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Preface

The twenty-first biennial conference of The Australian Association of Mathematics
Teachersis aptly titled Mathematics: Essential for learning, essential for life.

Mathematics is an old and respected discipline of knowledge which has proved itself
to be an essential component of school, college and university curricula over a long
period of time and in avariety of national and international settings. This has been, and
continues to be, in recognition that the content and procedures comprising the discipline
have cultural, aesthetic, intellectual and utilitarian values which enrich the lives and
pursuits of individuals, communities and nations, be it by making contributions to other
disciplines of knowledge or applied to professions and trades.

This conference has brought together teachers, mathematicians, teacher educators
and researchers from all states and territories of Australia and from other countries to
demonstrate a variety of facets and perspectives of teaching and learning mathematics
and to give living proof that mathematics is definitely essential to both learning and life,
particularly and generaly.

This publication, comprising papers presented at the conference as keynote, major
presentations, and seminar or workshop offerings, shows the range, nature and quality
of the work which many of our colleagues have been prepared to share with us all. We
are grateful to them for this.

Editors. Ken Milton, Howard Reeves, Toby Spencer
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Review process

Presentations at AAMT 2007 were selected in a variety of ways. Keynotes and major
presentations were invited to be part of the conference and to have papers published in
these proceedings. A call was made for other presentations in the form of either a
seminar or a workshop. Seminars and workshops were selected as suitable for the
conference based on presenters’ application of aformal abstract and further explanation
of the proposed presentation.

Seminar and workshop proposals that were approved for presentation at the
conference were also invited to submit a written paper to be included in these
proceedings, with the possibility of the paper being subjected to peer review. Papers
that requested peer review were scrutinised blind by at least two reviewers. Papers that
passed this review process have been identified in these proceedings as “accepted by
peer review”. Papers that were submitted to the proceedings but did not request peer
review were accepted as suitable for publication by the editors.

The panel of people to whom papers were sent for peer review was extensive and the
editors wish to thank them all:

Judy Anderson Rhonda Faragher Kay Owens
Mary Barnes Vince Geiger Cath Pearn
Dawn Bartlett Peter Gould Bob Perry
Janette Bobis Marian Kemp Thelma Perso
George Booker Barry Kissane Cyril Quinlan
ChrisBoyles John Mack Len Sparrow
Elizabeth Burns David Martin Paul Swan
John Carty Mal McLean Jenny Tayler
Jill Cheeseman Tracey Muir Steve Thornton
Mary Coupland Denise Neal Vern Treilibs
Judith Falle Steve Nisbet Michael Wheal

Editors: Ken Milton, Howard Reeves, Toby Spencer
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Mathematicians, mathematics and
mathematics teaching: Personal perspectives”

Susie Groves
Deakin University

How can we enrich the mathematical experiences of our students? This paper
attempts to explore ways in which a consideration of the work of contemporary
mathematicians, and the applications of contemporary mathematics, can be used to
enhance the learning and teaching of mathematics. It also looks briefly at Hanna
Neumann’s contribution to mathematics education.

Introduction

Mathematics is sometimes thought of as a great entity, like a tree, branching off
into several large chunks of mathematics which themselves branch off into
specialised fields, until the very ends of the tree are reached, where the blossoms
and the fruit are found. (Tao, 1992, p. 65)

The tree and branch analogy for mathematics and its disciplines is probably a familiar
one for most people, even in the wider community. However, | suspect few people think
about the blossoms and the fruit — the place where new mathematics grows — and that
even fewer think about the people who create this new mathematics — the
mathematicians.

At the time when | was asked to choose a title for this Hanna Neumann Memorial
Lecture, Terence Tao had just been awarded the Fields Medal — the equivalent of the
Nobel Prize in mathematics. At about the same time, one of my doctoral students, Linda
Darby, was telling me that one of the major differences she had found, in her work with
teachers of mathematics and science, was the much more frequent use of narrative in
science teaching than in mathematics (Darby, 2005). Y et, there are so many stories to
tell — not just the ones from the history of mathematics books — and so many ways to
use them.

In this paper, | will try to use some of these stories to illustrate what | believe are
some important ways in which mathematics teaching can be enhanced by their use.

| am honoured and delighted to have been asked to present this Hanna Neumann
Memorial Lecture. While Hanna needs no introduction, and | am sure someone else will
introduce her life and work at the lecture, | will, nevertheless, begin by saying a little
about Hanna herself.

Hanna Neumann

Hanna Neumann was born in Berlin in February 1914. She lived a remarkably full and
prolific life until her unexpected death in November 1971 while on a lecture tour in
Canada. Hanna married Bernhard Neumann in Cardiff in 1939. She had left Germany in

* Invited paper
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1938 to join Bernhard, who had left Germany five years earlier to escape the Nazis.
Together they had five children, two of whom, Peter and Walter, also became well
known mathematicians, while two others, Daniel and Barbara, completed degrees in
mathematics, with Barbara also teaching mathematics.

Hanna completed her D Phil at Oxford in 1943, writing her thesis largely by
candlelight in a caravan. She was often seen transporting her two small children around
Oxford in a side-car attached to her bicycle. After an active academic life in Britain,
which unfortunately meant that she and Bernhard frequently needed to live apart, Hanna
and Bernhard were both offered prestigious positions at the Australian National
University (ANU). Bernhard was asked to set up and head a research department in
mathematics, while Hanna's position, which she took up in 1963 a year after Bernhard
came to Australia, soon became a Chair in Pure Mathematics and head of the
department of Pure Mathematics in the undergraduate part of the university.

| was fortunate to know both Hanna and Bernhard from early 1970 when | started as
adoctoral student in pure mathematics at the Australian National University, under the
supervision of M. F. (Mike) Newman and Laci Kovacs. In their comprehensive
obituary, which pays tribute to Hanna's life and work, Newman and Wall (1974)
describe Hanna as “enthusiastic, inspiring, energetic, firm, tactful, sympathetic efficient,
patient, shrewd, humble, peace-loving, courageous, gracious ...” (p. 1). For me, each of
these words evokes vivid memories of Hanna.

However, thisis not intended to be an historical or persona account of Hanna's life.
Rather, 1 would like to explore, however briefly, some of her views about, and
contributions to, mathematics education. Newman and Wall (1974) capture not only the
joy that Hanna found in mathematics, but also her frustration with curriculum and
pedagogy that failed to reveal what she saw as the nature of mathematics — especially
the fact that “doing and thinking mathematics can be joyous human activities” (p. 11)
— and its many applications to awide range of areas in everyday and professional life.

While still in Britain, Hanna attempted to introduce more modern pure mathematics
to her university course, which she described rather scathingly as spending so much
time “on enabling students to solve problems — or perhaps. so much more care is taken
to turn out students not worried by an integral or a differential equation” (cited in
Newman & Wall, 1974, p. 6). Almost 60 years later, this complaint could perhaps still
be made of many mathematics coursesin Australian schools and universities!

During her time in Manchester from 1958 to | 963, Hanna had the opportunity to
develop and teach courses more in tune with her view of what mathematics is really
about. She was able to use concrete examples to help students access abstract ideas in
her undergraduate algebra courses, as well as illustrate to students that areas of
mathematics, other than calculus, have applicationsin real life.

In Australia, Hanna soon became involved in secondary school mathematics. She
gave lectures and in-service courses for teachers in and around Canberra. She was
active in the Canberra Mathematical Association, critiquing the proposed new syllabus
and working hard to persuade the community that mathematics is not something to be
feared. Her involvement led her to be elected as one of the foundation Vice-Presidents
of the Australian Association of Mathematics Teachers (AAMT) in 1966, the first
President of AAMT being Bernhard Neumann. She gave lectures to school students in
Canberra and was an enthusiastic supporter and contributor to the ANU-AAMT
National Summer School for talented high school students, which was started in 1969.

Hanna published over 30 papers in mathematics, as well as a highly regarded
pamphlet on probability for teachers (Neumann, 1996) and an article on teaching
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undergraduate students, published after her death in the Australian Mathematics
Teacher (Neumann, 1973).

In my opinion, Hanna's life and work show that mathematicians and mathematics
teachers can work together productively to enhance the teaching of mathematics in
schools — something that is sometimes obscured by events such as the recent US
“Maths Wars’. Hanna s vision of school mathematics, and mathematics in general, was
that of ajoyful activity (which is necessarily done by real people), rather than the rote
learning of rules and procedures. She had a vision of contemporary mathematics having
a significant place in the curriculum, together with the need to show the wide range of
applications of pure mathematics to our students. Even now, 35 years after her death,
the realisation of Hanna s vision is asimportant agoal asit was in the late 1960s.

We will now look very briefly at the life and work of another mathematician, Cheryl
Praeger, who not only had strong connections with Hanna Neumann, but whose work
allows us an opportunity to explore arelatively ssmple application of pure mathematics.

Cheryl Praeger

Cheryl Praeger was born in Toowoomba in 1948 to parents who, having come from
poor backgrounds with no chance of going to university, encouraged their children to do
so (MacTutor History of Mathematics archive, 2006). While completing her B Sc at the
University of Queensland, Cheryl spent eight weeks at the Australian National
University on a summer research scholarship (after her third year), working on a
problem suggested to her by Bernhard Neumann, which resulted in a published paper
(Praeger, 1970). After completing her undergraduate course, Cheryl went to Oxford on
a Commonwealth Scholarship to study for her doctorate in finite permutation groups
under the supervision of Peter Neumann, Hanna and Bernhard’s son. In 1973, Cheryl
was appointed to a three year postdoctoral fellowship at ANU, with her time there
overlapping briefly with mine as a doctoral student.

Cheryl has been at the University of Western Australia since 1976, where she has
been Professor of Mathematics since 1983. She is a Fellow of the Australian Academy
of Science, former president of the Australian Mathematical Society, and a member of
the Order of Australia. Like Hanna Neumann, Cheryl exudes joy in her work as a
mathematician, looks for the applications of pure mathematics, and takes a keen interest
in mathematics education. Her work on combinatorial designs led her to explore their
application to experimental layouts for agricultural experiments, in order to help
statisticians understand the symmetry groups involved. She has over 300 publications,
including four books, over 250 research papers in mathematics, and a number of articles
about mathematics education or for teachers.

