in Year 9, while decimals are not specifically 
mentioned, scientific notation is introduced. 

Fractions to decimals 
The concept of fraction has a number of facets. At one level a fraction is a part of a 
whole and the part-whole aspect has dominated much of the early fraction learning. 
Many students, including those in secondary school and adults, have an image of a 
fraction as part of a whole. While a fraction can be considered a part of a whole, many 
take this to mean that fractions are all less than one and consider fractions as only part 
of a whole. One of the understandings that students need to develop in relation to 
fractions is a conception of fractions that includes fractions beyond one, fractions of 
collections and not just of a continuous whole, fractions as representing division and 
fractions as numbers on a number line including whole numbers. Probably the most 
used framework for fractions is Kieran’s (1980) five-part model with the sub-constructs 
Part-Whole where a fraction is understood as a number of parts (numerator – the 
number) of a total number of equal parts (denominator – ‘de name’), Measure where a 
fraction can be located as a number on a number line, Quotient where a fraction can be 
seen as a division, Operator where a fraction operates on a number or object such as 
two fifths of 24 cakes and Ratio where a fraction compares the size of two sets or 
measures. Kieran (1988) further developed his model incorporating the Part-Whole into 
the other four sub-constructs and including another layer beneath consisting of Unit 
Forming, where fractions can be seen as constructed of the sum of other parts so that, 
for example, ¾ is ½ and ¼, Partitioning, where students were able to partition and 
recognise equal partitions, and Equivalence. 
 One aspect of fractions that many students have not incorporated into their connected 
understandings is that of quotient or fractions as division. The connection between 
division and fractions is made by the very symbols we use since the division sign ÷ 
represents a fraction with the number before it becoming the numerator and the 
following number the denominator. This quotient concept of fraction is strongly 
connected to decimals as the numerical process of division often produces a decimal 
number.  
 There are many misconceptions that arise in the area of fractions and decimals. In 
this paper the particular focus is on comparisons of the magnitude of fractions and 
decimals as well as the transformation of rational numbers in fraction form to decimal 
form. Steinle and Stacey’s work in the area of decimals has long been recognised as 
leading in the field (Steinle, Stacey & Chambers, 2006; Steinle & Stacey, 1998, 2004, 
2011). Their documentation of student errors and written assessment techniques have 
been followed by others who have used interview assessments as well to gain greater 
understanding of students’ strategies in tackling problems such as decimal comparisons 
(Roche, 2011; Roche & Clarke, 2004).  
 The following activity is one that can be used in a class to provide a learning activity 
but also to provide assessment information for the teacher on students ordering of 
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fractions, decimals and transformation from fractions to decimals. The description 
presents the activity with a brief story of implementing it in a class. 

Activity 
In the initial introduction, the aspect of changing fractions to decimals using division 
was discussed and made explicit with the division sign and its connection to fractions 
demonstrated.  

 
The activity then proceeded by modelling with a student the first few ‘turns’ of the 
activity demonstrating what the students were required to do and modelling what they 
were to record on the board to provide a sample. Part of the activity is a game. The 
materials required for each pair of players are a record sheet, a pack of ordinary cards 
with the picture cards removed (leaving 40 number cards with the ace being one), a 
calculator, a large sheet of paper at least A3 in size, a pair of scissors and a glue stick. 
 The record sheet is best as an A4 sheet with two columns and ten rows (no margins) 
labelled A1 to A10 on the left and B1 to B10 on the right. The first time this activity 
was used the cells were not labelled but labelling like this simplifies assessment. 
 Play was between two players. Five cards were dealt to each player. Each player then 
each chose two of their 5 cards to use. The two cards chosen were used to make a 
fraction with the aim being to make the smallest fraction. They had to make the decision 
without referring to the calculator or seeing which cards the other player had chosen. 
The column on the left, labelled with the A’s was for one student to record while the 
other player records in the column on the right labelled with the B’s. This fraction was 
written on the left of the cell on the paper followed by the calculation that should be 
done to change the fraction to a decimal. The calculation was then done, using the 
calculator where necessary, and the decimal written fully (if they already knew or could 
easily change it to a decimal in another way they were allowed write it first then just use 
the calculator to check). The students should write the complete decimal down as it 
appears on the calculator and not round it. The pair of students then decided which of 
them had the smaller number and that person scored a point which they wrote in the cell 
on the sheet either as a tick or a 1. If the two fractions were equal they each gained a 
half point. An example of recording is shown here in Figure 1. 

        3 ÷ 4  =   0.75 1         5 ÷ 8  =   0.625 

Figure 1. Sample of recording demonstrated. 

Students made errors in doing this but the errors were a part of learning. This provided 
rich assessment data enabling the teacher to see misunderstandings that could be 
followed up with the whole class in later discussion. 
 Once a row was completed each player picked up two cards, taking turns to replace 
those used. The used cards were placed to one side. For the last two turns there were not 
enough replacement cards and for the very last turn there was no choice of cards – just a 
choice of whether to make a card the numerator or the denominator. 

6 
5 5 6 = 
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 When a number of players had completed their sheets, play paused, and there was a 
class discussion about how they decided how to make the smallest fraction. One student 
answered that they had to put a small number on the top (in the numerator) to make the 
fraction small. Another then said that the larger the number on the bottom 
(denominator) the smaller the fraction. A short argument followed about which was the 
better strategy to use, with a number of the students joining in. Another student then 
suggested that perhaps it would be best to use both strategies. The question was then 
asked, “Once you have the two fractions how do you know which one is smaller?” This 
led to another discussion which raised a number of ideas and finished with the teacher 
asking them to decide which was smaller, 3/8 or 5/7. Students were asked once they had 
decided on an answer to show which one by clasping hands for the first and hands on 
the floor (or desk) for the second. A discussion followed with students putting their 
arguments for their answer with the proviso that they were allowed to change their 
answer if another student’s argument convinced them.  
 Some gave the argument that one fraction was smaller than a half and the other 
larger, using a benchmarking approach. Another said it was easiest to compare them if 
they were changed to decimals or percentages. This discussion was not prolonged but 
once there was general agreement about which of the two was larger the activity 
continued. 
 The students then returned to the game. Once the students had completed each row 
on the grid and decided who “won”, they cut the grid into the twenty separate cells and 
then worked together to order the twenty numbers from smallest to largest, gluing them 
on to the A3 sheet when they were happy with the order.  
 When the students completed their sheets they returned to the group for a discussion 
on how to decide which is the larger of two decimal numbers.  

Strategies and misconceptions 
Many of the usual misconceptions such as longer is larger and shorter is larger were 
raised. Apart from the standard misconceptions, two main strategies were suggested by 
the students. One required them to add zeros to make the numbers the same length but 
they found this hard to do with these numbers because they were very ragged and there 
were twenty numbers to order. As Roche (2011) has found, students who appear to be 
expert when comparing two decimals can have difficulty ordering larger groups of 
decimals. The strategy of adding zeros is one that encourages whole number thinking as 
most students refer to the number after the point as a whole number so the point is often 
seen as separating two whole numbers. The other strategy students suggested drew on 
their understanding of ordering whole numbers, where you compare the largest parts 
first so if the numbers are in the thousands and the number of thousands is larger “you 
don’t have to look any further”. They argued that, “first you look at the place on the left 
then only use the next place if those two are equal”. These students explained to the rest 
of the class how to use this strategy with decimals, and the place value headings were 
written up with the ...ths part of the words being emphasised.  
 Students need to really think about the place value and the real size of the decimals 
rather than a memorised process. This requires them to have some experience with 
materials that model the relative magnitudes of decimals and these may be area models 

969



HORNE 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

such as Decimats (Roche, 2010) or length models such as Deci-tubes (also known as 
LAB).  
 The sheets that the students produced in this exercise provided a rich source of 
assessment data. The first time I used the activity, the cells in which the students 
recorded were not labelled to enable later identification, but this was rectified in 
subsequent uses. The samples of student work shown in Figure 2 are not well identified 
or recorded but illustrate student understandings. They are also segments of the final 
ordering of the twenty numbers rather than complete records. 
 The section of student work ordering the decimals on the left of the figure illustrates 
that they have been able to order but have not understood that division is not 
commutative as they have used expressions such as 8 ÷ 2 and 2 ÷ 8 interchangeably.  
The students were asked to record the division exactly as they pushed the keys on the 
calculator. In this case 8 ÷ 3 = .375 and 8 ÷ 2 = .25.  
 When students are introduced to commutativity, it is with addition and 
multiplication; however, many students have generalised this to subtraction and 
division. Our teaching needs to make explicit the times when commutativity does not 
work as well as when it does. 

  

Figure 2. Samples of student work ordering ragged decimals. 

 The section of work in the left centre shows a similar problem with the second 
expression but also demonstrates that when trying to make the smallest fraction they 
had not fully grasped the idea of the larger of the two numbers needing to be in the 
denominator. This occurred with many of the students and can be seen in three of the 
four samples above. Student pairs with numbers larger than 1 in their lists were 
indicating to the teacher that they did not have a number sense which included 
estimation of the magnitude of a fraction. 
 Some students were able to order small groups but had trouble with the whole 
collection and the students who completed the work in the sample on the right of figure 
2, showed very much whole number thinking moving from the whole number 1 to .1 
then back to a whole number 2 then .2 followed by .3, .6, .8 and .32. For them, the 
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decimal point really did not exist. These students also did not record as they were asked. 
The 0.32 > 0.8 answer is indicative of a longer is larger misconception. This is often 
because of string length thinking which enables success at ordering whole numbers 
since for them longer is indeed larger.  
 Students, and sometimes teachers and other adults, may treat decimals as whole 
numbers but just to the right of the decimal point. Whole number thinking is one of the 
major misunderstandings of decimals. The use of money to develop decimal 
understanding does not help this because money is seen as a whole number of dollars 
and a whole number of cents. Many children think that $7.6 means 7 dollars and 6 
cents. The way we say the numbers can also contribute to this as children counting by 
0.1 will say, “... point eight, point nine, point ten, point eleven” which they would write 
as 0.8, 0.9, 0.10, 0.11. 
 The pair of students, whose work is just right of centre in Figure 2, started in the left 
hand column with the numbers increasing then moved from .925 to .25, demonstrating a 
shorter is larger misconception. Once they reached numbers larger than 1 they 
demonstrated correct ordering. Shorter is larger misconceptions include denominator 
focussed thinking, where students think tenths are larger than hundredths so 0.3 > 0.54, 
reciprocal thinking, where 0.3 > 0.54 because thirds are larger than fifty-fourths and 
negative thinking, where the numbers to the right of the decimal point become negative 
so that 0.2 > 0.54 because –2 > –54, although this is not the way a student might describe 
it. It is not possible to tell from the students’ work the reason for their shorter is larger 
thinking but it signals to the teacher the possible misconceptions. 
 This activity raises the issue of the teaching approaches we use with decimals. For 
example, as mentioned above, while the procedure of adding zeros to make the decimals 
the same length does allow the children to obtain the correct answers to some questions, 
it fosters whole number thinking rather than the understanding of place value. This 
illustrates the importance of allowing students to experience ragged decimals right from 
their early experiences with decimals and the importance of stressing place rather than 
procedure.  
 A fairly extensive classification of misconceptions and strategies in understandings 
of place value with decimal numbers has been completed by Steinle, Stacey and 
Chambers (2006). Their broad classification included longer is larger, shorter is larger, 
other strategies and apparent experts. Each of these had sub-categories with some 
excellent descriptions. 
 Even the way we say decimals is important in early understanding. When we say the 
words for whole number, the place is part of the saying: three thousand four hundred 
and fifty three. In introducing decimals to children we should use the same approach 
specifying each place so that 1.42 is one and four tenths and two hundredths. Later work 
with renaming can extend this to four tenths and two hundredths also being forty-two 
hundredths but that should also be done so that 1.8 is one and eight tenths but also 
eighteen tenths. In doing this it is useful to make fun of the ...ths part of the words, 
overemphasising it as Australians often swallow the ends of their words and children do 
not hear the ...ths part of the words. 
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Final comments 
Students come in to any class with a large range of past experiences and hence very 
different knowledge and understanding. The use of formative assessment through rich 
tasks enables a teacher to collect data on the students’ understandings and 
misconceptions while at the same time providing an activity through which students can 
learn. In the discussion and with the pairs working together the students were learning 
from each other. 
 By setting up the record sheet so that it is easy to identify the particular student in the 
pair (A or B) and match the fractions they were comparing at each stage through the 
number on the cell, it is possible to see a range of understandings and misconceptions in 
both fractions and decimals while at the same time providing opportunity for them to 
learn more about the equivalent forms of rational numbers. 
 The final component of such a task is the analysis of the student errors and planning 
for teaching to provide the students opportunity to gain greater understanding and 
number sense and move beyond these misconceptions. 
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A review of the rationale of the draft Australian Curriculum: Mathematics revealed that it 
has strong links with numeracy, making sense of mathematics, and making connections, 
both within mathematics itself, and between mathematics and everything else. There is a 
clear intent for teachers to use a constructivist approach with an emphasis on rich 
conceptual understanding and by teaching the content strands through the Proficiency 
strands, as opposed to solely the acquisition of procedural knowledge. This paper provides 
teachers with strategies for using an investigative approach to develop rich understandings 
of key number concepts and to enable their students to make connections with and within 
their mathematical knowledge.  

Introduction 
The Australian Curriculum: Mathematics, developed by the Australian Curriculum, 
Assessment and Reporting Authority (ACARA) (2011) builds on the good work and 
sound intentions of strands such as Working Mathematically and Appreciating 
Mathematics from previous state curricula. It has strong links with numeracy, making 
sense of mathematics, and making connections, both within mathematics itself, and 
between mathematics and everything else. Today, there is much pressure on teachers to 
be ruled by NAPLAN results and to ensure that their school’s comparative standing is 
strong, and there is a real danger that such pressures will lead to a narrowing of teaching 
strategies and practices, if this has not already occurred. NAPLAN test scores can 
greatly assist teachers if they are used appropriately. But it is important that teachers 
avoid having both eyes fixed on solely improving NAPLAN scores and following the 
Content strands, at the expense of the Proficiency strands. The intent of the Australian 
Curriculum: Mathematics is to teach the Content strands through the Proficiency 
strands and the former should be used as a guide about what and when we teach. 
Ultimately, if we teach through the Proficiency strands, with the aim being the 
development of deep conceptual understanding, our students’ NAPLAN results will 
take care of themselves. 

Australian Curriculum: Mathematics—What’s the intent? 
A quick review of some of the key words in the rationale of the draft Australian 
Curriculum: Mathematics may reveal the real message intended for teachers. A word 
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count of the eight-page rationale revealed interesting frequencies of use of particular 
words, as shown in Table 1 and Table 2. 

Table 1. Key word count from Australian Curriculum: Mathematics rationale- constructivist. 

understand/understanding  31 connect/connection 8 
problems/problem solving 20 pattern 6 
concept/conceptual 13 mental 6 
relate/related/relationship 13 variety/various 5 
reason/reasoning 13 communicate/communication 4 
interpret/interpretation 12 confident/confidence 4 
represent/representation 12 link 4 
investigate/investigation 9   

Table 2. Key word count from Australian Curriculum: Mathematics rationale- traditional. 

skill 10 rote 0 
procedure/s 2 algorithm 0 
written 2   

 
 It is interesting to note firstly the frequency of use of certain key words often 
associated with a constructivist approach (Table 1), and the corresponding lack of 
mention of other key words that could be described as indicating a more traditional 
approach to teaching mathematics (Table 2). What, then, is entailed in a constructivist 
approach? 
 Constructivism is about sense-making and connecting various concepts to one 
another. When mathematics makes sense to learners, it will have meaning and be 
“understood as a discipline with order, structure, and numerous relationships” (Reys, 
Lindquist, Lambdin & Smith, 2009, p. 23). Constructivist teaching has several features 
acknowledging that students actively build and construct their understanding, rather 
than passively receive knowledge. This is achieved through reflections on their physical 
and mental actions, aided by purposeful and focussed teacher questioning, and as such, 
learning is essentially a social process where learning occurs through interaction, 
dialogue and discussion (Reys et al., 2009). 
 What does this brief linguistic analysis tell us? It appears to suggest that teachers are 
being encouraged to use a constructivist approach to teaching mathematics where there 
is an emphasis on rich conceptual understanding as opposed to the mere acquisition of 
procedural knowledge. This, in turn, should take place in an environment that is rich in 
problem solving opportunities, dialogue and interaction, and opportunities for 
questioning and reflection. Indeed, this is precisely what is embedded in the four 
Proficiency strands of the Australian Curriculum: Mathematics (Australian Curriculum, 
Assessment and Reporting Authority, 2010), these being Understanding, Fluency, 
Problem Solving and Reasoning. These strands describe “how content is explored or 
developed, i.e., the thinking and doing of mathematics” (ACARA, 2010, p. 2). Within 
the brief descriptors of each Proficiency strand, there are statements such as “students 
build robust knowledge of adaptable and transferable mathematical concepts, make 
connections between related concepts” (Understanding); “choosing appropriate 
procedures, carrying out procedures flexibly” (Fluency); “make choices interpret, 
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formulate, model and investigate problem solutions, and communicate solutions 
effectively” (Problem solving); and “sophisticated capacity for logical thought and 
actions, such as analysing, proving, evaluating, explaining, inferring, justifying, and 
generalising” (Reasoning) (ACARA, 2010, p. 3). These are exciting ideas and give 
teachers a clear message about how mathematics is expected to be taught, consistent 
with the new Australian Curriculum: Mathematics. 

Relational understanding 
Within these points is the strong suggestion that the development of relational 
understanding is of paramount importance. Skemp (1976) described relational 
understanding as being conceptual by nature and allowing for connections to be made 
between fundamental ideas so that the broad application of mathematical principles can 
be appreciated and used. Smith (2006) also noted that the relational teacher is one who 
provides an appropriate context in which the learning of key concepts is embedded, so 
that children may work collaboratively to generate solutions to problems based on 
connections to previous experiences and understanding.  
 To illustrate this idea further, consider the notion of ‘number sense’. In discussing 
number sense, Anghileri (2000) noted the importance of children being aware of 
relationships that exist between mathematical concepts so that they can generalise about 
patterns and processes and be able to link new and existing knowledge. She also made it 
clear that rote learning or drill and practice without the associated understanding will no 
longer serve children (if it ever really did!) and that teaching needs to “focus on the 
links that demonstrate the logical structure underlying numbers and number operations” 
(Anghileri, 2000, p. 2) Three key ideas emerging from Anghileri’s discussion of number 
sense and they can be summarised as follows: 

• recognition of patterns and relationships; 
• recognition of links and connections between operations; 
• emphasis on relational understanding (Anghileri, 2000). 

An orientation of this kind certainly seems to be reflected in the Australian Curriculum: 
Mathematics. 

Mathematical and pedagogical content knowledge (MCK and 
PCK) 
If teachers are to teach successfully the various key concepts through the Proficiency 
strands, there are some essential prerequisites. The first of these is the teacher’s own 
mathematical content knowledge (commonly abbreviated to MCK). A robust and deep 
understanding of the mathematics needed by children is a non-negotiable attribute of 
effective teachers. It goes without saying that for a teacher to expect children to explore 
and investigate concepts at a meaningful level, that teacher must know what questions 
to ask in order to constructively guide children’s thinking so that they may analyse, 
infer, evaluate, explain and make appropriate generalisations as part of developing the 
deep conceptual understanding sought. Completely open investigations have some value 
but focused investigations and problem solving, based on specific aspects of a concept 
that have been identified as a need by the teacher, have far greater value. Guidance of 
this kind depends on the teacher having a deep conceptual understanding and being able 
to recognise what to embed in an investigation or problem solving task. 
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 Secondly, a teacher needs to be able to make professional judgements based on 
identified needs. Their MCK will aid in identifying the mathematics that the children 
know and need to know next and informed judgements must then be made about how 
best to help the children learn what is needed. This is where a teacher’s pedagogical 
content knowledge (PCK) comes to the fore with reflective questions such as the 
following being asked: “How do I best teach what I have identified as a need?”, “Which 
aspect of the Proficiency strands will I use as the vehicle for teaching it?” and “How 
will I know that they have learned it?”. The latter is reasonably simple if the target 
objectives are clear, unambiguous and assessable. 
 Thirdly, a constructivist classroom environment needs to prevail if teachers are to 
effectively teach concepts through the Proficiency strands. If children are to actively 
construct their knowledge and understanding, the learning of mathematics needs to be a 
social process where dialogue and interaction are the norm. Children need to be 
encouraged to take risks and understand that it is alright to make mistakes because they 
are avenues to learning. The posing of questions by teachers and students is a central 
plank in such a classroom where continual reflection is the norm. Similarly, there needs 
to be an acceptance that there is more than one way to a solution and that there may be 
more than one possible answer. In all of this, the teacher needs to be flexible and 
accepting of the fact that the direction of a lesson, no matter how well planned, may 
change or need to be changed at any point, depending on what understandings the 
children construct. Setting the agenda for using the proficiency strands to develop a 
deep conceptual understanding demands that teachers themselves have strong levels of 
MCK, that they know the abilities of the children they teach, and can ignite their 
learning through setting appropriate challenges. 
 Shulman’s (1986) work on the knowledge required for teaching identified several 
categories of content knowledge required for effective teaching. The first of these was 
subject matter content knowledge that constituted “the amount and organisation of 
knowledge per se in the mind of the teacher” (Shulman, 1986, p. 9). However, this is 
much more than just ‘knowing the facts’ about mathematics. To this end, Shulman 
(1986, p.9) noted the following: 

To think properly about content knowledge requires going beyond knowledge of the facts 
or concepts of a domain. It requires understanding the structures of the subject matter … 
and include[s] both the substantive and the syntactic structures. The substantive structures 
are the variety of ways in which the basic concepts and principles of the discipline are 
organised to incorporate its facts. The syntactic structure of a discipline is the set of ways 
in which truth or falsehood, validity or invalidity are established. 

For teachers of any level of experience, this entails knowing not only factual content but 
why certain facts are as they are, and most importantly, being able to explain such 
things to their students. (Shulman, 1986) 

What does it look like in action? 
The following is an example of how the Proficiency strands in the Australian 
Curriculum: Mathematics can be used as the vehicle for developing deep conceptual 
knowledge in children. The example is based on the Year Four level but can easily be 
adapted for other levels as similar skills are expected of children in those years and also, 
this task can underpin the development of deeper conceptual knowledge. The task 
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described here aligns with the Content Description statement for Year Four which 
includes the following:  

• Investigate number sequences involving multiples of 3, 4, 6, 7, 8, and 9  
• Recall multiplication facts up to 10 × 10 and related division facts 
• Develop efficient mental and written strategies for multiplication and for division 

where there is no remainder (ACARA, 2011)  
As well, it aligns with the Year Four Level Description, which includes the following: 

• Understanding includes making connections between representations of numbers 
• Fluency includes recalling multiplication tables 
• Problem Solving includes using properties of numbers to continue patterns 
• Reasoning includes using generalising from number properties and results of 

calculation … communicating information (ACARA, 2011) 
 The task shown in Figure 1 is designed to be used with children following a range of 
preparatory tasks depending on the level of experience children have had with tasks of 
this nature. To complete the task, children need to decide what digits go in the boxes. 
 

×  = 6 
Figure 1. The main task 

To illustrate some preparatory tasks, Figure 2 first shows a suitable entry level task, 
which is then extended along the lines suggested, eventually arriving at the task shown 
in Figure 1. 
 

 ×   =  

 

 ×   =   

 

  ×   =   

Figure 2. Possible stages of presentation leading to the main task 

Key questions 
Within a constructivist classroom, there are many questions a teacher could ask of their 
students, both to establish an understanding of the task as well as to begin to arrive at a 

977



HURST 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

solution. This needs to be done at all levels of the task development and a natural 
progression is to use the following questions as a guide: 

• Can we find a solution? 
• How many solutions do you think there might be? 
• How will we know when we have found them all? 

Regardless of the level at which the task is being tackled (Figure 1 or aspects of Figure 
2), there are many other focus questions that could be posed by the teacher. The 
following are offered as examples and relate to the main task, but could easily be 
modified to accommodate the level at which the task is being done. 

• What sort of a number sentence do we have? 
• How big are the numbers? 
• What do we know about the numbers? 
• What numbers could be the ones digit in the first two numbers? Why? 
• What numbers can we multiply together to make a number ending in 6? 

Rich conceptual understanding 
Within this task series, there are a number of key aspects of mathematical content 
knowledge required by teachers, in order to develop a rich conceptual understanding in 
children. These include: 

• basic number facts; 
• multiplication of one and two digit numbers; 
• patterns in multiples; 
• mental computation strategies; 
• properties of multiplication (e.g., commutative). 

Teaching points and more questions 
In order to develop the rich conceptual understanding desired, the following are offered 
as teaching hints and possible questions to pose for children as they investigate this 
problem series. 

• Have children list all the combinations that give a ‘6’ in the ones place: 1 × 6, 
3 × 2, 6 × 6, 8 × 2, 8 × 7, 4 × 4, 9 × 4 ... and the commutations (i.e., 6 × 1, 2 × 3 
etc.). 

• Ask questions like: “What are some things that we can’t have?” — We can’t have 
a 1 in the single digit because we won’t be able to multiply it by anything big 
enough to make a three digit answer. 

• Have them exhaust all the possibilities for each combination and tabulate the 
solutions.  

• Ask questions like: “If we put a 2 and 3 in the ones places of the first two 
numbers, how big must the number in the tens place be to make a three digit 
answer?’ – We can’t have 12 × 3, 22 × 3, or 32 × 3 because the results will all be 
less than a three digit answer. Most will be able to do this mentally and through 
estimation. This promotes number sense.  

• Have children work collaboratively and get them to document their solutions, 
perhaps on small card pieces. They could then arrange them in patterns.  

• Pose some questions like ... ‘What would happen if we had a two digit number for 
the answer?’ or ‘How would it affect the number of solutions if we had a different 
number in the ones digit of the answer (e.g., a 3, 4, 7, 9 ...)?’  
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Representing solutions 
Children should be encouraged to develop a system for representing the solutions they 
generate; this could be done initially by writing each solution on a piece of card, as 
suggested above, and then arranging them in some sort of pattern. Ultimately, a table as 
shown in Table 3, could be the end result. This might be developed as a collaborative 
class effort to conclude the investigation.  

Table 3. Arrangement of possible solutions 

Number combinations 
that give a number 
ending in 6 when 
multiplied 

Possible solutions Number of solutions 

1, 6 No solutions possible 
for _6 × 1 
 
Largest possible 
solution is 96 × 1 = 96 

21 × 6 = 126 
31 × 6 = 186 
41 × 6 = 246 
51 × 6 = 306 
61 × 6 = 366 
71 × 6 = 426 
81 × 6 = 486 
91 × 6 = 546 

 
 
8 

2, 3 42 × 3 = 126 
52 × 3 = 156 
62 × 3 = 186 
72 × 3 = 216 
82 × 3 = 246 
92 × 3 = 276 

53 × 2 = 106 
63 × 2 = 126 
73 × 2 = 146 
83 × 2 = 166 
93 × 2 = 186 

 
 
11 

6, 6    
2, 8    
7, 8    
4, 4    
4, 9    
 
Total possible solutions  

82 

Further questions and investigation 
Once the solutions have been documented, there is opportunity for mathematical writing 
and further investigation of the results. Some possible focus points could be: 

• Have children investigate patterns in the solutions. Ask them questions like ... 
‘How does the pattern of answers increase for the 1 × 6 solutions?’ – The answers 
go up by 60 each time. Why is this? 

• Ask questions like ... ‘Which numbers occur more than once as an answer?’ (e.g., 
126 has already appeared three times: why?)  

Conclusion 
The Australian Curriculum: Mathematics clearly encourages teachers to adopt a 
constructivist stance to the teaching and learning of mathematics. The notion of 
developing a rich understanding of key concepts and content through the Proficiency 
strands is suggested in this paper as a preferred mode of operation. The example offered 
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here is one that has many entry levels and which could be used with children in many 
different age groups and re-visited over a period of time to develop the task to more 
complex levels. Indeed, the main task as presented in Figure 1 could be extended 
further.  
 As children investigate this task series, they are provided with ample opportunity for 
developing those important skills embedded in the proficiency strands. Amongst others, 
they have an opportunity to engage in the following: 

• the thinking and doing of mathematics 
• building robust knowledge of adaptable and transferable mathematical concepts 
• connecting related mathematical concepts 
• choosing appropriate procedures and carrying them out flexibly  
• making choices about strategies 
• interpreting, formulating, modelling and investigating problem solutions 
• communicating solutions effectively  
• thinking and acting logically through analysing, proving, evaluating, explaining, 

inferring, justifying, and generalising (ACARA, 2011). 
Of course, if this is actually to occur, it is dependent on the presence of a well-informed, 
reflective, and constructivist teacher in the context of a rich and positive classroom 
environment. 

Author note 
This paper is an extended and substantially revised version of an earlier paper presented 
to the Notre Dame Mathematics Education Conference in Fremantle, January 2011. 
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Mathematics staff at The University of Queensland have created an electronic question and 
solution generator that covers a wide range of fundamental mathematical, statistical and 
quantitative skills. This open-access system allows teachers and/or students of all grades to 
create an unlimited number of questions covering over 100 topics, ranging from order of 
operations through to calculus and linear algebra. The beauty and originality of this flexible 
electronic framework is that fully worked solutions are also included. This paper outlines 
the process of developing and testing the question generator and discuss evidence of its 
effective implementation. 

Introduction 

In recent years there has been a noticeable increase in the diversity of backgrounds, 
abilities and aspirations of students entering mathematics courses at Australian 
universities. Fewer students are studying higher-level mathematics in Australian high 
schools which is contributing to this increase (McPhan et al., 2008). As a result many 
students are increasingly struggling with understanding and applying mathematical and 
quantitative concepts at university (Kvyatkovskyy, Adams, & Zinchenko, 2007).  
 In order for mathematics education to enable more students to address the challenges 
they face in learning mathematics, appreciate the  relevance of mathematics for their 
discipline, and experience positive and productive outcomes, better ways of providing 
supported engagement, feedback on learning and sustained practice need to be found. In 
addition, to prepare mathematics teachers to respond effectively to student diversity and 
learning difficulties, time-efficient yet mathematically sound resources need to be 
developed (Cobb et al, 1992; Gess-Newsome & Lederman, 1999). 
 Success at mathematics requires a combination of technical skills and intuition. 
Technical knowledge is important, but of equal or greater importance is the ability to 
use intuition, flair and elegance when solving problems. Teachers and lecturers are an 
important part of the learning process, as they provide students with the opportunity to 
observe an experienced practitioner applying these creative talents, and explaining and 
demonstrating how to do so (Entwistle, 2005). However, a common thread to 
mathematics learning experiences is that material cannot be absorbed and assimilated 
passively. It is learned by doing, not simply by watching. At every level, from primary 
school through to tertiary post-graduate study, inquiry- and discovery-based learning are 
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essential, and students must work through many examples and problems in order to 
hone their technical skills and mathematical intuition (Kvyatkovskyy, Adams & 
Zinchenko, 2007). By thinking about what they are doing and observing the similarities 
and differences between various questions they become attuned to patterns and 
subtleties, thus improving their ability to choose what techniques to use and how to 
work creatively.  
 Traditionally, working through examples was sometimes regarded merely as rote 
learning. Certainly there is some need to commit mathematical facts to memory, but we 
are not suggesting that the primary reason for working through a number of questions is 
simply to learn how to recite facts. Instead, learning mathematics by practising is a 
genuine and necessary aid to improving understanding and enhancing creative abilities, 
in addition to learning technical skills (Bransford, 2000).  
 A multi-disciplinary team at The University of Queensland (UQ) has created an 
online question generator with fully worked solutions which gives students the 
opportunity to improve their mathematical understanding. In this paper we describe this 
new software package which has been used at UQ to assist students making the 
transition from secondary to tertiary mathematics.  

The system 
Overview 
The development of SmartAss (which stands for Smart Assignments) was supported by 
the Carrick Institute for Learning and Teaching in Higher Education (now the soon to 
be defunct Australian Learning and Teaching Council (ALTC)). The system is based on 
a prototype question and solution generator designed by Professor Peter Adams from 
UQ.  
 SmartAss can be used to help with a variety of mathematical concepts and 
techniques, ranging from quite simple content to more sophisticated material. It has 
been used in courses that are primarily mathematical in nature, but is also very useful 
for students of science, engineering, business and agriculture who need to apply 
quantitative concepts in the context of their specific discipline. The main goals and 
features of the software include: 

• automatically generating a suite of random questions and corresponding fully-
worked, formatted solutions to every question, clearly and unambiguously 
reproducing the steps that students would typically take when correctly solving 
the problem; 

• providing students with a mechanism for concentrating on those concepts which 
cause them difficulties, enabling inquiry-based learning and improving their 
technical and creative abilities; 

• implementing a powerful learning aid that gives support for both introductory and 
advanced mathematical concepts and processes; 

• allowing instructors to efficiently and easily create resources for illustrative 
examples, practice materials and individualised assessment; 

• being directly usable in all discipline areas that require quantitative skills; 
• free availability to the education community as open-source software, with a 

modular design allowing components to be easily redesigned and extended. 
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 Randomization in computer-based learning resources is not new. However, 
successfully using it in effective aids for learning mathematics has previously proved to 
be problematic. Some well-known and excellent mathematics packages (such as Maple, 
Mathematica and Matlab) simply give the final answer to mathematical questions, with 
no indication of any intermediate steps or processes that are required in order to actually 
derive the answer. These are great tools, used very widely in research as well as tertiary 
teaching. However, they suffer from the disadvantage that they provide nothing more 
than the final answer. If a student makes a mistake, the only option is to go back and try 
again. Often the student simply repeats the same error, which quickly leads to loss of 
confidence.
 There are commercial packages that include an attempt to format solutions step-by-
step.  Despite significant recent improvements in the scope and functionality of these 
packages, they still often cover only low-level material, or the variations in the 
questions are predominantly in superficial arithmetic, which is of limited use in helping 
students to improve their high-level reasoning skills. SmartAss overcomes these 
limitations through its careful design, power and flexibility. 
 In the following sections we describe the development of SmartAss in more detail, 
present some examples, and give some information on using the system at UQ. 

Development 
The key members of the development team were a mathematics academic (the second 
author of this paper), a high school mathematics teacher working at UQ (the first 
author) and a computer programmer who was quite proficient in mathematics. Using 
Adams’ prototype and starting with the first chapter of content from a bridging 
mathematics course that is roughly equivalent to the Queensland senior secondary 
advanced mathematics course, the team set about writing questions with fully worked 
solutions.  
 The three members met weekly for a year to discuss questions and the appropriate 
setting out of solutions. Some topics were easy and required little discussion. The most 
time consuming topic was fractions. There are various ways of solving fractions 
questions and research has found that fractions are quite a difficult concept (Smith, 
2002; Clarke, 2007). We eventually decided on a method that was not exactly how a 
mathematician would solve the question (e.g., doing many steps at once), but rather a 
step-by-step approach that allowed the student to see exactly what was happening in 
order to build understanding and confidence. A fully worked solution to a fractions 
question can be seen in Figure 1.  
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Figure 1. SmartAss solution to a fractions question. 

 SmartAss comprises of Java and LaTeX files which are reasonably straightforward to 
make. (Kvyatkovskyy, Adams, and Zinchenko (2007) have published on the more 
technical aspects of SmartAss.) There are more than 100 different question templates 
and with the randomness allowed in the questions, there are more than 1000 questions 
and corresponding fully worked solutions.  
 While most textbooks contain exercises with the same questions just with different 
numbers, SmartAss has variations on questions which allows students to improve their 
mathematical understanding and high-level reasoning skills. Examples of different 
equation questions are shown in Figure 2. 

 

Figure 2. SmartAss equation questions. 

While some of the system’s fully worked solutions contain only numbers and 
mathematical symbols, others include written explanations such as those in the 
simultaneous equations questions. Figure 3 shows the answer to “Do the lines  
–15y + 5x = –5 and –2y − 2x = 18 intersect? If so, find the point of intersection.” 
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Figure 3. SmartAss solution to a simultaneous equations question. 

Figure 4 shows the solution to the question, “Determine the range of .”  

 

Figure 4. SmartAss solution to a functions question. 

SmartAss can also produce graphs, as seen in Figure 5, to answer the following 
question:  

Find the area under the curve y = x2 + 5x + 5 over the interval [4, 5]. 
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Figure 5. SmartAss solution to an area under a curve question. 

