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Modelling transformations  
of quadratic functions:  

A proposal of inductive inquiry

Andrzej Sokolowski
Texas A&M University, USA 

<asokolowski@neo.tamu.edu>

This paper presents a study about using scientific simulations to enhance 
the process of mathematical modelling. The main component of the study 

is a lesson whose major objective is to have students mathematise a trajectory 
of a projected object and then apply the model to formulate other trajectories 
by using the properties of function transformations. It was hypothesised that 
situating the lesson in a modelling environment would enhance the meaning 
of transformations that are not often conceptualised in mathematics textbooks. 
The lesson is guided by inductive reasoning. As a medium of data gathering, 
a free simulation called Projectile Motion was used (available at http://phet.
colorado.edu/sims/projectile-motion/projectile-motion_en.html). 

The inductively organised stages of the activity described in this paper were 
conducted with a group of (N = 22) mathematics students in a high school 
in Texas. The students’ verbal reflections upon this type of novel learning 
environment supported the study hypothesis. Their perception of the process 
of studying function transformations has evolved into a meaningful and 
purposeful experience. Although, the unit was developed for high school 
math curriculum in the US, its objectives reflect the aims and scope of 
Australian math curriculum. The Victorian Certificate of Education Study 
Design (VCAA, 2010) states that students should model investigate and solve 
problems in unfamiliar situations. The proposed lesson supports this aim.

Adopted conceptual framework 

The conceptual framework guiding the instructional unit can be characterised 
as an inductively organised modelling activity. Mathematical modelling is 
defined by Winsberg, (2003) as an activity of expressing some aspects of the 
real world using the language of mathematics and differently by other scholars. 
According to Bleich, Ledford, Hawley, Polly and Orrill (2006) immersing 
students in mathematical modelling activities not only expands their views 
of mathematics but also engages them to delve deeper into mathematics 
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structures in a search for meanings. While experiencing the processes of 
mathematical modelling, students are placed in environments in which 
they actively construct the underlying principles of abstract mathematical 
knowledge through observations and scientifically derived inferences. In this 
activity, the scientific inquiry has been supported by four stages of inductive 
inquiry (Joyce, Weil & Calhoun, 2009) that include focus, conceptual control, 
inference constituted by a model formulation, and model confirmation. 
Some modifications were made to highlight the problem statement and data-
gathering process. Inductively organised inquiry is also strongly supported by 
the National Research Council (NRC, 2000) thus reinforcing the idea that 
reasoning in mathematics classes might benefit students’ science knowledge 
acquisition. It is further hypothesised that by practicing function constructions 
through the modelling processes, which are often embedded in problem 
solving, students also improve their problem-solving techniques. 

This paper is framed by the above conceptual framework and its goal is to 
present a lesson for mathematics students to apply the concept of quadratic 
functions and their transformations to model projectile motion. The lesson is 
visualised through a dynamic, simulated environment called Projectile Motion 
and created as a part of the PhET Interactive Simulation Project. The choice 
of using a virtual environment has multiple prompts: 
•	 it is a convenient demonstration in a mathematics classroom typically not 

designed for real experiments; 
•	 students can be given printed snapshots of the simulated scenarios with 

which to take data; and 
•	 the mathematical embodiments, for example, the x–y-coordinate axis, are 

not explicitly drawn and scaled, which facilitates the skills of transferring 
the tools of mathematics to quantify the variables of real experiments. 
The use of a virtual environment to enhance the processes of mathematical 

modelling is now widely utilised and has been proven to achieve positive 
learning effects (e.g., Simpson, Hoyles & Noss, 2006). 

Lesson conduct

The lesson can be considered one that consolidates the study of quadratic 
functions and their transformations. If students have not been previously 
exposed to a simulated learning environment, it is suggested that the teacher 
take the role of a supporter who will assist in the modelling journey, at least 
during the initial stages. The simulation can be displayed on a classroom 
screen and a discussion can take place as students move through the process 
of function formulation. Alternatively, students can also work individually in a 
computer lab. It is recommended that the students be given a lab outline with 
selected snapshots to gather quantifiable data. Auxiliary questions enhancing 
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other mathematical concepts such as the domain and range can also be 
embedded. As a means of data gathering, a metric ruler will be used.

Mathematical model formulation

Focus of the activity
The teacher begins the lesson by opening the simulation from http://phet.
colorado.edu/sims/projectile-motion/projectile-motion_en.html and 
demonstrates its features. The simulation can display paths of the projected 
objects according to prearranged conditions such as initial speed and 
mass of the object, and the angle 
of inclination of the cannon. These 
variables can be entered using the 
radio buttons on the right side of 
the simulation. The right side of the 
menu allows for several objects to be 
projected—for example, a pumpkin, 
a piano, or even a human being. This 
entertaining element engages the 
student and makes for a friendlier 
environment. For further analysis, the 
use of golf ball is recommended; the 
other mentioned before might distract 
students’ attention.