One of Cheryl’s most popular lecture topics, aimed at school level, has been on the
mathematics of weaving. One of her three papers on this topic is published as part of
The Hanna Neumann Memorial Lectures at ICME 5 (see Praeger, 1986). In this paper,
Cheryl describes how several problems in weaving materials can be solved using
mathematics. She firstly explains how area woven fabric can be modelled with the use
of binary matrices representing a fundamental block (or smallest repeating block in the
pattern). A problem in weaving is to determine which patterns produce fabrics that hang
together — that is, which patterns produce fabrics where the warp and weft threads do
not have subsets that can completely lift off the fabric. It can be shown that fabrics will
not hang together exactly when the binary matrix representing the fundamental block of
the pattern can be transformed by rearranging its rows and columns, in such away, asto
get amatrix of the form

© The Australian Association of Mathematics Teachers Inc.
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X 0
b )
where 0 isamatrix with all entries zero, and J isamatrix with al entries one.

However, finding out whether or not the matrix representing the fundamental block
of the pattern can be transformed in such a way would take far too long, when the size
of the matrix is large. In her paper, Praeger describes different algorithms that can be
used to decide whether or not woven fabrics represented by a particular fundamental
block would hang together, as well as the way in which the factorisation of binary
matrices can be used to set up a loom to weave the fabric, represented by such a
fundamental block.

Applications such as these go along way towards answering the perennial student
question of “Why are we learning this?’ even though we do not expect every student to
become a weaver of fabric!

This focus on the applications of pure mathematics is also taken up by another
Australian mathematician of world renown, Terence Tao.

Terence Tao

Readers of most Australian newspapers would be aware that in August 2006 Terence
Tao became the first Australian mathematician to be awarded the Fields Medal (see, for
example, Cauchi, 2006). In further recognition of his outstanding work, Terence Tao
was also named South Australia's Australian of the Year for 2006 (see, for example,
Novak, 2006) and elected as a Fellow of the Royal Society in May 2007.

Aged 31, Terence Tao has been afull professor of mathematics at UCLA since 2000,
and has long been regarded as likely to win the Fields Medal, which is awarded every
four years (UCLA College, 2005). He has over 80 published papers and has worked,
with more than 30 collaborators, on an amazingly wide range of mathematical
problems.

One of the highlights of Terence Tao’s work has been his work with Ben Green on a
classical question regarding prime numbers (for a simple explanation of the result, see
Ross & Polster, 2007). Tao is also credited with having extraordinary abilities in
assembling and managing world-class teams of mathematicians to work on problems.

Terence Tao was born in Adelaide in 1975. In April 1983, when Terence was seven
years old, the Adelaide Advertiser carried an article entitled Tiny Terence, 7, is High
School Whiz (cited in Clements, 1984). At that time, Dr M. A. (Ken) Clements, who is
now at Illinois State University, was undertaking a bible college course in Adelaide
after having “given up” mathematics education following eight years in the Faculty of
Education at Monash University, and many years as a teacher of secondary school
mathematics. Nevertheless, when asked by Terence's father to assess his son’s
mathematical abilities, Ken, who had a long-standing interested in mathematically
gifted students, found he could not refuse. This began a relatively long association
between Terence and Ken. Terence, at age seven, was exceptionally gifted. He was
spending the equivalent of two days a week at high school studying Year 11
mathematics and physics, and the rest of his time at his local primary school, being
happy and well accepted in both places. In 1986, at age ten, Terence became the
youngest participant in the International Mathematical Olympiads, winning a bronze,
silver and gold medal in 1986, 1987 and 1988 respectively. He graduated with a
bachelor and master’s degree from Flinders University at age 17 and a Ph D from
Princeton at age 20, joining the UCLA Faculty that year.

© The Australian Association of Mathematics Teachers Inc.
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After several years working as a missionary in India, Ken Clements (whom | have
known for over 30 years) returned to Australia and joined Deakin University. In 1992,
Terence Tao published his first book (Tao, 1992), a monograph commissioned by Ken
Clements and Nerida Ellerton to form part of the study materials for the Deakin
University unit Teaching Mathematics Through a Problem Solving Approach. The
manuscript for this book was prepared in early 1991, when Terence was 15 years old.
The monograph, which was used for a number of years by various Deakin staff,
including myself, in a number of units about problem solving, was reprinted by Oxford
University Pressin 2006.

Regarding the applications of pure mathematics, Terence Tao has thisto say:

Mathematicians often work on pure problems that may not have applications for 20
years — and then a physicist or computer scientist or engineer has a real-life
problem that requires the solution of a mathematical problem, and finds that
someone already solved it 20 years ago... When Einstein developed his theory of
relativity, he needed a theory of curved space. Einstein found that a mathematician
had devised exactly the theory he needed more than 30 years earlier.

(UCLA Caollege, 2005)

It is easy to believe that pure mathematics in general, and number theory in
particular, are all very well as genteel pastimes, but have no use in the real world. In
fact, nothing could be further from the truth. In the chapter Examples in number theory,
Tao (1992) writes: “Basic number theory is a pleasant backwater of mathematics. But
the applications that stem from the basic concepts of integers and divisibility are
amazingly diverse and powerful” (p. 8). To illustrate this, we will take atiny glimpse at
the way in which mathematics has been used in recent history in the design and
breaking of codes.

Public-key cryptography

Codes are used when we want to transmit (secret) messages which are in danger of
being intercepted. Alan Turing, who was one of the most influential figures in the
development of the electronic computer, was aso the presiding mathematical genius at
Bletchley Park during World War 1l where he, more than any other person, made
possible the breaking of the Enigma codes. The operations of the mathematicians,
linguists and other scientists at Bletchley Park formed the basis, some years ago, for a
spellbinding British documentary series The Secret War, which some of you may have
seen, when it was shown on ABC television.

It is easy to think of codes and code breaking as only being of use in war-time, but
codes are also essential when we want to store and transmit electronic data —
something which happens now in every facet of life, from banking to
telecommunications, to the storage of personal information on citizens, to purchasing
products on eBay, al of which we want to make sure is secure. (You will al have seen
messages regarding the security status of web pages you are viewing — for example,
alerting you that you are leaving a page that supports encryption.)

In traditional coding systems, the key to encode a message can also be used to
decode it. Therefore, this (single) key must be kept secret and only made available to
people with whom you are communicating — hence, the importance of breaking codes
such as the Enigma code in World War 11.

In everyday modern life, however, there is such a vast amount of data handling
which involves the need for security, that it certainly would not be practicable to use
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traditional codes, which, apart from anything else, need the key to be agreed on between
the users of the code.

It turns out that the ease with which primes can be multiplied together, compared
with the enormous difficulty of factorising a number when we do not know its factors,
can be used to create a new type of coding or encryption which is called public-key
cryptography.

In public-key cryptography, the key for decoding a message cannot be deduced from
the key for encoding it — at least not in a feasible amount of time. This allows people
to send secure messages, electronically, to a destination which can publicly advertise
the encoding key — hence, the name public-key cryptography. All of these systems
depend on the fact that, while it is theoretically possible to deduce the decoding key
from the encoding key (for example, as a last resort, by encoding every possible
message of the same length as the one intercepted and seeing which message encodes to
the message received), it is not feasible to do so in the time available.

A useful metaphor is to think about a traditional cryptosystem as a safe with a
combination lock that, when you know the combination, allows you to both lock and
unlock the safe, while in a public-key system the safe has two separate combination
locks: one that locks the safe and another that unlocks it. Such codes are also sometimes
called trapdoor codes: one where it is very easy to do something (encode a message)
but very hard to undo it (decode the message).

One of the earliest public-key cryptosystems, the so-called RSA system, was devised
by Ted Rivest, Adi Shamir and Leonard Adleman (see, for example, Hellman, 1978 for
a description of several systems, including RSA). The RSA system depends on the
difficulty of factorising large numbers, as well as making use of modular arithmetic,
and some fairly elementary results from number theory. The system can be described,
briefly, asfollows:

Setting up the system

Select two large primes, p and g, each about 100 digits long. (These primes will remain
secret.)

Let n= p x g. (The number n will be made public, but knowing n will not make it
possible for you to determine p and g because of the difficulty of factorising a number.)

The Euler function ¢(n) = (p — 1)(q — 1) is the number of integers between 1 and n
that are relatively prime to n; that is, the number of integers whose only common factor
with n is 1. The Euler function ¢(n) has the property that for any integer a between O
andn—1,

at ke = g modn.

Choose a random positive integer E < ¢(n) , such that E is relatively prime to ¢(n).
E, like n, will be made public: together n and E make up the public key.

Since the person setting up the code knows the secret primes p and g, they aso know
the value of ¢(n) = (p —1)(q — 1), but this remains a secret for the public. So, for the
person setting up the code, it is easy to find the inverse of E modulo ¢(n); that is, the
number D such that

D . E=1mod ¢(n),
that is, the number D such that
D .E=1+k.g(n) for someinteger k.

© The Australian Association of Mathematics Teachers Inc.
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This number D also remains secret.
Summing up this stage, we have the following:
* secret: p, g, ¢(n), D;
e public: n, E.

Encryption

The first step is to represent any message as a sequence of integers. (There are many
simple ways to do this, but we will not discuss them here.) Each message then needs to
be split up into blocks of digits, each being a number less than n. Each block is then
encoded separately.

Let P beablock in our “message’; that is, an integer between O and n— 1.

Now let

C:PEmodn

that is, we raise P to the power E and find the remainder when you divide by n.

So, C is the encrypted or coded message corresponding to the original message P,
and C is the message that is transmitted, by whatever (possibly insecure) means we are
using.

Decryption
To decode the message C, we find P by calculating

P=cP modn.
Why does this work? Since we have

C = P" mod n,
we get

CD modn = PE'D mod n
— I:)l+k.cp(n) mod n
= P modn, snhce0 < P<n.

Does RSA work?

When the RSA code was developed, it was estimated that it would take a million years
to factor the 200 digit number n = p x g, using the fastest known (computer) algorithms
known at the time. Of course, computers get faster and faster so methods, such as these,
produce codes that fail, in time. New cryptosystems are constantly being developed to
meet this important need for secure storage and transmission of digital information. It is
perhaps interesting to note that, unlike the way we usually think of mathematics as
representing facts and certainty, it is theoretically possible to break such cryptosystems,
but they are, for atime anyway, practically intractable.

Public-key cryptography has led to a dramatic upsurge of interest in techniques for
factorisation of numbers, and number theory in general.