How to use 
SmartAss is very user friendly and it takes only a few minutes for teachers or students to 
produce a set of questions. No programming knowledge is required. Users visit 
http://smartassignments.virtual.vps-host.net/index.htm and enter the title of their set of 
questions. A concise description of each question, along with sample questions and 
solutions, are available for viewing before inclusion. Multiple versions of one question 
can be included using the repeat function. It is also possible to create an assignment 
with several randomly chosen questions out of the available templates on a particular 
topic. Once the desired questions have been chosen, the file is executed.  
 The system produces three small PDF files: questions, fully worked solutions, and 
final answers only. Users can set up an account to save their work, meaning all that is 
needed to produce another set of questions on the same topics sometime in the future is 
to run that file again. Should the user have knowledge of LaTeX then extra information 
can be included outside of the title area (e.g., comments from teachers). 

Implementation 
The system was first used in one of UQ’s bridging mathematics course that is roughly 
equivalent to the Queensland senior secondary advanced mathematics course. From 
2007 to 2011 there have been 350 to 500 students enrolled each year across two 
campuses. Topics in the course which are covered by SmartAss include: manipulating 
fractions, order of operations, simple algebra, manipulating square roots, absolute 
values, solving equations, summation notation, inequalities, linear functions, 
simultaneous equations, quadratic equations, functions, graphs, logarithms, 
exponentials, simple differentiation and integration.  
 The system is also being used in the University’s rough equivalent to the Queensland 
senior secondary specialist mathematics course. Over 700 students study this course 
each year, with SmartAss topics including differentiation, integration, matrices, vectors, 
sequences, series and complex numbers.  
 UQ staff use SmartAss on a weekly basis to prepare both tutorial and assignment 
questions for students. Ten to 20 different questions are usually chosen for tutorial 
sheets, while a smaller number are used for assignments. As staff are proficient in 
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LaTeX they can also add their own questions (e.g., worded problem solving questions). 
In addition, lecturers have placed sets of questions on course websites for students to 
access for revision throughout the semester, and before mid-semester and final 
examinations. Lecturers of smaller courses have given each student a different 
assignment by executing the file multiple times, thereby reducing plagiarism. 
 As mentioned above, SmartAss is not just used in mathematics courses. Biology, 
chemistry, physics, and Python programming questions have also been designed and are 
currently used in first-year science courses. In particular, Leslie matrix and Python 
questions are used in a first-year core science course with enrolments in excess of 600 
students.  

Feedback 
Several Queensland high school teachers and a New Zealand mathematics academic 
have also trialled SmartAss, providing useful feedback. They are impressed with the 
power of the system, particularly with regard to the fully worked solutions. Suggestions 
have been made to make the system more visually appealing and also to remove the 
computer language that the ordinary user does not need to see. 
 We are impressed with how well SmartAss is working in tutorial classes, as students 
can concentrate on exactly those areas which cause them difficulties, rather than only 
passively observing an instructor presenting material on the board. If students require 
more practice then more questions can be generated, tailored to their specific needs. In 
addition, the questions and fully worked solutions have been greatly appreciated by 
external post-graduate students studying a Graduate Certificate of Education or Master 
of Educational Studies. These students generally work full-time or live outside south-
east Queensland and therefore do not have the face-to-face contact that internal students 
have. Comments from students indicate that SmartAss is making a difference; for 
example, “As a post-graduate external student it’s hard to do maths via email or phone 
so I really appreciate having the fully worked solutions to see where I have gone 
wrong.” 
 Part of the Carrick Institute’s mission was to disseminate project results to the 
relevant stakeholders, so we now wish to promote SmartAss to schools and universities, 
both in Australia and overseas. Feedback on the system and ideas for more questions are 
most welcome. 

Conclusion 

It is clear that the current system is functioning very effectively from the students’ 
perspective. Discussion, feedback, observation and monitoring of assessment results all 
demonstrate that students are benefiting from having access to a large body of 
additional practice material. Comments such as the following indicate that not only are 
students’ technical skills improving but so is their mathematical intuition.  

I really need to practise maths, and the heaps of revision questions on the website are 
great! The questions are not all the same. I used to hate doing lots of the same questions 
at school.  With these questions each one is slightly different; sometimes the x is in the 
numerator, sometimes it’s in the denominator. I am not scared of algebra or equations 
anymore as I understand what I have to do. The solutions are really clear! Thanks! 
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 A number of extensions are planned for the system. The advanced mathematics 
bridging course covers many junior mathematics topics (e.g., manipulating fractions, 
order of operations, simple algebra, solving equations, and linear functions). Other high 
school topics are readily programmable. In addition, content from most first-year 
university mathematics courses, including discrete mathematics, could easily be 
included. Discrete mathematics topics would include truth tables, logic, simple circuit 
design, quantified statements, simple number theory, modular arithmetic, proofs by 
induction, graph theory, set theory, relations and group theory. 
 In addition to accessing the solutions in both printed and electronic forms, many 
students benefit from being able to access solutions one step at a time (so each step acts 
as a suggestion or hint as to the next step). Hence a web-based interactive component 
will be developed, allowing users to access partial solutions and key steps, but still work 
through the remainder of each question themselves. Also, the breadth, depth and variety 
of material covered must be greatly expanded. That will be achieved by the efforts of 
UQ staff and involvement of other interested programmers, teachers and students.  
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Mathematical tasks with high cognitive demand often require students to make explicit 
their thinking. These tasks are necessary for the advancement of reasoning and 
communication in classrooms. Therefore teachers face the challenge of crafting suitable 
high-cognitive demand tasks for use in their lessons to engage their students in reasoning 
and communication when necessary. In this paper we demonstrate how close-ended 
textbook mathematical tasks can be transformed into tasks suitable for reasoning and 
communication in classrooms via the use of some “What?” strategies such as What’s 
wrong?, What if?, and What’s the question?  

Mathematical tasks  
A mathematical task is defined as a set of problems or a single complex problem that 
focuses students’ attention on a particular mathematical idea (Stein, Grover, and 
Henningsen, 1996). From the TIMSS Video Study (NCES, 2003), in which Australia, 
Czech Republic, Hong Kong, Japan, Netherlands, Switzerland, and the United States 
participated, it was found that students spent over 80% of their time in mathematics 
class working on mathematical tasks. According to Doyle (1988), “the work students 
do, defined in large measure by the tasks teachers assign, determines how they think 
about a curricular domain and come to understand its meaning” (p. 167). Hence 
different kinds of tasks lead to different types of instruction, which subsequently lead to 
different opportunities for students’ learning (Doyle, 1988). Boston and Smith (2009) 
report that research has consistently indicated that teachers’ selection of instructional 
tasks is largely based on lists of skills and concepts they need to cover. Textbooks are 
often the main source of such tasks (Doyle, 1983; Kaur, 2010).  
 The works of Boaler and Staples (2008), Stein and Lane (1996) and Tarr et al. (2008) 
have all shown that the greatest student learning gains occur in classrooms in which 
mathematical tasks with high-level cognitive demand are used and the demand is 
consistently maintained throughout the instructional episode. Boaler and Staples (2008) 
in their longitudinal study comparing three high schools over a period of five years, 
found that the highest student achievement occurred at the school in which students 
were supported to engage in high-level thinking and reasoning. Tarr et al. (2008) and 
Stein and Lane (1996) have both found that learning environments in which teachers: (i) 
encourage multiple strategies and ways of thinking; (ii) support students to make 
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conjectures and explain their reasoning, were associated with higher student 
performance on measures of thinking, reasoning and problem solving.  
 Table 1 shows a simplified version of Stein and Smith’s (1998) task analysis guide 
that may be used to establish the cognitive demands of mathematical tasks. From the 
table it is apparent that tasks with high levels of cognitive demand require students to 
engage in explaining their thought processes.  

Table 1. Levels of cognitive demand. 

Levels of cognitive demand Characteristics of tasks 
Level 0 – [Very Low] 
Memorisation tasks 

- Reproduction of facts, rules, formulae 
- No explanations required 

Level 1 - [Low] 
Procedural tasks without 
connections 

- Algorithmic in nature 
- Focussed on producing correct answers 
- Typical textbook word - problems 
- No explanations required 

Level 3 [High] 
Procedural tasks with connections 

- Algorithmic in nature 
- Has a meaningful / “real-world’ context 
- Explanations required  

Level 4 – [Very High] 
Problem Solving / Doing 
Mathematics 

- Non-algorithmic in nature, requires 
 understanding and application of 
mathematical concepts 
- Has a “real-world” context / a 
 mathematical structure 
- Explanations required 

 
 Mathematics textbooks often lack tasks that are suitable for instruction to advance 
reasoning and communication in mathematics lessons. Therefore teachers face the 
challenge of crafting suitable high-level cognitive demand tasks for use in their lessons 
to engage their students in reasoning and communication. This challenge is not a 
formidable one as the works of Silver, Kilpatrick and Schlesinger (1990), Carroll 
(1999), Krulik and Rudnick (1999) , Yeap and Kaur (1997), and Kaur and Yeap (2009a, 
2009b) show that closed-ended textbook mathematical tasks can be transformed into 
high-level cognitive demand tasks for use in lessons to advance reasoning and 
communication.  
 Silver, Kilpatrick and Schlesinger (1990), emphasize the need to look for appropriate 
opportunities for thinking and communication in the material teachers already use and 
are comfortable with. They suggest modifying common textbook problems to make 
them more open-ended as a plausible entry point for introducing speculation, group 
discussion and problem posing. Carroll (1999), found that one way of engaging students 
in the reasoning process is to have them examine and explain an error. This strategy 
simply involved turning closed-response questions into open-ended reasoning questions. 
Krulik and Rudnick (1999), in their work with mathematics teachers have also shown 
that standard textbook questions may be transformed into mathematical tasks capable of 
engaging students in critical and creative thinking, reasoning and communication 
(individual as well as group). They have used the following strategies: What’s another 
way?, What if?, What’s wrong?, and What would you do?. Yeap and Kaur (1997) and 
Kaur and Yeap (2009a, 2009b) have explored the use of problem-posing activities, 
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drawing on typical mathematical tasks from textbooks, to promote reasoning and 
communication amongst students.  

“What…?” strategies  
Kaur and Yeap (2009a, 2009b) in their work with teachers in Singapore have used 
several “What?” strategies to engage students in reasoning and communication during 
mathematics lessons both in primary and secondary schools. In this paper three of the 
strategies, namely: “What’s wrong?”, “What if?”, and “What’s the question?” are 
presented. The mathematical tasks used in these strategies are crafted from closed-
ended textbook tasks.  

What’s wrong? 
In “What’s wrong?” tasks students are presented with a problem and an erroneous 
solution that may be conceptual or computational. The student has to recognize the 
error, correct it and then explain what was wrong, why it was wrong and what was done 
to correct the error (Krulik and Rudnick, 1999). Such tasks demand higher order 
thinking, namely critical thinking. Students may be asked to complete the task in small 
groups or individually. The teacher must ensure that students are engaged in class 
discussion after completing the task so that they get the opportunity to see ways of 
solving problems that differ from their own. Furthermore, these discussions often lead 
to deeper mathematical understanding (Krulik and Rudnick, 2001). Teachers are in a 
good position to craft tasks like this as they are constantly exposed to errors students 
make in class and in their written assignments. Figure 1 shows one such task. The 
mathematical task in Figure 1 was crafted from the following textbook question on the 
topic of inverse variation:  

If 8 students take 2 hours to wash dishes, how many hours would 12 students take to 
wash the same number of dishes? 

 
Washing dinner plates 

During the school camp, Sally was in charge of Kitchen duty. After each meal, she had to get a few 
students to wash the dinner plates. The students were very cooperative and they all washed at the same 
rate. On the first day, she asked 8 students to wash the plates and they took 2 hours. On the second day, 
she asked 12 students to do the washing and told the camp commander that the students will complete the 
washing in 3 hours. 
 
Sally’s solution:-  
      8 students       take       2 hours 
 1 student        takes      2 ÷ 8 =  0.25 hours 
 12 students       take      0.25 x 12 = 3 hours 
 
There is something wrong with Sally’s solution. 
Show how you would solve the problem. 
Explain the error in Sally’s solution. 

Figure 1. An example of a “What’s wrong?” type of task. 
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What if? 
In “What if?” kinds of tasks students are presented with a mathematical task following 
which aspects of the given information are modified, one at a time. This modification 
provides students with an opportunity to re-examine the task and see what effect these 
changes have on the solution process as well as the answer. The next part of the task 
requires the generation of “What if?” questions by the students. This process engages 
students in problem posing (Brown and Walter, 1985). Such tasks are non-routine and 
demand higher order thinking, namely critical and creative thinking, by the students. 
Whole class discussion must precede individuals working on such tasks because 
students need to share the “what if” tasks they created with others and also make their 
thinking visible. Teachers are in a good position to craft tasks like this as they merely 
need to extend typical textbook types of questions with ‘what if’ conditions. Figure 2 
shows one such task. The mathematical task in Figure 2 was crafted from the following 
textbook question on the topic of: Mensuration - areas and volumes of cylinders.  

An open cylindrical tank with diameter 28 cm and height 50 cm contains water to a depth 
of 20 cm. Find 
i) the volume of the water inside the tank, giving your answer in litres; 
ii) the total surface area of the tank that is not in contact with the water. 

 
Cylindrical Tank 

An open cylindrical tank with diameter 28 cm and height 50 cm contains water to a depth of 20 cm.  
Find 
i)  the volume of the water inside the tank, giving your answer in litres; 
ii) the total surface area of the tank that is not in contact with the water. 
 
What if the cylindrical tank is closed? 
What if the dimensions of the cylindrical tank are doubled? 
What if the dimensions of the cylindrical tank are halved? 
What if the depth of the water is reduced by 10 cm? 
*What if the orientation of the cylindrical tank is changed such that it is lying on its curved side? 
 
Generate another 3 “What if?” tasks and answer them. 
Look out for any interesting observations / patterns. 
* This “what if” requires students to make sense that when the cylinder is open and lying on its curved surface, the 

water will no longer be in the cylinder! 

Figure 2. An example of a “What if?” type of task 

What’s the question? 
In “What’s the question?” kind of tasks, students are presented with a context and data 
but with question/s missing. Students are asked to write a question that matches a given 
answer or a partial solution. These tasks provide students with opportunities to engage 
in higher order thinking, namely critical thinking. Teachers are in a good position to 
craft tasks like this from typical textbook questions by using their context and data. 
Whole class discussion must precede individuals working on such tasks as it is 
important for students to learn that several questions may have the same answer, but 
certainly different solutions. 

992



KAUR & GHANI 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

 Figures 3 and 4, show two examples of such tasks. The mathematical task in Figure 3 
was crafted from the following textbook question on the topic of probability.  

Eleven cards numbered 11, 12, 13, 14, …, 21 are placed in a box. A card is removed at 
random from the box. What is the probability that the card has an even number? 

 
Just one card 

Eleven cards numbered 11, 12, 13, 14, … , 21 are placed in a box. A card 
is removed at random from the box. 
1. What’s the question if the answer is  ? 

2. What’s the question if the answer is  ?  

3. What’s the question if the answer is  ?  

4.  What’s the question if the answer is  ? 

5. What’s the question if the answer is  ? 

Figure 3. “What’s the question?” type of task – example 1. 

The goal of the mathematical task in Figure 4 was to facilitate students’ review of some 
aspect of mathematical content knowledge. The task in Figure 4 provides students with 
a stimulus to review the topic: area of plane figures. Teachers are in a good position to 
craft such tasks as they usually have a good overview of the exercises on a topic in the 
textbook.  
 

 
The area of a plane figure is 154 cm2. 

 
What could the question be? 
[Guiding prompts: what is the shape, dimensions of the plane figure?] 
 
Write 5 questions and work their solutions. 
 
Question: 
 
Solution: 
 

 Figure 4. “What’s the question?” type of task – example 2. 

Concluding remarks 
Teachers who wish to advance reasoning and communication in their mathematics 
classrooms must not only have at their disposal mathematical tasks with high cognitive 
demand but also the knowledge and skill to maintain the cognitive demand of the tasks. 
Teachers may need to engage their students in varied forms of seatwork, e.g., 
individual, pair or group. They may need to shift their role from a disseminator or 
assessor of knowledge to that of a facilitator. They may also need to cultivate a 
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classroom environment where mistakes are welcomed and all students are part of the 
classroom discourse. Most importantly they must provide their students with sufficient 
time to think through their attempts in resolving the tasks and also opportunities to 
explain and justify (through both oral and written communication) their solutions 
because in so doing students clarify their own thinking and often self-correct their errors 
if any.  
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This paper argues for classroom practices that support a mathematical learning environment 
for young children where models of reasoning and inquiry skills as well as concepts are 
shared and practised through dialogue. Some core aspects of collective dialogue and 
community of inquiry learning are addressed. Results are reported from a South Australian 
study of five year old children engaged in data-modelling activities incorporating 
collaborative learning as part of their mathematics curriculum. Findings include children’s 
abilities to recognise differing ideas, to share reasoning through dialogue and to draw from 
each other’s reasoning in their own problem solving and decision making. 

Introduction 
The notion that reasoning is an important component of mathematical competency that 
should be part of mathematical learning and supported by classroom pedagogy is 
neither foreign nor novel. Reasoning is generally seen as central to mathematics and 
mathematical learning, understanding and application (Goswami, 2004: Young-
Loveridge, 2008). The theoretical valuing of reasoning in children’s mathematical 
learning from the beginning of their schooling is clear from its inclusion in mathematics 
curriculum and standards documents (National Council of Teachers of Mathematics 
(NCTM), 2000; Australian Curriculum, Assessment and Reporting Authority 
(ACARA), 2010) and through the work of many researchers in children’s mathematics 
(e.g., English, 2004; Garfield & Ben-Zvi, 2007; Lehrer & Schauble, 2005; Perry & 
Dockett, 2008). The NCTM (2000) calls for children from prekindergarten upward to 
recognise, understand and be actively engaged in mathematical reasoning. More 
immediately, the newly created Australian Curriculum: Mathematics (ACARA, 2010) 
has included ‘Reasoning’ as one of the four proficiency strands for Foundation Year to 
Year 10. 
 Yet despite this, recent mathematics research has shied away from exploring young 
children’s mathematical reasoning. In Fox and Diezmann’s 2007 survey of early years 
mathematical research carried out between 2000 and 2005, literature addressing “young 
children’s ability to problem solve, reason and converse mathematically” (p. 301) 
accounted for only 1.3% of available literature. However, from an educator’s point of 
view, there is a link between understanding reasoning as a way of thinking that has 
value and the pedagogy of the classroom which can help or hinder reasoning 
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development which deserves attention. This link has been explored by researchers 
across disciplines who have an interest in the role and function of language in learning 
through social interaction (e.g. Lipman, 2007; Mercer & Littleton, 2007; Sfard, 2008).  
 This paper firstly argues for the need to review the theoretical foundation and 
practical considerations for establishing an environment that is conducive to 
mathematical reasoning and to enable young children to begin to access, value and build 
on each other’s ideas. The results of a South Australian study with children in their first 
term of school (Reception Year) undertaking data modelling problems in both whole 
and small groups are addressed. Children were provided with lessons based on the 
‘Thinking Together’ approach (University of Cambridge, 2011) that aimed to provide 
skills and specific language to support productive, and effective collective dialogue. 
Whole class discussions with the teacher utilised ‘community of inquiry’ pedagogy. In 
reporting the findings, the focus is on children’s demonstrated capacities to share 
reasoning through dialogue and to draw from each other’s reasoning and ideas in their 
own problem solving and decision making about data.  

Reasoning and the classroom 
There is limited research support for enabling educators to work out how children may 
go about accessing mathematical reasoning in the classroom environment and what a 
classroom that is conducive to developing reasoning might look like. Reasoning and 
particularly, how it can be supported, encouraged and developed in children in 
classrooms, is not however, the exclusive preoccupation of mathematics educators and 
researchers. There is a body of literature in other domains and disciplines which 
explores conditions for reasoning through activities where children are explicitly taught 
to use language to talk together and through the establishment of ‘communities of 
inquiry’. Both of these approaches are inextricably linked to socio-cultural theory 
(Vygotsky, 1978) where there is an increased emphasis on the role of language as a 
mediator for cognitive development and as a primary organiser of cognitive activities, 
positioning the social environment as a principal catalyst for cognitive change (Garton, 
2004). Language in interaction with others in this context is seen as providing “tools for 
reflection and reasoning” (Garton, 2004, p. 159) within the community of the learning 
environment. 
 The idea that children’s understanding generally can develop through discussion is 
supported by Dockett and Perry (2001) and is found in literature focused on the 
conditions that are postulated as best supporting or influencing critical aspects of 
mathematical development and learning, in particular, the classroom context that 
enables dialogue to occur. There is a need for children to have opportunities to engage 
in dialogue where their mathematical ideas can be explained, clarified and revised 
(Diezmann, Watters & English, 2001; Ryan & Williams, 2007). 

A reasoning culture 
Dialogue is critical to community engagement. Cullingford (2006) argues that children 
are deeply motivated to talk to each other as they seek to make sense of their 
experiences and their world and that they need to share, explore and test their ideas with 
others. Central to sense making in this way is dialogue, which is the principal means by 
which children participate in communication, negotiation and decision-making with 
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other people. This is a concept at the core of the social constructivism perspective, 
which from Vygotsky’s (1971) view, sees children as acquiring their knowledge and 
understanding the world through interaction with others. Children’s learning then is a 
combination of both their individual efforts and their communication and social 
interactions within the cultural context of the learning environment (Mercer & Littleton, 
2007). Those who argue for learning to be embedded in classrooms that engage in 
pedagogy that actively values dialogue for facilitating collaboration, thinking, and 
reasoned discussion persuasively and effectively link these approaches to a social 
constructivist perspective, (e.g., Davey, 2005; Mercer & Littleton, 2007). It is this 
combination of ideas that provides a foundation for creating a genuinely inclusive 
classroom culture that is built on appreciation of the role of dialogue and social 
interaction in learning. 

Communities of inquiry and valuing collective dialogue 
A community of inquiry is analogous to a habitat that facilitates thinking development, a 
cognitive ecology where models of reasoning and inquiry skills as well as concepts are 
modelled (Lipman, 2007), where there are shared but explicit classroom expectations 
about participation, and where reasoning, and being reasonable, is practised through 
dialogue. For Lipman (2007), Sprod (2001) and others, both the disposition and ability 
to be reasonable are essential human qualities which should be at the heart of both 
education and democracy. Such reasonableness, it is argued, is best fostered in a 
classroom culture built around a community of inquiry, where inquiry processes lead 
students to “listen to one another with respect, build on one another’s ideas, challenge 
one another to supply reasons for otherwise unsupported opinions, assist each other in 
drawing inferences from what has been said, and seek to identify one another’s 
assumptions” (Lipman, 2007, p. 20).  
 The underlying principle that children need specific activities that teach how to talk 
and how to listen in order to be in a position to engage in collaborative learning is also 
central to the work of Wegerif, Mercer, Littleton, Rowe and Daws (2004) in their 
‘Thinking Together’ project. They argue that children do not have a natural propensity 
for reasoned dialogue, and that the opportunity for instructional learning to be able to do 
so is needed for equity of access to education. Learning to reason through dialogue can 
also mark the beginning of children being willing to take intellectual risks. This occurs 
when language is not only valued as a tool for discussion and communication, but it 
takes place in an environment that also has a collective framework of expectations for 
listening and speaking behaviour (Mercer & Littleton, 2007).  

Creating a community culture 
It is clear from the literature that setting up a classroom to engage in a community of 
inquiry, including establishing the expectations, rights and responsibilities for the 
children’s participation, falls to the teacher. This means creating a context for inquiry 
(Kennedy, 2009) and building trust in the community (Groves & Doig, 2004). The goal 
of creating an inclusive environment, with a common purpose for all participants also 
requires the development of shared understanding of how the community functions as a 
‘frame of reference’ (Andreissen & Scharrz, 2009, p. 149). The establishment of 
expectations, rights and responsibilities for participation in effective dialogue in a 
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community of inquiry is essential (Hayes, 2008). Providing clear mutually agreed upon 
procedures that serve to guide and positively encourage participation is particularly 
important for young children, as this supports their need for autonomy, belonging, 
competence and fairness (Nucci, 2009). Such procedures focus on regulating behaviours 
that will be helpful in promoting discussion, listening and turn-taking and thinking 
(Dawes & Sams, 2004; Haynes,2008; Nucci, 2009).  

Mathematics and community of inquiry 
Considering a reasoning culture also raises the idea that mathematical dispositions and 
capabilities, including reasoning, are shaped by both classroom and mathematical 
dialogue (Walshaw & Anthony, 2007) and so in mathematics, attention should be paid 
to how classrooms that encourage effective dialogue and create a culture of 
mathematical practice are established and managed. In everyday mathematics 
classrooms, the social and mathematical communication children engage in with others 
and how children reason and justify to each other is arguably critical to their learning 
(Goos, 2004). Supporting children to focus on the investigation, analysis, processing 
and collaborative negotiation of mathematics will provide a very different experience 
from the mathematics teaching children usually experience, where product and 
reasoning processes are isolated from each other (Kennedy, 2009). 
 Mathematics is increasingly seen as a discipline that relies on critical thinking skills 
and not rote memorization and there is concern to move to engaging children in 
problem-solving that will develop their mathematical thinking and reasoning and 
engage them in the discourse and practices of mathematics (Clarke, Goos & Morony, 
2007). Problem-solving tasks that would move towards reasoning would stimulate and 
provide a reason to think, reason and engage in dialogue. Such tasks must be 
conceptually rich and genuinely and inherently problematic (Groves, 2009), focused, 
robust and accessible (Groves & Doig, 2004).  

Methodology 
Participants 
One class of fifteen children in their Reception Year as a mid-year intake in their first 
term of school (2010, mean age 5 years 2 months) and their teacher participated in this 
study.  

Design 
The reported research is from a classroom based design study undertaken over a 10 
week school term. The study research questions included investigating the context and 
conditions that support young children’s engagement in statistical learning and 
reasoning. Data modelling activities as instructional innovations were used to engage 
children in working with data in both whole class and small group activities in ways that 
would require the public sharing of ideas and thinking in the problem-solving process. 
Data modelling activities are designed specifically to support the creation of data by 
children that requires organising, quantifying and transforming in order to find a 
problem solution (English, 2007). Preliminary activities were implemented prior to the 
data modelling activities to provide specific language to support positive and reasoned 
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collective dialogue. A series of lessons were adapted from a classroom activity book for 
6-8 year olds (‘Talk Box’) based on the ‘Thinking Together’ approach (Dawes & Sams, 
2004). The teacher also employed a community of inquiry pedagogy, based on the work 
of Lipman (2007) in whole group discussions as an integral aspect of classroom 
practice. These approaches and activities were implemented in order to: 
1. actively work to provide the participating children with explicit language and 

collaborative skills for speaking and listening to support reasoned discussion; 
2. provide a community of inquiry environment for the curriculum activities that had 

been designed for the study to optimise the chances that children’s thinking and 
knowledge would be made visible; and 

3. provide a framework of agreement with the participating teacher in the research 
study that would inform collaborative dialogue with the researcher about the 
conditions and contexts for the children’s learning. 

Whole class discussions and small group activities were video- and audio-taped and 
wholly transcribed. The teacher’s shared educational philosophy and pedagogical 
knowledge were an important aspect of the collective negotiation processes, 
responsibility and involvement in the research.  

Activities 
The data modelling activities incorporated children’s story book literature as a stimulus 
for posing a problem that was able to be resolved through the creation and processing of 
data, including generating and selecting attributes for classification and structuring and 
displaying data for analysis. Story books addressing the themes of recycling were used 
to engage the children in resolving problems requiring sorting, predicting and 
representing different types and amounts of rubbish. 
 Prior to the introduction of the data modelling activities, five adapted ‘Talk Box’ 
(2004) lessons were implemented. The lessons included the establishment of 
expectations for community behaviour. Through these lessons, the children were 
introduced to the terms ‘talk’, ‘listen’, ‘I think’, ‘because’, ‘I agree’ and ‘I disagree’ and 
given the opportunity to work in small groups with activities that focused on these 
ideas. Large cards with each of these words and a representational symbol (e.g. picture 
of an ear with ‘listen’) were displayed in the classroom and referred to. The use of these 
words were continually modelled by the teacher and encouraged during both whole and 
small group discussions.  

Results and discussions 
This whole group discussion occurred at the beginning of the sixth week of the 
children’s formal schooling. The children sorted real objects which replicate the rubbish 
found in the room of the main character from the story, a dog named Baxter Brown. The 
children have been asked to help Baxter Brown clean up his room by deciding whether 
the objects should be recycled, reused or thrown away. The teacher both models and 
reminds the children to work with the reasoning language from the ‘Talk Box’ lessons. 
Children are using justificatory language (‘because’) and witness to the existence and 
acceptability of differing ideas, and changing your mind. Here the children are deciding 
what to do with dog biscuits.  

999



KINNEAR 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

Teacher: Can you tell me why you think we should throw it in the bin, remembering to 
use your words ‘I think’ and ‘because’ (pointing to the classroom cards). 
T: I think we should throw it in the bin because...I just don’t know. 
Teacher: Can someone help T with an idea? 
Y: I know where you really should put them. You should put them in reuse because dogs 
eat biscuits. 
Teacher: So you’ve got a different idea: you think you should reuse them because dogs 
eat biscuits? 
Y: (nods) 
Teacher: Do you agree with that idea T? 
T: Yes. 
Teacher: So you’ve changed your mind? (T nods) So you think we should put them in 
reuse, because dogs use them. Do people agree with that idea? Does anyone have a 
different idea about where the biscuits should go? Should we throw them away, recycle 
them or reuse them? What do you think K? 
K: Umm, you should recycle ‘em, because you can get more ones. 

 As the whole group discussion continues, children begin to explore and engage in the 
collaborative language, and demonstrate the ability to recognise differences between 
ideas and common ideas. Here, one child believes the object, an empty drink can, 
should be thrown away and two children believe it should be recycled, although there 
are different justifications as to why. 

G: I think we should recycle because...I think that’s where they go. 
Teacher: Tan you tell us why you think that’s where they should go? 
G: Ah, because my mum puts cans in recycling. 
Teacher: Does everyone agree with it going in the recycling? Does anyone have a 
different idea about where it might go? What’s your idea T? 
T: You could put it in the bin. 
Teacher: So you would throw it away, can you tell us why you would throw it away? 
T: because it’s rubbish, when you have drinked all of it, it has to be thrown in the bin. 
Teacher: B, what’s your idea?  
B: I would get more money 
Teacher: So you can get more money? How do you get more money? 
B: Um, because ... because ... Those (points to can) can be turned into money. 
Teacher: How can we do that? Do we throw them away, recycle them or reuse them?  
B: Reuse them. No … recycle. 
Teacher: So we have two different ideas.  
Y: I agree with G and B. 
K: Me too. 

 In small groups of three, children are sorting the same objects as pictures, in this case 
a rubbish bag. Although the children are not offering justifications, there is awareness 
that differences exist and that resolving these will require discussion.  

C: I think it goes in the rubbish. 
Y: (Points to paper) This one? 
C: Yeah. 
Y: Me too. 
D: I think that rubbish bag ... goes (taps finger at ‘throw away’ section on the paper). 
C: No, recycle I think it goes in. 
Y: Yeah. Me too. 
D: I think it goes in there (taps paper). 
Y: So two people think it goes in recycling. 
C: We need to talk. 
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 At the end of their eighth week of school, the children were engaged in a problem 
requiring them to read and interpret a completed data table of six columns, with each 
column for a single story character and five rows for the items that had been recycled in 
a competition, with the sixth row providing a total of items each character had recycled. 
The data table was on the class SmartBoard, and children were able to make marks on 
the table as they worked through their justifications. When one child was given the 
opportunity to explain and demonstrate his thinking, other children were able to use this 
model to support their own thinking with similar questions. This reasoning was 
reflected later in small group work where children used finger movements to find the 
intersecting point in working out quantities attributable to different characters.  

Teacher: We’re trying to find out how many glass jars Charlie recycled. C can you show 
us what you think the answer is? 
C: Glass jars (places pen on the glass jar picture/word in the left hand column) that says 
glass jars and that’s (places his finger on a picture of a person on the top row of the table) 
Charlie (circles the number ‘4’where the row and the column intercept)  
Teacher: can you explain to us how you got that answer? 
C: Because that says glass jar (points) and Charlie’s there (points) and the glass jar’s 
pointing at the number 4. 
Teacher: I think you’re right. It’s in the column with Charlie and in the row with glass 
jars. That this is the number. The 4, so four glass jars. So how many food scraps did 
Morton recycle? I wonder if we can use the same idea? G? 
G: Zero. 
Teacher: Can you explain why G? 
G: Um, because um ... because, it’s pointing to zero (puts the pen on zero and moves her 
hand back along the row to the food scraps picture/word) and it’s on Morton  
Teacher: So how many food scraps did Lotta recycle J? 
J: (Circles a number) Nine of them. 
Teacher: She recycled nine food scraps? (J nods) Can you tell us why you got that 
number? How did you figure it out? 
J: I figure it out like C. 

Conclusion 
The children in the study were in their first term of formal schooling following a period 
of non-compulsory pre-school education. As the children participated in the data 
modeling activities, the specific language support and the expectations for collaboration 
and justification is reflected in their language and interaction. Children demonstrate 
their capacity to listen, recognise, categorise and respond to one of the most abstract 
concepts: other people’s ideas. They are able to explain and justify their own thinking. 
There is evidence that they are beginning to build on each other’s ideas when engaging 
with problem-solving tasks when working with mathematical concepts.  
 Although this study is in the early stages of data analysis, the findings thus far 
provide encouraging evidence of a quality and substance in children’s expressed 
thinking, reasoning, and knowledge that exceeds what many may consider possible at 
this point in their schooling. Although the sample in the study is limited, further 
research is needed with respect to the context and conditions for effective collaborative 
reasoning that supports both mathematics learning in classrooms and children’s 
reasoning in the early years of schooling.  
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Apple’s iPod Touch is a personal digital device, essentially a version of the popular iPhone, 
but without telephone capabilities. Although not designed expressly for education, software 
has been developed for the device for mathematical and educational purposes, while some 
of its other capabilities (such as those for podcasts, videos and the Internet) can be used for 
mathematics education. This paper provides an analysis and evaluation of some of these 
various opportunities for 21st century mathematics education. While some elements of the 
iPod Touch offer attractions for mathematics education, some educational limitations are 
also identified. 

Introduction 
This paper explores a close relative of Apple’s popular iPhone, the iPod Touch (here 
abbreviated simply to iPod), which has been used in some educational settings because 
of its significant digital capabilities. The most critical differences between the iPod 
being considered here and the iPhone is that the former has neither telephonic 
capabilities nor digital camera capabilities In an age in which digital technologies 
abound, it is appropriate to consider the potentials of a device of this kind for teaching 
and learning mathematics. Indeed, recent national curriculum initiatives, (Australian 
Curriculum, Assessment and Reporting Authority, 2011) are designed with modern 
digital technologies in mind, at least in part. Successive (annual) generations of iPods 
have become more sophisticated and powerful, as frequently happens with new 
technologies; this is quite problematic in a paper of this kind, which does not thus claim 
to be entirely up to date when published. 
 A focus on the iPod is not intended to suggest a preference for this particular product 
over others, but is made partly on financial grounds. Apple’s more recent iPad series of 
devices have also created a good deal of excitement and commercial interest, but are 
presently much too expensive for typical schools. 

Applications 
From the perspective of mathematics education, the most likely way in which an iPod 
might be of value is through the use of applications, commonly abbreviated to apps, 
developed especially for mathematical purposes. Apps are available via Apple’s free 
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software, iTunes, which links directly to their iTunes Store. Details are available at 
Apple Corporation (2011). Apps can be downloaded via computer from the iTunes store 
or can be downloaded directly to an iPod via the Internet. While some apps are free, 
others must be purchased, usually for relatively small prices. (At present, the most 
common purchase price is $1.19, although a few are more expensive.) It is necessary to 
have an account to download apps, whether or not the apps are free. Updates are free. 
 There is a very large number of apps available in the App Store, with various 
classifications used to organise them. For example, apps are classified into categories, 
including Education, Productivity, Games, Utilities, Reference (in all of which I have 
found some interesting mathematical examples). A search engine allows for an app to 
be searched for by name (so finer-grained reference details of the apps mentioned in this 
paper are not provided), and other searches will allow a number of apps to be identified. 
The search engine is not the friendliest, so that it can sometimes be hard to navigate all 
the results and explore all the choices efficiently. For example, when ‘math’ was used 
as a search term recently by the author, a little under 6000 apps for an iPod were 
identified, including examples classified in each of the above categories (as well as 
some others), with both free and paid apps. Consequently, a paper of this length does 
not claim to cover the territory exhaustively, but rather intends to provide a perspective 
on some of the possibilities presently available, with a few examples chosen to illustrate 
these. There are reviews available online for many apps, especially those that have been 
around for a while, although it is problematic to place too much reliance on these, with 
educational interests in mind, without a sense of who the reviewers are. 
 Many of the free apps (but not all) are in fact reduced or slightly disabled versions of 
paid apps (and hence are often described as ‘lite’ versions, increasingly commonly but 
no more grammatically correctly), offered to provide potential customers with sufficient 
experience of the approach taken to encourage them to purchase the paid version, 
sometimes even with irritating and frequent messages in the form of advertisements to 
do so. This is of course understandable, as those producing the apps rely on their sales 
to support their businesses. While data are not available (to the author, at least), it is 
easy to get the impression that many of the app developers do not have much 
mathematics educational background or expertise, so that what is offered is not always 
pedagogically sound or even mathematically interesting. In addition, with the recent 
emergence of the iPad and iPad2, a good deal of energy is directed at making new 
versions of iPod apps to run on the new devices, or making apps only for the iPad, not 
the older and less sophisticated iPod, not a surprise for commercial organisations. 
 What follows is a brief and unavoidably personal account of some of the kinds of 
offerings presently available, especially in relation to school mathematics, mostly with 
an eye to material likely to be of interest to secondary schools. As noted earlier, no 
claim to exhaust the territory is provided here. 