The teacher demonstrates various trajectories focusing students’ attention 
on the shape of the path of the motion. On the top of the simulation, several 
physical quantities affecting the motion of the projected objects are displayed:
•	 range, which in physics means the maximum horizontal distance; 
•	 negative height, which in physics is interpreted as vertical displacement 

below the initial position; and 
•	 time, which reflects the total time the object is airborne. 

Although all of these quantities provide more scientific insight and enhance 
the physical part of the experiment, they will not be directly used during the 
lesson. The marks on the paths indicate the distance the object moves after 
each second of motion, which will also be not used, yet the students might ask 
the teacher what they represent. 

The conceptual control
In order to help students link the context with the lesson objective—to find a 
mathematical representation of the path of motion—the teacher might posit 
the following questions:

Figure 1. A demonstration of the simulation.  
Source: PhET Interactive Simulations, University of Colorado, 

http://phet.colorado.edu.
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•	 How can one describe the path of the projected objects? 
•	 How does the domain and range of the graph change when the angle of 

inclination of the cannon increases (e.g., assume a constant initial speed)?
•	 How does the position of the maximum height change if the angle 

decreases?
•	 If the speed is constant, what angle produces a maximum horizontal 

distance of the projectile?
•	 Does the graph change its general shape under all of these circumstances?

The students realise that the parabolic path of motion is intact under 
all of these changes. This observation will lead to pattern formulation and 
mathematisation of the observed path that will be perceived as a graph of a 
polynomial function.

Problem statement
The teacher explains that the goal of the lesson is to mathematise the paths 
of the projectiles. He/she simultaneously states the following problem: What 
type of function can be used to model the path? Having observed the parabolic 
shape of the graph, the students will suggest a quadratic function to apply. 
They are then asked what parameters need to be extracted from the scenario 
to formulate the model. Some students will suggest finding the vertex and 
using the vertex form, some will refer to an x-intercept form, and some might 
mention a general standard form of a quadratic function. The teacher might 
summarise these suggestions as:
•	 f(x) = a(x – h)2 + q, where V(h, q) represent the coordinates of the vertex;
•	 f(x) = a(x – x1)(x – x2), where x1, x2 represent the x-intercepts of the 

function;
•	 f(x) = ax2 + bx + c, where a, b and c are the coefficients that can be found by 

knowing the coordinates of three different points from the parabola and 
constructing a system of linear equations.
The simulation provides the means to use each of these forms. Consequently, 

while deriving the function equation for the given graph, it would be up to 
the students to decide what form to use. As the derived function will serve 
as a parent function for the next modified scenarios, a vertex form is the 
recommended application. 

Data gathering and inference
The teacher sets the graph to be mathematised by selecting the initial speed, 
for example, to 18 m/s, and the angle of inclination to 75°. Having decided 
to use the vertex form, the teacher asks how to quantify the vertex coordinates. 
The students will experience a dissonance because the x–y-coordinates are 
not explicitly labelled on the simulation. The first task is then to establish 
the x–y-coordinates, which might be drawn at the position of the cannon (an 
image of the axis can be noted on the simulation). After a short discussion, 
the students realise that the position of the vertex, given by its horizontal and 
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vertical separation from the origin, can 
be measured with a ruler. By identifying 
an additional point from the graph, 
the parameter a of the parabola can 
be calculated. There is a virtual ruler 
embedded in the simulation illustrated 
by the yellow tape placed along the 
horizontal and vertical axis shown in 
Figure 2 and Figure 3 that can be used to 
demonstrate the process of measuring 
the coordinates of the vertex. 

In order to compute the x-coordinate 
of the vertex, students can use the 
properties of symmetry of the parabola 
and measure the separation between 
the x-intercepts. By finding the mean 
value of the separation, that is

h =
0+16.51

2
= 8.26 m

the x-coordinate of the vertex can be 
concluded. The process of measuring 
the altitude of the maximum point of 
the path that is illustrated in Figure 3 
returns q = 15.43 m. Substituting these 
values to the vertex form results in f(x) 
= a(x – 8.26)2 + 15.43. In order to complete the process, one more coordinate 
point from the path is needed. Selecting the point (0, 0) produces 0 = a(0 – 
8.26)2 + 15.43. Solving the equation for a = –0.23, thus the complete form of 
the mathematical representation of the path, is f(x) = –0.23(x – 8.26)2 + 15.43.