While the explanation given here appears difficult, it is possible to illustrate it
relatively easily using small numbers; e.g., by choosingp=5,g=11,E=7andP =2
(see Hellman, 1978, p. 27 for more details). Doing such worked examplesis possiblein
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secondary mathematics classes, but even primary children can be exposed to some of
the general principles involved and the fact that factorisation, and the use of divisibility
tests, have significant contemporary applications.

We will conclude our examples of the applications of mathematics by considering
the role of mathematicsin one branch of art and design.

M. C. Escher and George Pélya

The famous Dutch artist M. C Escher lived from 1898 to 1972. There are numerous
examples of Escher’s work, most of which is highly mathematical, available in books,
on T-shirts, the “fifteen puzzle’, coffee mugs, jigsaw puzzles, to name just afew.

One of Escher’s major preoccupations was with producing space-filling designs or
tessellations of the plane. He derived much of hisinspiration for thisin hisfirst visit to
the Alhambrain Spain in 1922, where he studied the truly stunning Moorish mosaics on
the walls and floors. However, unlike the Moors, who were forbidden to use “graven
images’ and who therefore only made tiling patterns with geometric shapes, Escher
attempted to completely cover the plane (i.e. create tessellations) with shapes that
represented objects, such asanimals or birds.

| was lucky enough to visit the Alhambra in 1996. Not only was | totally
overwhelmed by the tiles and patterns, but it was easy to see how Escher had been
influenced by the designs and used these as scaffolds for his plane tessellations.

Ernst (1994) discusses Escher’'s early (and largely unsuccessful) attempts at
producing space-filling designs, based on recognisable objects. He also alludes to some
of the mathematical ideas underlying Escher’'s work and mentions links with
crystallography.

Schattschneider (1990), in her magnificent book Visions of symmetry: Notebooks,
periodic drawings and related work of M. C. Escher, describes, in great detail, Escher’s
“route to regular divisions’ and the role that mathematics played. Escher’s early
unsuccessful attempts at regular divisions of the plane, using recognisable objects, were
produced during the five years after his first visit to the Alhambra in 1922. In 1936,
Escher revisited the Alhambra in Granada and La Mezquita in Cérdoba. He used his
collection of detailed sketches of the geometric designs he had seen to provide the
scaffold for hisinterlocking designs.

The geometric tilings copied in the Alhambra yielded many new insights to Escher,
who found himself not just tinkering with the polygon shapes to derive new motifs,
but also trying to discover the distinct ways in which individual figures could
interlock with adjacent copies of themselves. (Schattschneider, 1990, pp. 19-20)

While this was the beginning, Escher was still struggling to produce the types of
designs he desired. He described his explorations as follows:

| saw a high wall and as | had a premonition of an enigma, something that might be
hidden behind the wall, | climbed over with some difficulty. However, on the other
side | landed in awilderness and had to cut my way through with great effort until
— by a circuitous route — | came to the open gate, the open gate of mathematics.
From there, well-trodden paths lead in every direction, and since then | have often
spent time there. Sometimes | think | have covered the whole area. | think | have
trodden all the paths and admired all the views, and then | suddenly discover a new
path and experience fresh delights. (Escher, cited in Schattschneider, 1990, p. 21)
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The “open gate of mathematics” came to Escher via his half brother B. G. (Beer)
Escher, a professor of geology, who, on being shown Escher’s work, recognised that he
was applying some form of two-dimensional crystallography and provided him with a
number of papers published in Zeitschrift fir Kristallographie between 1911 and 1933.
Of these, the one that had a profound influence on the work of Escher was Pélya's
(1924) paper that classified the 17 plane symmetry groups (also known as the wall paper
groups). While this result — that there are just 17 different essentially different waysto
repeat adesign in the plane — was known, Polya provided an illustration for each of the
17 possible tilings, including four of his own design (Schattschneider, 1987, 1990).
Escher copied Pdlya's article in full and studied the illustrations to understand their
geometric structure, and how “these tilings could be colored with a minimum number of
colorsin away that was compatible with the symmetries of the tiling” (Schattschneider,
1987, p. 295). Pdlya and Escher corresponded, but Pélya |eft the correspondence behind
when he departed from Zurich in 1940. Schattschneider found Escher’s notebook with
the single word “Pdlya” written on the cover in a museum in The Hague in 1976. She
sent her photograph of it to Polya, who then told her of his correspondence with Escher
(Schattschneider, 1987).

Given Escher’s huge popularity, it is not surprising that ailmost all students are
fascinated by his work. They may also have heard about Pélya, often referred to as “the
father of modern problem solving”. At the same time, much of the mathematics that is
so superbly illustrated by Escher’s work occurs frequently in school mathematics
curricula. For example, in Victoria, the Victorian Essential Learning Standards —
VELS (Victorian Curriculum and Assessment Authority, 2005) refers to various aspects
of symmetry, transformations and tessellations at every level from Level 2 to Level 6.
As Mottershead (1977) so beautifully illustrates, the learning of geometry can be
tremendously enriched by exposing students to Escher’s work, and the underlying
mathematical concepts.

Conclusion

In this paper, | am not trying to advocate adopting a history of mathematics approach to
the teaching of mathematics, but rather to encourage us all to attempt to contextualise
the mathematics that we teach, to show the links to its applications and the connections
between various aspects, and to reveal the people, who create the mathematics, to our
students. For most students, it is a surprise to hear that mathematics is actually created
by people — some of whom are alive, or have only recently died.

While none of the examples used here are new they, nevertheless, illustrate some
ways in which contemporary mathematics can be, and is, used in real life. Wetalk alot
about the importance of making mathematics relevant for students, but often this is
understood to mean that the mathematics should be used by studentsin everyday life —
a hard ask that often leads to a trivialisation of the mathematics we teach. Of course,
assembling such examples, and adapting them to an appropriate level to suit studentsin
one's class, is not easy. However, we do not need to develop examples for every topic.
Instead, | believe that we should take the opportunity, every now and then, to look at
some genuine applications in some depth. Such examples also allow us to make
connections between different areas of mathematics (for example, prime numbers,
factorisation and modular arithmetic, in the case of public-key cryptography). They also
show the essential nature of mathematics and just how widespread its applications are
(for example, the “open gate of mathematics” that enabled Escher to develop his
wonderful designsfor regular divisions of the plane).
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Most of all, this paper attempts to persuade teachers of mathematics to convey to
their students the joy of mathematical discovery — something that is often forgotten at
atime when there is areal crisis in the number of students wanting to pursue higher
studies in mathematics and, when, it is becoming increasingly difficult to find teachers
for those students who do wish to pursue such studies.
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Developing spatial mathematics™

Richard Lehrer
Vanderbilt University

Spatial mathematics is ordinarily neglected in K—6 education. | suggest two
compelling reasons for restoring the mathematics of space to the curriculum. First,
developing spatial mathematics provides many opportunities to cultivate
mathematical habits of mind. | exemplify several habits of mind drawing on the
work of children and their teachers. These include generalisation and its cousin,
proof, as well as learning to seek invariance and to see relations. Second,
developing spatial mathematics provides many opportunities to establish
connections with related forms of thinking, such as those of modelling in science
and of representing data in mathematics.

Introduction

Spatial mathematics is comparatively neglected in the K—8 mathematics curriculum.
Most emphasis is placed on number and arithmetic, and when there is a pedagogical
urge to go beyond arithmetic, the role of generalised arithmetic as the foundation of
algebra receives the most attention. Y et, attention to spatial mathematics can yield rich
rewards for a general mathematics education, partly because the mathematics of space
has a long and rich heritage that ought not be neglected in mathematics education
(Lehrer and Chazan, 1998), and partly because developing the mathematics of space is
an ideal incubator for developing mathematical habits of mind (Goldenberg, Cuoco &
Mark, 1998, p. 3). Mathematical habits of mind are practices that are important to the
everyday conduct of mathematics but that go beyond mere instrumentalism to capture
something important about mathematical knowing — what makes knowing
mathematics different than, say, knowing other important things, such as how to tell
stories. When one learns to reason in a manner consistent with a mathematical habit of
mind, one is aso learning something about what it means to think like a mathematician.
Furthermore, neglect of the heritage of the mathematics of space is not ssmply neglect
of some properties of shape or some obscure theorems about form. The real danger is
the loss of connection between mathematics and other forms of mathematical and
scientific endeavour.

In the sections that follow, I first describe some candidates for mathematical habits
of mind, and then go on to exemplify these habits of mind in the work of children
throughout the early and middle years of schooling (K—6 span). | conclude, again, with
examples from children’s work, with connections between spatial mathematics and
other ways of knowing, especialy in social and natural sciences.

* Invited paper
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Developing mathematical habits of mind

Any suggestion of a definitive list of mathematical habits of mind would betray some
mixture of hubris and ignorance. The tact | take is to suggest some candidates that |
believe are accessible to children. The treatment of these habits of mind is genetic, in
the sense intended by Piaget (1970), in that the form and content of knowledge is
determined by its developmental history. Hence, my orientation is to focus on forms of
reasoning that could, conceivably, serve as seeds for later development. When | suggest
a habit of mind, | am considering its embryonic form, not its mature form in current
mathematical practice.

Generalisation

When we make generalisations in everyday thinking, we are referring to dispositions
and propensities. In mathematics, we up the ante. Dispositions are replaced by
certainties. Certainty is grounded in understanding of the structure and behaviour of the
mathematical system. Hence, a generalisation is a claim about the functioning of a
mathematical system. Some generalisations are so well understood, that they merit an
additional claim: One can explain the system with sufficient detail and clarity to merit
certainty about one’'s claims. Stated another way, one can prove. Although the tight
relation between proof and explanation is well understood in the mathematical
community, it is often misplaced in school mathematics. This has been the subject of a
number of studies, al of which suggest the need for atighter linkage between proof and
explanation. As | suggested previously, a sensible approach to this problem is not to
begin frantic reform in the years of secondary schooling. Instead, we need to think of
gentle introductions to generalisation and knowing. | propose a few forms of
introduction to generalisation that have shown to be fruitful pathways for children.