Graphing 
Many apps allow users to graph and explore functions and other sorts of graphs. While 
secondary students might usually have access to a graphics calculator for this purpose, 
some of these apps offer some nice features that allow for easy manipulation of both 2D 
and 3D graphs, and using more colours and a higher resolution than a typical graphics 
calculator. As the iPod is operated mostly by finger movements on a touch-sensitive 
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screen, this adds a new sort of experience including moving (two or three) axes around, 
zooming in and out by stretching the coordinate plane or 3D space with two fingers at 
once and locating points of intersection by just touching them. Figure 1 shows two good 
examples, the first from GraphCalc and the second from Quick Graph. 

    

Figure 1. GraphCalc and Quick Graph, two examples of graphing apps. 

 With apps of these kinds, students might reasonably be expected to get a different 
and even sensory experience of graphing functions than a graphics calculator can offer. 
For example, many teachers have referred to tracing as being like moving one’s finger 
along a graph; with a touch-screen of this kind, this is precisely what a user does. 

    

Figure 2. Two other graphing apps, GraphBook and iTrig. 

 As well as providing graphical capabilities that in some ways match what students’ 
graphics calculators might provide, some apps offer different graphing experiences. For 
example, SpaceTime is a recent and very expensive app ($23.99 at present, around the 
same price as a scientific calculator, but much more than typical apps) that claims to 
provide high-end and programmable features such as some those involved in 
Mathematica and MatLab. Figure 2 shows the GraphBook app, which seems to have 
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been constructed to provide some animated and manipulable examples of the 
SpaceTime capabilities, as an inducement to purchase the complete app. Nor are 
graphical apps restricted to graphing functions. Figure 2 shows a screen dump from the 
iTrig app, which provides a unit circle around which a point can be moved with one’s 
finger and associated graphs and values are shown. 
 These examples do not exhaust the possibilities; many other apps have a graphical 
element. For example, 4D Spin addresses the nature of the fourth dimension, Polar 
Sweep is concerned with relationships between rectangular and polar coordinates and 
many apps such as Fractals allow students to explore fractal images of various kinds. 

Calculator 
A very large number of apps offer a calculator of some kind, and the standard iPod even 
comes with a calculator app. There are many kinds of specific calculators. An example 
is the right triangle solver in iTrig, to calculate lengths of sides and angles of a right 
triangle from partial information. The standard iPod calculator is both an arithmetic and 
scientific calculator (although some users may not realise this unless they turn or shake 
their iPod). The scientific calculator displays more places of decimals than a standard 
scientific calculator and in that sense is an improvement, as shown in Figure 3. 

 

Figure 3. The standard iPod Calculator app in scientific mode. 

There are iPod apps for just about any kind of calculation likely to be needed in 
secondary school, including unusual tasks such as those shown in Figure 4.  

    

Figure 4. Calculators are involved in both iFactorization and Pi apps. 
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 Others include algebraic calculations with PocketCAS, normal distribution tables 
with GaussPad, and unit conversions with Units. There are even old-style calculators 
such as an Abacus, iSlideRule and Longhand Division, each of which operates 
successfully. At least collectively, the large suite of calculator apps available will make 
it clear to students that many mathematical calculations can be automated for machines 
to do, and that they need to continue to choose the right tool for the job (which includes 
mental and approximate calculations some times, of course). 

Reference source 
A surprising number of apps seem to function as mathematical reference works, with 
tables of formulae, diagrams, theorems, and other items. It can be quite useful to have 
references of these kinds available when needed, especially the slightly more esoteric 
ones (which of course varies from person to person). Apps like these might reflect an 
image of those who have constructed them of mathematics as a discipline in which there 
are many formulae to memorise (or look up). Figure 5 shows three typical examples. 

       

Figure 5. Pages from Math Reference Free, Math Pro and Formulas apps. 

Measuring 
A number of apps have been designed to handle various measurement tasks, often found 
in mathematics, although it is questionable whether an iPod version of these is a 
superior tool to the original measuring tool.  

    

Figure 6. Protractor Deluxe and Measures apps seem to offer spurious accuracy. 
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 Indeed, it seems that there are examples here of computer programmers making 
something in order to prove that it can be done, rather than to produce a genuinely 
useful tool. Figure 6 shows two of many possible examples. The protractor, 
surprisingly, seems to measure angles only in a clockwise rather than anticlockwise 
direction and to display an accuracy that is substantially beyond what is reasonable with 
the actual device in practice. Similarly, the spirit level (one of a suite of tools in the 
same app), in measuring a surface to the nearest tenth of a degree seems to overstate the 
accuracy of the measurement of extent to which my desk is horizontal. Other examples, 
such as RulerPlus, Tape Measure and iHandy Carpenter, can be similarly criticised. 

Drill and practice 
At first glance, the available apps for mathematics or for education seem to suggest that 
the most useful tool for iPods involves lots of practice of mathematical skills, especially 
those related to computation, with many of them focussed on the primary years of 
schooling. Practice certainly has an important place in school mathematics, and a device 
that uses colour, entertainment and novelty effects to engage students in practice at a 
range of levels may be a useful supplement to other experiences. Despite enthusiastic 
claims to the contrary by the designers, many of the apps I examined in this category 
seem to offer not much more than heaps of practice, often timed and speeded and 
generally with feedback; overall there seems to be a limited case to use an expensive 
piece of digital technology in such a mundane way. Indeed, Pelton (2011) suggested 
that around 40% of the designated ‘top’ apps for mathematics fell into the category of 
drilling basic facts. Some of these apps are designed in the form of flash cards, some as 
games and others differently, but fundamentally many offer little of lasting conceptual 
value, and it is questionable that students would be attracted to them for very long, once 
the novelty had worn off.  
 Some apps that essentially provide a form of practice do so in a slightly more 
engaging and interesting way, however. Figure 7 shows two examples, Motion Math 
and Number Line. The Motion Math app makes use of the motion sensor devices that 
are an integral part of the iPod and iPhone®, so that the device knows when and how it 
has been turned.  
 

    

Figure 7. Motion Math and Number Line. 
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 The screen shows a bouncing ball with a fraction or decimal inside. The user must 
tilt the device to make the ball land on (or close to) the appropriate point at the bottom 
between 0 and 1, in order to get a new number and to try again.  
 Similarly, Number Line requires the user to drag the numbered balls onto the number 
line in the correct numerical order. Each of these games is fundamentally concerned 
with understanding and comparing the sizes of numbers, in different representations, 
and seems to exploit better the educational possibilities than do many of the other apps 
which seem merely to automate what could as easily have been placed on a worksheet. 

Miscellaneous 
There are many other kinds of apps that might find a place in secondary school 
mathematics, and even be of interest to teachers themselves too many to easily 
classify. Figure 8 shows two examples.  

    

Figure 8. Samples from the MathFunFacts and Is That Prime? apps. 

The MathFunFacts app, created by Francis Su of Harvey Mudd College in USA has a 
large number of mathematical snippets, many with fairly recent mathematics, that 
teachers may find of interest. Is That Prime? provides quick information about the 
primality (or the factors) of integers. While such apps might be regarded as a little 
quirky, they may still find a place in a modern classroom. 
 Figure 9 shows three quite different examples, each of which may have some kind of 
appeal to secondary students, while being out of the mainstream mathematics 
curriculum. The app, Discover the Magic of M.C.Escher contains many of Escher’s 
famous images as well as other written information and activities. Polyhedron contains 
very many images of rotating polyhedra, while Mathemagics contains a large collection 
of number tricks, fertile ground for algebraic thinking. 
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Figure 9. The Magic of Escher, Polyhedron and Mathemagics apps. All M. C. Escher works © 2011 The 
M.C. Escher Company, the Netherlands. All rights reserved. Used by permission. www.mcescher.com 

 As well as these, other apps such as iBooks provide a mechanism to read electronic 
books (some of which are free, courtesy of the Gutenburg Project, while others cost 
close to normal book prices), some apps such as Chromatics contain a great deal of 
visual mathematics for browsing, others such as Collatz explore particular bits of 
mathematics, while yet others, such as Pearson’s Trigonometry, contain direct 
instructional materials. There are many other games, puzzles, patterns, spatial and 
numerical environments that contain elements of mathematics, all too difficult to 
classify here, but many seem worthy of a second look. 

Internet 
While applications offer the most likely use of an iPod, the capability of accessing the 
Internet on a wireless network at school or home leads to other possibilities as well. 
Kissane (2009) suggested a number of ways in which Internet access might be helpful 
for mathematics education, and many of these can be used with an iPod. In some cases, 
the iPod web browser is not needed, as a special app has been constructed for a similar 
purpose. A good example of this is WolframAlpha the very sophisticated search engine 
with the awesome power of Stephen Wolfram’s Mathematica behind it, aiming to make 
all systematic knowledge immediately computable, accessing all available data. Another 
good example is Wikipedia, which has good entries related to mathematics.  
 A major limitation, however, of Internet use with the iPod is the lack of either Java 
or Flash capabilities. A consequence of this is that many excellent interactive websites 
of value for mathematics education (such as the National Library of Virtual 
Manipulatives, the NCTM’s Illuminations and many parts of the Nrich site, as well as 
interactive software like GeoGebra) are rendered inoperative. These limitations might 
be removed in the future, but it seems that Apple is at present resolutely opposed to 
these platforms, preferring other approaches to interactive web-based materials. Until a 
solution to this problem is found, a major potential use of the iPod as a web browser 
will be severely curtailed, unfortunately. 
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Podcasts 
While many iPod users regard their device as essentially a personal music machine, 
there are potential uses of the audio and video capabilities for mathematics education as 
well. Podcasts and video podcasts made locally (for example, by a teacher at a school, 
or by university staff for external students) or externally (disseminated through the 
Internet) can carry powerful and interesting mathematical messages. Excellent examples 
are available via the iTunes site on iTunesU or via the podcasting links on the website. 
From the UK, the regular PLUS podcasts, various Open University series, Marcus Du 
Sautoy’s A Brief History of Mathematics from the BBC and the Travels in a 
Mathematical World collection from the Institute of Mathematics and its Applications 
are all good examples of contemporary mathematical materials that would be of interest 
to both teachers and older secondary students. The Swede Hans Rosling’s GapCasts 
(using the wonderful GapMinder software) also offer excellent stimulating materials on 
an iPod related to the use of statistics to understand modern social and health issues 
internationally and don’t require a live Internet link after downloading. 

Projection 
A major limitation of the iPod is the present inability of teachers to use it to 
communicate to a class, through a data projector or large television set. This is a 
consequence of the design of the device, which is thus only able to be used by one or 
two students at once. An exception is that some videos and podcasts can be shown on a 
television set with the appropriate cables. However, the lack of capacity to show apps to 
a wider audience is a significant educational limitation, which needs to be overcome. 
It is possible, but sometimes a little difficult, to use a web camera or other visualisation 
device to project an iPod screen to a computer and thence to a data projector, but it 
would be much preferable for there to be a direct link. 

Conclusion 
While there are some nice apps for the iPod Touch, and some interesting potentials, 
there are also a lot of uninteresting apps as well as significant practical limitations for 
the use of the device in mathematics education. As a fairly expensive device (at 
present), the iPod Touch may be of limited lasting value as a mathematics education 
learning device, with substantial Internet limitations, while the lack of projection 
capability is a severe constraint on use for teaching in most cases. Hopefully, 
refinements to devices of these kinds in the future will address such shortcomings and 
provide a form of mobile technology that meets the needs of students and schools, and 
offers significant teaching and learning opportunities. 
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Due to an increased focus and accountability in relation to improving student outcomes, 
many Victorian primary schools provide their teachers with professional development that 
promotes effective numeracy teaching. This paper describes two schools’ mathematical 
professional development programs facilitated by professional officers from the 
Mathematical Association of Victoria. It reports on both schools’ experiences, and the 
similar, but different, approaches aimed at strengthening effective numeracy teaching 
practices in mathematics. These teachers shared their experiences, building on what they 
knew and what they did in the numeracy classroom. In particular the role of the 
professional officers was important for assisting teachers to develop a collective 
understanding of teaching and learning primary mathematics. 

Introduction  
The Professional Officers at the Mathematical Association of Victoria (MAV) provide a 
unique range of services for mathematics teachers and mathematics education. Both 
authors are experienced primary teachers, currently employed as MAV Professional 
Officers. Both have a passion for guiding teachers to provide purposeful numeracy 
lessons for the students they teach. The role of the Professional Officers is special: 
supporting members by promoting interest in mathematics, as well as providing services 
such as delivering professional development programs, presenting at conferences and 
contributing to mathematics education journals. The primary school Professional 
Officers complete the majority of their work in schools and this year (2011) have 
already travelled across many Victorian school regions from Timboon P–12 School to 
Nhill College; the smallest school visited so far was Zeerust Road Primary School, with 
an enrolment of 15 students. All Professional Officers support mathematics education 
across many sectors, including primary, secondary and tertiary education.  
 The purpose of this paper is to report on how teachers from two schools worked to 
improve lesson structure and planning of their mathematics curriculum throughout 
2010. The explanation of these experiences will provide a snap shot of the ‘custom 
made’ professional learning provided to two primary school MAV members.  

1013



LIVY & BOWDEN 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

 

Background 
The MAV is a membership-driven not-for-profit association which provides a voice, 
leadership and professional support for mathematics education. Its mission is to 
advocate for the continual review and improvement of mathematics education and the 
profession of mathematics teaching. The MAV does this by being a leading voice in 
mathematics education. It also supports key priorities as outlined in the Blueprint for 
Victorian Government schools, recognising the need to improve numeracy performance 
for all students by providing quality teaching and learning (DEECD, 2008). 
 The Professional Officers deliver a range of professional development workshops for 
mathematics educators. These experiences provide teachers with opportunities to 
explore and improve their capacities of knowledge needed for teaching: pedagogical 
content knowledge, mathematical content knowledge as well as their curriculum 
knowledge (Schulman, 1987). This work has been initiated with primary and secondary 
teachers through many programs in the past two years, for example the Professional 
Learning Assistance Team (PLAT) project, Effective Numeracy Teaching, Primary 
Mathematics Specialists and Numeracy Coaching. 

Effective numeracy teaching 
There are many skills an effective teacher of numeracy will use and draw on as they 
work with students. Askew, Rhodes, Brown, Wiliam and Johnson’s (1997) study of 
effective teachers provided three categories for approaches to teaching. Clarke, 
Cheeseman, Gervasoni, Gronn, Horne, McDonough, Montgomery, Roche, Sullivan, 
Clarke and Rowley’s (2002) study of effective numeracy teachers (and effective 
schools) identified 10 practices that effective teachers demonstrate. A more recent list 
was provided through the Scaffolding Practices for Effective Numeracy Teachers 
(Table 1) which has been used by Victorian teachers to identify a range of practices that 
can be drawn on to assist students’ learning needs (DEECD, 2004). The twelve 
Scaffolding Practices for Effective Numeracy Teachers have been used by teachers to 
assist them to identify important attributes of an effective mathematics teacher 
(DEECD, 2009b). 

Table 1. Scaffolding Practices for Effective Numeracy Teachers (DEECD, 2004). 

Excavating Drawing out, digging, uncovering what is known, making it transparent 

Modelling Demonstrating, directing, instructing, showing, telling, funnelling, naming, labelling, 
explaining 

Collaborating Acting as an accomplice, co-learner/problem-solver, co-conspirator, negotiating 

Guiding Cuing, prompting, hinting, navigating, shepherding, encouraging, nudging 

Convince Me Seeking explanation, justification, evidence, proving 

Noticing Highlighting, drawing attention to, valuing, pointing to 

Focusing Coaching, tutoring mentoring, flagging, redirecting, revoicing, filtering 

Probing Clarifying, monitoring, checking 

Orienting Setting the scene, contextualising, reminding, alerting, recalling 

Reflecting/ 
Reviewing 

Sharing, reflecting, recounting, summarising, capturing, reinforcing, reflecting, rehearsing 

Extending Challenging, spring boarding, linking, connecting 

Apprenticing Inviting peer assistance, peer teaching, peer mentoring 
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Professional development  
When a school approaches the Professional Officers to discuss the needs of their 
numeracy program, a Professional Officer will then make an appointment to meet with 
the principal and leadership team to identify and prioritise professional development 
needs at their school. During this visit, a school tour will be conducted and classroom 
teachers are encouraged to teach a numeracy lesson in order to provide an overview of 
the types of mathematical activity the teachers implement across the school. The 
principal might also provide an overview of student numeracy data across the school 
and a demographic description of the school. The Professional Officer will then work 
with the leadership team to design a professional learning program to meet the needs of 
the school. 
 Throughout 2010, two MAV Professional Officers were each invited to work with 
one primary school: School A and School B. Both schools focused on effective 
numeracy teaching to improve student outcomes and workshops were facilitated with 
classroom teachers throughout the year. During these school visits the teachers spent 
time as a whole staff, in small groups and individually, meeting and working with the 
Professional Officer assigned to their school. Teachers were engaged in professional 
conversations relating to their needs and the needs of their students. These sessions 
focused on awareness of the DEECD hyperlinks within the Key Characteristics of 
Effective Numeracy Teaching P–6 (DEECD, 2010) as well as structuring numeracy 
lessons, which led to the planning and provision of a differentiated numeracy program.  
 Both schools had ongoing support from leadership teams. Sometimes casual relief 
teachers released classroom teachers which provided opportunities for teachers to work 
in groups with the Professional Officer. The principals also attended some of the 
professional development and provided valuable ongoing support and feedback. 

Effective numeracy teaching: School A 
School A was located in Melbourne’s eastern suburbs and was well resourced. There 
were 30 teaching staff and an enrolment of 412 students. The school consisted of 15 
classes: four Prep, four Year 1/2 composites, three Year 3/4 composites and four Year 
5/6 composite classes. The school was not funded for a numeracy coach. School data 
from mathematics assessment tools such as On Demand Testing (VCAA, 2009) and 
NAPLAN (ACARA, 2010) identified these students as having a diverse range of 
mathematical achievement. The program commenced in Term 2 and concluded during 
Term 4. The Professional Officer visited School A 10 times. These visits included six 
days working with teachers in classrooms and four after-school staff workshops. 
 At the commencement of 2010, seven new staff were appointed to the school. This 
provided an appropriate opportunity to review and plan teaching goals for the school’s 
numeracy curriculum. The school’s Strategic Plan included a learning goal to improve 
levels of achievement in numeracy and to promote each student’s best performance. The 
leadership team and the Professional Officer agreed to focus on strengthening the 
school’s delivery of the mathematics curriculum with an emphasis on developing 
teacher practices that supported students in their learning, while also meeting the needs 
of the range of learners in classrooms.  
 In order to focus thinking about their numeracy program, teachers were provided 
with professional development sessions on current theories of how children learn using 
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many of the resources suggested in the Key Characteristics of Effective Numeracy 
Teaching P–6: Differentiating support for all students (DEECD, 2010). The program 
aimed to assist teachers to improve their pedagogical practices by referring to the 
Mathematics Developmental Continuum P–12 and Prep to Year 10 resources links on 
the Mathematics Domain site (DEECD, 2006).  

After-school professional learning 

As a staff, all teachers, including specialist teachers, attended after-school workshops to 
explore what constituted high quality instruction and to describe what effective teachers 
do in the classroom to engage students working mathematically. The first workshop 
promoted professional conversation, focusing on the teacher’s delivery of lessons and 
the Scaffolding Practices for Effective Numeracy Teachers (DEECD, 2004). Each 
teacher identified two scaffolding practices they wished to improve in order to make 
more informed decisions about specific learning needs of their students and to promote 
sustained mathematical thinking. The majority of teachers chose to focus their learning 
around ‘guiding’ and ‘focusing’ (see Table 1, DEECD, 2004). These two key 
characteristics then became the foundation of the remaining program. 
 Other staff workshops focused on what a primary numeracy classroom should look 
like and teachers agreed that mathematics should be taught every day for an hour during 
the morning. Many mathematical resources were explored. Activities were 
demonstrated and the teachers were set ‘between training session tasks’ to trial with 
their students; for example, Ten New Preps (Downton, Knight, Clarke, & Lewis, 2006). 
Work samples were then shared in subsequent sessions.  
Whole-day professional learning 

Two whole-day coaching sessions for teaching teams across each Victorian Essential 
Learning Standards (VELS) level (VCAA, 2007) enabled teachers to watch 
demonstration lessons taught by the Professional Officer. Before and after these lessons, 
teams participated in small group conversations to discuss the lesson features using the 
Scaffolding Practices for Effective Numeracy Teachers (DEECD, 2004). Teachers were 
then encouraged to take the same lesson with their students as a follow up and to 
consolidate these teaching experiences. Subsequent to these days, the four teaching 
teams met with the Professional Officer to review a range of mathematical resources for 
use in planning future lessons at each level. 
 Two further full-day coaching sessions were planned where teachers participated in a 
micro-lesson with seven students of the same ability and focused on rich tasks for 
extending the learners. These sessions were taught in the same room by three teachers, 
each with six of their own students, so the Professional Officer could observe these 
lessons. Each teacher used a Flip video camera to record their lesson and was 
encouraged to use the video to reflect on their own teaching, either individually or with 
peers during a later team meeting. The teachers and Professional Officer met before and 
after these lessons, discussing the lesson structure—elaborating, guiding and focusing. 
Observation of teacher outcomes  

For the final day’s workshop, 12 teachers from across the VELS levels volunteered to 
teach numeracy during the morning (Prep to Year 6). Four other teachers volunteered to 
form a consultative committee and conducted a ‘numeracy walk-through’ with the 
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Professional Officer. Throughout the morning, approximately 15 minutes was spent in 
each class to view a snap shot of the 12 numeracy lessons being conducted. The 
leadership team had agreed that the consultative committee would record field notes 
relating to the scaffolding practices of ‘guiding’ and ‘focusing’. All classroom teachers 
were aware of the focus the consultative committee was observing in action. 
 The numeracy walk-through provided an opportunity to celebrate the teachers’ 
journey. Teachers who were teaching engaged their students by implementing a range 
of numeracy tasks. The consultative committee was impressed by the range of lessons 
they saw and congratulated their peers. After the visits, the consultative committee 
provided a summary of what they had seen and reported back to the staff during a brief 
lunchtime meeting. This is a summary of some of the learning outcomes and comments 
that were noted during the final day of the program: 

• Guiding—asking students to explain and justify their answers, teachers observing 
and listening. 

• Focusing—providing group work, differentiation, students were engaged and 
enjoyed their learning, use of real world examples: students using the Internet to 
calculate the cost of a round-the-world flight. 

• Orienting—focusing students during the introduction of the lesson: using a poster, 
“Today we are learning how to tell the time.” Posing a problem for the class to 
solve then sharing strategies by exploring more than one method. 

• The same topic was being taught across the same year levels, providing evidence 
of teachers planning together. 

• Some classes chose to use ICT for small group activities or interactive whiteboard 
with the whole class. 

• The principal noted that teachers would not have opened their doors at the 
beginning of the year inviting their peers to watch them teach.  

• The consultative committee enjoyed the opportunity to view teaching across the 
school and valued the opportunity see a snapshot of student development of 
mathematics skills from Prep to Year 6.  

• The consultative committee recommended that all teachers should be given the 
opportunity to view numeracy lessons across all primary year levels. 

Effective numeracy teaching: School B 
School B worked with a different MAV Professional Officer. This school was going 
through a period of change with a newly appointed principal and was situated in the 
south-eastern growth corridor of Melbourne. This school catered for students from a 
wide range of social, economic, language and cultural backgrounds and had an 
enrolment of 500 students with representation from over 40 countries. There were 20 
composite classrooms across four VELS levels. The school employed 40 teachers 
whose experience and knowledge varied from recent graduates to those nearing the end 
of their teaching careers The school’s strategic plan and learning goals had identified a 
focus of school improvement for numeracy with an emphasis on the e5 Instructional 
Model (DEECD, 2009a) teaching practices, as well as ensuring teachers planned 
together and shared resources. 
 School B did not receive funding for a numeracy coach but released two teachers to 
train as PLAT leaders. PLAT training had been conducted by MAV Professional 
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Officers within the Dandenong Region for the past two years. To complement the 
PLAT program, a Professional Officer was invited to work with classroom teachers to 
assist with ongoing support for the teaching and learning of mathematics school-wide, 
and specifically to work with teachers on their pedagogy and approaches to 
mathematics teaching.  

Features of the professional learning of School B 

The leadership team and Professional Officer met to discuss School B’s focus. They 
agreed to build on teachers’ understanding of the five phases of the e5 Instructional 
Model through the use of rich tasks and open-ended questions. School B had been 
recognised for its outstanding curriculum innovation and the introduction of the e5 
Instructional Model: engage, explore, explain, elaborate and evaluate (DEECD, 2009a). 
The teachers at School B were all developing and deepening understanding of what 
constituted high quality teacher practice in their classrooms by implementing the e5 
Instructional Model. The five phases were embedded across the school’s planning 
documents, including Mathematics. As a means of celebrating and sharing this work, 
four teachers had presented their mathematics planning documents at the annual MAV 
conference at La Trobe University in 2009.  
 The Professional Officer usually met with four teachers from a teaching team, based 
on VELS levels, for two hours every week for four weeks. During the teaching teams 
four week program, teachers were introduced to an open-ended investigative approach 
to mathematics. They observed the Professional Officer teaching model lessons, 
engaged in professional discussions, explored mathematical resources and were assisted 
with numeracy planning. Teams were revisited through whole-school professional 
development and informal discussions over lunchtime breaks as well as email support. 
Teachers debriefed after the lessons, focusing on the e5 Instructional Model. They 
discussed what good mathematicians do, explored attributes of powerful numeracy 
teaching, as well as the lesson features which are elements of Maths300 (Education 
Services Australia, 2010). Three after-school workshops complemented the classroom 
experiences by focusing on effective numeracy teaching and implementing the 
Mathematics Continuum (DEECD, 2006). 
 During the model lessons, teachers were introduced to a range of rich classroom 
tasks, including assessment tasks (Downton et al., 2006), investigations from Working 
Mathematically with Infants (Williams, 2010) and from Maths300 (Education Services 
Australia, 2010). During the lesson debrief, teachers commented that the rich tasks 
fostered positive learning and engaged students in making mathematical connections. 
These experiences were purposeful to the students, as all learners could make a start; 
students were active and worked together to explore different strategies and solutions. 
 A second focus of the modelled lessons was ‘good’ questions, linking to the phase of 
‘elaborate’ as a technique for cultivating higher-order thinking and monitoring students’ 
progress (DEECD, 2009a). Encouraging teachers to use higher-order thinking and 
‘good’ questions aimed to enhance student learning. These questions require more than 
remembering a fact or reproducing a skill: students can learn by answering the 
questions, and the teacher learns about each student from the attempt, also noting there 
may be several acceptable answers (Sullivan & Lilburn, 2004).   
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 During the model lessons the teachers were able to take notes observing what the 
students knew, noticing common misconceptions and errors. Using rich tasks provided 
an opportunity for teachers to evaluate and collect data during the lessons while the 
students were engaged in learning. During the lesson debrief the teachers brainstormed 
the tools they could use to collect data about their students’ mathematical 
understanding: anecdotal notes, observation rubrics, check-lists for individual students, 
check-lists for whole classes, and a class ‘big book’ of reflections which was suggested 
for the early years.  

Impact of the professional learning programs 
The effective numeracy teaching undertaken by School A and School B aimed to 
improve student outcomes. The professional development focused on what and how 
classroom teachers delivered their numeracy program. Neither school’s programs were 
formally assessed. Comparing pre- and post-program data with respect to student 
achievement could be completed at a later date to evaluate student outcomes and 
provide feedback of both programs.  
 Evidence of the success of School A and School B programs was provided by 
observations conducted by leadership teams, as well as verbal and written comments or 
reflections provided by the participating teachers and students. A summary of the 
outcomes includes: 

• implementation of dedicated, regular daily numeracy lessons at all VELS levels; 
• improved structure of lessons with focused introduction and lesson debrief with 

the students to conclude lessons; 
• engaged learners working on tasks that catered for different abilities; 
• implementing rich tasks that promoted whole-class investigations of mathematics; 
• regular and systematic use of open-ended questions, games, authentic problems 

and extended investigations;  
• commitment from teachers to meet and plan numeracy together for each VELS 

level within the schools; 
• teachers learnt from each other through the opportunity to view peers in action.; 
• the teachers reported that they had increased awareness of the range of quality 

resources available to assist them with planning and implementing their numeracy 
teaching;  

• teachers explored websites and other resources for engaging and scaffolding 
learning such as the Teach Maths for Understanding CD (MAV, 2009); 

• the overall experience promoted positive teaching teams for planning and working 
across the VELS levels.  

 Providing teachers with an opportunity to work in teams to observe and discuss 
numeracy lessons in action was a valued experience for both schools. The success of 
these programs was also due to the commitment by the entire school staff and their 
willingness to identify areas of concern, and to work with peers and the Professional 
Officer to explore and extend their own teaching and learning experiences. 
 Both principals attended some workshops with their staff and provided ongoing 
feedback to the leadership team and Professional Officers. Teachers made decisions 
regarding the structure of the program and how they wished to use their time when 
working with the professional officers. Regular staff meetings were allocated time to 
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discuss and follow up on ideas presented and to foster a collective understanding of how 
to continue to improve and plan numeracy lessons. 
 The Professional Officers also gained knowledge from the teachers they worked with 
during these school visits. For example, one Prep teacher used a mathematics poster to 
“tune” her students into the lesson and explain what good mathematicians do during 
their work: think for themselves, estimate by having a best guess, count to work out the 
answer, check their answer, try hard and never give up (Figure 1). 
 

 

Figure 1. Poster used by prep teacher (School A) for “tuning in” to mathematics lesson. 

Conclusion  
The Professional Officers provided two programs that assisted teachers to reflect on 
their own teaching and to develop a collective school approach to numeracy. This was 
achieved through promoting a range of experiences to develop a shared philosophy of 
effective numeracy teaching and learning of mathematics. Both schools worked with a 
Professional Officer to improve their pedagogical practices and planning for numeracy 
across all VELS levels. School A worked together to establish a common, 
understanding of effective practice using the scaffolding practices (DEECD, 2004). 
School B drew on the five phases from the e5 Instructional Model as a focus for 
improving numeracy teaching through rich tasks and good questioning techniques. 
 Customising professional development to promote effective numeracy met the needs 
of each school. This format encouraged all staff to implement shared structures for their 
whole-school numeracy program while also promoting each teacher’s individual 
teaching of primary mathematics. In particular, teachers were provided with 
opportunities to focus on their own classroom teaching and planning with reference to 
lesson structure, using open-ended tasks and providing differentiated lessons. Allowing 
teachers to work together promoted opportunities to reflect on practices and for teachers 
to justify what they do, and contributed to enhancing their knowledge of teaching. All 
teachers valued the opportunity to view each other in action and agreed that modelled 
lessons should continue across all Year levels to foster effective numeracy teaching. 
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The Pattern and Structure Mathematical Awareness Program (PASMAP) stems from a 2-
year longitudinal study on students’ early mathematical development. The paper outlines 
the interview assessment the Pattern and Structure Assessment (PASA) designed to 
describe students’ awareness of mathematical pattern and structure across a range of 
concepts. An overview of students’ performance across items and descriptions of their 
structural development are described. 

 
In the Australian Curriculum: Mathematics (Australian Curriculum, Assessment and 
Reporting Authority, 2010), the Number and Algebra strand highlights the importance 
of mathematical patterns, relationships, abstraction and generalisation, as well as the 
roles of Problem Solving and Reasoning Proficiency strands. Further, the integration of 
measurement and geometry, and statistics and probability brings new opportunities to 
develop a structural approach to mathematics learning. 
 The Pattern and Structure Mathematics Awareness Project has investigated the 
development of patterning and early algebraic reasoning over a series of related studies 
since 2001 (Mulligan, 2011). The project aims to promote a strong foundation for 
mathematical development by focusing on critical underlying general features of 
mathematics learning much earlier than previously thought possible. We suggest that an 
awareness of mathematical pattern and structure enables real mathematical thinking and 
simple forms of generalisation from an early age (Mulligan & Mitchelmore, 2009). 
From 2009 to 2010 we evaluated the effectiveness of a school-entry year-long 
mathematics program promoting patterning and structural awareness. 
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Pattern and structure in mathematical development 
Young children learn mathematical ideas by seeing patterns in an organised way: 
looking for sameness and difference. We call this ‘pattern and structure’. A 
mathematical pattern can be: 

• a simple repetition such as a ‘unit of repeat’—ABC, ABC, ABC; 
• spatial patterns such as 2D and 3D designs, tessellations, transformations; 
• a growing pattern such as a systematic increase or decrease, e.g., triangular 

number pattern 1, 3, 6, 10, 15; or 
• a function where relationship between variables are formed, e.g., table of values. 
Mathematical structure refers to other features such as: 
• numerical structure, e.g., counting in multiples and equal groups; 
• spatial structure, e.g., row and column array; similarity ‘same shape, different 

size’ and congruence ‘same shape, same size’; 
• structure of units of measure; and 
• structural features that lead to abstraction and generalisation, e.g., a + b = b + a  

 Our goal is to develop an assessment and pedagogical framework. In this paper we 
describe the development of the Pattern and Structure Assessment (PASA) interview 
and the broad findings, with some examples of students’ responses. 

Background to the research 
Structure has been a growing theme in research on children’s development of 
mathematical concepts. Mason, Stephens & Watson (2009) believe that the roots of 
mathematical thinking lie in detecting sameness and difference, in making distinctions, 
in classifying and labelling, or simply in “algorithm seeking” Studies of young 
children’s mathematical reasoning have provided complementary evidence of the 
importance of early patterning skills, analogical reasoning and the development of 
structural thinking (Blanton & Kaput, 2005; Carraher, Schliemann, Brizuela, & Earnest, 
2006; English, 2004; Papic, Mulligan, & Mitchelmore, 2011). Recent initiatives in early 
childhood mathematics education, for example ‘Building Blocks’ (Clements & Sarama, 
2007), ‘Big Maths for Little Kids’ (Greenes, Ginsburg, & Balfanz, 2004), and ‘Curious 
Minds’ (van Nes & de Lange, 2007) provide research frameworks to promote ‘big 
ideas’ in early mathematics education.  
 Recent initiatives in early childhood mathematics assessment instruments highlight 
patterning and spatial skills moving beyond early numeracy (van Nes & de Lange, 
2007). Thus in designing PASMAP and an accompanying assessment, we focussed on 
the relationships between children’s patterning skills, structural relationships and the big 
ideas in mathematics. 

Assessment of early mathematical development 
One of the limitations of traditional early mathematics assessment is the use of 
standardised instruments such as I Can Do Maths that do not enable the depth of 
analysis reflected by current research (Doig & de Lemos, 2000). Several effective 
assessment instruments and programs have been developed such as Mathematics 
Recovery (Wright, 2003) or interventions (Gervasoni, 2005). At system level, for 
example, the Count Me in Too Learning Framework in Number (NSW Department of 
Education and Training, 2002) provides support for the assessment and development of 

1023



MULLIGAN, ENGLISH, MITCHELMORE, WELSBY & CREVENSTEN 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

children’s counting, arithmetical and measurement strategies. Broader measures of 
mathematical achievement for four to eight year olds have been developed including 
patterns and geometry, measurement and data (Clements & Sarama, 2007). However, 
no assessment instruments incorporate aspects of pattern or related features of 
mathematical structure. 

