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CHAPTER 6. 


DEVELOPING AN UNDERSTANDING OF 

THE SIZE OF FRACTIONS* 

PETER GOULD 

NSW Department of Education and Training 
<peter.gould@det.nsw.edu.au> 

False friends (faux amis) are two words that look and sound similar 
yet have unlike meanings in different languages. Over 30 years ago, 
Richard Skemp (1978) used the analogy of false friends to explain 

how the same word can be interpreted with diverse meanings even in the 
same language. In particular, he described two different meanings people 
appeared to apply when describing mathematical understanding. One 
meaning given to mathematical understanding is having a rule and being 
able to use it. The second meaning, which Skemp described as relational 
understanding, is knowing both what to do and why it works. Within the 
classroom, faux amis exist when we address understanding the size of 
fractions. 

Finding out what students think 

Asking the right question is pivotal to finding out what 
students think. If we only ask students to colour in specific 
fractions of pre-divided shapes, as is common in many text 
series, we may not discover what students think about 

Figure 6.1fractions. Questions such as “Colour in the correct number 
of equal parts to show 

3 

8  of the following shape” do not 
require any appreciation of the size of fractions to complete. 

* The chapter is based on research findings presented in Gould, P. (2005). Year 6 students’ methods of comparing 
the size of fractions. In P. Clarkson, A. Downton, D. Gronn, M. Horne, A. McDonough, R. Prierce & A. Roche 
(Eds). Building connections: Research, theory and practice (Proceedings of the 28th annual conference of the 
Mathematics Education Research Group of Australasia Inc. (pp. 393–400). Melbourne: MERGA. 
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Rather than demonstrating an understanding of the size of fractions, the 
above task requires only simple counting to colour someone else’s 
representation of a fraction. 

Asking students to explain their reasoning when comparing the size of 
fractions produces greater insights into their current understanding of 
fractions. In a study of students’ understanding of the size of fractions, 100 
Year 6 students were asked to determine the larger of two fractions ( 

1 

2  or 
1 

3 , 
1 1 1 1 1 1 1 1 2 5 9 12 

or 5 , or 6 , or or 3 , or 6 , or ) and to explain their reason4 5 6 12 , 6 3 10 13 

for the decision. The questions were read out and most students used 
diagrams as either part or the whole of their explanation. However, it was 
what they did with the diagram that was most telling about their 
understanding. 

Sometimes when a student attempted to make use of an area model in his 
or her explanation, it became clear, as in Figure 6.2, that the representation 
did not reflect equal areas. 

Figure 6.2. Which is bigger, one-third or one-sixth? 

In Figure 6.2, the area of the pieces used to represent the fractions is not 
the apparent focus of the student’s attention. The number of pieces appears 
to define the fraction for this student, despite the appeal to the amount of 
“space” to justify the answer. Having students represent fractions as they 
think about them is important in determining what students have learnt. 

In a number of responses it became clear that students were dealing with 
the number of parts when they drew subdivided shapes, rather than the 
relative area of the parts. In determining which is larger, 

1 

6  or 
1 

3 , a student 
(Figure 6.3) indicated that 

1 

6  was larger after subdividing two circles and 
marking three and six parts. This representation was clearly about the 
number of parts rather than the area of the parts. Moreover, the number of 
parts indicated by the student, corresponded to the numerical value of the 
denominator. 

Figure 6.3. Representing a number of parts rather than the area of the parts. 
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6. DEVELOPING AN UNDERSTANDING OF THE SIZE OF FRACTIONS 

Equal wholes 

Some diagrams also provided an indication that students were not always 
aware of the need to have equal wholes to compare fraction quantities. 

Figure 6.4. Which is bigger, one-sixth or one-twelfth? 

The student’s diagram shown in Figure 6.4, offered as an explanation for 
why one-twelfth is bigger than one-sixth, shows one part out of six shaded 
and for one-twelfth, a slightly smaller part is shaded out of a significantly 
larger unit-whole rectangle. It is conceivable that it is the increased size of 
the whole that becomes the basis for deciding which is the bigger fraction. 
This interpretation is aligned to the findings of a study by Yoshida and 
Kuriyama (1995) where many students drew representations in which the 
size of the whole each fraction represented, was in direct proportion to the 
size of the denominator. This “growing whole” was most likely to appear 
where students used shaded rectangles to represent the fractions. In 
comparing two-thirds and five-sixths it is possible to arrive at a correct 
conclusion (that five-sixths is larger) by incorrectly increasing the size of the 
unit whole (see Figure 6.5). 