Definition

Definition is at the heart of developing mathematical objects that can participate in
larger systems of relation. Hence, definitions are important building blocks of
mathematical reasoning. All too often, these building blocks are denied to children,
who, instead, are asked to use mathematical objects, such as the number sequence, that
have either not been defined or that are expected to be somehow apprehended directly
through experience. There are some notable exceptions to this in the literature,
particularly around the definition of odd and even numbers, but perhaps one reason for
the notoriety of these examples is the paucity of alternatives. Thinking about space, in
contrast, is more accessible to children, and here we can take opportunities to involve
children in the definition of nearly any space figure. Definition of a space figure, such
as square or triangle, involves children in the important habit-of-mind of generalisation
(when we say square, we do not mean only this square), and it invites too closer
examination of the qualities of space, such as “straight,” or “angle.”

Figure 1 displays a second grader’s proposal of a triangle that she claimed met the
consensus reached by the class that atriangle had “3 sides and 3 corners.” Her class did
not want to accept this figure as a triangle. Their teacher invited them to consider how
they might wish to modify their definition to exclude it. For this class, what became
contested was the nature of side.
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Figure 1. A drawing depicting triangle consistent with definition

In another third-grade class, definition of a triangle suggested contest about the
nature of “tips’, in figures that children saw in their textbooks. This gave rise to
discussion of the meaning of connected, as is evident upon inspection of Figure 2,

which illustrates part of the class investigation.
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Figure 2. Investigating qualities of “ tips’ (connectedness).

Of coursg, it is never too early to begin to initiate children in definition
Figure 3 displays the results of investigations of 3-D structures by 4- and 5-year old

children. It parallels the investigation of connectedness in 2-D, conducted by the third-
grade children. The lesson to be drawn is that we do not believe that definition is too
complicated a matter for younger children but, instead, that it is our role as teachers to

find formsthat challenge children, yet remain solidly within their grasp
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Figure 3. Kindergarten children make definitions of 3-D space figures.

In later grades, we often raise the conceptual complexity of these conversations

Figure 4 again reminds us that our pursuit of definition need not remain in the realm
of 2-D. Here, third-grade students, with a developmental history of this form of
reasoning, defined the properties of Platonic solids, although, as severa pointed out to
us, their definition did not include the grounds of knowing “for sure” that there could be
only five.

Figure 4 is one student’ s grounds for ruling out a 3-D figure constructed with rhombi
(Léhrer and Curtis, 2000).

In later grades, we often raise the level of challenge by inviting speculations about
generalisation of the definition, to other surfaces. Sometimes students do this work for
us. For example, a fifth grade student pointed out that one of the class definitions for
straight, “no change in heading when you walk,” had different consequences for
different surfaces. He noted that the definition was consistent with everyone's
expectation for the whiteboard in the front of the room or for the floor, but he asked the
class to consider what would happen “in the world.” A basketball was a handy prop for
the ensuing conversation, which we found especially interesting, because the student
making the conjecture had a history of failure in the mathematics of number.

© The Australian Association of Mathematics Teachers Inc.

15



Mathematics: Essential for Learning, Essential for Life

v _rh b 42"61@
S f)oJr 9"}46“*55&,,,,,06

%@ he, ?A"ﬁ?é% o{u\j_ﬂai
A & :

M

Jf'\E’ EI V

Figure 4. A third-grader explains the shortcomings of a rhombus as an element of a Platonic solid.

Knowing for sure

The flip side of a pursuit of generalisation is a pursuit of the security of the grounds for
“knowing”. How can we know “for sure?’ Definitions, by their nature, rule out proof,
because they are erected from axioms that may later be contested but which are taken as
obvious during the process of definition. However, once brought into being,
mathematical objects can be extended and related to other mathematical objects, and
these extensions and relations bring with them insecurities. Can they be trusted, and if
S0, on what basis? | present two examples that illuminate how informal notions of proof
about spatia relations can be profitably raised, long before the secondary years.

In the first example, third grade children had defined a representational system of
3-D objects called a “net”: a composition of the faces of the corresponding solid in the
plane. Nets were functional in the sense that, when folded, they re-constituted the
corresponding object. During the course of their investigations, the children realised
that more than one net could be constructed to represent the same object. This naturally
led to an inquiry: For agiven object, how many different nets were possible?

In the following, we illustrate these issues with a net of a cube, although students
considered far more complicated structures and problems.

Children’s first instincts about the number of nets of the cube were to guess and test,
repeatedly, but as new nets emerged, their teacher pressed them to consider how they
would know when they had them all. It soon became clear that physical exhaustion was
not going to suffice (There were ambitious proposals for aweek of generation and test).
A prior question was one of equivalence: Which nets would be considered unique for
purposes of counting? To resolve this question, children first decided that any net that
was a flip, slide, or rotation of another would be considered equivalent. Note that this
important mathematical idea does not need to be the exclusive province of true/false
number sentences! They then invented a form of exhaustive search of the space of
possible nets. Starting with a “backbone” of a column, and considering all possible
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unique nets, the students invented a method to guarantee finding all possible nets of the
cube. Their proof explained, even as it guaranteed. Along the way, children developed
what their teacher labelled as an agorithm, thus expanding their notion of this important
mathematical idea beyond the realm of arithmetic. Figure 5 displays this
accomplishment. Of course, this success instigated new guestions. A third grade student
posed this question: If each face of the cube was split into two right triangles, how
many different triangle-based nets could there be?

Nov-14, 1995
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Figure 5. A proof for the number of unique nets of a cube developed by a third-grade class.

The second example occurs during an investigation of the number of diagonalsin a
polygon, given the number of sides. In one small group, the investigation proceeded by
first constructing the number of diagonals for known polygons, such as triangle, square,
pentagon and hexagon. Then, by examining the first and second order differences,
students induced a pattern that they were confident would hold for any number of sides,
as displayed in Figure 6. As one of the students said: “There is a pattern inside the
pattern!” She was referring to the relation between the first- and second-order

differences.
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Figure 6. Exploring relations between the number of sides and the number of diagonals of a polygon.

Other students found an algebraic expression that fit this pattern: “number of sides
divided by 2 times the number of sides minus 3”. But, when the group that discovered
the pattern, or those who had succeeded in creating an algebraic expression was pressed
by their classmates to explain the basis of the pattern, all were stumped. The expression
seemed to work and the reasoning about difference appeared sound, but what could
account for it? A classmate proposed an alternative way of viewing the diagonals of a
polygon, what we might call a“directed graph.” His proposal was. what was important
to consider was the number of vertices that could be “reached” from a given vertex.
With this in mind, the number of vertices that could be reached was equivalent to the
number of sides less the neighbouring sides (2) and the vertex itself (1), yielding the
expression (n — 3). One could visit from each and every vertex, yielding n x (n — 3).
Since each path was directed but direction did not matter (vertex 1 — vertex 3 was the
same as the path traced by vertex 3 — vertex 1), the same algebraic expression was
recovered, but now it could be explained, so the basis of the generalisation was secured.
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Invariance

The remaining candidates for habits-of-mind are important servants of generalisation
and proof. One is the notion that when conducting an investigation, look for what stays
the same when something changes. As re-consideration of some of the previous
examples suggests, spatial mathematics affords many opportunities for children to see
the pay off for thinking in this way. Consider, for example, the problem of defining
uniqueness in the informal proof of the number of nets of a cube, or the invariance of
the second difference during the investigation of the number of diagonals of a polygon.
One of my favourite examples comes from a unit developed by Dan Watt that explores
mathematics via artistic design. Children design quilts by considering motions of units
(“core squares’) on the plane, as exemplified in Figure 7.
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Figure 7. Exploring relations between motion and design.

When we begin the unit, we provide children with Polydrons that they can use to
enact the motions literally. They quickly come to realise that the result of a“right” and
“left” flip isthe same, so they unify both as“sideways’ flips. Of course, the very idea of
symmetry is one of invariance: Symmetries are those motions that do not result in
change, as illustrated by one child's work, depicted in Figure 8 (thanks to James
Hamblin and Mazie Jenkins).
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Figure 8. Exploring Invariance

Relational thinking: Thinking about systems

All of the mathematical investigations, that illustrated generalisation and invariance,
were oriented toward developing relational thinking. The scope of relational thinking
can be either local, or of a more general, systematic character. For example, children
may wonder about what happens to the opposite side of a triangle when the angle
changes, an example of alimited scope: or they might consider the structure of an entire
system of symmetry transformations, an example of a more general scope. The
important focus in the classroom is on helping students hold onto their history of
investigation and innovation, so that mathematical development is not seen as a set of
isolated topics but, rather, as the growth of a system of thinking about particular objects
and their relations. We are not used to reminding students of this history or even making
its explication agoal of pedagogy. But, without this attention, students often experience
even interesting forms of mathematics, as a series of fragmented episodes. Thisis a
major challenge for pedagogy, in all realms of mathematics. But again, | suggest that
there are some particular advantages for spatial mathematics. For one, the walls of the
classroom can trace a visual record of change. For another, the experience of space can
be embodied in different ways, and these forms of experience can serve as anchorsfor a
wider mathematical system. For example, thinking of one figure from a path
perspective, as the path traced by bodily motions of move and turn, is readily
generalised to thinking about other figures, in the same way. This provides a natural
trajectory for the development of a series of mathematical objects and relations.
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Bridging the mathematics of space to related endeavours

Modelling

The essence of modelling is having one system of objects and relations stand in for
another that is the object of scrutiny. Modelling is a scientific habit of mind that can be
supported by the development of the mathematical habits of mind. Modelling, like other
mathematical habits of mind, should be introduced gently and with an eye on its
potential for development. In one first-second grade classroom, the teacher, Elizabeth
Penner, was playing a game of tag with her children called “Mother, May |?7’. She
asked children to configure themselves, literally, to ensure a “fair” game (Penner and
Lehrer, 2000). The move to modelling occurred when the teacher asked students if their
literal configuration could be modelled, using familiar objects of geometry: points and
lines. Children initially thought that the configuration modelled by Figure 9 would
suffice. But, much to their consternation, it did not. Eventually, by exploring properties
of figures, children arrived at the fairest form of al, depicted in Figure 10. Along the
way, children learned important lessons both about modelling situation with shape and
form and, also, about properties of these forms that they had never suspected!

Figure 9. Initial model of fairness.