Method 
A purposive sample of four large primary schools, two in Sydney and two in Brisbane, 
representing 316 students from diverse socio-economic and cultural contexts, 
participated in the evaluation throughout the 2009 school year. At the follow-up 
assessment in September 2010, 303 students were retained. Two different mathematics 
programs were implemented: in each school, two Kindergarten teachers implemented 
the PASMAP and two implemented their standard program. The PASMAP framework 
was embedded within but almost entirely replaced the regular Kindergarten 
mathematics curriculum. The program focused on unitising and multiplicative structure, 
simple and complex repetitions, growing patterns and functions, spatial structuring, the 
spatial properties of congruence and similarity and transformation, the structure of 
measurement units and data representation. Emphasis was also laid on the development 
of visual memory and simple generalisation (for details see Mulligan, Mitchelmore, 
English, & Robertson, 2010). A researcher/teacher visited each teacher on a weekly 
basis and equivalent professional development for both pairs of teachers was provided. 
Incremental features of PASMAP were introduced by the research team gradually, at 
approximately the same pace and with equivalent mentoring for each teacher, over three 
school terms (May-December 2009). Implementation time varied considerably between 
classes and schools, ranging from one 50-minute lesson per week to more than 5 one-
hour lessons per week. 
 Students were pre- and post-tested with I Can Do Maths (ICDM) (Doig & de Lemos, 
2000) in February and December 2009, and September 2010; from pre-test data two 
‘focus’ groups of five students in each class were selected from the upper and lower 
quartiles, respectively. These 190 students were interviewed by the research team using 
a new version of a 20-item Pattern and Structure Assessment (PASA1) in February 
2009, a revised 19-item PASA2 in December 2009 (n=184), and the PASA2 and 
“extension” PASA in September 2010 (n=170). 
 Focus students were monitored closely by the teacher and the research assistant 
collecting detailed observation notes, digital recordings of their mathematics learning 
and work samples, and other classroom-based and school-based assessment data. These 
data formed the basis of digital profiles for each student. The Appendix presents an 
abridged version of two of three PASA assessment instruments.  

The PASA assessment instrument 
The assessment interview sought to complement interview-based numeracy assessment 
instruments such as the Schedule for Early Number Assessment 1 (SENA) (NSW DET, 
2002) by extending counting and arithmetic strategies (addition and subtraction) to 
multiplicative reasoning. Thus many of the items (4, 5, 6, 9, 10, 11, 12), focused on 
multiple counting and patterning, the development of composite units and unitising, 
base ten structure, partitioning and multiplicative reasoning, and combinatorial thinking 
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(English, 1993; Mulligan & Mitchelmore, 1997; Thomas, Mulligan & Goldin, 2002). 
Related to these items were those on the structure of 2-dimensional and 3-dimensional 
arrays (Items 7, 8, 18) and measurement units (Outhred & Mitchelmore, 2000). The 
patterning tasks (Items 1, 2, 15) were based on simple repetitions and were extended to 
include an item integrating multiple counting and emergent functional thinking (Blanton 
& Kaput, 2005; Papic et al., 2011; Warren & Cooper, 2008). The subitizing tasks 
extended those in the SENA 1 (NSW DET, 2002). Items 13 and 14 were based on the 
notion that there are strong links between analogical reasoning and spatial patterning. 
Further, several items required students to draw and explain representations such as the 
structuring features evident on a clockface. 

Discussion of results 
In summary, both groups of students made substantial gains on the ICDM and PASA1 
and 2 across the three assessments with PASMAP students’ overall mean scores higher 
than the regular group. We focus here on the PASA item difficulty and the growth 
between pre- and post-assessment; Figure 1 shows the percentage of correct responses 
by item by assessment.  

 
Figure 1. Performance on PASA1 and PASA2. 

 At the beginning of Kindergarten, 50% or more of students could correctly solve 
eleven of the 19 items. Most impressive was the students’ ability to construct simple 
repetitions (Items 1 and 2), subitize (Item 3a), demonstrate halving (Item 6a), represent 
a 2 × 3 grid from memory (Item 7b), visualise units of volume (Item 8a), share by 
dealing and reformulate a share (Items 9 and 10) and use analogy to reason (Item 13). 
Items 9 and 10 assessed students’ sharing strategies, which proved too easy for most 
students because of the simple context (6 between 2). Consequently the item was 
removed in PASA2. However, a more difficult partitioning item might reveal more 
complex strategies and provide further insight into students’ development of multiple 
counting. The most difficult items were those items involving counting by twos (Item 
4a), partitioning 50 (Item 5), quotition, representing with drawing from memory a 
triangular pattern (Item 15), a clockface (Item 17) and a grid pattern (Item 18).  
 At post-assessment there was marked growth in the responses to most items, 
particularly multiple counting (count by threes) and the related item (16) using count by 
twos and fours. Students participating in PASMAP accounted for much improvement 
shown in multiplicative tasks, possibly because the emphasis on skip counting and 
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border patterns encouraged the development of composite units. Increased AMPS was 
reflected in their drawn responses to Items 15, 17 and 18. PASMAP students had 
opportunities to develop visual memory and the representation of structured units in 
many classroom activities. These students produced more structured representations 
earlier than students in the regular program. Further it was unexpected that students 
would use and explain the structure of units of measure for Item 19, i.e., the smaller the 
unit the more required. At post- assessment Item 3c proved unusually difficult. It was 
apparent that the students relied on unitary counting of a 5 × 5 square and ignored the 
structure. The patterning items were not sufficiently challenging, but it was important to 
examine evidence of understanding the unit of repeat because these patterning tasks 
were critical to assess children’s underlying understanding of pattern and structure. We 
found that solution strategies were similar to those found by Papic et al. (2011) with 
pre-schoolers. At PASA1 the majority of children used direct comparison by copying 
the pattern model and matching blocks one to one from ‘top down’ or ‘bottom up’. This 
strategy was replaced by an alternation, or unit of repeat, strategy by the second or third 
interview.  
 Students using an alternation strategy focused on successive items regardless of the 
complexity of the unit of repeat. The alternation strategy proved successful with simple 
repetitions, but with an increase in task complexity (e.g., an ABB repetition in PASA 2), 
it became ineffective. Students who identified the unit of repeat in the pattern model 
constructed the unit repeatedly showing some form of chunking (i.e., AB or ABB). 
They could then use the unit of repeat to extend the pattern; those who were successful 
typically first identified the unit of repeat and calculated the number of repetitions using 
the language of multiplication. For example, “I need blue, red, red, three times”.  

Categorising responses for stages of structural development 
Analysis of qualitative data, tracking of the ‘focus’ students, indicated marked 
differences between groups in students’ levels of structural development, Awareness of 
Mathematical Pattern and Structure (AMPS.) Students participating in the PASMAP 
program showed higher levels of AMPS than the regular group at post-assessment 3, 
made connections between mathematical ideas and processes, and formed emergent 
generalisations. Broadly, students’ responses to particular items were categorised as in 
previous studies (Mulligan & Mitchelmore, 2009) as follows:  

• Pre-structural: representations lack evidence of numerical or spatial structure. 
• Emergent (inventive-semiotic): representations show some relevant elements but 

numerical or spatial structure is not represented. 
• Partial structural: representations show most relevant aspects but are incomplete. 
• Structural: representations correctly integrate numerical and spatial structural 

features. 
 We looked for evidence that a student had connected pattern and structure. An 
exemplar of students’ developing structural features is now described. We drew on the 
qualitative analysis of a total of 600 drawn responses (Item 7) including approximately 
10% as ‘second attempts’. An independent coder categorised each response for level of 
structural development with reference to each interview script.  
 Figures 2 to 5 show typical examples of developmental features of students’ AMPS 
in response to Item 7. In Figure 2 the student guesses the number of squares as “15” and 

1026



MULLIGAN, ENGLISH, MITCHELMORE, WELSBY & CREVENSTEN 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

draws single unit squares in a row (with some replication of shape) without 2-
dimensional structure. Interestingly Figure 3 presents the groupings of 3 and 4 units of 
the grid as a border. Figure 4 shows the structure of the grid but additional units are 
provided, again showing “crowding”. Figure 5 presents accurate alignment of a 3 × 4 
array as the student explains the representation as “3 by 4” rows sequentially drawn.  
 

   

Figure 2.  
Pre-structural 

Figure 3. 
Emergent 

Figure 4.  
Partial 

Figure 5. 
Structural 

Conclusions and implications 
The study shows that a program such as PASMAP that explicitly focuses on the 
promotion of students’ awareness of pattern and structure (AMPS) certainly can achieve 
its aims. Particular gains were noted in the related areas of patterning, multiplicative 
thinking (skip counting and quotition) and rectangular structure (regular covering of 
circles and rectangles). It is not difficult to see how such understanding will be of value 
to students in their mathematics learning in Years 1 and 2. 
 As expected, a focus on pattern, structure, representation and emergent generalisation 
advantaged the PASMAP students. The advanced structural representations elicited at 
post-assessments reflected the learning that occurred during the program 
implementation. However, students in the regular program were also able to elicit 
structural responses but had not been given opportunities to describe or explain their 
emergent generalised thinking that may have been developing. It was not possible to 
determine whether more advanced examples of structural development could be directly 
attributed to the program impact. One of the most promising findings was that the focus 
students categorised as low ability were able to develop structural responses over a 
relatively short period of time. 
 Another aim of the project was to enhance teachers’ mathematical content and 
pedagogical knowledge bases, including an understanding of young students' 
development, skills in assessing and documenting their learning. The participating 
teachers played a crucial role in the review of the PASA and the analysis of stages of 
development. Collaborative, sustained, and productive working relationships among 
school leaders, teachers and the researchers were pivotal to program implementation 
and the quality of the assessment and learning process. The underlying concepts and 
pedagogy required to implement a program of this kind are complex and these have not 
been central to traditional mathematics syllabuses or early mathematics learning 
programs. The PASA can enable a deeper and broader approach to assessment and 
serve to inform a much more challenging framework of mathematical ideas 
commensurate with young children’s potential. It is anticipated that professionals will 
take on this approach with flexibility so that structural relationships across mathematical 
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concepts will be considered seriously, resulting in more holistic and meaningful 
mathematics learning. 
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Appendix 

Table 1. PASA1 and PASA2 assessment instruments. 

Task PASA1 version PASA2 version 
1 Pattern: simple repetition 

Show tower in an ABABAB pattern. Provide 
additional cubes. 
Make a tower exactly the same as this one. 
What do you think comes next? 

Pattern: complex repetition 
Show tower in an ABBABBABB pattern. 
Provide additional cubes. 
Make a tower exactly the same as this one. 
What do you think comes next? 

2 Border pattern (ABAB) 
Provide diagram of 3x4 border and 10 cubes 
(5 each of 2 colours). 
Make a pattern on the border using these 
cubes. 

Border pattern (ABCABC) 
Provide diagram with 4x4 border and 12 
cubes (4 each of 3 colours). 
Do you have the right cubes to make a border 
pattern?Make a pattern on the border using 
these cubes. 

3 Number/subitising 
Flash 5 dot pattern card for one second. Hide 
from view. How many dots did you see? 

Number/subitising 
Flash (2x5) array card for one second. Hide 
from view.  How many dots did you see? 
Flash (5x5) array card for one second. Hide 
from view.  How many dots did you see? 

4 Counting: multiples of 2. 
Count aloud by twos….two….  
Provide numeral track (1-20). 
Now count again and put a circle round the 
numbers as you go. 

Counting: multiples of 3. 
Count aloud by threes….three….  
Provide numeral track (1-21).  
Now count again and put a circle round the 
numbers as you go. 

5 Ten as unit 
Show opaque box containing five 10c coins. 
I’ve got some coins in this box. They are all 
10c coins like this. Show one 10c coin.  
There is 50c in the box altogether. How many 
10c coins are in the box? 

Ten as unit 
Show opaque box containing ten 10c coins.  
I’ve got some coins in this box. They are all 
10c coins like this. Show one 10c coin.  
There is $1 in the box altogether. How many 
10c coins are in the box? 

6 Length: halves and thirds. 
Show 50cm paper streamer. 
I need to cut this streamer into 2 pieces the 
same size. Where should I cut it? 
Now I need to cut this streamer into 3 pieces 
the same size. Where should I cut it? 

Length: thirds and quarters 
Show 50cm paper streamer. 
I need to cut this streamer into 3 pieces the 
same size. Where should I cut it? 
Now I need to cut this streamer into 4 pieces 
the same size. Where should I cut it?  

7 Visual Memory Grid (2x3 in PASA1 and 3x4 in PASA2) 
Provide Student Recording Sheet, pencil and eraser. 
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I’m going to show you a card quickly. Look carefully and tell me how many small squares 
there are. Show Grid Card face up for one second. Cover. Draw exactly what you saw. 

8 Visualisation/Volume/Unitising 
Provide net of open box (2x2x1 – PASA1 and 2x2x2 – PASA2) and one multilink cube. 
Imagine this shape folded up to make a box. How many cubes like this would fill the box 
without any spaces left? 

9 Sharing 
Provide 2 teddies and 6 counters.  
Share all these biscuits between the 2 teddies. 
Make sure each teddy has the same. 

No equivalent task in PASA2 

10 Sharing: reformulation 
Provide an extra teddy. Now share these 
biscuits between the 3 teddies. 

No equivalent task in PASA2 

11 Combinatorial: multiplication 
Provide a card showing outlines of 4 teddy 
bears, cut outs of 4 tops (in 2 colours) and 4 
pants (in 2 colours). 
How many bears can you dress so that no 
bears are dressed the same? 

Combinatorial: multiplication 
Provide a card showing outlines of 8 teddy 
bears, cut outs of 8 tops (eg. 3 red, 3 pink & 2 
purple) and 8 pants (eg. 4 blue & 4 green). 
How many bears can you dress so that no 
bears are dressed the same? 

12 Quotition: division 
I have $10 in coins. I want to give some children $2 each. How many children can I give $2 to? 

13 Analogical Reasoning 
Your hand goes with your arm in the same way as your foot goes with your …. 

14 Analogical Reasoning and Transformation 
Place the card with three arrows in front of the student. Make sure “TOP” is up. 
Show me which way you think the arrow will go next? And which way after that? Can you tell 
me why you think that? 

15 Provide Student Recording Sheet & pencil.  
I’m going to show you a pattern on this card quickly. Flash triangular 6-dot pattern for one 
second. Draw exactly what you saw. (PASA2 addition) - Draw what you think comes next. 

16 Picture graph: functional thinking  
Show student card with four dogs briefly. Ask, How many ears altogether on 1 dog? 2 dogs? 3 
dogs? whilst uncovering each dog. Leaving 4th dog covered ask  
a) How many ears on 4 dogs altogether? 
Cover card. Repeat process with “legs” up to 3 dogs without revealing 3rd dog. 
b) How many legs on 3 dogs altogether? 

17 Time: analogue clock face (hour) 
Provide Student Recording Sheet and pencil.  
Someone started drawing a clock, could you finish it for me? 

18 Area: unitising 
Provide Student Recording Sheet and pencil.  
Someone has started to draw some small squares to cover this shape. (Point to whole shape.)  
Finish drawing the squares. (Point to the space.) 

19 No equivalent task in PASA1 Volume: Show 3 cups of varying size.  
How many small cups of water are needed to 
fill the big cup? Medium sized cups?Why?  
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This paper outlines an intervention to support pre-service teachers without prejudice in a 
first year mathematics unit, Personal and Professional Numeracy. The unit aims to develop 
and/or build on personal and professional numeracy understanding. Mathematics anxiety in 
pre-service teachers has been reported in the literature and might be linked to some 
students’ low success rate or their withdrawal from the unit. An intervention is proposed to 
assist students gain an understanding of their personal learning preferences using 
descriptors identified by the Myers-Briggs Type Indicator (MBTI). This intervention aims 
to use self-understanding to change behavioural outcomes.  

Introduction 
The University of Tasmania (UTas) Faculty of Education has an objective of increasing 
the success and retention of first year students enrolled in its compulsory mathematics 
unit. This reflects the significance of mathematics performance as a national priority, 
and the need for pre-service teachers to be able to demonstrate required levels of 
mathematical understanding prior to their employment as teachers. Watson (2011) 
provides a comprehensive description of the design of ESH120 Personal and 
Professional Numeracy, a first year, first semester unit in a re-conceptualised four year 
BEd (EC/Primary) course introduced at UTas in 2010. The unit precedes two 
mathematics education units offered later in the course and targets specific 
mathematical understandings for personal and professional proficiency in mathematics. 
ESH120 is delivered both on-campus and online.  
 In response to a relatively high attrition rate, and low success rate of some cohorts of 
students studying ESH120 in its initial offering, a team outside of the ESH120 teaching 
team has designed an intervention being introduced into the unit in 2011. The purpose 
of the intervention is to raise students’ self efficacy in mathematics by enhancing their 
levels of self-understanding. It is anticipated that the intervention will contribute to 
students’ success in ESH120 and ultimately their capacity to teach mathematics in 
educational settings.  
 Delivered during the second week of semester, the intervention involves students 
self-selecting to engage in a series of tasks and reflections outside of their ESH120 
lectures and tutorials. It provides students with the opportunity to determine their 
Myers-Briggs Type Indicator (MBTI) profile (Briggs & Briggs Meyers, 1998) and gain 
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personal insights that may enhance their success in the learning activities required in 
ESH120. The students are directed to Reinhold (2006), which provides a free and online 
opportunity to determine their MBTI profile. The intervention, conducted on-line, 
delivers: 

• information about MBTI and learning preferences for different personality types 
• information on mathematics anxiety 
• strategies to use MBTI to overcome mathematics anxiety 
• access to an online facility for engaging with one another and with intervention 

team members. 

Mathematics anxiety and pre-service teachers 
Mathematics anxiety has been described by Smith and Smith (1998) as involving 
feelings such as intense frustration or helplessness when confronted with the need to 
undertake mathematics activities. This, they argue, is a learned emotional response. 
While mathematics anxiety is evident in the wider community, Gresham (2007) notes 
that high levels of mathematics anxiety occur among pre-service teachers. Bursal and 
Paznokas (2006) reported that a significantly larger percentage of pre-service teachers 
experienced higher levels of mathematics anxiety than other undergraduate university 
students.  
 Mathematics anxiety in pre-service teachers not only affects their learning in 
mathematics units throughout their course, but also leads to doubts as to their potential 
effectiveness in teaching mathematics to children (Gresham, 2007). These doubts are 
well founded. Uusimaki and Nason (2004) support the notion of a flow-on effect of 
mathematics anxiety after pre-service teachers graduate. They suggest that teachers’ 
beliefs (about mathematics) play a major role in their students’ formation of beliefs 
towards mathematics. Gresham (2007) notes that educators such as Vinson argue 
strongly that teachers transmit their avoidance and fear of mathematics to their students. 
There is a case then for taking action in pre-service teacher education courses.  
 The importance of taking action to alleviate mathematics anxiety is even more 
critical for particular cohorts of pre-service teachers. Perry (2000) singles out early 
childhood pre-service teachers as needing additional support. He notes that this cohort, 
who are mainly women, often have low level mathematics skills and hold negative 
attitudes to learning mathematics, and notes that teacher education programs do not 
alleviate these students’ deficiencies. Perry recommends addressing the continuing low 
levels of competence in, and attitudes towards mathematics and mathematics education 
in the early childhood sector. He advises that it is during the early childhood years that 
children’s foundational attitudes towards mathematics are nurtured. Confidence and 
competence in pre-service early childhood teachers’ own mathematics abilities, Perry 
argues, will be carried through to enhance the in-depth teaching of mathematics to 
young children.  

Addressing mathematics anxiety in pre-service teachers 
Trujillo and Hadfield (1999) present the causes of mathematics anxiety in three 
categories: personality factors, environmental factors and intellectual factors. Research 
into these causes of mathematics anxiety can and has been used to inform the teaching 
of mathematics in pre-service teacher education courses (Breen, 2003). Specifically 
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targeted interventions are often designed to reduce or alleviate particular aspects of 
mathematics anxiety. For example Gresham’s (2007) pre-service mathematics teaching 
model addresses intellectual factors such as lack of persistence and lack of confidence 
in mathematical ability. Gresham adopted Bruner’s learning theory to get students to 
attack mathematics problems symbolically by first having them engage with concrete, 
semi-concrete or pictorial activities. She argued that “while mathematics anxiety can be 
reduced by establishing a supportive classroom environment, using manipulatives to 
bridge concrete to abstract learning is important to address students’ attitudes towards 
mathematics” (p. 183). Gresham provides a comprehensive range of teaching and 
learning strategies that can inform pre-service teacher mathematics educators. 
 Breen (2004) adopted the use of journals as a reflective process for students to 
address their fear of mathematics by tapping into their metacognition. This intervention 
follows on from his earlier (2003) discussion of theoretical principles underpinning an 
enactive approach to addressing mathematics anxiety. There is a role, he says for 
hermeneutic listening which involves both student and teacher being mutually engaged 
in a shared project, in this case, sharing fears and insights through journal writing. 
Callingham and Falle (2010) confirm that the development of language skills which 
focus on mathematics understanding and performance contributes to mathematics self-
efficacy. 
 Interventions such as those described above add to the knowledge base and tools for 
tertiary mathematics educators. Tobias (1998) contends that the root of some 
mathematics anxiety lies in how one is taught mathematics. This is particularly 
significant since teachers are inclined to teach just as they were taught (Furner & 
Berman, 2005). Watson (2011) describes the range of approaches used in the teaching 
of ESH120. Some of these mirror the strategies used by Gresham and are aimed at 
constructivist learning. Constructivist teaching and learning strategies result in higher 
levels of student engagement with mathematics activities, concepts and problem-solving 
(Gresham, 2007). Gresham also suggests that students often take constructivist 
strategies used in their pre-service education units into the teaching of mathematics to 
children.  
 Trujillo and Hadfield (1999) provide identifiers related to mathematics anxiety 
causal factors. These include: 

• personality factors such as reluctance to ask questions due to shyness, low self 
esteem, and, for females, viewing mathematics as a male domain; 

• intellectual factors such as being taught with mismatched learning styles, student 
attitude and lack of persistence, lack of confidence in mathematical ability, and 
the lack of perceived usefulness of mathematics 

• environmental factors such as negative experiences in the classroom, parental 
demands, insensitive teachers, and according to Idris (2006) the use of traditional 
teaching methods. 

Such identifiers help to target the design of interventions for pre-service teacher 
mathematics education. The proposed intervention intends to use MBTI to address the 
causal personality and intellectual factors contributing to students’ mathematics anxiety.  
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The Myers-Briggs Type Indicator (MBTI) 
MBTI (Briggs & Briggs Meyers, 1998) is a well-known and readily available, 
personality style instrument that can help students identify their personality 
characteristics. The MBTI is based on four dichotomous preferences: 
extraversion/intraversion (E-I), sensing/intuition (S-N), thinking/feeling (T-F), and 
judgment/perception (J-P). These four preference scales describe focus of attention, 
acquisition of information, decision making and orientation towards the outer world. 
Sixteen different four-letter combinations result from these categories. In practice the 
determination of type consists of three stages which include using information from the 
scored inventory, participating in an MBTI facilitated session and confirming type by 
reading type summaries. (See the Appendix to this paper.).  
 Personality-type preferences can have a determining effect on learning and learning 
styles (Irani, Scherler, Harrington & Telg, 2000), and the assimilation of new 
knowledge (Kiersey & Bates, 1984). Overbay, Gable, Oliver, and Vasu, (2006) noted 
that studies by Lennon and Melear (1994) indicate that personality, as measured by the 
MBTI, can be used as a predictor of instructional preference. 
 MBTI has been used to support learning in universities. Lynch (2001) provided 
students with access to psychological type and learning style inventories prior to their 
participation in a discussion board. Students were asked to reflect on whether their 
problem-solving in response to scenarios was affected by their learning style and 
psychological type. Lynch describes positive outcomes from this meta-cognitive 
intervention, noting that students identified ways in which they were better able to take 
control of their own learning. Many reported that becoming aware of their learning style 
and psychological type increased their self esteem and their confidence as online 
learners (Lynch, 2001). Another university study by Irani, Scherler, Harrington and 
Telg, (2000) demonstrated that personality type affected student perceptions of the 
instructional techniques used in online learning and noted that personality type also 
affected student performance.  
 These studies suggest that the MBTI can be acknowledged as one way for adult 
learners to explore or become more aware of their personal preferences and learning 
styles.  

The UTas ESH120 Intervention 
In 2010 ESH120 Personal and Professional Numeracy had a total of 624 enrolments at 
the beginning of the semester: Of these 226 were internal students and 398 were 
external/on-line students. By the end of semester, 36 students had withdrawn from the 
unit (Downing, 2010). Downing notes that 68% of those who withdrew identified 
mathematics anxiety as a contributing reason. She observes that in their additional 
comments to her survey, students described their fear of mathematics, their lack of 
confidence and their feeling of being overwhelmed or confused by the learning 
materials. One response quoted by Downing represented the feeling of others. 

I felt there was no system in place to offer a bridge to people who haven’t studied math 
for over 15 years and are not confident. Felt a lot of pressure was on MATHEMATICS 
being crucial to teaching (WHICH IT IS) but to have to perform to high school level 
when I only intend to teach kinder or prep made me feel sick and put me off [uppercase 
original]. (Downing, 2010, p. 11) 
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 The instructional design for the ESH120 unit described by Watson (2011) reflects 
strategies necessary to address the environmental aspects of mathematics anxiety. The 
unit makes use of a variety of UTas specific online technology including MyLO, 
PebblePad and Lectopia recorded lectures, web-based mathematics activities and other 
learning related programs; Watson (2011) describes how these were used. Self-paced 
and scaffolded learning in authentic contexts was actively promoted throughout the 
conduct of the unit (Watson, 2011). Downing’s (2010) study generally acknowledges 
the effectiveness of the learning processes in ESH120. However, her study also 
highlights the need to provide additional support for the personality and intellectual 
factors that cause mathematics anxiety. 
 The MBTI-based intervention is designed to be accessed by all students in ESH120. 
A folder set up in week 1 of the semester is located on the front page of the ESH120 
MyLO site and contains PowerPoint slides introducing the intervention, reasons for its 
development, its benefits to students, an invitation to participate and procedures for 
participating the following week. In week 2, students were invited to:  

• Complete an online MBTI instrument, taking note of their four letter type.  
• Watch a facilitator-led Lectopia presentation. The presentation by an accredited 

MBTI facilitator assists students to interpret their inventory results and explain the 
relevance of personality type and learning styles to engaging in ESH120. The 
video also provided a range of insights into ways in which students can draw upon 
their preferred MBTI strengths and accommodate their least preferred dimensions.  

• Access the MBTI PebblePad which provides a range of readings about MBTI and 
mathematics anxiety, and engage in a Discussion Blog where insights and 
conversations about MBTI learning styles, mathematics anxiety and other related 
learning matters can be shared. 

 Downing (2010) recommends that online students be scaffolded and supported and 
points to the need to create a community. She also highlights the need to act early in the 
semester to engage students. Participation in the intervention is voluntary and 
confidential. Lecturers in ESH120 Professional and Personal Numeracy are not given 
access to the PebblePad Blog in order to ensure that students could speak freely about 
their participation in the unit. The PebblePad also serves as a communication forum in 
which students can reflect on their progress in ESH120, learn from other students about 
their insights into their learning styles and strategies, and the researchers can post 
relevant readings and other timely support materials. The intention is that the 
intervention will proceed in a developmental transformational way throughout the 
semester.  

Limitations 
The MBTI relies on students self-reporting their behaviours and attitudes. In this 
respect, students may want to present themselves in the best possible light. However 
students were advised of the personal benefits of recording their MBTI answers and 
Blog postings honestly. Confidentiality requirements comply with the UTas ethics 
protocols. 
 The MBTI uses a dichotomous scale and has been criticised in the literature in this 
respect (Pittenger, (2005). Researchers such as Overbay, Grable, Oliver and Vasu 
(2006), note that there is debate over whether MBTI actually measures “type” which 
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differentiates over time, or “traits” which can be modified through training. The 
ESH120 intervention is conducted over a semester and has well-targeted aims. It 
focuses largely on the descriptors of each dimension of personality type, giving 
participants the opportunity to assess for themselves which types they most resonated 
with. The inventory was used in a constructive manner in order to raise awareness 
amongst students of the many different ways in which people take in information and 
relate to the world. Students are given the opportunity and information to explore MBTI 
and its application to teaching and learning for themselves. 

Conclusion 
At the most basic level, this intervention is a call to attention. The premise of the 
intervention is that awareness of personal preferences and learning styles can reduce 
mathematics anxiety amongst pre-service teachers. This will enable them to engage 
with mathematics in ways that increase their mathematics self-efficacy. It targets largely 
unexplored mathematics anxiety causal factors and in so doing may provide additional 
insights for tertiary mathematics educators in pre-service education courses. During the 
semester it is expected that the intervention will take on the form of an action research 
project by documenting the continually changing strategies that are required to engage 
with, learn from, and support students in their reflective activity. The MBTI 
intervention in ESH120 draws upon some of the enactive principles proposed by Breen 
(2003). As the information base for its development expands, other theories and 
research will add further insights. 
 It is anticipated that particular student cohorts may require attention. Perry’s (2000) 
quote from an early childhood pre-service teacher echoes that provided by Downing 
(2010) “What do you mean – I have to do two mathematics units! I chose early 
childhood teaching because I couldn’t handle primary mathematics.” (p. 32). Some 
students feel that there seems to be no point undertaking mathematics learning beyond a 
rudimentary level. The Maths? Why Not? study by McPhan, Morony, Pegg, Cooksey 
and Lynch (2008) has the potential to inform what needs to be addressed to enhance 
these students’ willingness to continue to pursue mathematics learning at higher levels: 

• self-perception of ability;  
• interest and liking for higher-level mathematics;  
• perception of the difficulty of higher-level mathematics subjects;  
• previous achievement in mathematics; and 
• perception of the usefulness of higher level mathematics. 

 The study focused on secondary students’ unwillingness to pursue higher level 
mathematics subjects. In the case of some early childhood and other pre-service 
teachers, however, higher levels of mathematics are but one step beyond rudimentary. 
This may be a major contributor to mathematics anxiety in units related to personal and 
professional numeracy. Pre-service teacher education courses that address the points 
noted by McPhan et al., (2008) above may have more chance at alleviating mathematics 
anxiety among cohorts of students most in need of attention. The challenge for the 
MBTI intervention will be to incorporate and address further causal aspects of 
mathematics anxiety into its design and delivery. 
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Appendix: Learning preferences associated with the four 
dichotomies of MBTI 
Adapted from Silver, Strong and Perrini (2000). 

Extraversion (E) 
Direct energy outward 
“E” learners prefer: 

• Talking, discussion 
• Psychomotor activity 
• Working within a group 

Sensing (S) 
Take in information through the five 
senses 
“S” learners prefer tasks that call for: 

• Carefulness, thoroughness and 
sound understanding 

• Going step by step 
• Observing specifics 
• Recall of facts 
• Practical interests 

Thinking (T) 
Make decisions based on logic and 
objectivity 
“T” learners prefer: 

• Teacher’s logical organisation 
• Objective materials to study 
• Depth and accuracy of content 

Judging (J) 
Prefer structure, plans and achieving 
closure quickly 
“J” learners prefer: 

• Working in steady, orderly ways 
• Formalised instruction 
• Prescribed tasks 
• Driving toward completion 
•  

Intraversion (I) 
Direct energy inward 
“I” learners prefer: 

• Reading, verbal reasoning 
• Time for internal processing 
• Working individually 

Intuition (N) 
Take in information through hunches 
and impressions 
“N” learners prefer tasks that call for: 

• Quickness of insight and in 
seeing relationships 

• Finding own way in new material 
• Grasping general concepts 
• Imagination 
• Intellectual interests 

Feeling (F) 
Make decisions based on personal 
values and the effects on others 
“F” learners prefer: 

• Personal rapport with teacher 
• Learning through relationships 
• Personal connection to content 

Perceiving (P) 
Prefer flexibility, spontaneity and 
keeping options open 
“P” learners prefer: 

• Working in flexible ways 
• Following impulses 
• Informal problem solving 
• Disovery tasks
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Jaworski (2003) extended Lave and Wenger’s (1991) idea about learning to teach through 
being engaged in a ‘community of practice’ to include teachers and researchers 
collaborating in a ‘community of enquiry’ as they investigate their own practice. Most 
beginning teachers feel overwhelmed and it can be a very intense time of reflection as they 
develop the habits and skills of good teaching. This paper describes the professional 
reflections of four participants when two university lecturers each made weekly visits to the 
classroom of a former university student to observe a lesson, followed by a time of shared 
reflection and planning. 

Introduction 
In recent years, the work of Lave and Wenger (1991) has proved helpful to researchers 
in understanding how teachers come to know and learn about the practice of teaching. 
Learning is not so much concerned with replicating the performance of others or 
acquiring knowledge transmitted through instruction, but rather occurs through 
becoming part of the community and having access to a wider range of ongoing activity 
in its practice (Cavanagh & Prescott, 2007). 
 While university professional experience programs are set up to allow pre-service 
teachers to imagine possibilities beyond traditional norms and experiment with new 
ways of teaching, often their identity formation is compromised by the disjointed nature 
of their university and school-based programs. The tasks of engagement, imagination, 
and alignment (Wenger, 1998) become more complex and problematic. As well, 
supervising teachers often see their role as giving advice about the practical concerns of 
classroom routines and organisation rather than developing the pre-service teachers’ 
reflective pedagogy (Prescott & Cavanagh, 2008a,b). As a result pre-service teachers 
sometimes struggle to engage meaningfully in what appear to be two separate 
communities of practice that are, in many respects, at odds with each other. 
 Consequently, when beginning teachers arrive in a school, they want to be seen as 
effective in the classroom by their supervisors and their students (Kardos & Moore, 
2007) so they emulate their colleagues and adopt what they perceive as the safer option 
of relying on the textbook (the more traditional approach) rather than the reform-
oriented approach encouraged in their university course.  
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Background 
Mentors play a key role in supporting beginning teachers to become active agents in 
analysing and improving their own practice and, in doing so, develop their identity as 
teachers. Mentors play many different roles—model, coach, supervisor, helper, guide, 
supporter, facilitator, observer, critical friend—helping beginning teachers to develop 
their mathematical and pedagogical skills, while at the same time developing their own 
educative skills (Wang 2009).  
 Muir and Beswick (2007) note that critical reflection is unlikely among teachers in 
the absence of an external voice that can serve to challenge current ideas and practices. 
In the case of a teacher education academic mentoring their former students, the 
external voice is also external to the school. The academic’s knowledge of the culture of 
the school and the community of practice at the school (Cavanagh & Prescott, 2007) is 
limited but the benefits are that the academic can be the ‘honest broker’ in discussing 
teaching and classroom interactions. 
 Waghorn and Stevens (1996) discuss the lack of communication between education 
research and teacher decision-making. Research reveals the complexities of what goes 
on in the classroom and therefore has much to offer the beginning teacher about current 
best practice. When the research is undertaken as collaboration between beginning 
teachers and university academics it becomes a powerful tool for improving theory and 
its implementation in practice (Potari, Sakonidis, Chatzigoula, & Manaridis, 2010).  
 Blase (2009) discusses various ways teachers can be mentored. These can be seen as: 

• a model of transmission in which the mentor transfers his/her knowledge about 
teaching to the teacher; 

• a model of transformation in which mentors assist teachers in understanding 
school culture and teaching in order to reform classroom instruction, school 
development and community work; 

• mentors and teachers practising unquestioned teaching strategies; 
• mentors and teachers taking a reflective stance in carefully considering and 

reconstructing their knowledge of teaching. 
The last view of mentoring is the most relevant to this project, continuing our work with 
pre-service and beginning teachers (Cavanagh & Prescott, 2007, 2009, 2010; Prescott & 
Cavanagh, 2008a,b). The collaboration can be described as “partners in an enquiry 
process of learning and teaching mathematics, holding separate but not incompatible 
roles. In particular they are seen as insiders or outsiders to the teaching practice, both 
acting and reflecting on it, each informed by his/her own practice, both learning about 
teaching” (Potari et al., 2010). 
 This paper describes the early stages of a research project between two university 
academics and their former students where we undertake to close the gap between the 
current best practice that our students gain from their university course and what is 
happening in the classroom. We set out to answer the following questions. Can a 
beginning teacher benefit from mentoring by their teacher education lecturer? What 
does a teacher education lecturer gain from mentoring a former student? 
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Methodology 
Tania is in her third year of teaching at a private girls’ school in metropolitan Sydney. 
Anne began observing Tania in Term Four of 2010 with her Year 8 mathematics class 
and in 2011 with her Year 10 mathematics class. Frederic is in his fourth year of 
teaching. He taught for two years in a private coeducational school in Sydney’s North 
West, and has been at his current school since the start of 2010. The school is a Catholic 
systemic school in the outer western suburbs of Sydney. Michael first visited Frederic in 
Term Four of 2010 to observe his Year 9 mathematics class, one of two classes in the 
top stream. In 2011, Michael has observed the same class, now in Year 10. Each 
academic makes regular visits, usually once per week, to spend time in the classroom, 
taking observation notes about what is happening in the lesson. After each observation 
lesson, the teacher and academic discuss what happened in the lesson, looking for 
patterns and differences, and seeking a focus for future observations and discussions. 