Figure 6.5. Five-sixths showing an increased unit-whole. 

The limits of rule-based decisions 

For the first five questions, students could consistently apply the rule, “the 
bigger the denominator the smaller the fraction” or the “greater the number 
of pieces the smaller the pieces”. As one student eloquently recorded in 
response to the third question, “…as the denominator gets bigger it gets 
further away from 1”. Question six and question seven necessitated a 
change of comparison strategy, as the fractions being compared were no 
longer unitary fractions. Although the percentages of correct answers 
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suggested that the majority of the students could compare fractions, many 
of their correct answers were based on faulty reasoning. 

Questions six and seven were designed to prompt a shift in comparison 
strategies. Although a focus on the numeric size of the denominator, 
including a “bigger means smaller interpretation”, was possible with the 
first five questions, this strategy would be inadequate for the final two 
questions. These questions compared fractions that were one fractional part 
smaller than one whole. Instead of comparing one-third and one-sixth as in 
question five, question six compared their complements, i.e. two-thirds and 
five-sixths (see Figure 6.5). With question six, students could reasonably 
argue in terms of common denominators, converting two-thirds to four-
sixths. Alternatively, they could argue proximity to 1 using the information 
on the relative size of one-third and one-sixth. Reasoning based on how close 
each fraction is to 1 whole draws on a quite sophisticated understanding of 
the size of fractions. Three students argued for their answer to question 6 
based on the gap to 1 whole. 

The comparison of 
9 

and 
12 

provided some fascinating insights. Two10 13

students adopted a purely additive strategy and commented that you could 
go from 

9 
to 

12 
by adding 3 to the top and the bottom. One concluded that 

12 

10 13 13 

was bigger because it was 3 more (on the top and bottom) while another 
argued that this made the fractions the same size. In total, seven per cent of 
students argued that the final two fractions were equal. The belief that the 
two fractions ( 

9 
and 

12 
) are the same size does not diminish in high school.10 13 

In a much larger study involving equal numbers of Year 7 and 8 students (n 

= 684), 8% also argued that the two fractions were the same size. 

Disconnected ideas 

The explanation that the higher the number on the bottom the smaller the 
fraction, was very common. For example, one student consistently applied 
the explanation “if the bottom number is bigger, it is smaller” to explain the 
responses to the first five questions. In addition to the “bigger is smaller” 
explanation, the student drew and labelled partitions of squares, rectangles 
and circles. The diagrams frequently showed area models that did not allow 
comparisons, as they did not depict equal wholes or equal partitioning (see 
Figures 6.6 and 6.7). 
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6. DEVELOPING AN UNDERSTANDING OF THE SIZE OF FRACTIONS 

Figure 6.6. Neither equal-area partitioning nor equal wholes. 

The student whose responses are depicted in Figures 6.6 and 6.7 does not 
acknowledge the need for equal wholes nor use consistent shapes to 
represent the whole. In Figure 6.7, the student partitions a circle into five 
equal parts and a rectangle is partitioned into sixths to “compare” the 
fractions one-fifth and one-sixth. 

Figure 6.7. A pictorial comparison of fifths and sixths in different shapes. 

What is clear from these responses is that although drawings are used in 
the explanation, area cannot be the feature being used by the student to 
answer the questions. Although the student has learnt to draw and label 
subdivided shapes, the activity of drawing and labelling does not link to the 
intended meaning of the drawings. Rules are being learnt for handling 
fractions but these rules are often not connected to the meaning of fractions 
as mathematical quantities. 

In direct contrast to this explanation was the reasoning that as the 
denominator got bigger the fraction was considered to be bigger. A focus on 
the value of the whole number written as the denominator meant that some 
students interpreted the size of the denominator as being proportional to 
the size of the fraction (see Figure 6.8). 

Figure 6.8. Fractions portrayed as “the larger the denominator the larger the fractional part”. 
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In this instance the drawings link to an incorrect interpretation of the size 
of fractions. However, interpreting the size of the fraction as being 
proportional to the size of the whole number represented by the 
denominator did not always link to area diagrams. Sometimes explanations 
referred directly to the size of the denominators: “because 12 is higher than 
six”. 