Confirmation
In the process of modelling, verification and confirmation of the derived 
model play a pivotal role. The verification process also has a profound effect on 
students’ self-esteem. It will either verify or not that they learned the necessary 
skills to perform the tasks of mathematical modelling. The teacher can ask 
the students for the possible means of the model verification. Some students 
will suggest using a graphing calculator, which is reasonable. Observing the 
graph reassembling the given projectile assures the proficiency of their skills. 
If a graphing technology is not available, the teacher might suggest verifying 
a selected path coordinate by the following method: select a point from the 
path, measure its horizontal distance, and calculate its respective vertical 
position using the derived function. Measuring the vertical distance with a 
ruler and comparing its magnitude with the calculated one will also validate 

Figure 2. Measuring the horizontal position of the vertex by 
taking the mean of the x-intercepts. Source: PhET Interactive 

Simulations, University of Colorado, http://phet.colorado.edu.

Figure 3. Measuring the y-coordinate of the vertex.  
Source: PhET Interactive Simulations, University of Colorado, 

http://phet.colorado.edu.

A
ustralian S

enior M
athem

atics Journal vol. 2
7

 no. 2

49



S
ok

ol
ow

sk
i

the model. Once the model is verified, it can be further used to mathematise 
other paths by the means of transformations. 

Further model validations by transformations

The purpose of this section is to highlight the relevance of using the 
concept of function transformations. This section can also be perceived as 
a further confirmation of the model. The transformations will be narrowed 
to vertical and horizontal shifts as well as the reflection along the vertical 
axis. The simulation also allows for other transformation investigations that 
can be assigned as independent student work. These will be suggested in the 
extensions section of this article. While working on the transformations, the 
initial speed and mass of the projected object must remain unchanged with 
respect to the general function derived during the first part of the lesson. The 
physical parameters that will be modified are the position of the cannon and 
its angle of inclination. 

Vertical transformation
The support of the cannon can be vertically extended by placing the cursor 
on it and dragging it upwards. For the vertical transformation to be applied, 
the frame of reference must be left intact and thus it must stay on the ground. 
The following snapshot illustrates the original path and the path vertically 
transformed. While preparing the snapshots for student use, the teacher 
might highlight the frame position of the x–y-axis of the parent graph as a 
reference for inducing transformations.

Some auxiliary questions that might be addressed here are how the position 
of the vertex of the parabola changed and consequently how the domain and 
the range of the function changed. The students realise that the vertex moved 
upward and the altitude of the cannon can be used to quantify the vertical 
transformation of the path that is illustrated in Figure 4. The students will use 

their rulers to measure the magnitude 
of the vertical transformation. The 
final form of the function, using the 
magnitude of the transformation from 
Figure 4, is f(x) = –0.23(x – 8.26)2 + 
27.84 where the position of the vertex 
is expressed in metres. 

Figure 4. Modelling the vertical transformation.  
(Source: PhET Interactive Simulations, University of Colorado, 

http://phet.colorado.edu.)
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Horizontal transformation
In a similar fashion, a horizontal 
transformation can be applied. The 
previous graph remains on the 
simulation to serve as a reference. In 
this case, the cannon is moved to the 
left. The teacher might ask the students 
to predict if the parameter a, b or c 
changed with reference to the parent 
function. The tape measurement 
illustrated in Figure 5 represents 
the magnitude of the horizontal 
transformation. The students realise 
that adding the magnitude of the 
transformation to the independent variable of the function will generate the 
new function, which will materialise as f(x) = –0.23(x – 1.52)2 + 27.84. 

Reflection of the y-axis
An interesting case is presented by 
increasing the angle of inclination 
of the cannon to 100 degrees. The 
students observe that this modification 
changed the horizontal component of 
the object velocity from a positive to 
a negative value thus the projected 
object now moves in a negative 
direction. The students can be asked 
if, in this case, the parameter a of 
the parabola changed. This question 
usually puzzles the students, because 
the cannon position had not changed yet the trajectory is now different. If this 
happens, some auxiliary questions targeting the properties of the parameter 
a are suggested. The students will realise that the parabola did not stretch nor 
compress, which implies that the parameter a did not change. The new graph 
can be generated by producing a reflection of the existing graph of the y-axis, 
thus f(x) = –0.23(–x – 1.52)2 + 27.84 will resemble the new graph illustrated 
on the left side in Figure 6.

Figure 5. Modelling the horizontal transformation.  
(Source: PhET Interactive Simulations, University of Colorado, 

http://phet.colorado.edu.)

Figure 6. Modelling the vertical reflection.  
(Source: PhET Interactive Simulations, University of Colorado, 

http://phet.colorado.edu.)
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Extensions

The following are some special cases that might be included in independent 
student work. A discussion by the teacher on conceptualizing the various 
scenarios is recommended. Although the task is to mathematise the path of 
motion, the idea of transformations might not be used in all cases.