Results 
It is important to recognise that each of us interprets the observations and interactions 
differently so we will each provide our own reflections on our initial impressions of the 
collaborations we have begun.  

Anne’s comments 
 When I visit schools on practicum, I am well aware that many teachers know that I 
have not taught in a school for a while so they may feel that my knowledge of teaching 
is out of date. The implications, of course, are that I have little to offer my pre-service 
teachers and that teachers in the school are the ones who know what teaching is really 
about. Being a part of Tania’s class allows me to be involved with the students’ 
learning. My observations include classroom management, content knowledge, and 
questions that arise about students’ learning, the mathematics, and, often, the errors that 
students have made. On more than one occasion, Tania has used a different method 
from me for teaching a topic and I have found myself looking at the benefits of each 
method. These observations have become the basis of our discussions after the lesson 
and form the background for her subsequent lessons with the class. They have also 
allowed me to think about my own teaching practice and I have been able to look anew 
at some topics and offer suggestions for a different approach with other student 
teachers. 
 I have found myself undertaking many of the roles described by Wang (2009) but 
probably the most important role has been in giving Tania the confidence to believe that 
she is an excellent teacher who has much to offer her students. Beginning teachers tend 
to obsess about the relatively small number of things that go wrong rather than the 
myriad of things that have gone well (Prescott & Cavanagh, 2008b).  
 Even experienced teachers know how difficult it can be to begin the year with a new 
class. Beginning teachers are particularly concerned about how to establish themselves 
in the classroom and Tania was no exception. We discussed how she might approach 
her Year 10 class and then I attended her first lesson with them this year. She had taken 
over a Year 10 class the previous year and struggled to establish a rapport with the 
students, so was keen to work positively with the class this year.  
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 One of Wang’s mentoring roles was as a critical friend. While Tania’s school has 
been very supportive of her as a beginning teacher, and she has been mentored by one 
of the mathematics teachers, the role of critical friend allowed Tania to voice concerns 
and beliefs that she knew were private and would stay that way. Even with mentoring, 
beginning teachers feel alone. They are expected to be independent from the start and so 
find it hard to ask for help so they do not appear to be floundering (Kardos & Moore-
Johnson, 2007). The tension between looking for support and being regarded as an 
effective teacher can be problematic for beginning teachers—a critical friend who is 
outside the school allows those concerns to be voiced. 
 Tania is very organised in class; she uses an electronic whiteboard to great effect and 
has an easy style of teaching with the students who respect her and enjoy her classes. 
Tania obviously cares for the students she teaches and the consequent rapport she has 
with the class is wonderful to see in action. 

Tania’s comments 
As a beginning teacher I am on a very steep learning curve. Any opportunity of 
assistance is to be embraced, so I was excited to have Anne watch my classes and give 
me feedback on my teaching practice. In my third year of teaching I have gained some 
understanding of what I need to do to be an effective teacher. It is a much more 
complex job than I thought when I started which is both exciting and daunting. As I 
look back over the past two years I see how much I have learnt. As I look forward I see 
how much more there is to learn. 
 There have been several benefits of Anne sitting in on my classes, but the main one 
has been to receive detailed feedback on my teaching practice which has enabled me to 
improve. It is helpful to have an observer commenting on how I am connecting with the 
class. Am I getting through to them? Am I pitching at the right level? Am I going too 
fast or too slow? Anne had plenty of positive observations which was very encouraging. 
For example, when I introduced the quadratic formula, I showed a video so the students 
could learn to sing the formula making it easier to remember. Anne wrote in her 
comments “Videos are a fun introduction.” and “While they’re copying the formula, 
they’re singing it!”. She also gave constructive criticism. For example, she noted that I 
could have used the warm up questions already solved before introducing the quadratic 
formula to help the students see that it works. Her written observations are a good 
starting point for further reflection. 
 Teaching mathematics can be very intricate and I was looking forward to receiving 
technical feedback. What should I emphasise and what not? What is a good way to 
teach change of units, for example? During one class, I reviewed conversion of linear 
units, square units and cubic units using multiple diagrams, as students often have 
difficulty converting square and cubic units. Anne suggested I supplement this approach 
with a picture as well so that the students can understand more of the relationship 
between length, area and volume. This would also aid the visual learners. Another 
question which arose is what are the common errors of my students and how can I help 
correct them? During a lesson on quadratic equations, Anne made a list of common 
errors she observed as she moved around the class. A few weeks later I used this list to 
help the students revise the topic by creating a “Spot the Error” exercise. It was very 

1042



PRESCOTT, CAVANAGH, KENNEDY & JACCARD 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

fruitful revision and it was interesting to observe that some students knew what their 
typical mistakes were. 
 Anne was also a second pair of eyes and ears in class. There have been incidents in 
class I have been completely unaware of. For example, a student got up out of her seat 
and walked to the door and I didn’t notice because I was helping another student. It is 
excellent to become aware that I don’t see and hear everything that happens. I have tried 
to be more vigilant during the times when the class is working independently by doing a 
quick scan of the room regularly and helping students to stay on task. 
 I am striving to become an excellent teacher and so have high expectations of myself. 
I want my lessons to run smoothly with the students learning as much as possible. At 
times it doesn’t work out that way. Anne has been a great source of support and has 
helped to build my confidence. I am fortunate to work in a very collegiate staffroom and 
supportive school. Nevertheless, it has been extremely helpful to have an external 
person helping me deal with the inevitable difficult situations which arise from time to 
time. I feel like Anne is in my corner of the ring. 
 The only difficulty has been that it is nerve wracking to have someone watching me 
teach. As time goes by I am more relaxed with Anne in the classroom, but I am still 
conscious that she is there. At first I made very sure that I was thoroughly prepared for 
each class with Anne. Now, I do my usual preparation, which at times is not as thorough 
due to other classes or school pressures. I feel that after two terms, Anne is seeing the 
real me without any (or at least not much) difference from how I teach all my classes. 

Michael’s comments 
My primary goal in collaborating in professional dialogue with Frederic has been to 
learn more about how beginning teachers develop their classroom practice and their 
capacity to reflect on the lessons they have taught (Bean & Stevens, 2002). In particular, 
I am interested in the extent to which early-career teachers are able to implement 
student-centred approaches in the classroom. I clearly remember observing Frederic’s 
lessons while he was still at university and noting his deliberate attempts to design 
meaningful activities that challenged students to think mathematically. I also remember 
talking with him during his first year after graduation as he shared some concerns about 
the extent to which he was able to engage students in their learning. Now I am struck by 
his confidence in the classroom and the careful planning that is evident in the way he 
structures his lessons. 
 As an academic working in teacher education, I have observed many mathematics 
lessons from pre-service teachers and participated in numerous post-lesson discussions 
with them, but observing and discussing Frederic’s lessons is quite different. Whereas 
pre-service teachers tend to dwell almost exclusively on their own actions, Frederic is 
far more concerned with student learning. Frederic’s lesson preparation, his classroom 
practice, and his personal reflections have a strong focus on improving student learning 
outcomes. I have also been struck by the quality of Frederic’s reflections on his lessons. 
His comments demonstrate how adept he is at noticing (Mason, 2002) how students are 
working and he can clearly articulate probable causes to explain why students 
sometimes do not progress in the way he had anticipated. Frederic generally takes the 
lead in our deliberations. He points out where students have experienced difficulties 
trying to understand a new concept and how he has adapted his lesson to deal with 
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unexpected outcomes. It is interesting to compare Frederic’s reflections with my own 
observation notes to see how we sometimes consider different causes for student 
misconceptions and proffer different remedies for them. 
 The other interesting story that has begun to emerge is how Frederic’s career has 
evolved in the just over three years he has been teaching. There have been significant 
highs and lows and Frederic has reported that there were times earlier on when he 
considered leaving the profession because he did not feel he was achieving some of the 
goals he had set for himself. I am looking forward to exploring these ideas further and 
examining in sharper detail how he overcame his doubts and developed his resilience.  
 The research partnership with Frederic has helped me to reflect on my own teaching 
and has provided me with rich descriptions of classroom incidents that I can share with 
my own students. I have found it particularly advantageous to present my pre-service 
teachers with an episode from one of Frederic’s lessons and ask them to consider what 
they might have done in a similar situation. I am then able to report how Frederic has 
acted and the results of his actions. These reports add a certain authenticity to my 
tutorials.  

Frederic’s comments 
The first few years as a teacher are very hard for many reasons. You have to learn and 
prepare the content, but also need to learn the whole relationship part of the profession. 
University does not prepare you for the classroom and the fact that teaching can be very 
challenging mentally, physically and psychologically. I am always looking for 
opportunities to improve and become better at the art and science of teaching. When 
Michael contacted me to be part of the study, I was really pleased and at once realised 
that accepting the proposal would help me become a better teacher.  
 I am used to team-teaching and having someone observe my lessons. However, 
having a visitor such as Michael always adds a little bit of pressure. I did not change the 
way I taught or the content of my lessons but I clearly wanted to do well and rise to the 
occasion. The first lesson that Michael observed was a real success. 
 My lessons often start with quick questions in order to warm up and be ready for the 
new content which will be learnt during the lesson. I have started to link these quick 
questions more explicitly with the new content. As an example, if the key idea of the 
lesson is to solve a quadratic equation like  by factorising, the quick 
questions will contain a specific example of factorising a quadratic expression such 
as . Michael really liked the idea and his approbation and praise encouraged 
me to use, refine and extend this method. It worked really well in the most difficult part 
of the algebra topic because, after the quick questions, students only had to focus on the 
new content for that lesson. 
 I have also noticed that I can transfer the ideas that I discuss with Michael into 
lessons with other classes. One of these is a more generous use of praise. After a 
particularly good lesson, Michael started a debriefing by praising my teaching and it 
made me feel good. A few minutes later, he introduced the fact that everyone needs a 
little praise. I could relate to it straight away. It also made me reflect on the fact that 
Michael used the idea of praising me in order to teach me that praise is important. 
 Having an external view on my lessons has proved to be very helpful too. Michael 
made the remark that my class was not particularly strong (I have one of the two high 
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ability Year 10 classes). He also said that I was very patient with weak students. 
Michael has also praised the scaffolding I have used on the board and this has 
encouraged me to keep it and improve it. 
 I have seen noticeable improvement from my middle and top students, using all of 
the strategies described before. However, I am still looking forward to helping my 
weaker students in a better way and that is an area I want to discuss more with Michael. 
 Michael has told me that the way I teach now is as good as an experienced teacher. I 
know that he is looking forward to me trying new ways of engaging the class, including 
lessons more focused on Working Mathematically and more student-centred. We had a 
very interesting discussion on this subject. During university, pre-service teachers learn 
and create lesson plans and activities which are more focused on Working 
Mathematically because engaging lessons can limit classroom misbehaviour. It all 
makes sense in theory and I was therefore very enthusiastic when I started my first year 
of teaching four years ago. However, when starting as a teacher, I found that this is not 
really the case. It took me a long time to realise that classroom management, respect and 
good rapport with students must come first if I want to have a chance of successful 
student-centred lessons. Michael noticed that I have such a good relationship with my 
students in Year 10 and that it could be time to come back to using such approaches in 
my lessons. I am looking forward to practising these ideas in the new topic on 
Measurement. I have decided to use an open-ended assignment in order for my class to 
learn the formulae to find the surface area of pyramids, right cones and spheres. 
Students will have to work individually or in pairs for about ten days to create a 
PowerPoint presentation, a movie or a Prezi presentation. At the time of writing, 
students have only just begun the project, but already I can see that they are motivated 
by having a choice and engaged by a new way of studying a mathematics topic. 

Discussion and conclusion 
There are some common themes which have begun to emerge from our collaborations. 
Anne and Michael have noted that their classroom observations have provided a unique 
opportunity to reflect on their own practice. The quality of the teaching is superior to 
what is typically seen from pre-service teachers so we can focus on the subtleties of 
teaching and examine student learning in greater detail. The research project has 
provided a rich source of authentic classroom episodes and teacher reflections that have 
already proven to be an extremely useful resource for discussions in university classes.  
 Anne and Michael have been reminded of some of the struggles that beginning 
teachers must deal with as they learn to become effective classroom practitioners. As 
university academics they have both been struck by how even minor setbacks can have 
a disproportionate impact on the self-confidence of a novice. Their work in the project 
has shown how an external voice of encouragement and support can help overcome 
some of the doubts that new teachers will inevitably experience when a lesson does not 
go according to plan or when a teacher-student relationship becomes strained.  
 Both Tania and Frederic have commented on the significant learning that is entailed 
in becoming a teacher and have suggested that their university studies did not fully 
prepare them for the classroom. Both teachers are dedicated to self-improvement and 
want to develop into the best teachers that they can be. So, despite some anxiety about 
having their lessons observed they both eagerly accepted the invitation to join the 
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project because they recognised the benefits of participating in a regular cycle of action, 
discussion and reflection.  
 In discussions following their lessons, Tania and Frederic have demonstrated a 
remarkable ability not only to identify critical learning and teaching incidents but also to 
analyse some likely causes and suggest remedies for dealing with them. The nature of 
the comments and questions posed by Tania and Frederic are an indication of a 
developing ability to truly reflect on their classroom practice. 
 This work is still very much in its early stages. To some extent, we have all been 
feeling our way as to how the relationships we have established will progress but each 
of us has identified particular areas to explore. Together, we hope to highlight some 
important issues faced by early career teachers and better understand how university 
programs can be designed to support the transition from the lecture theatre to the 
classroom.  
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This paper describes some important modern mathematics, including problems as yet 
having no solution, and a three-hour workshop for sharing them with young children. The 
activities are so self-contained that children understand what to do with very little 
instruction, even in places where we do not speak the language, such as India or Norway. 
We describe the activities, the Computer Science Unplugged Project, how we present the 
workshop, and some reactions from children, teachers and parents.  

Introduction 
The Computer Science Unplugged! Project, based at the University of Canterbury, NZ, 
has a wealth of materials designed to demonstrate the foundational mathematical ideas 
of computing, but without using a computer. For example, in a playground treasure-
hunt game, children work out a pirate map that is actually a demonstration of how 
computers are fed information (finite-state automata). For our workshop, we chose five 
activities with a specific theme in mind (algorithms and complexity) which will be 
described later. First, we describe the Unplugged project. 
 The Unplugged project is devoted to providing activities and hands-on materials to 
expose students to the ideas and ways of thinking used by computer scientists, all 
without having to use computers. (Using computers may sometimes be a distraction, or 
even misleading—encouraging children to falsely think everything about computer 
science involves programming, or computers). Free teacher resources are available on 
the Unplugged website (University of Canterbury, 2011), with ready-to-copy handouts, 
background and curriculum materials. Additional activities are available from Fellows 
(2011). Videos have been helpful in demonstrating the kinaesthetic activities, and these 
are available at YouTube and TeacherTube.com. The activities are easy to implement for 
outreach (workshops, school assemblies or science festivals), non-programming 
competitions, as a complete course in computing, or as supplementary topics in 
mathematics, computer science or other subjects. For example, the Sorting Network 
(Activity 1) is often kept on the classroom floor for use in many subjects: ordering 
distances from planets to the sun (science), molecular weights or densities (chemistry), 
fractions (maths), notes and scales (music), eras or events (history), or priorities (social 
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studies). A session on encryption methods (Activity 5) can fit into a history session 
studying World War II.  
 The Unplugged website supports educators in sharing teaching methods, curriculum 
plans and developing new formats and activities. The website and materials are 
recommended by the ACM K-12 Curriculum and the CSTA (Computer Science 
Teachers Association, an international organisation aimed at school teachers), and 
NCWIT (the US National Center for Women and Information Technology), and there 
are sister projects worldwide (see Blum 2008). The project is backed by a 28-member 
Advisory Group ensuring appropriate vision and direction, consisting of a broad range 
of international educational institutions, science museums, industries including 
Microsoft, Google (which has provided financial support), and professional 
associations. The origin of the project was the book, Computer Science Unplugged! Off-
Line Activities and Games for All Ages written by Tim Bell (Univ. Canterbury, NZ), Ian 
Witten (Waikato Univ., NZ), and Michael Fellows (now at Charles Darwin Univ., AU). 
The book has been adopted by two different school districts in Vancouver in support of 
their information technology curricula. It has won science communication awards, and 
has been translated into 12 languages (including Chinese, Korean, Spanish, Japanese, 
German, and Italian), and the videos demonstrating activities have sound tracks 
translated into five languages, including Swedish and Maori. Access details for versions 
of the book are available from the Unplugged website (University of Canterbury, 2011). 

The activities 
Children often believe that all the interesting mathematics has been done, and that any 
problem can be solved with a fast enough computer. As the same time, many countries 
are facing a severe decline in Computer Science enrolment, while governments and 
industries are seeking a knowledge-based economy that depends on innovative 
problem-solving in a wide range of areas such as text imaging, data compression, 
networks, parallel computation, security, programming, human-computer interface 
design, and many others. Computer Science is a rich subject concerned with what 
computers can and cannot do, how to approach problems, and how to make computers 
more valuable to the user. The Unplugged activities try to overcome the misconception 
that everything about computing is already known, and is all about programming, 
spreadsheets or web page design. 
 The activities demonstrate some of the problem-solving strategies and ways of 
thinking (recursion, randomness, or very slightly changing the problem requirements) 
that computer scientists use to solve important, real-world problems. In a highly-
regarded paper, Jeanette Wing (2006) advocates ‘Computational Thinking’ as a way of 
approaching problems that is valuable to all students, regardless of whether or not they 
intend to study Computer Science as a specialty. The following example from 
Hromkovic (2009) illustrates the wide range of innovation needed. Suppose we manage 
a medical emergency centre with mobile doctors. Our aim is to deploy doctors 
efficiently, although nobody knows when or where the next emergency will occur. The 
control centre might try to minimise the average (or maximum) wait time of patients, or 
minimise the overall length of routes. A strategy might be to have doctors wait at 
strategically chosen locations after finishing one patient, before being called to the next. 
Without knowledge of the future, there are many online situations that occur in real life 
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that may not even have a reasonable strategy. However, using ideas from computer 
science, we can often come up with clever solutions. 
 For our workshops, we chose activities that focus on the notion of ‘algorithm’—a list 
of instructions for completing a task so that the task can be done in an automatic way, 
which is what computers do. Perhaps surprisingly, there are many problems that 
computers cannot solve, whereas others, that appear to be almost the same, can be 
solved quickly. The length of time it takes for a computer to solve a problem generally 
increases with the size of the input. (Searching 50 entries in a database takes longer than 
searching through 10.) For example, if searching the database takes time “linear in the 
input size” of “2 × input”, then searching 50 entries versus 10 takes time 100 versus 20 
which is still a ratio of 5:1, very reasonable. Unfortunately, most important problems of 
today take time that increases exponentially with the input size. The database example 
using base 2 rose to the input size, would require time of 2 raised to the 50th versus 2 
raised to the 10th. This ratio is dramatic—over a quadrillion (a one followed by 15 
zeros, in the US system) compared to just over a thousand (2 raised to the 10 is 1024). If 
one counts one number per second, it will take almost 40 years to count to a quadrillion.  
 Everyone wants their problems to be solved quickly, so linear (or polynomial) time is 
preferred and these are called ‘efficient’ algorithms, as opposed to those taking 
exponential time, which are likely to take longer than anyone’s lifetime to complete—
too long to be of any practical value. Figuring out whether problems or groups of 
problems currently requiring exponential or worse time could instead have a polynomial 
time algorithm is called the ‘P versus NP’ problem, and a million dollars for its solution 
has been offered by the Clay Mathematical Institute (2011). 
 Our workshops begin outdoors, introducing the notion of ‘algorithms’ using a sorting 
network. Following that, we contrast two problems that at first appear almost identical 
from a class of ‘graph colouring’ problems. However, children readily find a fast 
algorithm for graph 2-colouring, and experience first-hand the difficulty of 3-colouring, 
for which there is no known efficient algorithm. Our society is linked by many 
networks: mobile phone networks, roads, utility systems. Usually there is some choice 
about where the signal links, roads or cables can be placed. In Activity 3, children 
design a network with a minimal total length. Almost every student will find a fast 
algorithm for Muddy City (connect every house in the city by a paved road at minimal 
cost). However, nobody knows a fast algorithm for finding a cheap plan to connect up 
only a few priority sites (such as: school, hospital, water tower). In fact, it is not even 
known if a fast algorithm exists. Activity 4 is the Ice-Cream Stands problem: Where 
should the city place ice-cream stands so that no one has to walk more than one block to 
get an ice cream? This problem represents a general class called ‘dominating set’ 
problems, which has important applications in resource allocation. Again, for any of 
these important problems, computers are unlikely to produce solutions in a reasonable 
time. Some beautiful mathematics has shown that all of these problems rise or fall 
together—if a fast algorithm can be found for any one of them, then a fast algorithm can 
be found for the others. But, most people believe finding a fast algorithm is not likely. 
Finally, Activity 5 describes an area in which everyone is happy with problems having 
no fast solution—cryptography—sending and receiving secret messages, which is a 
very active area of computer science and mathematical research, important in 
economics, banking and security.  

1050



ROSAMOND 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

Activity 1: The sorting network 
A schematic of the sorting network is shown in Figure 1. Values flow through the 
network from left to right. They are mixed up on the left, but come out on the right in 
order. For example, the six values on the left from top down in the figure are 5, 1, 6, 3, 
4, 2. At each comparator node of the network (circle), two values enter from the left and 
exit to the right, with (by agreement) the larger value exiting below the smaller value, 
both becoming inputs for the next comparison. Notice that at the beginning, three sets of 
values are being compared simultaneously (in parallel).  

 

Figure 1. A diagram of a 6-input sorting network, and the tarp. 

 After much experimentation with string, spray paint and other ideas, we now build 
durable and beautiful sorting networks using coloured tape and aluminium pie pans on 
blue tarpaulin (the type used for covering a car or boat). We like to start workshops 
outdoors, with the children walking along the tape paths on the network. They meet two 
at a time at a comparator node. They compare the values that they are holding (say, each 
has a sheet of paper with a fraction written on it) and exit the node, taking separate 
paths towards the next comparator. Sometimes, the paths cross. Almost always, we have 
to start again because some children have little understanding of maps or how to follow 
a path.  
  Individuals must have patience to wait at a comparator node until they are joined by 
someone else so that they can compare their values. No single individual can progress. 
Progress can take a while if some couples further back cannot reach agreement—often 
agreement is made with the help of mates surrounding the tarp. Finally, it is understood 
that nobody wins alone; all win together as the sorting resolves the different values into 
a clear order.  
  Be aware that six children lined up on one end of a tarp facing six goals on the other 
is an invitation to race to the other end. The sorting network, however, is a model of 
cooperative learning, more of a dance or a series of conversations than a race. We ask 
individuals entering a node to greet each other before comparing values, which has led 
to pleasant surprises as children in some countries salute or charmingly bow in greeting. 
The sorting network algorithm is thus: 

Input: Six children holding values  
1. Walk forward along the path 
2. Enter a comparator node 
3. Greet the person there (if nobody is there, wait) 
4. Compare values 
5. Exit the comparator node (in the agreed upon directions, “Larger value towards the 

school, smaller towards the trees”). 
6. Repeat (Walk, Enter, Greet, Compare, Exit) 
Output: Values are sorted in order 
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 When the children reach the far end of the sorting network, they often spontaneously 
try to use the sorting network in reverse. This does not work, and many questions are 
raised by teachers and children. Can a sorting network be designed that works in both 
directions? Except for putting two sorting networks back-to-back, the answer to this 
question is not known. What is the minimum number of comparisons for a given size 
input? Is there only one unique way to design a sorting network with n inputs? A 
department chair decided to use the sorting network at an organisational retreat to help 
faculty prioritise objectives—but, as staff members walked through the tapestry of dots 
and lines, they realised that not every staff member met every other to evaluate each 
objective. How does the transitive property relate here? Were all objectives evaluated, 
or were some comparison possibilities missed?  
 Another topic of discussion is what sorts of activities can/cannot be done in 
parallel—digging a hole? Driving from Alice to Darwin? One of the main tasks of 
computers is sorting: putting lists into order, whether alphabetical, numeric, or by date. 
Fast sorting algorithms are very important, but even though computers are fast, there is 
a limit to how quickly any single computer can solve problems. One way to speed 
things up is to break a job into pieces and have each piece processed by a different 
computer simultaneously, a strategy called parallel computing. A sorting network is an 
example of a parallel algorithm.  
 We have sorted on integers, fractions, distances of planets from the sun, whose 
birthday is closer to Christmas, heights, weights, ages, brightness of colours. We have 
even put cord under the tape and had people sort with their eyes closed, feeling along 
the cord path with their toes, each holding a little bell and sorting on the higher/lower 
tone. Some teachers keep the net permanently on the classroom floor, using it for 
lessons in history, social science and other subjects as well as mathematics.  
 A group of six-year-olds at an elementary school in Wellington, NZ delighted in 
going through the sorting net repeatedly. They did not want to stop—even for snack—
and kept finding more items to put in order. We were in the school library, and when I 
asked how the librarian sorted the books to go on the shelves the students chanted: “By 
the first letter of the surname of the author” and began sorting the books (see Rosamond 
2006).  
 Wondering if they were really learning anything, or just having a lot of fun, I asked 
the six-year olds to design a three-input sorting network. One small group figured out 
all the permutations of three numbers that would have to be checked (to see if they 
came out in order), and they went around the room offering to check the other 
children’s networks. In other words, they had learned logic notions of “for every 
(permutation of inputs) there exists (a correctly sorted output).”  
 The sorting network offers an experience of an algorithm through whole body 
movement, turning abstract ideas of computer science into actions that become part of 
the child’s physical memory. Through educational kinesiology we’ve learned that 
certain physical movements help strengthen connections between the two hemispheres 
of the brain, thus aiding the process of learning (see Aigen, 2006). The manifestation of 
parallel computing on the sorting tarp incorporates: 

• Contemporary mathematics 
• Social and cooperative learning 
• Engagement of multiple senses 
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• Interdisciplinary facts and concepts. 
 The question might be asked about the influence of a brief three-hour workshop on a 
child’s impression of computer science, or on a child’s future choices. Research in this 
direction is available on the Unplugged website and other sources. We report two 
anecdotes. Although we travel extensively for a different scientific purpose, inevitably a 
colleague will ask: Would you please come to my child’s school and put on your 
workshop? (In Bergen, a parent has asked us three times, once for each of his children.) 
The second anecdote has to do with walking up the sidewalk to the Wellington school, 
where one of us had given a workshop two years previously. We were immediately 
surrounded by a cacophony of children’s joyous greetings: “I remember you. Are you 
going to put on the sorting network again?” The workshop had indeed made a two-year 
positive impression. 

Activity 2: Graph 2-colouring versus graph 3-colouring 
A graph is ‘properly coloured’ if any two vertices that are connected by an edge receive 
different colours. ‘Graph colouring’ is a class of problems that models scheduling or 
allocation of resources. For example: the school is having an event and various 
committees (e.g., decorations, lighting, food, tickets, music, photos) must schedule 
meetings. These committees can be represented on a graph. The vertices of the graph 
represent committees, while an edge between two vertices means there is a conflict 
(e.g., Jane is on both committees, so those committees cannot meet at the same time.) 
The colours are the time blocks (1.00 pm – 2.00 pm, etc.). The goal is to properly colour 
the graph using as few different colours as possible. Of course, scheduling may be for 
ships to pick up coal, or the scheduling of micro-timing where the ‘committees’ are 
various processors and upload/download time within our computers.  

 

Figure 2. Graph Colouring: colour with a minimum number of colours. The graph has been coloured 
using three colours. Find a solution using only two. 

 Finding the fewest number of colours rapidly turns into a fun competition, easily 
understood: “Sam has done it with 6 … Tina has done it with 5 … Can anyone colour 
the graph with 4?” Children surround us with their colouring and we loudly and 
carefully check every pair of vertices. “This vertex is connected to this other vertex. Do 
they have different colours? Yes. Check. Check … Check.” We are demonstrating a key 
feature that problems may be very hard to solve, but easy to check. (Like a picture 
puzzle that is hard to put together, but it is easy to notice if a piece is out of place.)  
  We have tried using coloured tokens to designate the vertex colours, but these slide 
off easily. Crayons all turned the same brown if one changed their mind often. What we 
do now is to hand out lots of sticky pads in various colours, and children tear off bits of 
the sticky edge to mark the colour of each vertex.  
  Eventually, someone will discover that the graph on the left in Figure 3 can be 
coloured with two colours. Even young children can articulate their algorithm.  
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1. Start with any vertex; call it the “Start” vertex. Colour it any colour; say, blue. 
2. Colour each of Start’s neighbours red. 
3. Colour the neighbours of the neighbours blue. The neighbours of those, colour 

red. 
4. Continue. If a graph can be two-coloured, then the colouring has been found. 

 

Figure 3. Children quickly find a fast way to properly 2-colour the graph on the left. The graph on the 
right, although similar in appearance, requires three colours, and there is no fast algorithm for finding a  

3-colouring. 

 We contrast Graph Two-Colouring (and its fast solution) with the graph on the right 
in Figure 3, which can be coloured with three colours, but we let the children know that 
it will take a lot longer to find a solution. There is no fast algorithm for finding a three-
colouring, and it is not likely that there ever will be one. Three-Colouring is one of 
those NP-hard problems that take exponential time. Children quickly experience the 
difference between the two graphs. If they make a mistake, there is nothing to do except 
start over.  
 We ask children, “Would you like to make a puzzle for your parents for which you 
know the answer, but it will take them a long time to figure out?” The children have 
asked us, “How do you know the graph can be coloured with three colours?” We draw 
several vertices on the chalkboard and colour them using, say three colours (for a 3-
colouring). Add edges so that the graph is properly coloured. Now, (dramatically) shade 
all the vertices with chalk so the colours are hidden. This is the puzzle for the parents. 

Activity 3: Muddy City and priority paving  
The vertices in a graph represent houses and the lines joining them represent roads in a 
very muddy town. The goal is to pave just enough streets in order to be able to go from 
any house to any other house along paved streets, but do this at minimal cost. Figure 4 
shows the graph.  

 

Figure 4. Muddy City problem. The number indicates the cost of paving that section.  
The dotted route shows a cost of 2 + 4 + 5 + 6 + 3 + 1 + 5 = 26.  

 Children call out a steady stream of improved solutions. They realise that length is 
not related to cost (twice a length does not mean twice the cost). Instead of roads, the 
lines could represent oil pipelines or wires. Children find a fast algorithm: never pave in 
a circle and always use the least expensive to go to the next node. We contrast Muddy 
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City with another graph where particular locations need to be linked (school, hospital, 
water tower). This is again NP-hard (sometimes called the Discrete Steiner Problem) 
for which there is no known fast solution. 

Activity 4: Ice cream stands (dominating set) 
No one will have to walk more than one block to get an ice cream if stands are placed 
on the three street corners indicated in Figure 5. Could we use fewer than three? Note 
that any solution requires two stands (they may be different sets of two). Other 
questions are raised. What if there are street corners that have to be used? Children 
construct valid arguments: more than one stand must be used (because only one would 
be more than one block away from some vertices). Again, no one knows if there is an 
algorithm for finding a minimum set of locations that is significantly faster than the 
“brute force” method of trying all possibilities (which for most important problems is 
longer than practical). 

 

Figure 5. Can fewer than three ice-cream stands be placed at the intersections in the city map at left in 
order that no one has to walk more than one block for an ice-cream? How many for the graph at right? 

 The vertices that reach every other vertex in one hop (and also reach themselves) is 
called the ‘minimum dominating set’ of a graph. We have built the graph at left in 
Figure 5 in a special way with a “perfect code” (see Figure 6) as an example of a one-
way function, sometimes called a trap-door function. Like falling through a trap-door, a 
one-way function is a process that is easy to do but perhaps impossible to undo. For 
example, it is easy to multiply two prime numbers together (fall through the 
mathematical trap-door). But, it can be very hard for someone to take the product and 
figure out the numbers you started with. One-way functions are essential for public key 
cryptography used in banking, telecommunications, personal identity and security 
applications everywhere in the world.  

Activity 5: Coin flip over the telephone (cryptography) 
We begin with a skit. A husband and wife are talking to each other on the telephone. 
H: We are getting a divorce. I want the red sports car. (Aside to children: I am willing to 
cheat to get it.) W (firmly): I want the car. H: OK, I’ll toss a coin and you call it. 
Children: No, no. He can cheat. You cannot see the coin over the telephone.  
 As in Figure 6, a ‘coin flip’ can be created where H cannot cheat. H creates a special 
graph, for which he knows the size of the perfect code, and invites W to declare if the 
size is odd or even. In a perfect code, all solutions are of the same size. In Figure 6, the 
three solid vertices in the ‘star centres’ at left dominate all the other vertices (and 
themselves). Add a few disguising edges, but only between white vertices. In the 
resulting graph, every vertex can be reached by exactly one of the star centres. This 
special dominating set is called a 3-vertex ‘perfect code’. With a longer workshop, 
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children use perfect code to rescue a secret agent (this can also introduce solving 
simultaneous equations). Perfect Code was used for a school open day by Neal Koblitz 
(2011). 

 

Figure 6. Constructing a perfect code.  

Conclusion 
We have described an easy-to-present workshop that introduces important modern 
problems of scheduling, facility allocation, network design, and cryptography. The 
activities demonstrate that many of these problems take exponential time to solve. 
Whether or not there is a fast method is one of the most important problems in computer 
science. Even children as young as six were able to understand the graph modelling of a 
problem, the concept of an algorithm, and experience the complexity difference 
between seemingly similar problems. 
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Which city/town in Australia has the cheapest (best value) taxi fares to and from the nearest 
airport? Which is the biggest ‘rip off'’? Are taxi fares to airports consistent in Australia 
(and overseas)? Using data correlation, linear analysis and a liberal dose of graphics 
calculator technology we attempt to answers all of these ‘burning the money in our pocket’ 
questions. Student samples are examined to question the merit of the investigation. 

Introduction 
Investigations liven up a mathematics lesson and discovering new investigations or new 
ways to look at mathematics topics is a tonic to refresh our teaching of mathematics. As 
an experienced teacher stated in Goos and Bennison (2007), “the role of the 
mathematics teacher is to provide students with activities that encourage them to 
wonder about and explore mathematics” (p. 320). Using technology with mathematics 
has become common with the ability to investigate data quickly, and so the emphasis 
has changed to focus more upon the analysis and interpretation of results rather than the 
‘number crunching’. Doerr and Zangor (2000) commented that teacher skills, 
experience and flexibility with technology leads to a classroom where calculators are 
freely used and should inevitably lead to increased exploration, confirmation and 
competence. The investigations that would make a good mathematics lesson would 
involve unlimited use of graphics calculator technology, especially for questions that 
were encouraging both exploration and interpretation.  
 On a flight from Hobart to Melbourne in December 2009 I was reading the in-flight 
Jetstar magazine and was drawn to some data rich pages near the end where information 
about the airports around Australia was given. The data included information about the 
distances from the airports to the nearest city, how long it would take to travel the 
distance by car and how much it would cost to travel in a variety of transport options. 
There was also information about parking costs in the airports. I could not help but 
consider whether the taxi fare to Hobart from the airport was expensive relative to other 
cities and towns around Australia with a nearby airport. 
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How it was done  
The investigation (Taxi fares—are they fair?) shown in Figure 1 was initially given in 
2010 (and recently in 2011) to a Mathematics Applied TQA315109 class of about 20 
students. The subject Mathematics Applied TQA315109 is a university entrance subject 
administered in Tasmania for Year 11 and 12 students by the Tasmanian Qualifications 
Authority (TQA) and has algebraic modelling, applied geometry, applied calculus, 
finance and data and statistics as the five modules covered in a yearly program. Along 
with the investigation was a one page excerpt from the Jetstar magazine called 
‘Introducing our Airports’ where all of the data were provided. The students were asked 
to complete the investigation in 90 minutes with minimal guidance.  
 There was an initial discussion for ten minutes during which students were able to 
ask questions about the investigation and to consider issues that may occur. Some 
students talked about methods and approaches that they might use. The notion of what 
was ‘fair’ was discussed with a broad agreement that consideration of cost against 
distance would be useful in comparing the different cities. The general acceptance was 
that ‘fair’ could be seen as points that were not expensive relative to other cities. It was 
apparent that the students were considering an average and looking at values either side 
as best value or worst value depending upon how they went about their calculations. 
Several groups were considering best value and worst value lists. They were told that 
they could use technology as little or as much as they thought appropriate in answering 
the investigation questions.  
 The students were then formed into groups of two or three students using birth 
months. Overseas data were available for students to extend their response in class if 
time allowed. The overseas data were not included in this paper but are available in the 
Jetstar in-flight magazine. 
 