Figure 10. Many revisions later, the fairest model of all.
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Representing data

The use of spatial metaphors and relations is so ubiquitous, in data representation and
analysis, that it is largely uncommented upon. We forget that these metaphorical
extensions may not be obvious to children. When we forget, children learn to represent
by ritual, and so forego the development of representational competence. By
representational competence, | mean understanding how a representation goes about its
business of representing: what it shows and what it hides about data. In my work with
my colleague, Leona Schauble, we seek to make these grounds visible to children and,
during the presentation, | propose to illustrate how learning about space bootstraps
children’s invention and reasoning about data (Lehrer & Schauble, 2002).

Discussion

To briefly recap, | propose that we, as a community, revisit our neglect of the
development of spatial mathematics, a children’s geometry. Although one can argue
that the important business of early mathematics education is number, and thus justify
attention to space as a matter of luxury and convenience, this view is not supported by
attention to the foundational nature of space. Spatial mathematics ideas are widely
employed in related realms of endeavour, such as modelling natural systems or
representing data. Apart from these relations, developing spatial mathematics is a
natural pathway for developing important forms of mathematical reasoning that serve
well across mathematical domains. These habits-of-mind find ready expression and are
accessible, even to young children, when developed in contexts of reasoning about
Space.
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Mathematics is essential in maths education,
but what mathematics is then essential?”

John Mason
Open University, University of Oxford

As | approach retirement, | find myself marking twenty-one years of further thinking
since my previous visit to AAMT?. It seems appropriate, therefore, to look back in order
to look forward. | will indulge myself in contemplating what it is that we, as a
community, and | as an individual, have learned over that time, and where we might
expect to look in the future. Participants will certainly be invited to engage in some
mathematical thinking, and to ponder and re-articulate, not only why it is important for
you to continue to work on mathematics when working with others on issues in teaching
and learning mathematics, but what mathematics it is essential to continue to re-
experience.

Introduction

| looked back at the paper that accompanied my talk at AAMT in 1986, twenty-one
years ago. | have to say, | thought it was one of my better papers. | still agree with
everything | wrote, and | have rarely, if ever, been so fluent in expressing it! | choose,
therefore, to ask myself the questions of my title, by asking myself, “What have we
learned as a community over twenty-one years?’

Of course, no matter how hard | try to be objective, this question is necessarily a
projection of the question, “What have | learned over twenty-one years?’ onto my
biased view of the community as a whole, and which includes “what | wish colleagues
had learned”!

In this way | anticipate revealing some of the essential components of effective
mathematics education, and so to approach the question of what the essenceis. Y ou will
not be surprised to learn that | reach similar conclusions to those of my original paper,
and | end by reflecting on this observation.

What have we learned as a community?

One thing that | hope is being relearned in each generation, is that you cannot discuss
issues in teaching and learning mathematics without being firmly and solidly grounded
in mathematics. Put another way, as the acting director of our relatively new National
Centre for Excellence in Teaching Mathematics has said, every session, every meeting
ought to include some mathematics. | take, therefore, as axiomatic that (working on)
mathematicsis essential in, to, and for, mathematics education.

So saying, here are some things for you to work on. | have chosen them because |
think they highlight, or afford opportunity to be reminded about, many of the things that

* Invited paper
! SeeMason (1986).
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we can say we have learned as a community and that we can agree are both essential to,
and an essential part of, mathematics education. The presentation at the conference will
use different tasks.

Two mixtures

You have a cask not quite full of wine, and a barrel not quite full of water. You
also have a jug. You take a jug of wine from the cask and add it to the barrel,
mixing thoroughly; then you take a jug of the mixture and add it to the cask. Is
there more winein the barrel or water in the cask?

Someone has already done this sort of transferring several times. When you now
do it with your jug, isthere more wine in the barrel or water in the cask?

What can be said about the relative concentrations of wine in the cask and water in
the barrel?

Suppose there are two people, one with ajug and one with a small bucket. The jug
person transfers from the cask to the barrel and then back again; the bucket person
then transfers from the barrel to the cask, and then back again. Would it make a
differenceif they had acted in the opposite order?

What other variations can you think of?

Comment

| like these tasks because it seems (so far) to be rather difficult to “see directly” what is
going on. The first parts depend on the “law of the excluded middle’: something is
either true or false. In this case, water is either in the barrel or in the cask and what is
not wine is water. Two-ness has a very special dyadic quality. The extensions afford an
opportunity to use symbols not to represent specific numbers so much as unspecified
but identifiable amounts. Intuition does not seem to be a good guide, always, but
commutativity emerges. In fact, it can all be accounted for within the language of group
theory.

Grid movements

It is well known that you can predict the number of routes between two cells (Start
and Finish) on a grid, as shown, when routes are restricted to only right and up.
Can you predict the number of routes between two cells when there must also be a
specified number of down moves, and a specified number of left moves?

T 1 ? 1 ?
3 x [m " X2 =

+a +3
—- -

If a number x is placed in one cell, and if moving right corresponds to adding a,
while going up multiplies by m, how many different expressions are there for the
different results in the final cell? If you specify particular values for x, a and m,
how many and how few different values can be achieved in the final cell?

What happens if a specified number of down and left moves are required (where
going left subtracts a, and going down divides by m)?

Comment

| like this task because it can be tackled by young children using specific numbers
(possibly using addition for horizontal and subtraction for vertical!), and it involves
them in using brackets to express routes. This means there is both a purpose for paying
attention to brackets and to making sure that they mean what you want them to mean,
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and a utility (Ainley & Pratt 2002) concerning the use of notation in mathematics.
Extending to a specified number of backward movements introduces the possibility of
choosing to ignore consecutive occurrences of left and right or up and down movements
when considering what counts as “different”. Again, the whole can be cast in the
language of group theory.

For me, trying to prove the somewhat surprising conjectures about commutativity
which | unearthed in the case of the mixtures, and in the grid movements, trying to
account for differences between the number of distinct routes, the number of distinct
expressions, and the number of distinct values in particular cases, produced lengthy
struggle and rethinking. In both cases, trying to find a suitable encompassing theory
produced a good deal of struggle to make symbols do what | wanted them to do, and to
express generalities and particularities in insightful ways. | am confident that these
mirror learners' strugglesin classrooms.

Scotch fountain

The atrium of the teacher’s block at Scotch
College in Melbourne has a fountain
consisting of six nozzles which rotate as
they spout.

What might you expect to see?

How do you account for the curves in the
shapshot apparently traced by water
droplets?

Comment

As with any modelling task, the issues that arise are often to do with selecting what is
mathematically significant and expressing it in some mathematically tractable form.
Although my natural propensity is for modelling structure within mathematics, rather
than for modelling material world phenomena, sensitising yourself to opportunities to
use mathematical thinking in order to make sense of the world is a vital part of
becoming mathematical.

Why engage in mathematics ourselves?

What do you gain from working on mathematics, whether for and by yourself, or with
others? What evidence might you put forward that it was worthwhile, perhaps to
persuade colleagues or administrators? What evidence would you seek that it improved
the experience of learners?

These are non-trivial questions, and | do not have really good answers. | know from
my own experience that constantly working on problems, exploring ideas and,
particularly, generalising and extending problems, provides me with a focus. It feeds
and amplifies a desire to know more, to understand more fully, to appreciate more
deeply, to make direct contact with structure and to notice and make sense of
phenomena, both in the material world and in the world of mathematical structure. |
confess, | am a structuralist at heart, a student of Bourbaki. The various constructivisms
provide discourses for trying to express aspects of my experience, but the core of my
being is structuralist.

Working on mathematics for, and often by, myself also affords me insight into the
use of mathematical powers (what in the 1980s we used to call the “processes of
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thinking mathematically”) and the pervasiveness of mathematical themes’. It enables
me to re-experience, freshly and repeatedly, the struggles to get a sense of some
situation and to express that sense in mathematically meaningful ways. It also gives me
pleasure, and this feeds me energy that can communicate itself to others. | have found it
not simply illuminating but vital for me to experience the struggle to express nascent
relationships and properties whether conceptual or as part of modelling, to become
aware of the use of powers and themes, and to experience again the frisson of having
things fall into place or encompassing apparently disparate particulars into a single
generality. All this helps to sensitise me to notice opportunities to direct learners
attention to useful things and in useful ways. In the final analysis, it seems to me that
what teachers can do is direct learner attention, both directly and indirectly, through
structuring experiences.

Since | reject cause-and-effect (especially single cause and single effect) as a useful
mechanism for describing education and learning, | neither can, nor wish to try to, point
to effects which can be unambiguously and definitively linked to my mathematical
thinking as their cause. However, | can point to the energy that | am able to display
when working on mathematics with others, which | associate with the enthusiasm and
pleasure | get from working on similar or parallel problems, if not actually those
problems themselves, and | like to think that | have developed some sensitivity to
learners' struggle to appreciate and express mathematical relationships and properties.

Metaphors for mathematics education as a discipline

One thing we have learned, | hope, is that the metaphor for knowledge of laying layer
upon layer so asto build up an edifice, is completely inappropriate. For example, we are
on the edge of losing the expertise gained from “teaching mathematics investigatively”
and “100% coursework”?. This includes, not only task construction and teacher— earner
interaction in an exploratory mode, but also appropriate assessment. In one instance, in
complete ignorance of the recent past, it was asserted at a recent national meeting that
“we do not know how to assess coursework the way art students are assessed”. In fact
“we” do know, or have known, rather more!

| am thrown back on a statement made in my original paper, “each generation needs
to re-express the same truths in new vocabulary and new settings,” but that most of the
issues and concerns go back at least as far as Plato, and probably much earlier. In other
words, the essence of mathematics education is unchanged. It is a dynamic of enquiry
and challenge in order to be awake to the current situation, in order to be open and fresh
to learners as they are, now. In other words, teaching mathematics is both a caring
profession and a discipline. It is necessary to refresh both the mathematics and the
sensitivity to learners so that we can “be mathematical with and in front of learners’.

