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GEOSTATISTICS: A MATHEMATICAL YOUNGSTER 

UTE A. MUELLER 

Edith Cowan University 

u.mueller@ecu.edu.au 

 
Geostatistics is concerned with the mathematical modelling of spatial data that arise in a 
variety of contexts. The initial applications were related to mining and the data under 
consideration geological. In the last 15 years the fields of application have broadened 
considerably, with geostatistics now being applied in such diverse areas as mining, oil and 
gas exploration, ecology, health and environment. We will discuss the key methods used by 
means of an example, describe some of the conceptual difficulties and give a brief 
overview of applications.  

Introduction 

At 60 years of age, geostatistics is a relatively young field of mathematics. Its origins lie 
in the need to estimate the size of an ore deposit as accurately as possible and the first 
applications were to gold deposits in the Witwatersrand in South Africa (Krige, 1951). 
An early limitation to its application was the data size and it is only with the emergence 
of fast computers that the development of geostatistical techniques has really taken off. 
From a mathematical point of view, while we are operating in a stochastic framework, 
the techniques that are drawn upon come from a variety of mathematical disciplines 
with linear algebra and numerical analysis of particular importance (For a 
comprehensive overview over the methods see Chilès and Delfiner, 1999).  
 These days we not only estimate, but also simulate spatial distributions. Moreover, 
we do so using personal computers and very sophisticated software. While mining is 
still one of the main areas in which geostatistics is used, the breadth of applications is 
breath-taking. They range from pollution studies through to the modelling of fishery 
data to lion populations, the spread of bushfires, all the way to health-related data. 
 Because of the nature of the data, dealing with them is typically messy and the user 
cannot simply rely on a set framework of algorithms to be applied each time. There is 
definitely a need to get one’s fingers dirty. Throughout modelling decisions need to be 
taken and because of the potential impact, carefully justified. These decision concern 
the algorithm to be used and in particular the checking of the validity of model 
assumptions. In this paper I use a synthetic example to give an overview of the basic 
methodology and then discuss some applications. 
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A typical problem 

In Figure 1 the histogram and spatial distribution of a synthetic sample are shown. The 
spatial map is colour-coded with warm colours representing high values and cold 
colours low values. The data are positively skewed with a long tail of high values, 
typical for mineral distributions, such as gold. From an inspection of the spatial map we 
see that pairs of samples that are separated by a short distance are more likely to have 
similar values than pairs of samples far apart. Moreover, there do not appear to be any 
features favouring particular directions in space, such as banding. 

 

Figure 1. A gold sample: histogram (left) and spatial distribution with key statistics (right). 

If we assume that the data do indeed represent a gold mineralisation, then there are 
several questions that would need to be answered: 
• What is the exhaustive distribution of the mineral within the study region? 
• What is the overall tonnage within the region and the average grade to be 

extracted? 
• Do we have a deposit here that is worth mining, given the above results, and if so 

what are the optimal boundaries for the open pit that needs to be built and what 
mining schedule ought to be used? 

 The first of these questions requires “filling in the blanks.” Exhaustive drilling is 
evidently not the way to go because of the cost involved. An algorithm is needed to 
calculate estimates for the un-sampled locations. One requirement on the estimator is 
unbiasedness: the mean of the estimates is equal to the population mean. There are 
many different ways in which this filling in of the blanks can be done, including 
allocating the grade of the nearest neighbour, fitting a polynomial in the space 
coordinates to obtain an estimate and calculating a weighted average within a search 
window. The simplest method is to allocate the mean grade within the search window, 
giving equal weight to all samples it contains or else to take account of separation and 
possibly value. The latter is the approach taken in ordinary kriging, the most prevalent 
geostatistical estimation algorithm. This algorithm is named after one of the pioneers of 
geostatistics, Danie Krige who was one of the first to use windowed multilinear 
regression to calculate estimates.  
 The results for several “filling ins” are shown in Figure 2. Each one of these methods 
honours the data, in that the values at the sample locations are the actual sample values. 
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However, not all of the maps appear equally realistic. The spatial distributions obtained 
from nearest neighbour interpolation or moving window averaging appear patchy, while 
that from polynomial interpolation appears too smooth when compared with reality. 
Moreover, of the above approaches to the estimation problem, kriging is the only 
method that allows one to obtain a measure of the uncertainty in the form of an 
estimation error. Scrutiny of the histograms of the estimates and the exhaustive data 
(called “reality”5) in Figure 3 shows that only moving windows averages and ordinary 
kriging estimates have histograms that are close to the sample histogram. Moreover, 
polynomial interpolation results in negative estimates, which are not realistic in the 
given context. 

 

Figure 2. Estimated distributions resulting from different estimation methods:  

nearest neighbour estimation (A), inverse distance interpolation (B),  

moving window averages (C), polynomial of degree 6 in X and Y (D),  

ordinary kriging (E) and reality (F). 