Taxi fares—Are they fair? 
Are taxi fares from the cities to the airports in Australia fair? Is Hobart more expensive 
or less expensive (relatively) than other cities? This investigation should enable you to 
determine the answer to these burning questions. 
1. Look at the information that is found in Jetstar magazines about taxi fares to the 

airports of various cities around Australia. 
2. Create a table of values and enter these values into your graphics calculator or 

other technology. 
3. Is there a linear correlation? Determine the line of best fit, correlation coefficient 

and coefficient of determination. Explain what they inform us about the data. 
4. Are there any cities which are clearly better value than others? 
5. Are there any cities which are clearly worse value than others? 
6. Comment on the data including any assumptions and errors that you have noticed. 
7. Answer the initial questions and hand in your work complete with tables, graphs 

and comments. 
8. Extension: look at the overseas destinations and compare the results against both 

overseas destination and Australian destination. 

Figure 1: The investigation: Taxi fares—are they fair? 
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Course documents 
The Mathematics Applied course in Tasmania is a university entrance subject that is 
completed by a large cohort of students. Most of these students will not undertake 
degrees in Mathematics but will undertake degrees in other disciplines. Two of the eight 
criteria that are in the course were chosen as the most appropriate for the task. Criterion 
2 is to use an investigative approach to collect data, analyse it and draw conclusions and 
Criterion 4 is to use algebraic or graphical linear and non-linear models to solve 
problems (TQA, 2008). The task involves the collating of the data and then making 
sense of the data by analysing graphs develop from the data. The final analysis involves 
conclusions and comments that should be made by students to indicate an understanding 
of what they have found. Charles Lovitt (1999) comments that the investigative process 
can possibly provide us with a unifying overview of mathematics in the hope that we 
can get universal agreement. A central theme of this is for the mathematics done in 
school to be close as possible as to what ‘real’ mathematicians do.  

Sample solutions 
Students addressed the investigation tasks well and submitted their group solutions. In 
this section, three of these are included to illustrate the range of approaches taken. The 
included solutions involve extracts from several pages of working completed and 
submitted by three of the class groups. The responses shown are typical of the responses 
of the entire class and all groups clearly displayed an investigative approach during the 
task. The conclusions and comments made by students were sensible. The responses 
included have been ordered from lower level responses to higher level responses. 
 Group A (see Figure 2) clearly identified the independent and dependent variables 
before commencing the investigation. What was revealing in the work sample in 
Figure 2 was that the group considered not only the distance against cost situation but 
also the time against cost situation. This was not considered by any groups when the 
investigation was undertaken with a class in 2010, and so was unexpected. By looking 
at the ratio of cost against distance, Group A was able to get an instant measure of value 
that they expanded upon in their answers. The fact that they actually calculated km/$ led 
them to incorrect conclusions in regard to the best value and worst value cities. It meant 
that, as would be expected, the answers were inverted, with best value cities they listed 
actually representing the worst value and vice versa.  
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Figure 2. Sample of solution from Group A. 

 Group B (see Figure 3) also considered that cost was affected by both time and 
distance, which showed some insight into the investigation. The group was able to find 
a linear model in each case and obtain values for the correlation coefficient (r) and the 
coefficient of determination (r2), which they explained later in the submitted work. 
They went on to make lists of the best and worst value for both the distance/cost and 
time/cost criteria. Brisbane was included in their best-value lists and Hobart was in their 
worst-value lists for both situations. 
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Figure 3. Sample of solution from Group B. 

 Group C (see Figure 4) calculated both Cost/Time and Cost/Distance after 
considering both scenarios like Groups A and B. The line of best fit was accurately 
obtained and their consideration of how much the actual value was less than or greater 
than the average (modelled value) was insightful, as it indicated an understanding of 
variation. The answers were clearly provided and the group’s comment that the best 
value was in high population areas and the worst values were in rural and tourist areas 
was insightful. 
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Figure 4. Sample of solution from Group C. 

Reflections 
One of the positive but unnerving things that can happen when a class is fully 
undertaking an investigation is the feeling of irrelevancy that a teacher can experience. 
In this instance the students were clear on how they were going to tackle the 
investigation and they were task focussed and were not really interested in discussion 
outside of their group. Open discussion at the start and at the end of an investigation are 
crucial to build the confidence to explore and investigate with minimal input from a 
teacher. The amount of discussion at the end of the investigation was limited and more 
scope for discussion at the end of the investigation was warranted. Technology 
questions and how to use the graphics calculators were much more common than 
questions about what they should be doing mathematically.  
 The overseas element of the investigation involved issues such as exchange rates—
something that did not need to be considered in the comparison of taxi fares to airports 
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of Australian cities. An investigative lesson to examine the taxi fares from international 
airports to their relevant cities and comparing them to taxi fares from Australian airports 
to their closest cities could be considered as a follow up to this investigation. 
 The investigation was successful in the sense that the students were fully engaged 
productively for a long session (105 minutes). The background knowledge of 
correlation and regression was limited amongst the class at the start of the investigation. 
The use of the graphic calculator assisted the students to look at a line of best fit for the 
data quickly and investigate what it actually meant. Students freely used the graphics 
calculator to present tables, graphs and equations in this investigation with little or no 
guidance.  
 Farrell (1996) found a shift in the role of a teacher from that of a task setter and 
explainer to a consultant, fellow investigator and resource. The taxi-fare experience was 
similar in many respects to this. Even though a defined task was set, the investigation 
did change the class dynamic. The teaching role became that of a guide and assisting 
investigator to the groups. Each group could tackle the investigation in the way that they 
chose and the end result was something that they had ownership over.  
 The responses and answers to the questions posed were varied in nature and 
presentation. Some responses were in tabular form and some were in sentence form but 
all attempted to answer the questions posed from their perspective. The fact that Hobart 
was slightly more expensive (in relative terms) was not entirely unexpected, as it had 
been the source of motivation for the investigation in the first place.  

Conclusion 
According to Lovitt (1999) open-ended investigative approaches may offer just the right 
structure in our endless search for a rich, balanced and appropriate mathematics 
curriculum. Using the graphic calculator as a powerful tool to assist in the investigation 
of whether taxi fares were ‘fair’ engaged the students and encouraged them to consider 
a situation where regression and linear correlation could be used to answer what seemed 
at first to be a relatively simple question.  
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Extra system support in numeracy has consistently focused on schools with high numbers 
of low achieving students, resulting in little attention directed towards schools in higher 
socio-economic areas. Most students from these schools perform well in NAPLAN and 
appear to be achieving successfully in their day to day mathematics learning activities, and 
so are not considered in need of extra support. The results of a pilot study, however, 
revealed that many of these students lacked flexibility in their thinking with reliance on 
standard algorithms masking misconceptions. Many teachers re-thought their teaching 
emphases and were able to improve their students’ understanding and flexibility within one 
term. 
 

As a direct result of the 2002–2009 Getting it Right Literacy and Numeracy Strategy, 
the level of specialised expertise in the teaching of primary mathematics has greatly 
increased in Western Australia (Meiers, Ingvarson, Beavis, Hogan & Kleinhenz, 2005, 
p. 124; Ingvarson, 2005). Most of these teachers, however, continue to be employed in 
schools with large numbers of students who overtly demonstrate high educational 
needs. While it is essential that those students continue to be the focus of system-wide 
concern and high quality support, the possibility that there are less obvious needs in 
some of the higher achieving schools requires serious consideration.  
 Most schools that produce results towards the top end of the scale in the NAPLAN 
numeracy tests are assumed to be serving their students well and therefore do not 
generally attract system attention, nor are they expected to need extra support. At the 
same time there is continuing and widespread concern that too few students are 
choosing to pursue studies in mathematics beyond the compulsory years.  
 The choice to disengage from mathematics learning is influenced by many factors, 
but it is generally acknowledged that students’ experiences of learning mathematics in 
school, particularly in the upper primary and middle years, has a significant impact on 
their future educational decisions (Nardi & Steward, 2003). A wide ranging study in 
Victorian schools by Siemon, Virgona and Corneille (2001) included consideration of 
students’ attitudes and responses to their mathematical experiences. An important 
conclusion was that students’ engagement in mathematics is a consequence, not a cause, 
of understanding. This has important implications for many teachers who may 
successfully involve students in enjoyable mathematical activities, be skilled in teaching 
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procedures for producing accurate results, and yet fail to notice that their students may 
not be making sense of the mathematics involved and so be at risk of future 
disengagement. Hiebert and Grouws advocated “explicit attention to connections among 
ideas, facts and procedures” (2007, p. 391) as essential for facilitating students’ 
engagement with and confidence in the learning of mathematics.  
 The rationale in the Australian Curriculum: Mathematics confirms a continuing 
emphasis on high level understanding and connectedness: “The curriculum focuses on 
developing increasingly sophisticated and refined mathematical understanding, fluency, 
logical reasoning, analytical thought and problem-solving skills” (Australian 
Curriculum, Assessment and Reporting Authority, 2010). 
 However, Siemon, Virgona and Corneille (2001) also claimed that trying to cover 
too much in too little time typically results in superficial procedural learning at the 
expense of developing the understanding needed for full engagement in mathematical 
generalising and conjecturing. The National Numeracy Review Report (2008) also 
draws attention to this issue.  

The mathematical knowledge, skill and understanding people need today, if they are to be 
truly numerate, involves considerably more than the acquisition of mathematical routines 
and algorithms, no matter how well they are learned. 
…The time, understanding and thoughtful action that deep mathematical learning 
requires must be acknowledged, and therefore both curriculum emphases and assessment 
regimes should be explicitly designed to discourage a reliance upon superficial and low 
level proficiency. (National Numeracy Review Report, 2008, p. xi) 

 While much is made of the need to develop deeper mathematical understanding, 
anecdotal evidence suggests that the mathematics programs that many students 
experience in some of the higher performing primary schools may well continue to be 
dominated by routine procedures and algorithms. This paper reports some early results 
from a short term pilot study aimed at exploring the degree to which schools in higher 
socio-economic areas emphasise procedural approaches when teaching calculation 
strategies. Teachers from those schools were provided with extra support in an attempt 
to engage students in the use of flexible calculation strategies that require a greater 
degree of number understanding. The longer term aim was to inform system decisions 
about the kinds of professional learning opportunities that would be more supportive of 
teachers of higher achieving students and promote a greater emphasis on mathematical 
understanding.  

An overview of the pilot program 
Eleven schools and a total of over two thousand students from Years 3 to 7 were 
involved in the pilot program. Three schools did not wish to engage in the professional 
learning program, but were willing for their students to be given the pre-test and post-
test and so act as a control group to help determine the effects of the professional 
learning activities accessed by the focus schools. 

The testing process 
A pre-test administered at the end of Term 3 and then a post-test administered at the end 
of Term 3 were designed to test students’ flexibility in basic calculations. Several 
further items tested number and operational understanding. All of the items in the tests 
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were chosen because they could be easily calculated using a simple mental strategy if 
the numbers were understood and students had experience in using such techniques. 
None of the items required the use of a standard algorithm. Some attitudinal questions 
were also included in both tests. 
 All students from Years 3 to 7 took the same test which required approximately one 
hour to complete. The post-test items were identical in form to the pre-test items and 
required similar thinking processes but the numbers were changed slightly to avoid the 
possibility that students might have remembered answers from the pre-test. The tests 
were administered by a team of curriculum officers using the same introduction and 
procedure. All students at each testing were encouraged to choose calculation strategies 
they thought would be the easiest to use, even if they had learned them out of school. 
They were explicitly told that they did not need to use a ‘setting out’ or ‘vertical’ 
method if they had another way to do it and that we were interested to know if they had 
shortcuts or personal methods for calculating. They were asked to use drawings or 
diagrams, numbers and symbols, or words to try and show how they carried out their 
calculations. If they tried and could not do a question, they were to write ‘too difficult’ 
or use a question mark to show they’d looked at a question but could not do it. Items 
that were left entirely blank were generally not included in the analyses.  
 Following the testing, a team of Numeracy Specialist Teachers were trained to code 
the strategies used by the students without knowing which schools were the focus 
schools and which were the control schools. Each paper was numbered to enable 
matching of pre-test to post-test responses. All codings were entered into Microsoft 
Excel spreadsheets to aid analyses. The test results from students who were only tested 
on one test date through enrolment changes or absenteeism have been excluded from the 
data. Thus the pre-test and post-test comparisons involve identical cohorts of students. 

The professional learning program 
All Years 3 to 7 teachers from the focus schools were committed to engage in the 
program through their principals for the first eight weeks of Term 4. Following the pre-
testing of the students, teachers attended a two hour information session during which 
the requirements of the program were explained. They were shown video and audio 
clips of students displaying flexible calculation strategies based on partitioning and 
rearranging numbers in various ways. Some of the misconceptions surrounding the 
supposed value and necessity of learning standard algorithms and the rote learning of 
basic facts were challenged. Teachers were exposed to the idea that students can appear 
to recognise and use place value, but may not deeply understand the connection 
between the numerals and the quantities the digits represent, and so do not trust 
partitioning and rearranging numbers—preferring instead to use primitive counting 
strategies, rote learned procedures or a calculator when they needed to calculate.  
 To consolidate the session, the following three ideas were put forward as beliefs 
about students’ number learning that underpinned the approach:  

• being able to partition numbers flexibly—with understanding—is essential to the 
development of fluent computational strategies; 

• flexibility with number manipulations supports deep understanding of the 
properties of operations and is the basis for algebraic thinking; 
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• over-emphasis on memorising basic facts and standard algorithms can block 
students’ mathematical development. 

 Teachers were asked to spend 10 minutes every day on a “How did you do it?” 
activity to explicitly teach informal calculation strategies based on partitioning, and to 
spend two full lessons each week using the First Steps in Mathematics Number 
resources (Willis, Devlin, Jacob, Powell, Tomazos & Treacy, 2004) which each teacher 
received as part of the support provided. They were asked to teach tables and basic facts 
through practicing understood calculation strategies rather than rote memorisation and 
encouraged to take a collaborative ‘action learning’ approach by working with a 
colleague to share strategies and planning. 
 The program also provided each teacher with the equivalent of two days teacher 
relief funding, paid to the school, for use in any way the teachers felt would be helpful. 
An experienced Numeracy Specialist Teacher trained through the Getting It Right 
strategy was seconded to the project to visit the schools in rotation and provide any 
forms of support requested. 
 Teachers were given a list of further support that they individually and collectively 
could access if they wished, including professional learning workshops, modelled 
lessons, individual or whole school planning sessions, diagnostic task reviews, across 
school visits, shadowing of other teachers and assistance with parent meetings.  
 Some schools and some teachers engaged in more of the professional learning 
opportunities than others. Overall, however, there was a low demand for the extra help 
listed. Detailed records of the support and input provided by the seconded Specialist 
Teacher were maintained. Teachers completed a survey at the end of the pilot detailing 
their experiences and preferences for the particular forms of support with which they 
engaged. This will enable further fine-grained analyses of students’ results in relation to 
their teachers’ engagement with professional learning opportunities offered. Currently 
the analyses are confined to the students’ responses to the items at a broader level.  

 Results 
The data for items 1a to 8b have been analysed to date. The results reported in this 
paper are from students in Years 5 to 7 in schools that have been separated according to 
their socio-economic status. Three schools fall below 105 SEI, while the remaining 
eight are between 105 and 120 SEI, which includes the three control group schools. 
 As the main focus is currently on the higher achieving schools, the analyses included 
in this paper are confined to students in the five higher SEI focus schools (a total of 600 
students) and the three higher SEI control schools (286 students) and their responses to 
the calculation questions 1a to 8b. 
 The types of strategies used by each student were coded and then grouped into 
broader categories to reflect the focus of the program. The three groupings used were 
Standard Algorithms, Flexible Strategies, and Other (which included unknown 
strategies).  

• Standard Algorithms were coded for all vertically set out methods that were 
clearly used for the calculation. Students who set out the numbers vertically, but 
clearly explained a different calculation strategy were not included in this group. 

• Flexible strategies included all those that demonstrated manipulation of numbers 
in meaningful ways, the most common included:  
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– partitioning and rearranging, (e.g., 137 + 26, I’ll split 26 into 23 and 3 
and add it to 137 to make 140 add 23),  

– rounding and compensating (e.g., 457 – 98, I can round up to 100, take 
100 away to give 357, then add back the 2 to give 359),  

– place value (e.g., 15 × 3, I can make 15 into 10 and 5 and then multiply 
10 × 3 and then 5 by 3 and add the answers) 

• Other or Unknown strategies included those that did not demonstrate quantitative 
meaning, but also those that did not provide a clear explanation. Examples of the 
range of responses includes:  

– Counting (I counted on my fingers, or the marks on the page) 
– In head (I did it in my brain) 
– Face value ( 137 + 26, I said 6 and 7 is 13, and 3 and 2 is 5 and 1 more I 

put on the end) 

Table 1. Percentage and number of Years 5 to 7 students using each type of strategy for the addition and 
subtraction items in the pre-test and post-test (as a proportion of students attempting each item).  

 

 Tables 1 and 2 show the percentages and numbers of students in each group using 
one of the three strategy types1 for each item as a percentage of students attempting each 
item. The overall percentage and number of students attempting each item in the pre-
test and post-test across all schools is also provided in the tables. Whereas 80% to 100% 
of students attempted most addition and subtraction items and many of the 
multiplication items, the percentages reduced to 50% to 60% for division problems. 
Even though the decimal items involved easy-to-visualise numbers to one or two 
decimal places, they too reduced the number of students willing to attempt the items. 
While the main focus here is on the comparative use of strategies, many of the students’ 
responses revealed misconceptions and misunderstandings that can be masked when 

1 Note that each student’s response on each item was coded with one strategy. When more than one strategy was 
evident in a single item response, a decision was made as to the dominant strategy used. 
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students accurately apply standard procedures. For example, students had no difficulty 
using column addition for 45.6 + 29.9, though few noticed they could round to 30 and 
add 45.5. When confronted with 138 – 9.8 many using a standard algorithm made errors 
through incorrect placement of digits. Fewer than 20% used a flexible strategy, but of 
those who did, most demonstrated their understanding by subtracting 10 and adding 
back 0.2. Division of 9 by 1.5 was another item that revealed students’ incorrect use of 
an algorithm and underlying lack of understanding, many producing answers such as 
1r6, 1.6, or 9r5, while those using flexible strategies demonstrated understanding by 
doubling 1.5 and using the relationship between 3 and 9 to arrive at 6. 

Table 2. Percentage and number of Years 5 to 7 students using each type of strategy for the multiplication 
and division items in the pre-test and post-test (as a proportion of students attempting each item.  

 
 
 It is clear from the results that a considerable number of students do rely on the use 
of standard algorithms for these basic calculations that are relatively easy to process 
using an informal strategy. None are so difficult that they require the use of a standard 
algorithm or a calculator. To use informal strategies with confidence, however, requires 
a solid understanding of the numeration system and a range of partitioning strategies. A 
lower proportion of students used flexible strategies for many of the items, particularly 
in the pre-test. The effect of the support provided to the focus schools’ teachers can be 
inferred from the large proportions of students in the focus schools who moved from 
using algorithms in the pre-test to flexible strategies in the post-test. Figure 1 illustrates 
this more clearly for the multiplication and division items and shows that for all items 
students in the focus group reduced their reliance on standard algorithms and increased 
their use of flexible strategies between the two test dates. The effect is strong and 
sufficiently consistent across all items to suggest the differences observed could be 
statistically significant. In contrast, the students from the control group schools appear 
to have demonstrated a similar choice of strategies across both tests with little variation 
observed.  
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 Figure 1. Comparison of strategies for multiplication and division items, pre- and post test for Years 5 
to 7 students in the focus and control schools as a percentage of items attempted by each group. 

Discussion 
These results clearly demonstrate the effectiveness of the pilot program’s approach for 
effecting changes in teachers’ classroom practices in a relatively short period of time 
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with a measurable impact on students’ mathematical behaviour. While the teacher 
survey responses and the Specialist Teachers records have not yet been fully analysed at 
this stage, it is clear that teachers appreciated the choices provided and consistently 
expressed their belief that their professional learning needs had not previously been met.  
 While only the choices of calculation strategies have been analysed in detail to date, 
the accuracy of student’s answers are also of interest. In general, accuracy appears to 
have reduced in the focus schools alongside the students’ increased use of flexible 
strategies, while the control schools seem to have improved in accuracy. While this 
requires further analysis, it does present a dilemma. Is the drop in accuracy cause for 
concern, or is this a normal learning process—namely that increased error is expected 
when learning a new skill or technique? Would insistence on accuracy lead students to 
reject new learning and revert to a lower level of performance to maintain accuracy? 
 A closer look at one focus school’s results for a single item illustrates the 
phenomenon. Figure 2 provides a profile for each student’s choice of strategy and the 
level of accuracy attained in each test. While a large group of students moved from 
using an algorithm in the pre-test to using a flexible strategy in the post-test, an increase 
in accuracy did not follow. Six students used an algorithm correctly in the pre-test, but 
were incorrect when using a flexible strategy in the post-test and three more were 
incorrect in both tests. None in that group achieved higher accuracy in the post-test. 
 While the literature clearly supports the need for greater levels of understanding at all 
stages of learning mathematics, the complexities involved are often underestimated.  

 

Figure 2. Graph showing each student’s type of strategy and the level of accuracy for Item 2B in the pre-
test (457-98=) and the post-test (376-97=) for Years 5 to 7 in one focus group school. 

Implications 
The data from this pilot are still being analysed. The students’ attitudes to mathematics 
captured in both the pre- and post-tests, the teachers’ responses to the post-program 
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survey and the Specialist Teacher’s records are yet to be considered with the rest of the 
data. However, even at this early stage, some implications can be considered. 
 Firstly, the results of the pilot program thus far provides evidence that, with 
relatively little system input, experienced teachers’ classroom practices can be changed 
to the degree that they directly impact on many students’ mathematical learning in a 
short period of time. This may be particularly true for these students due to their 
willingness to conform to their school’s expectations. The team administering the tests 
noticed and remarked on the seriousness with which these students engaged with the 
test items on both occasions, in contrast to previous experiences trying to test students 
in some of the lower achieving schools. From a political viewpoint, a much lower 
investment in teacher support could result in relatively greater impact on student 
learning in these schools, with a greater effect on system performance. It is difficult to 
achieve significant measurable improvement across the system in mathematics learning 
by concentrating resources only on the very lowest achieving schools.  
 Secondly, there needs to be more discussion and reflection around the possible 
consequences of engaging higher-achieving students in mathematical behaviours that 
are ‘risky’ in the initial stages, because changes in approach may not immediately result 
in greater accuracy or understanding. Some students in the study were clearly very 
resistant to the change and expressed this in their comments on the tests. A relatively 
high proportion of students persisted in using standard procedures for simple 
calculations in spite of their teachers’ efforts. Teachers may be willing to try new ways 
of working but for many students in higher achieving schools, learning mathematics is a 
high stakes activity, for which proficiency in carrying out procedures and getting high 
marks in tests may take precedence over more challenging mathematical activity that 
they don’t recognise as helpful. They are yet to realise that their future mathematical 
learning could be at risk if they choose not to engage with meaning at every stage. 
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As teachers become more skilled in the use of computer algebra systems (CAS) for 
presenting mathematical concepts and applications, they may be called upon by their 
colleagues to share their ideas for use by an audience beyond their own classrooms. In this 
paper, the author describes one view of the process of writing lesson materials for teachers 
and students. Insights gained through experiences as a member of a research team as well 
as being a presenter of professional development to teachers will be explored. 

Introduction 
Mathematics educators in Australia typically begin their careers in the classroom using 
resources such as textbooks, worksheets and assessment tasks provided by faculty 
colleagues. Graduates may also have acquired or written materials during their pre-
service training which they will bring to their new positions. There can often be a key 
person amongst the mathematics staff at a school whose ability and willingness to 
produce (and share) such class- or school-specific resources is well known by her/his 
colleagues. Teachers in other countries, including the United States, may have entirely 
proscribed curriculum directives (see, for example Harris, Marcus, McLaren, & Fey, 
2001) which in effect provide a daily script for the lesson as well as system-sanctioned 
assessment tasks. Some teachers, particularly those for whom mathematics may be only 
one of several disciplines they teach, continue their careers quite content to maintain 
this drip-feed of work prepared by others. 
 Increasingly however, mathematics teachers have been able to use technology to 
generate their own materials. Advances in word processing have meant that quality 
documents with accurate diagrams, precise mathematical notation, and illustrative 
screen shots from other technologies are easily produced by teachers to show algebraic, 
graphical and numerical representations of mathematical concepts. This phenomenon 
has been encouraged by the provision of mathematics education inservice activities 
whose explicit outcomes include expectations that participants write original lessons 
and units of student work, with the understanding that these be shared electronically in a 
forum such as Wikispaces. 
 In this paper, I describe my own journey of writing and sharing mathematics 
education resources as a secondary teacher, postgraduate student and university 
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researcher. Four such resources, developed over the past five years, are used to illustrate 
stages of this journey. Finally, reflections on the value of the knowledge gained are 
shared. 

Background—secondary teaching 
As a secondary mathematics classroom teacher of over thirty years’ experience, I have 
been asked many times to reflect on my initial motivations for this career choice. A 
genuine love of writing has emerged from these reflections as one of the strong 
influences, and hence many opportunities were taken to write worksheets and 
assessment tasks for specific classes. This became a collegial effort in the 1990s when, 
in co-authorship with two colleagues at a Melbourne school, each year we produced a 
unique application task (conducted over a two-week period) for the school-based 
assessment of the Victorian Certificate of Education (VCE) Mathematical Methods unit 
(see HREF1). We spent countless hours after school ensuring that the individualised 
versions (different parameters, similar problem) of the task were of a consistent 
standard amongst the three classes for whom we were writing. As these tasks were for 
high-stakes internal assessment procedures in Year 12, we did not recycle these for use 
in subsequent years, nor were they shared with other schools. We felt as a team that we 
could control the integrity of the assessment process in this manner and avoid answers 
being passed around the Year 12 cohort. The effort spent in producing these tasks was 
extensive and exhausting, and that experience partially contributed to a protectionist 
attitude within the team when thoughts of sharing the work arose. 
 Upon reflection, it can be seen that we also felt there was little available time and 
less perceivable confidence amongst the team to present this work to a larger, possibly 
more critical audience. The work thus remained on our floppy disks. I never considered 
that I had the time, or the presentation skills, required to put this or other work in front 
of my peers. Through hindsight I now realise we did indeed have ideas worth sharing, 
and that it would have broadened our professional experience to have been in contact 
with our neighbouring schools in the first instance, or to write descriptive articles for 
journals published by the Mathematical Association of Victoria (MAV) or The 
Australian Association of Mathematics Teachers (AAMT). 

Postgraduate study 
With computer algebra systems (CAS) technology being encouraged in Victorian 
school mathematics, I began M.Ed. studies in mathematics education at the University 
of Melbourne in 2006. The first two subjects of the course were technology-based, and 
it was imperative to become skilled in using technology for assignments and 
presentations. One particular assignment (see HREF2), concerned with the development 
of a technology-based unit of work for a Year 10 class I was currently teaching, 
presented many challenges. Amongst these was the incorporation of selected screen 
dumps from the CAS I was using then (Texas Instruments TI-89) to facilitate students’ 
technical knowledge, to be kept in balance so that the mathematical content was not 
overshadowed by the “now press this button” mechanics of how the CAS could be used. 
The coursework I had already done presented me with the opportunity to explore the 
literature surrounding the always controversial balance between technology-active and 
technology-free mathematics instruction and learning (see Coffland and Strickland, 
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2004). I now needed to apply that knowledge, keeping in mind the needs of my own 
students. 
 In the process of writing this unit on Linear Functions and Measurement I was 
conscious of teaching myself the uses (and limitations) of the technology, as well as 
exploring a mathematical idea which had fascinated me for a while – using coordinate 
geometry to find the relationship between a polygonal region’s area and the algebraic 
properties of its boundaries without reliance on differential calculus. (See Figure 1) 
 

 

Figure 1. Finding the area enclosed by the graphs of 2x + y = 2 and 4x – 3y = –6 and the x-axis. 

 Technology enabled me to explore this relationship dynamically, and I felt students 
would be interested to do the same. As I was referring to the same type of area 
continuously (e.g., the region bounded by two oblique linear graphs and one of the 
coordinate axes), I needed to avoid excessive wording and hence created a variable ( ) 
to describe the area of such a region. Thus, I felt I was truly working mathematically in 
the creation of this concept, and that students could share in this experience. 
 The unit includes an overall unit plan, six specific lesson plans with accompanying 
student worksheets, and an investigative task with possible extension work. When 
presenting this work to fellow postgraduate students, there was genuine interest in the 
mathematical ideas involved as well as the overall structure of the unit. Their interest 
sparked confidence to share these ideas through a larger forum, resulting in my first 
presentation for the MAV December Conference in 2008. 
 From this exercise I became more aware of the need to let the written work reflect a 
reasonable pace and sequence of mathematical ideas. The lesson plans and student 
worksheets had to clearly convey my intentions for the interplay of teacher presentation 
and student exploration without being too verbose. If the unit was to be successfully 
used by other teachers, there had to be a blend of independent student investigation and 
collaborative student work to suit varying school learning environments. Finally, I felt 
there needed to be an assessment task to allow teachers to gauge the mathematical 
understandings of their students in this unit. In my MAV conference presentation I 
became conscious of trying to ‘sell’ these facets of my work; it was gratifying and 
confidence-building to receive positive feedback. 
 I would encourage teachers to experiment with whole-unit writing, as a fresh 
approach can often give colleagues welcome relief from textbook-influenced 
sequencing. Plans need to be made early in the year for this to happen, and the feedback 
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received from colleagues on the merits of the new work will likely be valuable and 
confidence building. There is also a chance that others’ creativity might be encouraged 
by these first steps. The great irony of this particular exercise is that I wrote it as a 
university assignment in isolation from my colleagues’ work, left secondary teaching 
later that year and never had the chance to trial the unit at my school. 

Research—Phase 1 
Postgraduate study introduced me to TI-Nspire CAS technology, and in 2008 I joined a 
research team at the University of Melbourne. Our project, New Technologies for 
Teaching Mathematics (NTTM), was funded by Texas Instruments as a two-year study 
into the uses of TI-Nspire CAS for the teaching and learning of secondary mathematics. 
Our main brief that year was to design a technology-rich lesson and to observe its 
delivery by twelve teachers from two Melbourne-area schools within a modified lesson 
study format (see Pierce & Stacey, 2009) to classes of Year 10 students. 
 The lesson, Marina’s Fish Shop (see HREF3; also Wander & Pierce, 2009), was 
written by the NTTM team in response to the teachers’ requests for an application of 
quadratic functions. Once again, the interplay between geometric concepts and 
algebraic expressions and equations was being explored (see Figure 2). 
 

 

Figure 2. Screen shots from technology files of Marina’s Fish Shop. 

 The writing of this single 80-minute lesson took several weeks, during which time 
there was fierce debate within the team as to how best to use the multiple 
representations (see Pierce et al., 2011) afforded by the technology to assist teacher 
presentation and student learning of the underlying mathematical principles. Questions 
related to how much space to leave on the worksheet for student written work, and 
whether to provide an undirected space or use a ‘fill in the blank’ style within a 
sentence approach. Also, as the students were those of the participating teachers (and 
most were unfamiliar with TI-Nspire technology), we took their advice regarding the 
extent to which we could assume that these students, through normal classroom 
discussion in groups, could generalise algebraically from a few specific examples. 
 I often reflect on the relative luxury of time we were given to prepare these materials, 
in contrast to preparing something “on the run” as I know I did when I had a full school 
teaching load. As a writer used to producing something for my own classes within a 
previous evening or at most a few sessions with two other colleagues, the transition to 
Marina’s Fish Shop was eye-opening. Opinions were now backed by years of world-
standard research experience from amongst my colleagues, and challenged and 
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modified by those at the coal-face who were to use them with their students. Screen 
dumps and technically-precise diagrams were created, debated and modified. The entire 
lesson was also changed radically after we analysed its first presentation before we took 
it to the second school. 
 Along with the extensive lesson plan and student worksheets we created, we also 
produced supporting technology files to be used by teachers using TI-Nspire CAS 
teacher software for the computer, and by students using handheld TI-Nspire devices. 
The complexity of deciding what to include, the layout of each screen, which 
underlying geometric constructions to “hide” and which to show on the diagrams—all 
of these considerations make the writing of such lesson materials quite a complex task.  
 Through the publications which arose through our research, as well as presentations 
at the national and overseas conferences, Marina’s Fish Shop has been seen, analysed 
and used by many educators. A major challenge for me as one of its authors is to ensure 
its continued usefulness by monitoring the technical instructions and screenshots in the 
documentation. As all mathematics application software (like TI-Nspire CAS) is 
continually updated, written publications quickly lose their relevance and attractiveness 
to teachers if they do not reflect the latest versions and best features of the technology 
used. 
 The prospect of preparing new materials and then being observed by colleagues 
while teaching, particularly when new technology is involved, is daunting for most 
mathematics teachers. However, its value was immediate for our research staff and the 
teachers, and many commented on how their involvement in the lesson design and 
delivery was highly rewarding. If individuals within teams of teachers take on various 
tasks –researching related ideas, writing initial material, proofreading, preparing 
technology and presenting – true ownership of the resource can result. 

Research—Phase 2 
The NTTM team decided to prepare two lessons in 2009 for the research schools. One 
of these, The Surd Spiral (see HREF4), was based on earlier work by Stacey and Price 
(2005). The spiral (seen below in Figure 3) is based on an isosceles right-angled triangle 
whose hypotenuse becomes the longer of the two perpendicular sides in the next 
successive triangle. The lesson’s overall aim was to provide geometric and algebraic 
representations of the perimeters and areas of these triangles, which form a pattern of 
surd expressions. Through the lesson’s activities, students were to acquire a better 
understanding of the process of surd simplification 

 

Figure 3. Screen shot from TI-Nspire CAS technology file of The Surd Spiral. 
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 The motivations for writing this lesson were many. In our team’s early experience 
with TI-Nspire CAS technology, we were interested in the capabilities of its algebraic 
spreadsheet. I had presented a demonstration lesson on surd patterns we had written for 
another Melbourne school’s Year 9 cohort early in 2008, and through this experience 
we learned about the pitfalls of cognitive overload when new technology was being 
used to teach new mathematical content. We wanted the Surd Spiral lesson to reflect 
our acquired knowledge through this first experience. We were also keen to involve our 
lesson study teachers in exploring additional features of the technology we had not 
utilised the previous year, the spreadsheet being the most prominent of these. 
 Most of the teachers for whom we were writing this lesson were known to us from 
the Marina’s Fish Shop work, and were much more confident with TI-Nspire 
technology than they had been the previous year. Their students were also more 
confident users, and knowing this enabled us to write a lesson which allowed for more 
independent student work, with only occasional technological step-by-step instructions. 
 Though it had been planned for the research team to once again use our modified 
lesson-study approach to observe our teachers, I was called on to teach the lesson twice 
at the second school when two of the teachers were absent on the observation day. That 
experience was invaluable for me, as this was the first time I had used TI-Nspire 
technology in front of students since the previous demonstration lesson 18 months ago. 
As one of the authors I knew the lesson very well, yet still found it challenging to link 
the detailed lesson plan with the student worksheets and the accompanying technology 
files. 
 From this experience I learnt I had become unrealistic in terms of estimating the time 
required for technology-based lessons. Though I had years of teaching experience, these 
highly-detailed lessons and their technological foundation required my complete 
concentration on delivery and did not allow enough student discussion time. We had 
written a lesson for a specified timeframe of 100 minutes, and it appeared too teacher-
centred if the planned activities were completed. On a positive note, it was apparent 
through pre- and post-lesson testing that the students’ knowledge of surd simplification 
had increased. 
 In schools where the classes of, say Year 10 Mathematics are blocked together on the 
timetable, teachers may be able to use the modified lesson study (research, write, 
observe and rewrite) approach described in the sections above. This involves high levels 
of commitment and requires the team to continually clarify the lesson goals for learning 
mathematics. Teachers should be prepared for at least two cycles of the process, 
allowing for the new unit to be taught in Year 1, modified through observational 
analysis, and retaught in Year 2. The benefits of this collaborative process are 
numerous, and may inspire some team members to report their experiences through 
journals and conferences. 