What students learn is not always what we thought we taught 

Most teaching programs for fractions use area models and emphasise the 
need for equal parts. However, it is not always clear exactly what attribute 
is being considered when teachers and students refer to equal parts. 
Students’ explanations relating to the size of fractions when accompanied by 
drawings sometimes appear to be about the number of parts rather than 
comparisons of area. 

To be able to interpret the part-whole comparison of area intended by the 
regional model, students need to be familiar with the context, which for 
regional models includes the concept of area. As well as understanding that 
area is used in part to whole comparisons with regional models, students 
need to have a multiplicative sense of area rather than an additive 
appreciation. An additive appreciation of area typically results in counting 
units of area rather than multiplicatively subdividing a unit. Adding units 
of area will result in the whole growing, as in Figure 6.9. 

Figure 6.9. An example of an additive approach to representing larger denominators. 

Another way of representing fractions is a part of a group, sometimes 
called the set model. This discrete model of fractions may also contribute to 
the development of a “growing whole” when comparing the size of fractions. 
For example, in comparing one-third and one-sixth, a student can draw and 
shade one of three compared to one of six, as in Figure 6.10. 

Figure 6.10. Which is bigger, one-third or one-sixth? 
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6. DEVELOPING AN UNDERSTANDING OF THE SIZE OF FRACTIONS 

As seen earlier in Figure 6.3, students can also interpret what appear to 
be area models as discrete models. Although we rarely link these two 
markedly different representations of fractions (discrete and continuous) 
together, some students may do this in an unusual way. In Figure 6.11, the 
student represents the fractions as part of a collection (one-third as one of 
three) before using the larger collection as a common unit to re-present the 
fraction with the smaller denominator. While this response was quite 
unique, comparing fractions this way is very difficult. However, the 
recognition of the need for a common unit to enable comparison of the 
fractions is encouraging. 

Figure 6.11. Combining discrete and continuous representations. 

The elephant in the room: Fraction notation 

In research, a fraction has been described as being interpreted with five 
views: part-whole, measure, ratio, operator and quotient (Behr, Harel, Post, 
& Lesh, 1992; Carraher, 1996; Kieren, 1976; Lamon, 2001). Although part-
whole comparison is the most widely adopted view for the learner to start 
with, the part-whole view has been described as “the least valuable road 
into the system of rational numbers” (Lamon, 2001, p.163). So is there 
another, simpler way to think about fractions? 

Fractions can be thought of as parts of objects or collections: one-half of 
an apple, three-quarters of a sandwich or one-third of a bag of marbles. 

1 3 1
Alternatively, fractions can be thought of as numbers: 2 , 4  or 3 . Although 
we can say 

1 

2  is greater than 
1 

3  it does not make sense to suggest that one-
half of an apple is greater than one-third of a bag of marbles. Yet when 
fraction notation is introduced in class it is usually as a way of recording a 
double count to describe fraction parts. First we count the number of parts 
shaded (usually of a regional model), next we count the total number of 
parts and then record the first count over the second count as a description 
of a fraction. Introducing fraction notation needs to pay explicit attention to 
the whole. One way to do this is to introduce students to fractions from the 
viewpoint of measuring quantities, and to focus initially on the dimension of 
length. The teaching activities used should minimise the possibility that 
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students will focus on misleading or irrelevant aspects of the 
representations. For instance, to draw attention to what is being compared, 
vary this attribute to produce counter-examples. Instead of asking students 
to shade one-quarter of a pre-partitioned shape, they can be given a strip of 
paper, partitioned as shown in Figure 6.12 and asked to determine the 
shaded part as a fraction of the whole. 

Figure 6.12. Distinguishing between one-fourth and one-fifth. 

The link to fractional units of length is clearer for students than shading 
area (as a part-whole comparison) particularly if students do not know how 
to determine area. As teachers, it is critical that we are aware of the 
different interpretations students may make of fractions so as to glean those 
that students actually make. Focusing on units of length and providing 
carefully chosen counter-examples helps to limit the adoption of unintended 
features of fraction representations. Finally, fraction notation needs to be 
introduced very carefully as three-quarters of a sandwich is not the same as 
the number 

3 

4 . To get students thinking about the difference between the 
two, have them consider if one-quarter could ever be bigger than one-half. 
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