Effect of air resistance
This simulation provides a great 
opportunity to investigate the change 
in the parabola’s shape when the force 
of air resistance acts on the projected 
objects. As illustrated in Figure 
7, when the force of air resistance 
is present, there is an additional 
decrease of the objects’ speed that 
manifests as a compression of the path 
of motion. The inner (diminished) 
graph in Figure 7 depicts the effects 
of air resistance. The students may 

be asked to concluded the type of transformations of the larger (original) 
graph) that will result in generating the diminished one. Some students will 
choose to measure the position of the vertex and proceed as in the parent-
function formulation. Contrasting both functions and identifying ratios of 
compressions might also lead students to the correct conclusions.

Analysis of free fall (projectile motion 
with an inclination of 90°)
When shown this scenario students 
experience a dissonance as the vertical 
path of motion does not represent a 
function. Some of them will suggest 
that x = 0 should be used yet the teacher 
suggests imposing some restrictions 
on the range of the relation. The 
restriction can be quantified by using a 
ruler and measuring the length of the 
vertical segment.

Projectile motion with an inclination of 0° 
An equally interesting case is one in which the parabola displays only one 
of its parts as illustrated in Figure 9. Students might be directed to identify 
the position of the vertex of the parabola, which can be established at the 
location of the cannon. The change of the shape of the parabola is attributed 

Figure 7. Modelling the vertical and horizontal compression. 
(Source: PhET Interactive Simulations, University of Colorado, 

http://phet.colorado.edu.)

Figure 8. Modelling the vertical motion. (Source: PhET 
Interactive Simulations, University of Colorado, http://phet.

colorado.edu.)
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Figure 9. Modelling the vertical stretch. (Source: PhET 
Interactive Simulations, University of Colorado, http://phet.

colorado.edu.)

to a change of the initial speed of the 
projectile. The students will observe 
that an increase of magnitude of 
the horizontal velocity results in an 
increase of the horizontal extension 
of the graph; that is, mathematised 
by a decrease of the magnitude of the 
leading term a of the corresponding 
quadratic function.

Student opinions and 
general conclusions

To evaluate student perceptions and learning effects of being immersed in 
this interactive learning environment, two reflective-type questions were 
asked after the lesson. 
1.	 Did the simulated environment help you with understanding the process 

of applying function transformations?
2.	 What stages of the lesson did you find the most effective?

The purpose of first question was to learn if students could make transitions 
from observing the simulated environment to being able to model it using the 
tools of algebra. 

Almost all students (N = 21, 95%) felt that the lesson improved their 
understanding of function transformations. In supporting the claim, most of 
them highlighted the visual and dynamic aspects of the teaching aid applied. 
For example, some said that “Looking at pictures and examples helped to put 
things into a clearer perspective,” or, “The simulations allowed for a better 
mental picture”. Since many of these students were concurrently taking a 
physics course, the lesson supported an integrated view of science learning: 

“There were many examples and it tied in what we already learned in physics”; 
“It showed real work examples applied to physics”. Others focussed on 
evaluating overall quality of the simulations: “It provided a visual and was 
somewhat simple”; “It helped me think about what I needed to do to find the 
function, which I have always had trouble with”. 

The purpose of the second question was to learn more about the effects of 
various processes applied during the functions formulations. Since enacting 
the parent function was a pivotal point of most of the scenarios, some students 
realised the importance of correctly recognizing the function and building the 
transformed once using it: “I learned that the main equation never changes 
when the graph is transformed”; “I learned that even though the graphs 
looked different, the parent function could be the same”. Some students 
appreciated the mode of extracting necessary data and the graph production: 

“I learned how to take measurements to make up a function”; “I learned what 
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physical changes affect the graph”; “I liked the changes to the graph after the 
angle of inclination changed”; “I liked the example of horizontal movement 
of the parabola in real terms”. Others were more general with their thoughts: 

“I learned what the parameters a, b and c tell you about the transformations”;“
Transformations are much simpler, than I once thought”.

In sum, it seems that conducting the modelling lesson showed students 
a different face of mathematics concepts. From their responses, one can 
conclude that abstract mathematical ideas presented in physical embodiments 
become tangible and more meaningful to them simultaneously showing them 
their importance to understand science. 

Although this lesson utilised only one simulation, other simulations 
designed by PhET also provide great contexts for modelling mathematics 
activities. Wave on String discussed in Sokolowski and Rackley (2011), for 
example, supports applications of trigonometric functions; Balancing Act 
proposes applying an interactive lever arm to introduce the process of building 
and solving linear equations (Sokolowski, 2013).

This case study was undertaken to support the notion that modelling 
activities are beneficial to students because they present math structures in 
ways that resonate with their prior knowledge and experiences. It is further 
hypothesised that being able to induce the tools of mathematics to quantify 
scientific experimentations enhances students’ problem-solving techniques, 
which materialises as a valuable undertaking for further studies. 
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