Sponsored writing 
In 2010 I was commissioned to do some writing for Texas Instruments within my role at 
the University of Melbourne. The resulting resources were intended for use by students 
and teachers of Further Mathematics, a Year 12 subject in the Victorian Certificate of 
Education (see HREF1). This is a subject which allows, but does not require, students to 
use CAS technology in all assessment tasks. The materials I was to produce included 
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specific technical advice sheets regarding how to perform an isolated mathematical 
operation, detailed lessons and student investigative tasks. The brief was to produce 20 
such documents and any associated technology files as required. Though colleagues 
gave valuable advice along the way, the final decisions regarding the various course 
content covered by the materials were mine. 
 As data analysis forms the core content of Further Mathematics, nine of the pieces 
were based on statistics. The others were centred on five of the six optional modules 
(number patterns, geometry and trigonometry, graphs and relations, business-related 
mathematics, and matrices). Thus, I had a wide selection of content from which to 
choose. 
 The independence (and resulting responsibility) associated with this endeavour were 
professionally enriching on many levels. Previous work with the TI-Nspire CAS had 
given me only a surface knowledge of the statistical capabilities of this technology, so I 
now had the incentive to explore these features in more depth. Though it was not 
specifically required in the brief, I wrote all activities based on an application or 
problem, hoping that creative teachers could modify a “how to…” document into a 
lesson using the associated problem as the vehicle for discussion. Also, I was given the 
opportunity to present some of the activities at the Mathematical Association of 
Western Australia (MAWA) and Mathematical Association of Victoria (MAV) 
conferences that year, which brought the resource to the attention of many teachers. 
 In producing this resource I have certainly learned the value of regularly seeking the 
opinions of colleagues in terms of content, layout and mathematical language. Having 
had the previous experience of writing materials in a team context, I had developed a 
good sense of knowing when to follow my own instincts and when to consult. I noted 
that trusted colleagues are often able to find layout and wording faults which are not so 
apparent when one is more intent on pursuing an interesting mathematical concept. 
 At the time of writing, this material is planned for inclusion on the Texas Instruments 
website (see HREF5). 

Conclusion 
The teacher who wishes to start writing mathematics education materials for others 
would be well advised to start by becoming familiar with the various journals of state 
based mathematical associations such as the MAV and its parent organisation AAMT. 
One will find lesson ideas ranging from the simple to the highly complex, and 
references for additional research. Becoming aware of what is already available will 
enable potential writers to identify what might be missing, and the writing can thus 
become more purposeful.  
 Looking for opportunities to start working in teams is essential. These may be 
formed at the school or network level, and with a deliberate division of labour to match 
abilities and interests it may be possible to create positive professional growth and a 
greater sense of ownership of the education process. Formal study and professional 
development workshops provide ideal venues for creative teachers to extend their skills 
and confidence in presenting work to peers.  
 In looking back at the five short years that have elapsed since I started my 
postgraduate studies, I am conscious of the opportunities which have allowed me to 
write mathematical education materials. I recognise that as a teacher I felt I was too 
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busy to engage in this exercise, yet the input of practising teachers seems vital if these 
resources are to be worthwhile. Technology has played an overwhelmingly positive role 
in my journey and will continue to do so. Working within a community of educational 
researchers and practitioners has challenged and enriched my professional life. I 
encourage those teachers who feel they have creative, worthwhile ideas to share with 
others to consider career pathways similar to those described above. 
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Co-ordination class theory describes processes and functions by which the learner co-
ordinates fine-grained knowledge elements in developing mathematical concepts. This 
study investigated similarities and differences in the strategies used by 11 to 13 year-old 
students as they worked on percentage problems. The results suggest important knowledge 
elements and processes for co-ordination of these elements that are necessary for the 
development of a concept of percentages.  

Introduction 
Networks, hierarchies or a combination of the two are commonly used as metaphors for 
the way in which learners construct concepts (Hiebert & Carpenter, 1992). For example, 
Skemp’s (1978) paper on relational and instrumental understanding advocated a 
connectivist view consistent with a network metaphor while Sfard (1991) used a 
hierarchical metaphor to describe the process by which a learner comes to treat a new 
concept as an object with which to think.  
 At the heart of theories about conceptual learning is the process of abstracting. Two 
perspectives dominate the literature. One view is that creation of an abstraction occurs 
as connections and common structure are perceived by the learner between situations. 
The abstraction is encapsulated as an object of thought, stripped away from the 
founding situations, that allows the learner to consistently apply the concept to new 
situations (Tall, Thomas, Davis, Gray, & Simpson, 2000). The other perspective is that 
transfer is influenced by learner (actor) perception and social interaction in situations 
(Lobato, 2006). Co-ordination class theory (diSessa & Wagner, 2005) suggests that 
abstraction occurs as learners transfer knowledge between situations rather than 
abstraction being the cause of that transfer. The theory provides the theoretical 
framework for this paper and reflects the latter, actor-oriented perspective about the 
construction of concepts. 

Co-ordination class theory and percentages 
Co-ordination class is a term first used by diSessa (1993) to describe a type of concept 
which requires the co-ordination of fine-grained knowledge elements. Learners have 
existing contextual knowledge elements about situations that are resources in the 

1081



WRIGHT 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

construction of concepts and have cueing preferences for the activation of knowledge in 
situations perceived by them as similar (Pratt & Noss, 2002).  Well-developed co-
ordination classes are signalled by the breadth of situations to which the learner applies 
the concept (span) and the consistency with which they apply it (alignment).  
 diSessa and Wagner (2005) described two features that comprise the architecture of 
co-ordination classes. Readout involves the learner attending to conditions in a situation 
that relate to the concept. The causal or inferential net involves the learner in mapping 
the readout data onto the concept to create and enact a sequence of sub-tasks to meet the 
demands of the situation. Co-ordination class theory anticipates both assistance and 
inhibition from existing knowledge in the development of new concepts, and 
accommodates learners holding contradictory knowledge at a given time. Recent studies 
have demonstrated the applicability of diSessa’s theory to the learning of the law of 
large numbers (Wagner, 2003) and integers (Simpson, 2009). 
 Percentage is a concept that requires the co-ordination of many knowledge elements. 
A well developed procept, embodiment of process in a symbol (Gray & Tall, 2001), for 
percentage includes many interpretations described below in terms of Kieren’s sub-
constructs for rational number (Kieren, 1993). 

• Measures: percentages as numbers or quantities that can be partitioned and 
combined, for example, 35% is 20% + 10% + 5%; 

• Operators: percentages acting upon numbers or quantities as scalars, for example, 
35% of $80; 

• Quotients: percentages as shares, for example, four people sharing a quantity 
results in each person getting 25% of that quantity; 

• Ratios: percentages describing equivalent constants of proportionality in both 
part-whole and whole-whole relationships, for example, 40% and 60% quantify 
the part-whole relationships in the ratio of 2:3. 

 Real-life problems usually involve the operators and ratios sub-constructs, though 
both measures and quotients are strongly connected in strategy use; for example, 35% 
of $80 as 10% of $80 + 20% of $80 + 5% of $80. Commonly, percentage problems are 
isomorphisms of measure situations under Vergnaud’s classification of multiplicative 
structures (Vergnaud, 1994). For example, finding 24 out of 40 as percentage can be 
shown in the ratio table below although technically part and whole are not different 
measure spaces. The multiplier 2 is a scalar operating within each measure space while 

 is the constant of proportionality between measure spaces. 
 

Table 1. Ratio table for a part-whole percentage problem. 

 Part Whole  
 × 2  24 40  × 2  
 ? 100  
 
 Teaching experiments in Australasia and overseas have capitalised on students’ real-
life situational knowledge about percentages (Moss & Case, 1999; White, Wilson, 
Faragher, & Mitchelmore, 2007).  Researchers used embodiments such as containers of 
water and double number lines with mixed success to develop students’ knowledge of 
percentages as part-whole relationships and to link percentages to decimals and 
fractional numbers. Students in the middle school apply capably common benchmark 
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fractions such as 50% and 10%, readily learned in real-life situations, but still have 
considerable difficulty with more complex percentage calculations (Dole, 2000). Co-
ordination class theory suggests that real-life experiences provide some useful 
knowledge resources but these resources are inadequate for development of a robust 
concept for percentages. diSessa (2008) argued that the process of constructing 
particular concepts can only be understood through attention to the fine-grained 
knowledge elements that learners use in doing so. 

Method 
The data for this paper come from a teaching experiment in 2007 aimed at developing 
the multiplicative thinking and proportional reasoning of thirty students in a class of 
Year 8 students (11–13 years old). The setting was a medium sized middle school in a 
large town in semi-rural New Zealand. Data from a case study group of seven students, 
selected to provide a range of gender, ethnicity and achievement level, are presented in 
this paper. I worked with the students as both teacher and researcher for 16 weeks 
during the course of the year. The students received instruction about number during 
that time and the normal class instruction delivered by their teacher during the other 24 
weeks of the school year. 
 The focus of the data analysis is on answering the following research question: 

What fine-grained knowledge elements do students co-ordinate in solving percentage 
problems, and what is the process of co-ordination? 

 For the purposes of this paper, I selected nine assessment tasks from a large bank of 
tasks attempted by students during the year. Selection was based on the tasks having a 
range of problem structures involving percentages. Seven tasks were from interviews 
carried out at four points during the year (21 February, 26 March, 16 August, 19 
November). Each entire interview was videoed and transcribed. Interviews adopted a 
teaching interview protocol (Hershkowitz, Schwarz, & Dreyfus, 2001) during which the 
interviewer plays a more eliciting role than in traditional clinical interviews. In this 
protocol the interviewer offers assurance if needed, seeks explanations, provides 
alternative ideas and points out inconsistencies. Two tasks were items from a written 
test, chosen because student recording provided considerable detail about the strategies 
used. The rationale for task selection was validity of the data in terms of revealing the 
strategies and knowledge used. Since the interview and written tasks were tailored for 
each instructional group, and the selected students worked in two different groups, the 
set of students who attempted each task varied. 
 The tasks were as follows: 

• Task One (interview): Remi has 30 calves to feed. Nine of the calves are 
Friesians. What percentage of the calves is Friesians? 

• Task Two (interview): Remi has 45 calves to feed. 27 of the calves are Friesians. 
What percentage of the calves is Friesians? 

•  Task Three (written test): Jess is shopping for a pair of Levi jeans. She finds these 
deals. Which shop gives her the cheapest deal? Show how you worked out your 
answer. Jean City: Normal price $119.95, Discount 35%. Denim Dungeon: 
Normal price $79.95, 7% off for cash. 
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• Task Four (written test): Odette wants to buy this armchair for her Mother. It is on 
sale at 35% off. How much will Odette have to pay? (Price shown: $480) 

• Task Five (interview): Rachel got 80% of her shots in during the netball game. 
She took 35 shots. How many goals did she get? 

• Task Six (interview): Screecher shoes are 80 percent of the price of Petrol shoes. 
Nykie shoes are 75% of the price of Screechers. What percentage of the price of a 
pair of Petrol shoes is a pair of Nykies? 

• Task Seven (interview): Odette buys a pair of jeans that usually cost $96.00. She 
gets 25% discount. How much does Odette pay for the jeans? 

• Task Eight (interview): You sit a spelling test and get 18 words right. The teacher 
gives you 67% correct. How many words are in the test? 

• Task Nine (interview): You sit a spelling test and get 18 words right. The teacher 
gives you 60% correct. How many words are in the test? 

 Student responses for each task were grouped into incorrect, partially correct, and 
completely correct categories. All responses were considered in developing a coding for 
the strategies used by students. This coding was then applied to all responses. Multiple 
codes were frequently applied to a single response.  

• SA = Speculative algorithm – A calculation performed on the numbers in the 
problem with no apparent recognition of the problem structure    

• I = Inertia – Inaction, no attempt   
• CPD = Conversion percentage to decimal – Renaming a percentage as a decimal 

or vice versa 
• CPF = Conversion percentage to fraction – Renaming a percentage as a fraction 

or vice versa 
• RA = Additive Rate – Mapping of the given rate onto a rate with 100% by 

addition of incremental rates (distribution of the operating percentage)  
   

• RS = Scalar Rate - Mapping of the given rate directly onto a rate with 100% by 
scalar multiplication 

• RU = Unit Rate – Finding a unit rate by division then mapping it onto a rate with 
100% by scalar multiplication 

• FS = Equivalent Fractions (Common Factors) – Reduction of a fraction to simpler 
terms through dividing both numerator and denominator by a common factor
  

• FO = Fractions as Operator – Finding a fraction of a quantity by dividing by the 
denominator and multiplying by the numerator (or reverse order) 

Results 
Most student responses in the incorrect category consisted of speculative algorithms. 
That is, given a problem with numbers, students carried out a calculation in the hope 
that it sufficed. For example, asked to work out nine out of 30 as a percentage (Task 
One), on 21 February, Simon calculated 30.00 – 9.00 = 21.00 (21%) and Bob calculated 
9 × 3 = 27 (27%). A few responses used potentially productive knowledge elements 
without awareness of how to co-ordinate them. For Task One Andrew knew 0.1 equals 
10% so 0.3 equals 30% but then calculated 9 × 0.3 = 2.7 (2.7%). Odette recognised the 
applicability of common factors and 50% as one-half in her answer of 53 to Task Two. 
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O:  It’s weird. 
I:  What’s weird about it? What made it hard? 
O:  I divided it by nine (common factor). 
I:  And what did you get when you divided by nine? 
O:  Fifty three. 45 is five and 27 is three. 
I:  So that is where you get 53% (5 and 3)? [Answer 53] 

 In her first interview on 21 February, in response to Task One, Rachel knew that 
percentage meant ‘out of 100’ but her self-perceived inability to solve percentage 
problems resulted in inertia. 
 A greater variety of strategy types and knowledge elements were evident in the 
partially correct solutions. Scaling based strategies were common and mostly involved 
additive build-up and multiplicative scalars in combination. Students treated the 
percentage as one measure space in a rate. For example, in answering Task Two, Bob 
reasoned that 100%: 45 calves so one-half (50%): 22.5 calves so 8%: ≈ 5 calves so 
58%: ≈ 27 calves. Rachel used similar reasoning to find the price of a $119.95 pair of 
jeans at 35% discount for Task Three. Using division algorithms she created a table; 
$60 = 50%, $12 = 10%, $6 = 5%. Rachel then added $42 (7 × $6) and $60 to mistakenly 
find 85% of $120 rather than the required 65%. 
 There were four examples of students trying to find the multiplicative scalar by 
dividing 100% by the base amount or building up the base amount to 100%. These 
strategies founded on division calculations where the base amount did not map tidily 
into 100% with an integral scalar. For example, Bob mapped 30 onto 100 and got 
“33...” as the scalar (indicating recurring threes). He was unable to use this information 
to calculate nine out of 30 as a percentage.  
 There were also examples of fraction as operators and equivalent fraction based 
strategies among the partially correct solutions. In answering Task Three, Jess 
calculated 

 × $120 = $36 but added on one-fifth of $36 instead of 5% of $120. Similarly, 
responding to Task Five, Rachel knew that division by 100 and multiplication by 80 
was a way to find  of 35 and that 100 ÷ 35 gave the unit percentage rate for each 
shot. Figure 1 shows that her inability to express the quotient as a decimal halted her 
solution strategy.  

 

Figure 1. Rachel attempting division to find a scalar. 

With interviewer prompting, Jason recognised that 80% =  =  but could not 
calculate  
35 ÷ 5 = 7 correctly in order to apply his equivalent fraction knowledge.  
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 The partially correct solutions contained a broad range of knowledge elements that 
were potentially productive for enacting correct solutions. These elements included 
additive and multiplicative partitions of 100, common fraction to percentage 
associations, halving and doubling, numerator as multiplier and denominator as divisor, 
and conservation of rate. The main problems in execution of strategies were fluency of 
calculation (particularly division) and co-ordination of the chain of inferences required, 
without succumbing to overload of working memory. 
 Correct solution strategies were characterised by successful co-ordination of multiple 
knowledge elements. Three main strategy types emerged; equivalent fractions, fractions 
as operators and unit rates. Combinations of strategies were frequently used. Typical of 
equivalent fractions based strategies was Jess’s strategy for finding 27 out of 45 as a 
percentage for Task Two. She reasoned  =  = 60%. Identification of common 
factors to simplify fractions and fraction to percentage associations were the knowledge 
elements employed commonly in complete solutions. Jess also used a fraction as 
operator strategy to find 80% of 35 netball shots (Task Five). She used the algorithm 35 
÷ 100 × 80 (  × 80). Successful operator based strategies required knowledge of 
percentages as fractions with denominators as powers of ten, numerator as multiplier 
and denominator as divisor, and sufficient fluency with multiplication and division 
calculations. 
 Unit rate strategies were used by students on Task Eight where there was access to a 
calculator, thus removing the burden of calculation. Four students found the unit rate by 
finding 67 ÷ 18 = 3.72... , meaning each word was equivalent to 3.72%. They then 
calculated 100 ÷ 3.72 = 26.88... , and rounded the answer to 27 words. All four students 
checked their solution using fractional equivalence ( =  ≈ 67%), inverse operations 
(27 × 3.7 = 99.9), or estimation (10 words = 37% so 9 words ≈ 33% so 27 words ≈ 
100%). Students also used situational knowledge to confirm their estimates. For 
example, on Task Nine, Jason estimated that the number of words in a test as either 29 
or 30 using rate build-up and opted for 30 “because that is what it’s most likely to be in 
a test.”  
 Flexibility of solution path and knowledge co-ordination also characterised the 
correct responses. Students appeared to have access to multiple strategies for solving the 
problem and these multiple strategies gave them certitude in their solutions. For 
example, in the interview below Simon responded to Task Six (Shoes problem). His 
solution demonstrated the use of a broad range of knowledge, and flexibility in 
combining strategies and unitising with different referents. 

S:  I pretended that was $10.00 (Price of Petrols). Eighty percent is four-fifths. One-
fifth of ten is two. Two times four is eight…hold on. Eighty percent… 

I:  So you pretended this was ten dollars so what would this one be (pointing to price 
of Screechers) if it’s eighty percent? 

S:  Eight dollars…oh I did this wrong but okay…Seventy-five percent is three-
quarters. A fourth of eight is two. Three times two is six dollars. 

I:  So what percentage is that? 
S:  Six out of that is six and four-sixths (meaning 1 × 6 = 10)…four and two-thirds  
I:  Let me get this right (recording on answer sheet). You pretended this was ten 

dollars, this came out to be eight dollars and this to be six dollars. So what 
percentage is this of this price (pointing to $6 and $10]? 

S:  One and two-fourths…one and two-thirds. 
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I:  I see…but what percentage of the cost of a pair of Petrols is a pair of Nykies, not 
the other way around? 

S:  Point six. 
I:  And what’s that as a percentage? 
S:  Sixty percent. 

Discussion and conclusion 
The data show that possession and co-ordination of key knowledge elements is 
necessary for students to become proficient solvers of percentage problems. Students’ 
strategies became more sophisticated as the year progressed. Knowledge gaps and 
unsuccessful co-ordination of the multiple inferences needed to enact self-chosen 
solution paths resulted in many instances of partially correct strategies. Poor readout, 
mapping of situational conditions to a concept for percentages, resulted in speculative 
algorithms. Possession of knowledge seemed to influence both the selection of possible 
solutions and the ease with which these strategies were enacted. The observations are 
consistent with predictions from co-ordination class theory and vindicate the 
significance of identifying fine-grained knowledge elements.  
 Some of the elements identified in this study were: 

• fraction to percentage associations, particularly those involving halves, quarters, 
fifths, tenths and hundredths; 

• identification of common factors to simplify fractions that worked in conjunction 
with associations; 

• understanding of conservation of rate and ratio; 
• use of multiplication and division to find scalars up and down that worked in 

conjunction with conservation; 
• fraction as operator schemes that use numerator as multiplier and denominator as 

divisor; and 
• estimation based on reasonableness, rounding, and adjusting numerators, 

denominators and measures in rates up and down. 
All of these elements are built on other foundational elements. For example, fraction as 
operator is built on iteration of a unit fraction and common factors built on 
multiplication facts. Proficiency in solving percentage problems requires flexible 
connection of Kieren’s sub-constructs. Percentage is one representation within a broader 
field for proportionality. 
 Students in this study who were able to consistently solve percentage problems 
called flexibly on multiple views of percentages as fractions, equivalent rates, operators 
and measures. The main implication for instruction arising from this study is that 
teachers need to assist students to connect the broad range of situations in which the 
need for proportional reasoning arises, the various representations and equivalent 
number forms used to express proportional relationships and the sub-constructs for 
rational number. While using students’ situational knowledge about percentage to 
introduce ideas about proportionality seems plausible initially, a broader instructional 
brush appears to be required to help students to understand concepts such as fractions, 
ratios and proportions in a connected way.  
 From a research perspective the study is supportive of co-ordination class theory in 
highlighting the importance of attending to the fine-grained knowledge elements 
students employ in solving problems and the processes they use in co-ordinating that 
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knowledge. Given the small number of students involved, a larger-scale study involving 
more students and a greater diversity of problem types is required to substantiate the 
coding used for classifying solution strategies. Such a study might also illuminate the 
extent to which knowledge elements applied to percentages are shared with other 
concepts. 
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A four-year project focusing on intervention in students’ number learning in the P–4 (K–4) 
range is described. The project involves development and implementation of a year-long 
professional development program in up to 70 schools. Also described is the P–4 Learning 
Framework in Number, consisting of three bands and nine domains of learning. The 
framework is used to organize an elaborated set of pedagogical tools: eight assessment 
schedules, nine models of progressions of learning each with up to seven levels, and 
extensive tables of teaching topics and teaching procedures. Also described is the program 
of evaluation and its initial outcomes. 
 

In the last decade there have been increasing calls for the development of specialized 
programs to support low-attainers’ number learning (Bryant, Bryant, & Hammill, 2000; 
Mapping the territory, 2000; Milton, 2000; National Numeracy Review Report, 2008), 
with recommendations that such programs be based on reform approaches to general 
mathematics education (Rivera, 1998) and incorporate “effective teaching strategies that 
work for all rather than distinct routes based on diagnostic categories” (Gross, 2007, 
p.153). According to Dowker and Sigley (2010, p.77), “individually targeted 
interventions are effective for children with mathematical difficulties, and may work 
better than similar amounts of individual attention in mathematics that are not targeted 
to a child’s specific strengths and weakness”. The P–4 Mathematics Intervention 
Specialist Project (MISP) is a four-year (2009–2012) project operating in a large school 
system in Victoria that accords with the calls and findings just described. The purpose 
of this paper is to provide an overview of key aspects of MISP. 

Origins and overview of MISP 
The origins of MISP are in: (a) the Mathematics Recovery (MR) program (Wright, 
2003; 2008), an established program of intervention in the number learning of low-
attaining students in Year 1; and (b) the Numeracy Intervention Research Project 
(NIRP) (e.g. Ellemor-Collins & Wright, 2009, 2011; Wright, Ellemor-Collins & Lewis, 
2007) which was funded by a Linkage Grant from the Australian Research Council 
(2004–2006) and the Catholic Education Commission of Victoria (CECV), and which 
focused on intervention in the number learning of low-attaining students in Years 3 and 
4 (8- to 10-year-olds). Building on these origins, MISP seeks to develop a program of 
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intervention in number and arithmetic learning across years P–4. MISP involves 
development at three levels: (a) developing an elaborated and coherent set of 
pedagogical tools for mathematics intervention; (b) developing an intensive, year-long 
program of professional development for teachers to become specialists in mathematics 
intervention; and (c) providing significant professional development for teachers. 
Ultimately, building teacher expertise related to the teaching of number and arithmetic 
across the P–4 years is a key goal of MISP. 
 MISP is planned over four years, 2009-2012. Table 1 shows the number of teachers 
involved in the project in 2009, 2010 and 2011, and projected numbers for 2012. In its 
first year (2009), MISP focused on intervention with Years 1 and 2 students. This 
involved adapting key features of the MR program. Most of the teachers in 2009 were 
involved in NIRP (2004–2006). After their initial year in MISP, many of the teachers 
continue their involvement in subsequent years. 
 From 2010, two of the teachers who participated in NIRP and the first year of MISP 
were established in a new role of Numeracy Intervention Tutors (NITs). The NITs are 
dedicated to professional development and teacher support work, under the guidance of 
the project leader. As the NITs’ expertise develops, they are able to lead more of the 
professional development sessions, creating capacity for larger cohorts of new teachers 
in subsequent years. We anticipate that, by the end of the four years, at least 70 teachers 
will have had at least one full year of the professional development, and many will have 
been involved for at least two years. 

Table 1. The number of teachers involved in each year of the project. 

Cohort 2009 2010 2011 2012 (projected) 
Cohort 1 10 7 2 2 
Cohort 2 – 15 9 7 
Cohort 3 – – 15 15 
Cohort 4 – – – 30 

The intervention program 
The intervention program has four stages: (a) school assessments of the whole cohort 
which are used to select 12 students for intervention; (b) individual pre-assessments of 
the 12 students; (c) a teaching cycle; and (d) post-assessments of the 12 students. 

School assessments 
In each participating school, several assessments are administered to the cohort of all 
students in the year level. The assessments used vary with year level. In the case of 
Year 1 students, a short one-to-one assessment is used. In the case of Years 2–4 
students, the Westwood one-minute tests of basic facts (Westwood, 2000) are used. 
Year 2 students are given the addition and subtraction tests only, while Years 3 and 4 
students are given the multiplication and division tests as well as the addition and 
subtraction tests. Other assessments commonly used include the Success in Numeracy 
Education (SINE) assessment (CECV, 2002) and the Progressive Achievement Tests 
(ACER, 2005). On the basis of the assessments administered to the cohort, 12 low-
attaining students are selected for involvement in the intervention program. 
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MISP pre-assessments 
The 12 students are given one-on-one MISP assessments (see below). Typically, Year 1 
students are given Schedule 2, while Years 3 and 4 students are given Schedules 3A, 3B 
and 3C. Year 2 students may be given Schedule 2 and a selection of task groups from 
Schedules 3A, 3B and 3C, according to their responses on Schedule 2. Across all four 
year-levels, the assessment tasks on the schedules can be used in a flexible way, in 
response to the student’s responses. The intervention teachers use the MISP assessments 
as the basis for tailored planning of the intervention teaching. 

Teaching cycles and MISP post-assessments 
Of the 12 students, eight students are taught in teaching cycles of 10 to 12 weeks. At 
least two are taught as singletons and typically up to six are taught as pairs or trios. The 
other four students serve as counterparts and enable comparison between participants 
and counterparts over the course of a teaching cycle. In many cases counterparts are 
provided with intervention instruction later in the school year or in the following year. 
The teaching cycles are intensive, involving four or five teaching sessions per week, 
each typically of 25 minutes’ duration. At the conclusion of the teaching cycle, all 12 
students are again given MISP assessments. All of the assessments and all teaching 
sessions with singletons are videotaped. 

Pedagogy for intervention 
The pedagogical approach involves: (a) a one-to-one interview-based assessment which 
is videotaped for analysis; (b) development of an individualized instructional program 
that is strongly informed by the results of the assessment; (c) an approach to instruction 
that is intensive and inquiry-based, and aimed just beyond the cutting-edge of the 
student’s current knowledge and strategies; (d) a process of on-going observational 
assessment that enables modification of the instructional program; and (e) use of an 
elaborated set of instructional topics and teaching procedures. An extensive amount of 
detailed information about the pedagogical approach is readily available (Wright, 
Ellemor-Collins & Tabor, 2011; Wright, Martland & Stafford, 2006; Wright, Martland, 
Stafford, & Stanger, 2006; Wright, Stanger, Stafford & Martland, 2006). Thus this 
paper does not provide detailed information about this approach. Nevertheless, we 
believe it is distinctive and embodies a pedagogy that constitutes important professional 
learning for all teachers at the primary (elementary) level. 

The professional development program 
The professional development program involves supporting the teachers to implement 
two intervention cycles, one in each half of the school year. The first cycle involves 
working with students in Years 3 and 4, and the second involves working with students 
in Years 1 and 2. Eight professional development workshops are scheduled across the 
year for a total of 14 days. The first workshop in an intervention cycle focuses on 
learning to administer and analyse the MISP assessment schedules. Workshops 
preceding the teaching cycles address planning for teaching, the approach to teaching, 
and induction into the use of pedagogical tools specifically for instruction (described 
below). Workshops during the teaching cycles allow for further discussion and 
refinement of the teaching. An important part of each workshop is for each intervention 
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teacher to present a case study using video segments drawn from assessment and 
teaching sessions. The case studies highlight student responses to instruction and 
progressions in student learning. As well as the workshops, each teacher receives 
mentoring and support via bi-weekly school visits by one of the NITs. In addition, NITs 
support teachers on an on-going basis via emails and blogs. 
 By the end of their initial year in MISP, teachers have completed: at least 14 days of 
professional development meetings; approximately 16 days of individual assessment 
and analysis of the number knowledge of 24 students; and approximately 50 days of 
intervention teaching of 16 students. In addition, they have worked extensively with 
most of the MISP tools and resources, across Years 1–4. In subsequent years, the 
teachers continue to implement intervention programs, and participate in up to six 
additional professional development workshops that focus on reviewing their 
intervention work and learning about updates of the pedagogical tools. An important 
goal of MISP is that, rather than adopt a standard form of a program of intervention, the 
teachers will develop sufficient expertise to further tailor the intervention program to 
the needs of their school. In this way, MISP teachers work with colleagues in their 
schools to develop specific implementation models. In addition, many of the MISP 
teachers, either formally or informally, become instructional leaders in their schools. 

Pedagogical tools and professional development resources 
Fundamental to the MISP approach is an extensive set of pedagogical tools and 
professional development resources. These include a P–4 Learning Framework in 
Number (P–4LFIN), assessment schedules, tables setting out progressions in student 
learning, and an elaborated set of teaching procedures. These are described below. 

P–4 Learning Framework in Number 
As shown in Table 2, the P–4LFIN is organized into three bands. Bands 2 and 3 are the 
main focus of MISP. Bands 2 and 3 are organized into, respectively, three and five 
domains of number knowledge. We find it very useful to construe number knowledge in 
terms of distinct bands and domains within each band (Wright et al., 2007). The bands 
and domains are used to organise assessment materials, student profiles, teaching 
materials, lesson planning, and so on. At the same time, we find it very useful to 
highlight the links among the domains in each band and between domains in different 
bands. For example, domains 2A and 2C link strongly with 3A and 3B respectively. 

Table 2. The bands and domains of the P–4 Learning Framework in Number. 

Broad bands of number learning Approx. ages Domains of number knowledge 
1. Very Early Number (VEN) 2 to 5 Very early number 
2. Early Number (EN) 4 to 8 2A: Early number words and numerals  

2B: Counting and early arithmetical strategies 
2C: Early grouping and structuring 

3. Middle Number (MN) 6 to 10 3A: Number words and numerals 
3B: Structuring numbers 1 to 20 
3C: Conceptual place value 
3D: Addition and subtraction to 100 
3E: Multiplication and division 
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Assessment schedules, task groups and models 
There are assessment schedules for each domain. The assessment schedules consist of 
groups of assessment tasks – task groups. Each task group consists of a set of closely 
related tasks and has the purpose of enabling the documentation of the student’s current 
knowledge (Wright, Martland & Stafford, 2006). For example, Figure 1 shows Task 
Group 4 from Schedule 3C, which assesses the domain of Conceptual Place Value. 
Within each task group, after posing an initial set of tasks, the teacher chooses to pose 
easier or more difficult tasks, according to the child’s responses on the initial tasks. 
 

 

Task group 4: Incrementing by ten without materials 
For each task, show the number on the card, and ask Which number is ten more than this? 
Initial tasks in the range to 100: 
 40   90  79 
 

If student is incrementing by ten without counting by 1s, try tasks in the range to 1000: 
 356  306  195 
 

If student is incrementing by ten in the range to 1000, try a task across 1000: 
 999 

Figure 1. A task group on incrementing by ten, from Assessment Schedule 3C on conceptual place value. 

 There are models of learning for each domain. A model is a table that sets out a 
progression of student’s learning across up to seven levels. For example, Table 3 shows 
the model for the learning of Conceptual Place Value. Table 4 lists all nine models in 
the learning framework, and the number of levels in each model. By administering an 
assessment schedule and analyzing the video record, a teacher can profile a student’s 
knowledge of a domain in terms of levels on relevant models. 

Table 3. Model for learning of conceptual place value. 

Level 0 Emergent inc/decrementing by ten 
Level 1 Inc/decrementing by 10 off the decuple with materials 
Level 2 Inc/decrementing by 10 formal to 100 
Level 3 Inc/decrementing by 10 formal to 1 000 

Table 4. The nine models of the learning framework. 

Model name Acronym Range of levels 
Forward number word sequences FNWS 0 - 6 
Backward number word sequences BNWS 0 - 6 
Numeral identification NID 0 - 5 
Stages of early arithmetical learning SEAL 0 - 5 
Structuring numbers 1 to 20 SN20 0 - 6 
Conceptual place value CPV 0 - 3 
Addition and subtraction to 100 A&S 0 - 6 
Multiplication and division strategies M&D 0 - 6 
Multiplication basic facts M-BF 0 - 4 
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Table 5. Schedules and models for each domain. 

Bands Domains Schedules Models 
2A Early Number Words and Numerals FNWS BNWS NID 
2B Counting and Early Arithmetic Strategies SEAL   

Ea
rly

 
N

um
be

r 

2C Early Grouping and Structuring 

Sch. 2 

SN20   
3A Number Words and Numerals Sch. 3A FNWS BNWS NID 
3B Structuring Numbers 1 to 20  Sch. 3B SN20   
3C Conceptual Place Value Sch. 3C CPV   
3D Addition and Subtraction to 100 Sch. 3D A&S   M

id
dl

e 
   

   
   

   
N

um
be

r 

3E Multiplication and Division Sch. 3Ea 
Sch. 3Eb 

M&D 
M-BF 

  

 
 Table 5 shows how the domains, schedules, and models are linked. The table sets out 
for each domain, the schedule(s) which are used to assess knowledge of that domain, 
and the model(s) which are used to profile the levels of knowledge of that domain. 

Teaching tables and topics 
For each domain of learning a corresponding teaching table lays out, in summary form, 
all the teaching topics for the domain. Figure 2 provides an example of a segment of the 
teaching table for the domain of Conceptual Place Value. A topic is a small, important 
aspect of the learning domain. A segment of one lesson can focus on a whole topic and 
a student typically can make progress on a topic over just a few lessons. At the same 
time, each topic is sufficiently significant, that achieving facility in a topic entails real 
progress in number knowledge. Each domain has about 10–20 topics. The teaching 
table lists the topics in an order indicative of the progression of instruction. 
 

Topic Teaching procedures  
RANGE I: 0 to 130    
Inc/decrementing  
by 10s 

Bundling sticks shown 
Say each number 

Bundling sticks screened 
Say each number 

  

Inc/decrementing  
by 1s and 10s 

Bundling sticks shown 
Extend to switched, 
multiple, & mixed units 

Bundling sticks screened 
Extend to switched, 
multiple, & mixed units 

Sticks & arrow cards 
Say numbers, and build 
with arrow cards 

… 

RANGE II: 0 to 1000    
Inc/decrementing  
by 10s 

Dot materials shown 
Say each number. 

Dot materials screened 
Say each number. 

  

Figure 2. A segment of the teaching table for Domain 3C Conceptual Place Value. 

Teaching procedures and instructional settings 
For each topic in a teaching table, the table lists the associated teaching procedures. A 
teaching procedure sets out in an exemplary way, a teacher’s words and actions for a 
segment of a lesson. An extensive set of teaching procedures is available (Wright, 
Martland, Stafford & Stanger, 2006). Teaching procedures typically involve the use of 
an instructional setting consisting of instructional materials especially designed or 
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customised. Coming to use the settings appropriately and judiciously involves 
significant learning on the part of teachers. 
 Each teaching topic typically has three or four associated teaching procedures. Each 
teaching table lists the teaching procedures in an order indicative of the progression of 
instruction. Thus, a teaching table lays out all of the topics and procedures for a domain, 
in one or two pages, such that the important instructional progressions through the 
domain of learning are clearly set out across the table. 

Professional development resources 
The pedagogical tools described above can be regarded as professional development 
resources. The professional development workshops focus on learning to use the tools 
and reflecting on their use, and include significant time allocated to demonstrations and 
discussions of the use of the tools. In this way the pedagogical tools become tools for 
teachers’ learning. In addition, extensive use is made of video exemplars to support 
teachers’ learning. These exemplars include video excerpts from assessment interviews 
and teaching sessions. Examples of this approach are the use of video excerpts (a) to 
practice assigning a student’s level on a particular model in the P–4 LFIN and (b) to 
demonstrate a set of inter-related teaching procedures from the teaching tables. 