Contribution to policy

Have we significantly influenced policy generation? In the short term, | think there is
plenty of evidence of influence. Government policy documents often pick up on
technical terms, such as learning styles, discussion, assessment for learning,
constructivism, problem solving, course work, and so on. However, their use in policy
documents is usually at best problematic. What we have definitely learned is that once

2 Seefor example Mason & Johnston-Wilder (2004/2006 or 2004).
3 Boaler (1997) studied a comparison with more traditional teaching; Ollerton & Watson (2001) described some of
the practices and approaches.
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policy documents take up technical terms, their usefulness goes into immediate decline.
People naturally adopt meanings that are compatible with their own way of thinking, so
the import of technical termsis very quickly watered down or, in some cases, becomes
so extreme as to be quickly replaced. | have in mind the temporary phenomenon of
advisory teachers in the UK advocating “never telling learners anything, never
addressing them in plenary.” It was quite quickly counteracted by an insistence on the
use of black (now white, smart and interactive) boards and plenary sessions at the
beginning and end of most lessons. | also have in mind the insertion of the “three-part-
lesson” into primary and then secondary classrooms, which was at first taken up by
some as afresh idea, but by many as arephrasing of what they were already doing.

| would like to believe that in Australia you have been much more successful at
altering vocabulary, without losing its essence. | note, however, that the problem-
solving initiative, which began with introducing exploratory problems at VCE level, has
been changed to much more directive tasks. Coursework in the UK degenerated so fully
that many of us are pleased that it is now to be abandoned. It is reappearing in a fresh
form, as ministers warm to the idea of thematic work in both primary and secondary
school: what further evidence does one need of cyclesin educational values?

In my view, we have aresponsibility as acommunity to construct fresh terms for any
terms taken up by policy makers, in order not to lose the substance, the distinctions
afforded by those technical terms. Put another way, we do not seem to have learned
how to engineer the use of effective fresh vocabulary in a large community. Perhaps
thisisjust aswell!

Despite, or perhaps because of, some short-term successes in influencing policy, we
do not seem to have learned how to influence long term policy. Perhaps it is not
possible, because politics works on short cycles of ministerial careers and elections. The
movement towards evidence-based action in the professions is certainly gaining ground,
despite the fact that even medicine is already discovering that the particularities of the
individual often outweigh the generalities of the evidence-base: trying to mechanise
choices does not lead to effective practice. This|eads me to another set of observations.

Search for an El Dorado of a simple “fix”

One thing I think we can say the community could learn, even if it has not as a whole
yet grasped the implications, is that education in general, and mathematics education in
particular, is a complex system. Reductionist attempts to locate a principle cause which,
if modified would produce a sizeable effect and “fix” things simply, cannot succeed. |
have in my time seen groups of researchers focusing their attention on a sequence of
components:

learner misconceptions

teacher beliefs

learner beliefs

learner motivation (including realistic and authentic mathematical contexts)
use of apparatus and manipulatives

teacher questioning

teaching for understanding

assessment for learning

task design (including researched and engineered tasks)

modes of interaction (especially “discussion”)
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situated cognition and distributed cognition’

learning styles

semiotics

reification and procepts

symbolic interaction

behavioural, cognitive and affect psychology

psychological constructivism, radical constructivism, social and socio-cultural
constructivism, socio-cultural-historical perspective...

In each case, research focusing on one element reads as though people hope that
somehow the essential problem can be identified and fixed. As a community, our centre
of gravity keeps shifting. In an ailmost mythical quest for the holy grail, for el Dorado,
for Shangri La, we hope that the next perspective will resolve the problem and fix
everything. In our search for the essential core, the underlying cause for why learners
fail to appreciate and learn mathematics adequately, we seek something fresh:
psychology, hermeneutics, affect and beliefs, sociologies of various kinds,
anthropology, semiotics, and so on. We explore and develop the new perspective,
promote it to teachers, and often see it become the zeitgeist for a time. But it too
eventually fails. Dissatisfaction returns and the search begins again.

Such a search is hopeless. As long as our research efforts remain fragmented then,
despite refinements in what we can discern, in relationships we can come to recognise,
and in properties we can come to perceive as applying more generally, we are doomed
to revolve in repeated cycles of change of focus, without contacting an essence of
teaching and learning mathematics. Some people may wish to conclude that there is no
essence. | choose to try to access essence through recognising and maintaining
complexity, while at the same time trying to penetrate beneath the surface. As Italo
Calvino observed: “It is only after you come to know the surface of things that you
venture to see what is underneath; but the surface of thingsis inexhaustible,” (Calvino,
1983).

It must be clear by now that human beings are complex entities. They have enactive,
affective and cognitive aspects which interweave in complex ways, interacting with
both attention and will. | note that this is the essence of the ancient metaphor in the
Upanishads, for human beings as a chariot or carriage: “ The carriage or chariot is the
body (enaction); the horses are the affect (motivation, drive, energy); the driver is the
intellect (cognition, awareness, attention); the reins are mental imagery; the shafts are
feelings; the owner isthe will,” (Zaehner, 1966, p. 176).

A metaphor is useful only if it informs action or awareness. Much can be derived
from this metaphor about the functioning of human beings in general and, more
particularly, about learners encountering mathematics. For example, it led me to the
Gattegno-based “three onlys’: “Only behaviour is trainable; only emotion is
harnessable; only awareness is educable,” (Mason, 1994; Mason & Johnston-Wilder,
2004/2006), which help me to integrate a range of perspectives, to structure the aspects
which make up a mathematical topic, and to make choices while interacting with
learners. It certainly makes no claim to do the whole job!

4 You cannot imagine how grateful | am that the pilots of the planes we have taken to get here had more than

‘participation in distributed cognition’ of how to fly a plane!
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The procedural-conceptual divide

Plato inveighs against Greek education for failing to use apparatus the way the
Egyptians did, as a means for developing conceptual understanding; Cicero railed
against the students of his time who only wanted to be taught procedures, rather than to
think for themselves; governmental reports have aimost always had something to say
about the difference between rote learning of procedures and conceptual understanding.
Richard Skemp (1976) used the language of relational and instrumental understanding
(inspired, he said, by an idea of Stieg Mellin-Olsen) to express much the same idea, and
the phrase “teaching for understanding” has been used, as if, as David Wheeler pointed
out, anyone ever taught for anything else: either you understand in the relational sense
of multiple connections and the possibility of re-constructing things for yourself, or in
the instrumental sense of “understand what to do” to use a technique. Of course, this
then raises the thorny issue of what kind of knowing is available: knowing how,
knowing what, knowing that, knowing about, or knowing to act suitably in a fresh
situation, are different states. Another way of describing the same notion is to
distinguish between syntactic knowledge of how to behave (manipulate symbols, spout
dlogans, display practices demonstrated by others) and semantic comprehension which
is based on awareness of relationships, connections and structure and which, in turn,
enable reconstruction and regeneration of requisite facts and techniques when required.

There is nothing new about a procedural-conceptual divide. In a culture which
stresses behaviour over being, action over reflection, production over process, instant
gratification over Puritan work ethic, cheapness over quality, exploitation of resources
over husbandry, it is not surprising that it is an uphill struggle to engage people in
taking initiative, in valuing participation in process as well as, and as part of
contributing to, a quality product. Fortunately, there are, and always have been, people
who respond to quality, to process, to being encouraged to use their own powers rather
than having things done for them. It isjust that sometimes it seems possible to lose sight
of them!

All of this is manifested clearly in the ongoing struggle to engage learners in
understanding and appreciating, rather than simply mastering examinable behaviours. In
many ways, | think we are much more articulate about this endemic tension, and about
the forces and tensions which underpin and feed it. For example, the didactic
transposition, the didactic contract, and the didactic tension are useful as reminders of
the endemic tensions (Brousseau, 1997; see also Mason & Johnston-Wilder, 2004). At
the same time, the cultural ethos of short-term targets set by others and the pervasive
influence through the media of short-term satisfactions over long-term aims, is
exacerbating the tension for teachers and learners. It seems to me that | am hearing
more and more about learners who are accustomed to doing what they are told rather
than thinking for themselves, and who not only do not respond with alacrity to being
given opportunities to think and to make significant mathematical choices for
themselves, but actively even sometimes reject these opportunities. As a community we
have enormous distributed intelligence about how, as a caring profession, it is possible
to counteract these cultural pressures. Whether it is possible to engineer effective
inroads, or whether thisis part of the ongoing personal reconstruction and devel opment
in which each teacher is engaged as a career long process, | am not sure. My suspicions
lie with the latter rather than the former.
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What have | learned over twenty-one years?

At various times | have kept notebooks of my reflections on events and other
stimulations, such as reading and conversations. Every so often | look back through
them, and each time | am astonished to find that the issue which is uppermost in my
mind currently actually appears in my notes five, ten and more years previously. It
would be tempting to ask whether | have learned anything at all, or whether | am simply
recirculating and re-expressing old ideas, failing to recognise that current insights are
neither new to me nor to the community at large.

| will confess that | have noticed more and more at international meetings that people
raise questions which | recall having addressed in the past and often, to my mind, more
effectively then than now. | am minded to take this as evidence that it is time for me to
retire and leave the field to younger and more agile minds. | confess to sometimes
feeling that we seem not to have learned from the past, and | wonder if we are
condemned to cyclic repetitions of the past. As | wrote once: “One thing we do not
seem to learn from experience is that we do not often learn from experience alone.”
Later it was pointed out that this mirrors a statement about history by George
Santayana: “Those who cannot remember the past are condemned to repeat it,”
(Santayana, 1905, p. 284).

But | have learned. | feel as though | have learned a great deal. However, in our
evidence-based culture, my feelings are not enough. | must address the question of what
evidence | can put forward.

| can honestly say that | have access to a much wider technical vocabulary for
aspects of teaching and learning. | refer here to awhole range of pedagogical constructs
such as situated cognition, ZPD, the onion model of understanding in mathematics and,
of course, the structure of attention. These enable me to make finer distinctions than
without them, whether in planning, in conducting sessions, or in analysing data and
theorising about teaching and learning. Of course, many of these distinctions were
elaborated before 1986 but, over time, | believe that | am more effective in interweaving
pedagogical constructs and mathematics and as evidence | put forward (Mason €t al.,
2004; Johnston-Wilder & Mason, 2005; Mason & Johnston-Wilder, 2004/2006).

Final reflections and pre-flections

What emerges from these contemplations, for me, is that mathematics education can be
a life-transforming, life-enhancing discipline grounded in the experience of thinking
mathematically. | say life-transforming because, as | said in 1986, to be engaged as an
actively enquiring teacher my perceptions, the details | discern and distinguish in my
professional and personal life are constantly under scrutiny and challenge, and so
developing. | am kept on my toes, alive to the worlds in which | am operating, through
being challenged and stimulated. To be alive as a professional teacher | need to be re-
searching. It is not always necessary to search in new domains. sometimes re-searching,
revisiting old constructs, old distinctions reveals fresh, if not deeper, insights.