                                                
5 While we know ‘reality’ in this case, of course this is not true in general. 
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 If we accept that ordinary kriging provides a reasonable estimate for the spatial 
distribution of the gold mineralisation, then we can go ahead and use our estimates to 
tackle the second question and determine the average grade and calculate grade tonnage 
curves, the information required to decide if it is worthwhile to further develop the 
resource and maybe open a mine. Ultimately these decisions depend upon financial 
considerations, such as the type of gold mineralisation which in turn impacts on the 
milling process and the current gold price, as well as the possibility of forward sales. 
 

 

Figure 3. Histograms with key statistics for the estimates together with reality:  

nearest neighbour estimation (top left), inverse distance interpolation (top centre),  

moving window averages (top right), polynomial of degree 6 in X and Y (bottom left),  

ordinary kriging (bottom centre) and reality (bottom right). 

 To fully answer the question in relation to mine planning, potentially the last stage of 
the exercise, we need to use simulation. Based on strong model assumptions we 
generate equiprobable spatial distributions of the gold variable (see Figure 4) consistent 
with the sample data to assess the risk of choosing a particular pit design.  
 

 

Figure 4. Two simulated spatial distributions of gold based on the sample in Figure 1. 
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 As with the estimation, the simulations are consistent with the sample data, but each 
distribution represents a different possible reality, which in expected value 
approximates the map of ordinary kriging estimates. The simulations are used to 
generate histograms of the distributions at grid locations (see Figure 6) and maps that 
clearly indicate regions of high and low values as well as probability maps (see Figure 
5) that allow one to visualise the probability of exceeding a threshold of interest, such as 
the minimum gold grade that will make the deposit economic. 

 

Figure 5. Average value of the simulations computed location by location (left) and  

spatial map of the probability of exceeding a grade of 3 ppm. 

The spatial map of the mean grade calculated location by location shown in Figure 5 
clearly highlights a region of high grades in the north eastern part of the region and if a 
cut-off grade of 3 ppm was applied, then only the north-east and the south-west would 
contain regions where the probability of exceeding this grade are high. From the map of 
the average values it is already apparent that the grade frequency distributions will 
differ from location to location. In fact, while the shape of the overall grade distribution 
of an individual simulation is not dissimilar from that of the exhaustive data (see 
Figure 4), the shapes of the distributions of the simulated grades at individual locations 
do not resemble the overall distribution of grades (see Figure 6). The grade distributions 
for locations (12.5,5.5) in the south-west and (25.5,36.5) in the north are both positively 
skewed, but they have very different ranges and kurtosis. 

  

Figure 6. Histogram of simulation #1(left) and histograms for locations 

 (12.5,5.5)(centre) and (25.5,36.5) (right). 
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The modelling approach 

In the previous section I have given an overview over the typical workflow of a 
geostatistical study, moving from an exploratory data analysis to estimation and finally 
simulation taking into consideration the spatial continuity. I will now briefly consider 
the mathematical framework. The data with which geostatistics is concerned have the 
property that once sampled at the selected sites, there is no possibility of replication: 
once, say, a drill core has been pulled at a site, the action cannot be repeated. In essence, 
the process we are considering is deterministic. However, it is usually so complex that 
the construction of a deterministic model is not practical; just recall the poor job done 
by polynomial interpolation in Figure 1. It is for this reason that a stochastic framework 
is adopted.  
 This framework is known as the Random Function Model. We assume that at each 
location u in the study region there is a random variable Z(u) and that the observed 
value z(u ) at a sample location u  is nothing but a realisation drawn from the random 
variable Z(u ) at the location. Because of this construct meaningful multivariate datasets 

may be constructed that enable the user to develop an insight into the spatial features of 
the attribute under study. Specifically the model allows us to calculate covariances that 
are functions of the separation distance. They are necessary for computing estimates and 
simulated values at un-sampled locations. The estimate at an un-sampled location is a 
weighted linear combination of the sample grades in the vicinity of the location. 
Determining the weights and hence the estimate ultimately comes down to solving a 
linear system, a procedure akin to standard linear regression.  
 A rigorous mathematical formulation of the estimation procedure was first given by 
Matheron who also coined the term kriging. The first formal courses in the subject were 
held at the Ecole des Mines de Paris in France and graduates from that school where 
responsible for the proliferation and dissemination of the techniques developed there 
worldwide. In this paper, rather than dwell on the technicalities of geostatistical 
techniques we will have a look at some of the applications. 

Applications of geostatistics 

This section includes an overview of some applications. 