Evaluation of the Mathematics Intervention Specialist Project 
Connected to the development and implementation of the Mathematics Intervention 
Specialist Project is an evaluation of the implementation of the program within the 
school settings. The evaluation is being conducted, by Australian Catholic University, 
independently of the program. The evaluation undertakes to give feedback on what 
happens when MISP is used with yearly cohorts of teachers over a four-year period; the 
following central questions guide the collection of data: 

Did the teachers’ pedagogical knowledge increase with regard to the variety, and 
appropriateness of strategies they can use for intervention? 
Did the teachers’ depth of knowledge of number grow as they undertook the program? 
Did students learn how to ‘cope’ (change in attitude, confidence and demeanour) with 
mathematics both in the short and long term?  
Did students begin to learn some of the underlying values of mathematics (persistence, 
rationality and questioning skills)? 
Did students’ knowledge of number improve? (Clarkson, 2009). 

In evaluating MISP, the following methods of data collection (along with the student 
assessments referred to earlier) will be used to monitor the effectiveness of the program: 
1. Questionnaires for teachers participating in the intervention program 
2. Self reports in digital video format from the intervention teachers 
3. Analysis of the teachers’ written responses and observations during the 

professional learning sessions 
4. Focus group interviews with the intervention teachers 
5. Individual interviews with the intervention teachers 
6. Written background profiles of students by the intervention teachers 
7. Incidental classroom observations 
8. Written background profiles of students by classroom teachers 
9. Individual interviews with students who participate in the intervention program.  

1095



WRIGHT, ELLEMOR-COLLINS & LEWIS 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

Usefulness to school systems 
The Catholic Education Office Melbourne (CEOM) has been presenting various 
professional learning programs for primary and secondary schools in the last 12 years 
and clearly MISP is having a most positive effect. Still in its initial stages, the program 
is having an effect in increasing student performance in some schools. The evidence for 
this is schools’ improvements in the National Assessment Program Literacy and 
Numeracy (NAPLAN). Importantly, there are a number of themes emerging in the 
program. This is articulated in the first-year evaluation report from Australian Catholic 
University. The following themes are emerging in mathematics education and 
professional learning for the Archdiocese of Melbourne: 
1. Increase in teachers’ enthusiasm 
2. Teachers drawing on their previous experience to enhance their intervention 

teaching 
3. Number intervention teachers feeling part of a learning community in number 

improvement 
4. The fine-grain of mathematics is being covered in the professional learning. 

Teachers are learning about how to connect the number concepts in a stronger 
way.  

5. Separating the logic of mathematics and praxis 
6. The use of specific resources to assist in the teaching of number  
7. The importance of number intervention teachers connecting with the classroom 

teachers 
8. Some intervention teachers have seen the value of connecting with parents 
9. Teaching contexts within schools and the importance of having an allocated space 

to teach the number intervention program.  

Conclusion 
From 2011, monitoring improvements in student performance will be important for the 
program. However, observing the above nine themes will also have important 
implications for future professional learning in mathematics education. We believe that 
MISP: (a) constitutes an important response to the need for intervention in the number 
learning of low-attaining students; (b) is a successful example of a long-term 
collaboration involving researchers, teachers and system leaders; and (c) has significant 
potential value and usefulness for school systems. 
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This workshop explores understanding of divisibility rules as part of helping students 
become advanced multiplicative thinkers. It is based on recent research with Yr 7-8 
teachers who were observed teaching a group of students a rule for divisibility by 9 and a 
way of proving why the rule works using grouped materials (NZ Numeracy Project Book 6 
lesson p. 70). Many students (and teachers) knew the rule, but did not understand why it 
works. After the lesson, students’ understanding of multiplication and division deepened. 
The workshop looks at divisibility rules and how they can be used in the mathematics 
classroom. 

Introduction 
Understanding multiplication and division is an important part of the mathematics 
curriculum. According to Baek (1998, p. 151), “understanding multiplication is central 
to knowing mathematics.” The importance of multiplicative thinking for understanding 
later mathematics is well established (Beckmann & Fuson, 2008; Charles & Duckett, 
2008; National Council of Teachers of Mathematics, 2000, n.d.; Young-Loveridge, 
2011).  It has been argued that students need to be multiplicative thinkers to engage 
with the formal algebra presented in secondary schools (Baek, 2008, Brown & Quinn, 
2006; Lamon, 2007). 
 The term multiplicative thinking refers to a particular type of thinking used to solve a 
range of problems, including multiplication, division, fraction, ratio, and other 
mathematical concepts involving multiplication and division (Mulligan & Vergnaud, 
2005; Vergnaud, 1983). There are many different definitions of multiplicative thinking 
(e.g., Clark & Kamii, 1996; Siemon, 2005; Steffe, 1992). The following definition is 
used in the Numeracy Development Projects (NDP) resource book for New Zealand 
teachers (Ministry of Education, 2008, p. 3): 

The construction and manipulation of factors (the numbers being multiplied) in response 
to a variety of contexts; [and] deriving unknown results from known facts using the 
properties of multiplication and division [e.g., commutative, associative, distributive, 
inverse].  

 Structure and pattern are at the heart of learning multiplication and division 
(Mulligan & Mitchelmore, 1997, 2009; Young-Loveridge & Mills, 2010). 
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Multiplication is a process involving groups of groups. Evidence has shown that 
students’ appreciation of structure and pattern is very important, and is related to their 
understanding of mathematics (Mulligan & Mitchelmore, 2009). Low achievers do not 
seem to notice structure and regularity in mathematics the way that high achievers do. 
Hence is important for teachers to draw students’ attention to structure and pattern 
because it can bring about substantial improvement in their mathematical understanding 
and learning. 
 Initially, students may count by ones to solve simple problems such as two biscuits 
on each of five plates. Children who know how to skip count by twos could use this 
skill to count the five groups of two, as in: two, four, six, eight, ten. Skip counting can 
then be linked to repeated addition (2 + 2 + 2 + 2 + 2 = 10). Eventually students come to 
realise that multiplication can effectively shorten the repeated addition process to 5 x 2 
= 10 (5 groups of 2 make 10). This understanding forms the foundation for students to 
be able to apply simple multiplicative (part-whole) strategies to combine (using 
multiplication) or partition (using division) whole numbers. Eventually students’ 
knowledge of basic facts and understanding of partitioning strategies enable them to 
choose flexibly from a broad range of different part-whole strategies to find answers to 
multiplication and division problems (Advanced multiplicative thinkers; see Ministry of 
Education, 2007). 
 Advanced multiplicative thinkers should be able to partition a dividend in various 
ways to enable them to use known multiplication/division facts to work out which parts 
comprise the quotient (the result of division) (see Young-Loveridge, 2011). For 
example, in solving 72 ÷ 4 = , they could halve the 72 and work out that each part of 36 
consists of 9 groups of 4, then double the 9 to get the final quotient of 18. Alternatively, 
they could split the 72 into 40 and 32 to work out that 10 groups of 4 plus 8 groups of 4 
give the final quotient of 18. Other possible ways to partition 72 include 48 and 24, 60 
and 12, or 64 and 8. By rounding 72 up to 80, then taking 2 groups of 4 (i.e., 8) away 
from the 20 groups of 4 (20 – 2), the final quotient of 18 can be reached using a 
rounding and compensation strategy. 
 Understanding division is critical for being able to work in the domain of rational 
number, including fractions, decimals, proportions and ratios. Work with whole-number 
division is important before students go on to work with rational number. However, 
teachers frequently spend far more class time on multiplication than on division. 
Although division problems can be solved using a Reversibility strategy and building up 
the groups using multiplication, an understanding of division concepts themselves is 
necessary for students to be able to work flexibly with division strategies. 
 Mathematics has many little ‘tricks’ that can be used to ‘work things out’, such as 
whether or not a large number is divisible by single-digit values. Divisibility by nine 
can be determined by adding up the digits in a multi-digit number to check whether the 
sum is nine, or a multiple of nine. The lesson that is the focus of this workshop takes the 
students through a process for proving why the divisibility rule for nine works the way 
it does. Not only do the students learn why the trick works, but they also deepen their 
understanding of multiplication and division as part of the process.  
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The aims and focus of the workshop 
The purpose of this workshop is to take participants through the activities that were the 
central part of the lesson that was observed as part of the research. A brief overview of 
the research is also provided to share some of the key findings of the research. Students’ 
views about the lesson are also described.  

The workshop activities  
In the workshop ,we start by asking participants to determine whether or not the number 
8514 is divisible by 9, and if it is, how you know. Next we ask whether or not the 
number 5142 is divisible by 9, and “how you know”. 
 Next, we examine some multiples of nine from the “times nine” (x9) table: 18, 27, 
36, 54, 81, and ask what these numbers have in common. 
 We then focus on the number 27, and ask participants to make this using plastic 
beans some of which are grouped in tens inside translucent film canisters. We ask how 
many groups of nine are in the number 27, and how participants work out their answers. 
 The next number we ask participants to make with the beans is 45. Again, we ask 
how many groups of nine are in 45, and how participants work out their answers. We 
want to know whether the rule or method used to work out the number of nines in 27 is 
the same rule that was used to work out the number of nines in 45. We draw attention to 
the way that for each group of ten beans, there is one group of nine, and one leftover 
“one.” When the two leftover “ones” from each “ten” in 27 are combined with the seven 
single beans, the total forms a further group of nine. Likewise, with 45, the four leftover 
“ones” from each “ten” can be combined with the five single beans to create another 
group of nine. 
 We then ask participants to make the number 32, and again work out the number of 
nines in the number. This time there are some beans left over and we discuss why this 
happens and how this is related to the fact that the sum of the digits (3 + 2) does not 
equal 9. 
 The next number to be made with the beans is 135. Again we ask how many groups 
of nine can be made, and where they come from. Figure 1 shows the way the beans can 
be used to make the number 135, with ten canisters of ten beans on one ten-frame to 
show 100, three canisters of ten beans on the second ten-frame to show 30, and the 5 
loose beans on the third ten-frame. 

 

Figure 1. Representation of the number 135 using ten-frames  
to show 10 tens (100), 3 tens (30), and 5 single beans. 
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The next step involves taking one bean out of each of the canisters of ten beans to 
reduce the number of beans in each canister to nine beans. The tenth bean is placed on 
top of the canister, as shown in Figure 2. 

 

Figure 2. For each of the groups of ten beans in a canister, one bean is removed and  
placed on top of the container, leaving a group of nine beans in each canister. 

 There are now 10 single beans on top of the ten canisters of ten beans representing 
100. We can take nine of those beans and put them in a group beside the canisters to 
make an eleventh group of nine beans (99 beans altogether in 11 groups of nine), and 
there is one bean left over that is still on top of the group of ten canisters (see Figure 3). 
We draw participants’ attention to the way that the leftover beans on top of the canisters 
correspond directly to the digits in the number itself; that is, 1 for the one hundred, 3 for 
the thirty, and 5 for the five single beans. 
 We can now take the leftover beans on top of the canisters and place them with the 
five single beans on the right-hand ten-frame to show one further group of nine that can 
be made (see Figure 4). The right-hand ten-frame contains the beans that correspond to 
the sum of the digits in the number 135 (1 + 3 + 5 = 9). 

 

Figure 3. An eleventh group of nine can be made 
out of the 100 beans, leaving one bean on top of a 

canister to show the leftover “one” after the 11 
groups of 9 (99) have been made out of 100. 

 

Figure 4. The four leftover “ones” have been 
moved from on top of the canisters and combined 
with the five single beans in the right-hand ten-

frame to show one further group of nine that can 
be made. 
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 In Figure 5, we have placed the eleventh group of nine in a canister and labelled each 
of the groups of nine in a canister with the digit 9. Again, the right-hand ten-frame 
contains the beans that correspond to the sum of the digits in the number 135. 

 

Figure 5. The eleventh group of nine from 100 has been placed in a canister and  
all the canisters of nine have been labelled with the digit 9. 

 For every 100 beans, there are 11 groups of 9 beans (99) and one bean left over. For 
every 10 beans there is a group of 9, and one bean left over. If we add up the leftover 
“ones” and the single beans (1 + 3 + 5), we find there are nine beans leftover, which 
makes one more group of nine. Hence the digit in any position in a multi-digit number 
from the tens upwards tells how many leftover “ones” there are after the groups of nine 
are made. For example, in the number 30, there are 3 groups of nine and 3 leftover 
“ones”. In the number 100, there are 11 groups of nine and one leftover “one”. In the 
number 200, there are 22 groups of nine and two leftover “ones”. In the number 1000, 
there are 111 groups of nine and one leftover “ones”. In the number 10 000, there are 
1111 groups of nine and one leftover “one”, and so on. Hence the digit in a multi-digit 
number not only tells how many groups of ten there are in a particular place-value 
position, but also how many leftover “ones” there will be after groups of nine are made. 
 Next, we try the number 162, asking participants to make the number using the ten-
frame, and the beans in canisters. We ask how many groups of nine can participants 
make, where do they come from, and what happens this time. We then repeat the 
process for the number 132. 
 We conclude the workshop by stating the divisibility rule for nine: If the digits in a 
certain number add to nine (e.g., 324) or a multiple of nine (e.g., 37 224), then the 
number is divisible by nine. 
 We take some more numbers to check the divisibility rule: 279, 298, 345, 1467, 
62316. We ask which of those numbers are divisible by nine, and how you can tell. We 
then ask participants to explain their reasoning. We go back to the number 132 that we 
had previously found was not divisible by nine, and ask participants to check whether or 
not it is divisible by three, and how they work it out. Finally we ask participants to 
comment on whether they see any links between divisibility by nine and divisibility by 
three. 
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The research 
Method 
Participants 

Seven female teachers working at the year 7–8 level (11- to 13-year-olds) from four 
schools (three intermediate schools and one full primary school that served communities 
ranging from low to high socio-economic status) agreed to participate in the study. 
Teachers varied in years of teaching experience from approximately 1.5 years to 20 
years.  Likewise, the teachers’ experience of working with the NDP approach ranged 
from one to seven years.  Each teacher chose a group of students to work with on 
enhancing multiplicative thinking.  A combined total of 46 students took part in the 
lessons and assessments used in the study. 
Procedure 

The researchers visited each teacher twice. At the first visit, the students were given 
written assessment tasks to complete before the lesson, with instructions to “explain 
how you worked out your answer.  Where possible, draw a diagram to help show your 
thinking.”  The eight tasks included: three concerning whole-number multiplication; 
two that involved deriving answers from information given and known number facts 
(e.g., If 4 × 30 = 120, what is 4 × 28?  If 5 × 9 = 45, what is 5 × 18?); and one multi-
digit multiplication problem (e.g., What is 11 × 99?).  The teacher then taught a lesson 
on multi-digit multiplication while the researchers observed.  The following week, the 
teacher taught a lesson on proving why the rule for divisibility by nine works. Teachers 
adapted the lesson to suit the knowledge of the students in the group. When teaching the 
lesson, the teacher wore a digital audio recorder with lapel microphone to record as 
much as possible of the dialogue with the students.  After the lesson, the researchers 
talked to the students, and later to the teacher, about their experiences in the lesson, in 
order to explore their perceptions of the lesson and any confusion that may have arisen 
during the lesson.   
 After the second lesson (on divisibility by nine), the students and their teacher were 
interviewed again and the students were given written assessment tasks related to the 
two lessons. In most cases, the interval between the two lessons was between two to 
three weeks.  All teachers taught the same two lessons taken from the support materials 
for the NDP on teaching multiplication and division (Book 6).  This workshop focuses 
on the second lesson, Nines and threes (Ministry of Education, 2008, pp. 70–72).  

Findings 
We observed during the lessons that most teachers used canisters of nine beans, and 
some also used ten-frames to show the structure of 10 tens making 100 in total. Most 
teachers began the lesson using multiples of nine from the “times nine” tables (e.g., 18, 
27, 36, 45, 54, 63). They asked their students to make the number using the materials, 
and then focused on the “tens” digit to work out how many groups of nine there were 
and how many “ones” were left over. Figure 6 shows representations of the numbers 27 
and 81 using the canisters of ten and counters for the “ones”. 

1103



YOUNG-LOVERIDGE & MILLS 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

 

Figure 6. Representations for 27 and 81 using canisters of ten and counters for “ones” 

 Teachers drew diagrams in the group workbook to show the leftover “ones” coming 
out of the groups of ten to create the groups of nine. By recording the digits representing 
the number below the diagram, students could see how the leftover “ones” correspond 
to the digit in the original number (see Figure 7). 

 

Figure 7. A copy of Ann’s diagram in the group workbook showing a leftover “one” coming out of each 
group of 10, leaving a group of 9 in each canister, and the 3 leftover “ones” plus 6 “ones” totaling 9. 

 Figure 7 presents a copy of the diagram that Ann put in her group workbook showing 
the process of combining the 3 leftover “ones” from the tens with the 6 original “ones” 
to make a total of 9. At the top of the diagram, she had written: “How many groups of 9 
are in 10?” Each drawing of a canister has the digit 9 inside it, and the digit 1 is written 
above each leftover “one” coming out of the canisters of ten to leave 9. 
Figure 8 shows a diagram for the representation of 135. 

 

Figure 8. A diagram showing the representation of 135, with 10 groups of 9 in canisters, an 11th group of 
9 made up of 9 leftover “ones”, one leftover ”one” for 100, 3 leftover “ones” for 30, and 5 “ones” for 5. 
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 Some of our teachers told their students that it did not matter how many groups of 
nine there were. Our most experienced teacher, Ann, made a point of drawing her 
students’ attention to the fact that with numbers in the hundreds, there is an eleventh 
group of nine that can be made for each hundred. We think this is an important idea for 
the students to understand and one which should help to deepen their understanding of 
multiplication and division. 
 Up to 99, the number of leftover “ones” on top of the canisters of ten corresponds to 
the number of canisters. However, once the number goes beyond 99 (i.e., 100 or 
higher), an eleventh group of nine must be made for each 100, eleven more groups of 
nine must be made for each 1000, and so on.   
 A few of our teachers did not spend enough time reading the description of the 
lesson in the NDP resource book, or trying out the materials to ensure that they 
understood how the lesson was to proceed. The lessons of those particular teachers 
tended to end abruptly, once the teachers realised that they could not complete the 
lesson, as their understanding of the proof for the divisibility rule was not solid enough. 
They had made the mistake of assuming that they could simply follow the lesson 
description in the resource book while they were teaching the lesson. Unfortunately, 
they discovered that the resource book was not prescriptive in the way that they had 
assumed. 
 Interviews with the students in Ann’s group revealed how delighted they were at the 
end of the lesson, having understood how to prove the divisibility rule for nine.  

Conclusions 
This activity contains far more deep learning than at first appears. When an easy ‘trick’ 
with numbers is unpacked, it offers the opportunity for deepening students’ 
understanding of multiplication and division. However, it is vital that teachers make 
sure that they understand the lesson fully, including how to use the materials, before 
they try it with their students. 
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This paper is about the methods and process of designing disciplinary tasks, which have the 
distinctive features of their emphasis on contextual aspects. In order to make the 
development of further disciplinary tasks more efficient, it is helpful to have a set of useful 
guiding principles based on our first-hand experiences in the Singapore Mathematics 
Assessment and Pedagogy Project. These principles should also be useful for school 
teachers who want to design such tasks for themselves. In this paper, we use concrete 
examples from the completed tasks to illustrate the points delineated in the guidelines. 

Introduction 
Assessment is one of the most important components in education, in particular 
mathematics education. In the past decades, various alternative approaches to 
assessment have been considered for evaluation of learning (see Fan, 2002; Hargreaves, 
Earl, & Schmidt, 2002; Hogan, 2007; Kulm, 1994; Williams, 1998.) 
 In the last three years, the Singapore Mathematics Assessment and Pedagogy Project 
(SMAPP) team has successfully designed a number of assessment tasks and has tried 
them in five local schools. Fan et al. (2010) have given a summary of some of the tasks 
designed in the early stage of the project.  
 These tasks, referred to as ‘disciplinary tasks’ in SMAPP, are designed to provide a 
new format of mathematics assessment for Secondary One (grade 7) students. One of 
the distinctive features of these tasks is the emphasis on contextual aspects. The design 
of each task is based on a real-life scenario closely linked to the Singapore context. The 
assessment problems are then posed in progression from easier to more difficult ones. 
The initial version of each task is reviewed and refined several times, based on feedback 
from reviewers, school teachers and students. Schools can use either hard copies or 
online version of finalised tasks.  
 This paper is about the methods and process of designing such tasks. In order to 
make the development of further disciplinary tasks more efficient, it is helpful to have a 
set of useful guiding principles based on our first-hand experiences. These principles 
should also be useful for school teachers who want to design similar tasks on their own. 
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In this paper, we use a few concrete examples from the completed tasks to illustrate the 
points delineated in the guidelines.  
 The paper is organized as follows. In the next section, we list and explain some 
criteria for an ideal disciplinary task that serve as the general foundation for the 
guidelines. In the following two sections, we use some examples from the designed 
tasks to elaborate on suggestions for initiating and developing an idea into a 
satisfactory, implementable task. More information can be found from the SMAPP 
website (Singapore Mathematics Assessment and Pedagogy Project, 2011). 

What is a good quality disciplinary task? 
In order to design a good quality disciplinary task, we need to identify some specific 
criteria. We propose that a quality disciplinary task should have the following attributes.  

Links to real life 
A special feature of disciplinary tasks that distinguishes them from the traditional 
assessment problems is their contextualized content. We use local events, places, data or 
commonly encountered names and terms to make a scenario more realistic and relevant 
to students’ daily life. The following are some examples taken from the introductions of 
designed tasks. 
 In the task Malacca Trip, Malacca and Yong Peng are two cities in Malaysia not far 
away from Singapore, and Ang Mo Kio and Bedok are towns in Singapore: 

Aziz and Bryan are planning to drive to Malacca during the June holidays. Aziz lives in 
Ang Mo Kio Avenue 1 and Bryan in Bedok South Avenue 1. On the way from their 
homes to Malacca, they plan to meet at the Woodlands Checkpoint and again at the rest 
point in Yong Peng. You are to help in the planning of the trip by working through tasks. 

Singapore is a small island country that has shortage of water resources. The task Water 
Water Water! is based on Marina Reservoir which is the most recently built reservoir in 
Singapore:  

The following picture is obtained from Google Maps. It shows the Marina Reservoir near 
the Singapore River and the Kallang River. In this task, you are to estimate the area of the 
Marina Reservoir and make some calculations based on your estimation. 

Real and relevant data 
The data used in the problems should be realistic and obtained from reliable sources. 
Fictitious data should be avoided as far as possible. Real data provide students with a 
realistic sense of how mathematics can be applied in the real world. 
 For example, the data 1 262 000 m3 in the following question in the task Water 
Water Water! are obtained from a government source (Public Utilities Board webpage): 

According to national statistics, water consumption in Singapore is about 1 262 000 m3 a 
day in 2008. Assuming Singapore maintains these rates of water consumption, how long 
will the supply of water (as approximated in B3) from the Marina Reservoir last?  

The following question is about the areas of different sizes sheets of papers. These are 
the actual sizes of the papers students are using daily. After doing this task, students will 
have a better understanding of the standard sizes of paper in daily use: 

Given that the size of an A0 sheet of paper is 0.841 m by 1.189 m, find the area of an A0 
sheet of paper. 
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Curriculum connection 
As developed tasks will be used by schools for embedded assessment, it is important 
that the tasks are connected to the school curriculum. It is also necessary to consider 
when the tasks in the semester will be implemented and make sure the students have all 
the core prerequisite content knowledge. It is thus necessary to list the prerequisite 
knowledge for doing the tasks. Furthermore, the terms and definitions used in the tasks 
must be the same as those given in the relevant national syllabus.  
 For example, the following is part of the teaching notes describing the prerequisite 
for the task Malacca Trip: 

Pre-requisite/Content are: Concept of average speed; knowledge of computation and 
conversion involving distance, speed and time. 

In the following question, originally students were asked to solve the inequality, but 
later they are just required to form an inequality, as they still have not learned the 
solution of inequality at that stage. 

If Bryan wants to reach Yong Peng before 09 55, what should his average speed be? 
Write down an inequality in v using your answer from part (a). 

Also, in denoting times, we changed from the original “09:55” into the current “09 55” 
to keep the notation consistent with the school text book being used. 

Multiple competencies and content knowledge assessment 
One advantage of disciplinary tasks (especially complex ones) is for assessing the 
multiple mathematical competencies of students and their comprehensive abilities to 
apply what they learn in the classroom. The task problems should then be designed to 
serve these purposes. The competencies we usually focus on include (i) understanding 
problems and extracting information from them; (ii) constructing mathematical models 
of real life problems; (iii) computation and reasoning; (iv) communication using 
appropriate representations and means such as graphs, tables, algebraic expressions and 
functions.  
 For example, the following are the competencies assessed in Malacca Trip: (i) basic 
skills involving speed, distance and time; (ii) ability to represent a situation (x minutes 
before 07 30) mathematically using algebra; (iii) ability in calculations and solving 
algebraic equations; (iii) ability to translate scenerio-based situation into algebraic 
expressions; (iv) ability to use the correct inequaliy sign to formulate linear inequalities; 
(v) ability to formulate linear equations and linear inequalities. 
 Another task, Up Down, Up Down, can be used to assess whether students can 

• make a simple prediction based on the information provided by graphs; 
• make reasonable judgements about solutions. 

As an illustration, the following are some questions in Up Down, Up Down: 
The percentage increases in population for the two periods shown below are 
approximately the same. … Do you think that the actual population increases for these 
two periods are approximately the same? Give a reason for your answer. 
 
Based on the graph from question B3, mark the following statements with True or False 
with regard to the population of Singapore. 
(1) There are fewer residents of working age supporting each resident above 65 years old 
now compared to 10 years ago. 
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(2) The percentage of elderly (65 and above) in the population (15 and above) has 
decreased over the years. 
(3) There will likely be more elderly residents than working age residents in 10 years 
time. 

Enriching student experience  
Besides practicing and learning mathematics skills and knowledge, attempting a 
disciplinary task may also provide chances for students, to gain some social experiences 
and learn more about the environment and society. The enriching experience will also 
increase the students’ motivation and interest for attempting such task. 
 For instance, by going through the task Water Water Water!, students will have a 
better understanding of how precious water is to Singapore; which are the seven 
reservoirs and their locations in Singapore; and their sizes and roles in supplying water.  
 In the task Up Down, Up Down, questions are posed based on data including ethnic 
composition of residents, population growth rates and old age support ratio in 
Singapore. By doing this task, students will also learn many terms such as demography, 
ethnic, old-age support ratio, total fertility rate.  
 While in the task Paper Recycling, students will find detailed information of the 
actual sizes of different types of sheets of paper and their weights, as well as the number 
of trees and the amount of water needed to produce a given quantity of papers.  
 The actual Google map is used in the task Malacca Trip, so that students will have an 
accurate idea about the locations and distances between some of the places in Malaysia. 

Scaled levels of difficulties 
Assessment based on disciplinary tasks is very different from traditional forms of 
assessment. Most of the students are not familiar with it and need practice to get used to 
it. It is therefore necessary to arrange the questions in order of increasing difficulty. In 
our design, the first part usually consists of warm up questions, giving a chance for 
students to familiarize themselves with the scenario involved and to recall associated 
basic skills and knowledge. The parts that follow will usually consist of more difficult 
and challenging questions. Sometimes, open-ended questions are also included. 

Getting started with designing a topic 
From our experience, the crucial and difficult part is the initial stage. There are two 
suggested approaches: (i) start with a topic and then make up a suitable and interesting 
scenario; (ii) start with a rich scenario and then pose the relevant mathematics questions. 

Start with a topic 
Suppose we want to assess students’ ability to solve speed and related problems. After 
considering a few possible scenarios, we found that the one concerning a trip to 
Malaysia is the ideal one. For many Singaporeans, travelling to the neighbouring 
country Malaysia is a favourite way to spend their holidays. So, planning a trip to a 
Malaysian city such as Malacca provides us with a real life scenario to pose 
mathematics questions. The scenario is rich in the variables that we need to consider in 
planning a trip: departing and arriving times, resting time, etc.  
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Aziz wants to meet up with Bryan at 07 50 at Woodlands Checkpoint, 20 km away from 
Ang Mo Kio Ave 1. If he travels at an average speed of 60 km/h, find his departure time 
from Ang Mo Kio Ave 1. 

Start with a scenario 
Sometimes we can start with a scenario leading to good questions. In line with the 
special feature of linkage to real life described in the previous section, current affairs 
and local events provide a rich source of rich scenarios. With a local scenario, National 
Education elements can also be incorporated into the task. Below are some examples. 
 In the arithmetic task Water Water Water!, the idea of approximating the irregular 
shape of Marina Reservoir (Figure 7) using geometrical shapes was inspired by the 
completion of the Marina Barrage in Singapore. This task illustrates an interesting 
application of the mathematical technique of estimation. 
 In the statistics task Up Down, Up Down concerning Singapore’s aging population, 
the National Day Rally 2008 by Singapore’s Prime Minister provided a backdrop. This 
lead to questions on Singapore demographic issues. For example, the declining birth 
rate motivated questions based on the line graph of total fertility rate (TFR) shown in 
Figure 1, such as: 

There is a sharp decline in the TFR from 1972 to 1975. Search the web for possible 
reason(s) to explain this decline. 

Notice that this sharp decline in TFR from 1972 to 1975 also allows National Education 
elements and the use of IT (searching the internet) to be incorporated into the task. The 
‘spike’ feature of TFR in the Chinese ‘dragon’ years (e.g., 1988 and 2000) also inspired 
the following question:   

In 1976, there is a ‘spike’ in the TFR. Identify the other years in the line graph where 
there are spikes in the TFR. By observing the graph, can you predict the year for the next 
possible spike? 

To deal with the aging population, one aspect is the adjustment of immigration policies. 
The associated immigrant issues then motivated question on the interpretation of the bar 
chart shown in Figure 2. This bar chart, a comparison of populations of citizens, 
permanent residents and non-residents, is a further illustration about how a rich scenario 
can generate good questions. As this chart is not commonly seen in school textbooks, it 
also serves the purpose of assessment as learning. 
 

  

Figure 1. Singapore total fertility rate, 1970–2008. Figure 2. Singapore population, 2007–2008. 
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Posing warm-up questions  
A typical disciplinary task is often divided into sub-tasks: Task A, Task B, and so on. 
The first questions in each sub-task should have straightforward solutions. These are 
warm-up questions that allow students to recall the required concepts, and get familiar 
with the scenario concerned. Below are some examples. 
 In the task Malacca trip, a natural setting for the warm-up questions is the journey 
from home to the Woodlands Checkpoint. In doing these questions, students would 
need to recall basic formulae like ‘speed = distance/time’. After some practice with the 
basic skills, more challenging questions are then set for the journey from the 
Checkpoint to Yong Peng and eventually to Malacca. 
 The pie chart is one of the basic graphical representations taught in the early 
secondary curriculum. In the task Up Down, Up Down, an understanding of a pie chart 
showing ethnic composition of Singapore residents is used as the starting point: 

The pie chart below shows the ethnic composition of residents for 2008. The total number 
of residents was 3,642,700. Estimate the number of Chinese residents in 2008, correct to 
the nearest hundred thousand. 
 

Figure 3. Ethnic composition of Singapore residents. 

Notice that the pie chart utilizes the fact that about 75% of the Singapore residents are 
Chinese, thus infusing National Education into the question. 
 In the task Water Water Water!, we want students to get familiar with the scenario, 
and the idea of approximating the irregular shape of Marina Reservoir (Figures 7 and 8) 
using polygons. To this end, properties of triangles and quadrilaterals are recalled in the 
warming-up questions: 

The figures below shows the pieces used to approximate the area of the Marina Reservoir. 
Name the shapes of those figures. 

Developing the task  
 As discussed in the previous section, the problem/topic or scenario for a task is often 
selected for its richness in the sense that it allows mathematical questions of different 
levels of difficulty to be asked to assess students’ multiple competencies and content 
knowledge. After the first few warm-up questions, the next few questions are usually 
less straightforward. 
 Consider the following question from Task A in the task Water Water Water! 
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Figure 4. Swimming pool 1. 

The picture below shows an L-shape swimming pool. Its surface can be divided into two 
rectangular shapes, measuring 18 m by 16 m and 12 m by 10 m, respectively. Find the 
perimeter and area of the surface of the pool. (You may refer to the diagram shown 
below.) 

   
 

 
This is a straightforward question that requires only direct application of formulae for 
the perimeter and area of a rectangle. Instead of asking students to find perimeters and 
areas of swimming pools of different regular shapes, which is repetitive and involves 
the same skill, the context allows us to ask students to find the volume of the water in 
the pool. If the depth of the pool is a constant, then it is easy to calculate the volume of 
the pool water by finding the volumes of the two cuboids. In a real situation, however, 
the depth of the pool need not be a constant; for example, many pools are deep at one 
end and shallow at the other end. Therefore we can ask a slightly more demanding 
question for calculating the volumes of such pools, as in the following question in the 
same task: 

The diagram below shows a three-dimensional view of the pool. The depth of water in 
Section A increases gradually from 0.9 m at the shallow end to 1.8 m at the deep end. The 
depth of water in Section B is 0.9 m throughout. Find the volume of water in the pool, 
assuming it is completely filled. Give your answer in litres. 

 

Figure 6. Swimming pool 3. 

As a swimming pool needs to be drained and refilled once in a while, this leads to more 
challenging questions relating to the refilling of swimming pool: 

Recall that the capacity of the pool is 496 800 litres. 
(a) If the pool is empty, how much time is required to completely fill the pool at a rate of  
800 litres per minute? Give your answer in hours and minutes. 
(b) If water is pumped into the pool at a rate of x litres per minute, express the time 
needed to completely fill the pool in terms of x. Give your answer in hours.” 

In Task B of Water Water Water! the main objective is to introduce to the students the 
important idea of approximation in mathematics. At the beginning, students are asked to 

A

B 

Figure 5. Swimming pool 2. 
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find the approximate area of the Marina Reservoir by using six different polygons that 
are provided: 

(a) Find the area of figures C to E (the areas of Figures A, B and F are given.) 
(b) Hence find the approximate area of the reservoir. Give your answer correct to three 
significant figures. 

Figure 7. Marina Reservoir map.     Figure 8. Parts of Reservoir 

This question serves as a guide to help students solve the more challenging question of 
devising their own polygons to approximate the area of the reservoir, and the open-
ended question of comparing the two approximated areas: 

(a) On the question paper provided, draw the shapes you would use (different from the 
diagram given in Question 1) to approximate the area of the Marina Reservoir.  
(b) Based on the shapes you have drawn, will the measure of the area of the Marina 
Reservoir be exactly the same as you obtained earlier? Give a reason for your answer. 

The task Water Water Water! illustrates how a disciplinary task is developed from easy 
warm-up questions to the more challenging and open-ended questions. Because the 
scenario is rich, it gives rise to different types of questions that assess students’ 
mathematical skills on different topics: mensuration, rates, and algebraic expressions.  
 The following is one the problems in this task: 

The bar graph below shows the amount of water consumed per person per day among 
households … in Singapore for four different years. The Public Utilities Board has taken 
a series of water conservation initiatives … targeted to reduce domestic water 
consumption per capita to about 155 litres per day by 2012. Based on the trend in the 
graph, do you think this target is achievable? Give an explanation for your answer. 

The last part of a regular task generally contains some more challenging or open-ended 
questions. This is to facilitate the different needs of students and schools. They are not 
expected to be attempted by all schools.  
 Lastly, the following general points should be attended to when designing the tasks: 
Use plain words; avoid long sentences; make sure students won’t require too much time 
to understand the questions; scaffold questions if necessary; where it is possible, 
pictures, tables or other forms of presentation should be used. 

Conclusion 
In this article we listed and illustrated some criteria for determining the quality of 
disciplinary tasks for Singapore secondary schools. Some of these criteria have already 
been applied in our design of the various tasks for the SMAPP project. At the 
beginning, we created a few tasks without any existing guidelines. Then when reviewers 
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started to review and revise them, there were a lot of disagreements and arguments, and 
we needed several rounds of revision and modification before reaching an agreement. 
Having agreed criteria and guidelines helps to reduce the work of correction and 
revision of the tasks. In addition, more schools may choose to implement this type of 
assessment and consequently need to design new tasks by themselves. The criteria and 
illustrations shown in this paper could help with this work in the future. In one recent 
training workshop, some teachers already tried out these guidelines and used these to 
help with the design of some tasks.  
 Of course, our list of criteria is still incomplete and imperfect, so will need further 
refining and improvement. We hope this can serve as a good starting point for readers to 
use to frame the creation of their own tasks, based on the special needs and backgrounds 
of their students and curriculum.  
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