The essence of mathematics education is that each teacher needs to re-articulate, for
themselves, the truths of the past, especially those concerning mathematics,
mathematical pedagogy, and mathematical didactics, not just once, but in an ongoing
process of reconsideration. It is essential as a functioning teacher alive to one’'s
professionalism to make informed, even principled choices with increasing sensitivity.
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This means noticing opportunities to act freshly, and fresh actions to initiate, so as to
guide and support learners’ attention®.

There are no shortcuts, no standing on the shoulders of giants. Yes, there are
shoulders on which to stand, but care must be taken that in perching on one set of
shoulders, other perspectives available from other standpoints are not overlooked.
Complexity must be retained in order not to become lost in local dead ends of enquiry
and policy.

Mathematics education is never going to “solve” the problems which teachers and
learners face. But it can provide a discipline within which a there is a supportive and
productive environment in which personal and collective development is encouraged,
fostered and sustained. One way in which | have tried to contribute to this is by
initiating a wiki for mathematical pedagogy (http://ncetm.gov.uk) through which the
community (national and international) can refine articulations, focus on precise
meanings and details, and support each other in making informed pedagogical and
didactical choicesin the future.

A plausible, fascinating, and rather informative conjecture is that, just as the things
we dislike most in others are often qualities which we dislike about ourselves, so too the
things we choose to research or enquire into are what is particularly problematic for
ourselves. It isimportant to bear thisin mind then, as | draw these reflections to a close
with some conjectures about important topics for the future.

| am convinced that “maintaining complexity” could be a useful watchword for the
future. To my mind, co-emergence’ is a much more fruitful metaphor for how learning
takes place than the mechanisms of cause-and-effect. | am also more than ever
convinced that where learners are induced and empowered to make use of their own
natural powers (of course through and within their socio-cultural-historical milieu), to
make significant and pertinent mathematical choices, they are more likely to engage
with mathematical thinking than to be content merely with mastering procedures.

| am convinced that school mathematics revolves around the expression and
consequent manipulation of generality as a means to make sense of, and to organise our
experience of, the many worlds which we inhabit. This, for me, is and remains the
essence of mathematics and of what it is essential learners encounter in mathematics
lessons. Our failure to awaken thisin all learners who get to school is a cultural and
social tragedy, as well as being disempowering for the individuals.

| am also convinced that whatever else is going on in a classroom, however learners
and teacher are interacting, and mediated by whatever cultural tools, the structure of
teacher and learner attention is of vital importance: how is attention attenuated and
amplified, focused and dispersed? — but then, given my interest and background, |
would think this, wouldn’t 1?

5 Thisisthe aim and purpose of the Discipline of Noticing (Mason 2002) whose articulation begun aat ICME

1984 in Adelaide.
¢ Vaelaetal. (1991); Daviset al. (1996)

© The Australian Association of Mathematics Teachers Inc.

31



Mathematics: Essential for Learning, Essential for Life

References

Ainley, J. & Pratt, D. (2002). Purpose and Utility in Pedagogic Task design. In A. Cockburn & E. Nardi
(Eds) Proceedings of the 26th Annual Conference of the International Group for the Psychology of
Mathematics Education, Vol. 2, pp. 17-24.

Boaler, J. (1997). Experiencing School Mathematics: Teaching Styles, Sex and Setting. Buckingham:
Open University Press.

Brousseau, G. (1997). Theory of Didactical Stuationsin Mathematics. Didactiques des Mathématiques,
1970-1990, Balacheff, N. Cooper, M. Sutherland, R. and Warfield, V. (trans.), Kluwer, Dordrecht.

Calvino, I. (1983). Mr Palomar. London: Harcourt, Brace & Jovanovitch.

Davis, B., Summara, D. & Kieren, T. (1996). Cognition, co-emergence, curriculum. Journal of
Curriculum Sudies, 28 (2), 151-169.

Mason, J. (1986). Challenge to Change: to stay alive every teacher must be aresearcher. In Challenge
For Change (Proceedings of 11th Biennial Conference of The Australian Association of Mathematics
Teachers, pp. 9-30). Brishane: AAMT.

Mason, J. (2002). Researching Your own Practice: The Discipline of Noticing. London: RoutledgeFal mer

Mason, J. & Johnston-Wilder, S. (2004). Fundamental Constructs in Mathematics Education. London:
RoutledgeFalmer.

Mason, J. & Johnston-Wilder, S. (2004; 2006). Designing and Using Mathematical Tasks. Milton
Keynes: Open University. St. Albans: Tarquin.

Ollerton, M. & Watson, A. (2001). Inclusive Mathematics: 11-18, London: Sage.

Santayana, G. (1905). Life of Reason. New Y ork: Scribner.

Skemp , R. (1976). Relational and Instrumental Understanding. Mathematics Teaching, 77, 20-26.

Varela, F. , Thompson, E. & Rosch, E. (1991). The Embodied Mind: Cognitive Science and Human
Experience. Cambridge: MIT Press.

Zaehner, R. (Trans.) (1966). Hindu Scriptures. New Y ork: Dent & Sons.

© The Australian Association of Mathematics Teachers Inc.

32



Addressing the needs of
low-achieving mathematics students:
Helping students “trust their heads””

John Pegg & Lorraine Graham
SIMERR National Centre, University of New England

This paper is based on a national intervention and research program. The
program has the generic title QuickSmart because it aimed to teach students how
to become quick (and accurate) in response speed and smart in strategy use. This
intervention seeks to improve automaticity in students’ responses, which is
operationalised as students’ fluency and facility with basic academic facts and
procedures in mathematics. This is achieved by reducing working-memory
demands on routine tasks, and freeing cognitive resources for higher-order
processing, using mathematical procedures and problem solving.

The QuickSmart program supports those students in their middle years of
schooling identified as consistently low-achieving. The program runs for
approximately thirty weeks with pairs of students involved in three thirty-minute
sessions per week. Results of the program indicate that students decrease their
average response times significantly, correct inaccurate or inefficient strategies,
and develop less error-prone retrieval actions. The results also indicate that by the
end of the program these students exhibited strong gains on standardised test
scores of higher-order thinking, as well as improvements on State-wide testing
measures neither of which were the focus of instruction. Finally, there is evidence
that the results are sustained at least 24 months after the intervention.

This paper provides the background, theoretical basis and description, of the
program, as well as findings from 2006. Four important aspects of the program
that we believe: contribute to its success; have important implications for
classroom practice; that are most likely to facilitate improvements in students
learning; and highlight the practical and theoretical significance of having
students“ trust their head” , are also discussed.

Background

Students who experience ongoing failure in school face a myriad of difficulties in
achieving long-term employment, and useful and fulfilling occupations. Those who
exhibit consistent weaknesses in basic skills, such as the recall of number facts and

other basic mathematics skills, are particularly vulnerable.

National test data provide a compelling case for the need to develop programs that
improve numeracy outcomes for students, who are performing at or below the National
Literacy and Numeracy Benchmarks. There is a specific need for such programs to be
effective for Indigenous and rural students, and those with a language background other
than English. In addition, national data identify a substantial systemic decline in both
the number and percentage of students achieving Numeracy Benchmarks in Year 3,

* Invited paper
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Year 5 and Year 7. This trend needs to be attended to as a matter of urgency. It is our
contention that, by the time these students reach Year 5, it is particularly difficult to
bring about sustainable change within “normal” classroom environments. Consequently,
there is a need for educational researchers to design and investigate interventions that
support students who experience these difficulties.

QuickSmart (Pegg, Graham and Bellert, 2005) is an example of an evolutionary
program of research that is having a strong impact with low-achieving students. The
research program associated with QuickSmart is one of a few programmatic
interventions conducted in Australian schools. The development and monitoring of the
program has been supported by a number of different funding sources over the past
seven years. Initialy in 2001, the Commonwealth Government funded QuickSmart for
one year, under itsinnovative project scheme. Subsequently, the collection of follow-up
data during 2002, 2003 and 2004 found that these students had maintained their
performance improvements 24 months after they completed the intervention program.

Because of the very positive results of the initial QuickSmart program, and the data
indicating its continued effectiveness, an Australian Research Council Discovery grant
by Pegg, Graham, and Royer (2003—-2005), “Enhancing basic academic skills of low-
achieving students: The role of automaticity in numeracy, reading and comprehension”,
allowed important aspects of the program to be researched and refined.

In 2006, with support from the federal Department of Education Science and
Training, and the Department of Transport and Regional Services, the program
comprising two aspects was extended to 12 schools. The first aspect involved
improving basic mathematics skill levels in 11 top-end schools in the Northern
Territory. A detailed analysis of the results indicated the effectiveness of the program.
As aresult the NT DEET is conducting a more intensive program in 2007 involving 20
schools. The second aspect concerned a disadvantaged rural school with large numbers
of persistently low-achieving students (students below national benchmarks in
numeracy and literacy). The program involved 87 students and constituted the largest
single student cohort, within a single schooal, to be involved in the QuickSmart program
of research. Impressive gains in student performance during 2006 were evident and
placed the school among the best in NSW, in terms of value-added results for the Y ear
78 cohort.

Purpose of QuickSmartT

The underlying purpose of the QuickSmart program is to reverse the trend of ongoing
poor academic performance for students who have been struggling at school, and are
caught in a cycle of continued failure. These students experience significant and
sustained learning difficulties in basic mathematics, and had been resistant to
improvement despite attempts to overcome their learning problems. They were unable
to draw benefits from other in-class, and withdrawal, instructional activities.

An additional purpose of the program is for classroom teachers, special needs
support teachers and teacher aides (referred to below by the generic term “teachers’), to
learn how to work with and significantly improve the learning outcomes in basic
mathematics skills, of underachieving students, in the middle years of schooling. The
program offers professional learning and support for teachers to work in a small class
instructional setting, with two students, using a specially constructed teaching program
supported by extensive material and computer-based resources.
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Theoretical underpinnings of QuickSmart

The QuickSmart assessment and intervention approach is an innovative instructional
method informed by research findings (e.g., Baker, Gersten, and Lee, 2003; McMaster,
Fuchs, Fuchs, and Compton, 2005; Royer, Tronsky, and Chan, 1999). Underpinning the
program is the establishment of a motivational learning environment, which places an
emphasis on fluency, automatic recall of basic skill information, strategy use, and timed
and strategic practice. The aim of the program is to improve students' information
retrieval times to levels that free working-memory capacity from an excessive focus on
mundane or routine tasks. In this way, students become better resourced to undertake
higher-order mental processing and to develop age-appropriate basic mathematics (and
literacy) skills.