Mining 

Mining applications are a stalwart of geostatistics. They cover all types of mining 
resources from metals to diamonds to coal and also petroleum. Here in Western 
Australia, geostatistical estimation is used regularly in the Pilbara iron ore mines for 
planning the mining, and in the WA goldfields for scheduling the extraction of gold. In 
the case of iron, it is not enough to analyse and model the distribution of iron, but in 
addition alumina and silica need to be modelled as their distribution impacts on the 
quality of the iron ore. Variables such as the grade of gold and the iron content are 
continuous variables, but diamonds, for which the use of geostatistics is well 
established, are discrete objects and so a model of the distribution of sizes is required. 
Their size distribution is highly positively skewed and as the interest is in large 
diamonds, extreme value modelling needs to be undertaken (Lantuéjoul 2008). 
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 In the area of estimating the size of an oil reservoir hard data are scarce, as the 
drilling of oil wells is expensive. It is often the case that only a few oil wells are 
available, so denser secondary information such as seismic data are used to improve 
estimation.  

Natural resources 

One branch of natural resources modelling is concerned with fisheries. Since the early 
1990s studies were conducted on survey data from the North Sea. The objective was an 
abundance assessment of commercially interesting fish species, such as herring and 
hake. An example from Western Australia concerns the catch and catch rate distribution 
of prawns and scallops in Shark Bay. One part of this study dealt with the ability of the 
annual scallop survey to adequately predict the subsequent scallop catch and an 
assessment as to whether or not trawling for prawns prior to the start of the scallop 
fishing season disturbed the settlement of the scallops. Given that scallops move very 
little, a distortion or shift in the distribution between the time of the survey and the 
distribution based on catch would have indicated an adverse effect of pre-season 
trawling. Our findings showed no clear evidence for a disturbance of scallop settlement 
(Mueller et al., 2008). 

Environment 

Applications in this field cover soil contamination, air quality in cities, water transport 
and the abundance of wildlife. The spatial distribution of whales within the 
Mediterranean whale sanctuary located in the waters between Spain and Italy has been 
studied extensively (Monestiez et al. (2006)). The raw data are the sightings of whales 
(by observers) over a period of ten years. The data are count data and a specifically 
tailored kriging algorithm was used to construct a map of the spatial distribution of 
whales. A complication in the modelling of wildlife data is the use of enthusiastic 
volunteers for data collection. They tend to frequent areas where observation of the 
animal of interest is more likely. An attempt to deal with this obstacle was presented in 
a paper on the spatial modelling of bird distributions in Croatia (Hengl et al., 2008). 
 Reforestation is another area of environmental application. The variable of interest is 
the number of plants surviving. To assess the survival rate a sampling design is 
necessary that locally allows the prediction of the rate with a prescribed maximum 
error. To be cost-effective, the sampling design needs to contain as few sites as possible 
and still be sufficiently accurate. In a case study from Chile (Emery et al., 2008) an 
initial distribution of sampling sites was available and sites for in-fill samples needed to 
be found to provide reliable estimates of the survival rate. In this case study two 
approaches to determine such an in-fill pattern for a plantation in Chile are discussed. 
The interest in the design of an in-fill pattern arose because of financial incentives by 
the Chilean government for the establishment of new plantations, but in order to qualify 
for the payment, there is a requirement of a 75% plant survival rate. 

Health 

Applications to health geography are fairly recent and are often a mixture of Geographic 
Information Systems and geostatistics. One of the human diseases of interest is cancer 
and there have been several studies concerned with the analysis of the spatial 
distribution of the incidence of various cancers (e.g.,, Goovarets, 2005). The objective 
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of such studies is to obtain good estimates of the incidence risk and factors influencing 
the level of risk. The availability of reliable maps of incidence risk is important for 
public health campaigns and eradication programs. The applications are not restricted to 
cancer or human diseases. Contagious diseases like cholera and dysentery have also 
been investigated, for example for the Matlab region of Bangladesh (Ali et al., 2006). 
The mapping revealed a patchier cholera risk map than dysentery risk map, and also 
identified higher risk in the more urban areas for both diseases. An example of an 
animal disease studied in this way is foot and mouth disease (Perez et al., 2006). One of 
the common features of these studies is the need to use imperfect data. There are usually 
reporting inaccuracies, and in the case of human disease the need to use census data that 
are only recorded in selected years, contributes to the imperfection. 

Concluding remark: Geostatistics in the secondary classroom 

Geostatistics is a fascinating discipline with a wide variety of applications. Its 
interdisciplinarity and the nature of its applications make it a good candidate for 
highlighting the importance of mathematics in many different disciplines and its 
relevance in the modern world. Consideration of spatial data can provide students with 
interesting applications of some of the statistical techniques they learn in high school. 
While the construction of a semivariogram and its evaluation for kriging or simulation 
may be too difficult, some of the basic ideas, such as the construction of an abundance 
map, are accessible at the upper secondary level and would make interesting extension 
exercises. The construction of a spatial sample map requires the use of a meaningful 
colour scale so that the user can glean relevant information from it readily. This relies 
on calculating descriptive statistics and possibly deciles of the sample distribution. 
Going on from there, an exploration of characteristics of the sample is possible and the 
construction of estimates at unsampled locations using either moving windows or 
another weighted linear combination of the data, allowing an exploration of the impact 
of the sampling support and of the importance of a good estimator.  
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