There are theoretical and pragmatic reasons that support the importance of basic
information retrieval to both basic mathematics (and literacy) skills. Firgt, it is generally
accepted that the cognitive capacity of humans is limited; i.e., working memory has
specific constraints on the amount of information that can be processed (Anderson,
1983). As such, there is a strong theoretical basis upon which to expect that improving
the processing speed of basic skills frees up capacity, which is, then, available for the
cognitive processing of higher-order problem-solving tasks.

Research has already indicated that the ability to recall information quickly is often
not subject to conscious control and, subsequently, uses minimal cognitive capacity
(Ashcraft, Donely, Halas, and Vakali, 1992; Hanley, 2005; Zbrodoff and Logan, 1996).
Another reason why automaticity in basic information retrieval is of prime importance
is that it allows for small decreases in “time to accrue” in undertaking sub-tasks
associated with a question, again, freeing up working memory. Even small decreasesin
the time taken to process information in working memory during basic problem-solving
situations can be significant. Thus, speed of information retrieval plays an important
role in determining the success or otherwise of students undertaking basic mathematics
(and literacy) tasks.

The QuickSmart Program

In order to contextualise the importance and effectiveness of the QuickSmart program,
it is necessary to describe the intervention, in some detail. Individually designed
intervention programs are developed and implemented as part of QuickSmart , in order
to strengthen students' problematic skills: e.g., recall of number facts, strategy use, and
basic computation. The program is intensive and requires students to work in pairs with
an adult instructor, for three 30-minute lessons each week for about 30 weeks.
The QuickSmart program:
* isdesigned to improve students information retrieval times;
» frees working-memory capacity from an excessive focus on routine tasks,
» fosters automaticity in basic tasks;
 utilises explicit teaching based on understanding, not rote learning, and deliberate
practice;
» hastime (aswell as accuracy) as a dimension of learning;
* integrates assessment tasks into each lesson with a focus on individual
improvement;
* maximises student on-task time in a structured but flexible lesson format;
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» provides extensive materials including teaching resources, speedsheets,
flashcards; and

* incorporates a computer program called the Cognitive Aptitude Assessment
System (CAAYS).

In addition to specially developed paper and material resources, QuickSmart utilises
a Cognitive Aptitude Assessment System (CAAYS) to support learning, and to assist with
obtaining reliable assessments of student performance. This system was developed at
the Laboratory for the Assessment and Training of Academic Skills (LATAYS) in the
University of Massachusetts (e.g., Royer and Tronsky, 1998). The CAAS system is
installed on a laptop computer and enables precise measurements of students accuracy
and information retrieval times on numeracy tasks. Importantly, the assessment tasks
used are designed and sequenced in order to help identify particular obstacles that may
impede student learning (Royer, 1996).

Specifically, when a stimulus is presented to a student who responds into the
microphone, the system records vocalisation latency and a scorer pushes one of the two
buttons on the computer, to record the accuracy of the response. At the end of atask, the
software computes a mean and a standard deviation for response latencies. Also, the
software automatically cleans the data by eliminating, as outliers, responses two
standard deviations from the mean, such as impossibly fast or unusually slow scores.
When the student is finished, the percentage of correct responses, as well as the mean
and standard deviation are immediately available and can be recorded and shared with
the student. These data are also retained to assist, in part, in the analysis of change in
students.

The professional development program accompanying QuickSmart is focused on
supporting teachers to understand and provide:

» effective instruction that maximises student on-task time, and provides learning
scaffolds to ensure students experience improvement and success;

» deliberate practice that is integral to every lesson, allows for success and is
focused on providing targeted feedback to improve learning;

» guided and independent timed practice activities;

 dtrategy instruction and concept devel opment;

 confidence to their students by encouraging a*“can do” attitude;
» appropriate teacher and peer modelling; and

* motivational academic activities that are opportunities for modelling and to
develop fluency.

As a consequence of the project, and professional development experiences, teachers
learn to:

» usetimeasadimension of learning and practice;

* incorporate concepts of automaticity (Quick) and accuracy (Smart) regularly in
their teaching;

 structure learning activities built around deliberate practice to help encourage
SuCCess,

» addressindividual student needsin their planning over an extended period;
 assess and monitor student needs, unobtrusively, in their teaching programs;
 create ahighly motivational learning environment for students;
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* integrate assessment tasks into each lesson, alongside a non-competitive focus on
individual improvement; and

» design and develop activities that improve students’ information processing
abilities by freeing up working memory.

Also teachers come to experience:

* how automaticity requires conceptual understanding and efficient, effective
strategy use; and

* how assessment provides formative information relevant to the progress and
design of each individual’s program.

QuickSmartresults from 2006

In 2006, with Federal Government support, the QuickSmart program was expanded and
approximately 300 students undertook the program in the Northern Territory (NT) and
New South Wales (NSW). In the NT, 203 students were in the program and there were
111 comparison students. In NSW at Orara High School 87 Y ear 7 students (over 60%
of the Year 7 students), who were identified as not meeting national benchmarks, took
part in the program. In both settings, many of these students were Indigenous.

The graph below prepared by John Bradbury, Curriculum Officer Numeracy,
Teaching, Learning and Standards Division NT (2006) compares pre- and post-scores
on abasic skillstest for the QuickSmart cohort and groups of comparison students.

QS vs Comparison Cohort - Change in Mean Student Test Score (paired data
only)
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Northern Territory results on 2006 intervention

The graph illustrates the gains made by the QuickSmart group of students, as
compared to their average-achieving peers. The two cohorts were statistically
significantly different at the start of the program from the comparison students, and
were not statistically different on the post-test.
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In the case of Orara students: they attempted the State-wide Secondary Numeracy
Assessment Program (SNAP) in Years 7 and 8. The results were summarised in an
article written in a NSW DET by Cotton (p.5, 2006) in Side-by-Sde. The first three
paragraphs are reproduced below and report the gains made at Orara High School:

It's not often that a school records a meteoric rise in student performance over a
single year. So when Orara High School recorded the highest growth in its history
for Year 8 literacy and numeracy, the principal, Graham Mosey, summed it up in
three words: “We were thrilled!”

Last year aimost half of the school’'s Year 7 cohort was under the national
benchmark for literacy and numeracy. But in 2006, all of the students, now in Year
8, performed above the benchmarks — amost doubling the state average growth in
their English Language and Literacy Assessment results, and more than doubling
the state average growth in writing. Similar results were brought home for the
Secondary Numeracy Assessment Program.

“Anecdotally, we'd been told things were really improving, but it was good to get
some data that confirmed that was the case,” Mr Mosey said.

Both sets of results point to how QuickSmart helped “narrow the gap”. Analysis has
identified impressive statistically significant gains that mirror the qualitative
improvements reported by teachers and parents.

Finally, it is worth reporting on the parents' perceptions of the program, in order to
“bring to life” the results already presented. Parents were interviewed about how they
felt their children reacted to the QuickSmart program. In all cases their views were
positive. Examples of parents comments are included below:

Parent 1: Our daughter thought she learnt heaps. It helped her greatly. We
appreciated the opportunity the program offered and we believe the
benefits for our child were great.

Parent 2:  He told me how well he was doing and how he was improving. His
speeds were getting better and so was his accuracy. He enjoyed the
work on the laptop. Yes, it was a good experience for my son and he
is alot more confident in his approach and more willing to take risks
with his maths.

Parent 3:  Joe told us about his lessons. He is very proud of his progress. It is a
good program and should continue for alonger period.

Parent 4: My daughter has improved her basic maths knowledge. She no longer
uses her fingers. | believe she has learnt a lot. She enjoys maths in the
normal classroom now.

These comments indicate that parents perceived improvements in their children’s
mathematical skills that went far beyond accuracy and retrieval times for number facts.
Many of the parents commented on an increase in personal confidence that their
children felt, as a consequence of the QuickSmart intervention. The realisation by
students that they can learn mathematics, and that they can play an active and positive
role in the classroom, was routinely commented upon by students and their parents.
Towards the end of the QuickSmart program, for example, one particular student
observed that he could “now think like the brainy kids.” It is comments such as this that
imply the greatest possible long-term value of the QuickSmart program: it brings about
changes in self efficacy for students based upon their realisation that they have made
(and can feel) genuine improvements in their learning, and understanding of their
learning.
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Overall, QuickSmart has accrued an extensive evidence base, covering several years,
showing that there is an alternative to failure for many middle-school students who are
not meeting National Benchmarks. The program provides a fourth, and potentially |ast,
phase intervention that will enable students to proceed satisfactorily with their studies,
for the remainder of their schooling. Many teachers who have been involved in the
program believe that QuickSmart is their last realistic chance of being able to help low-
achieving students in a sustained and, for students, in a sustainable way.

Four features of learning

This section reports on four features that have emerged from our observations of
students and teachers within the QuickSmart program. These features — student
characteristics, cognitive processing, deliberate practice, and feedback — are
particularly relevant to the target group of low-achieving students in the middle years of
schooling, but are also relevant to other groups of students who are not reaching their
learning potentials. At the basis of these four aspects lies the notion of developing,
within students, the ability to “trust their head”.

Student characteristics

Students who are persistently low achieving in mathematics exhibit a number of similar
characteristics. They utilise inefficient and error-prone approaches to learning and
recalling information. Effortful calculation of basic arithmetic facts precludes focus on
procedures and problem solving. Often finger strategies dominate simple tasks and this
compounds poor speed and accuracy with “the basics’. Geary (2004), is but one of a
growing group of researchers, who suggests that disruptions in the ability to retrieve
basic facts from long-term memory might be considered a defining feature of
mathematics learning disability.

These students also have learning gaps or misconceptions that impact on their class
or test performance. This translates in performances below national benchmark figures.
As aresult they report not having afeeling of control over their learning. Compounding
feelings of low self efficacy is the fact that, by the time some students are in the middle
years of schooling, they have been targeted for support in various forms for many years,
without success. These students could be described as “treatment resistant”. Thisis an
unfortunate term, but one that focuses attention on the grave plight, and difficult-to-
reverse situation, in which these students find themsel ves.

This point highlights what research has been telling us that low-achievers in
mathematics have considerable difficulty in developing automaticity in their number
facts. However, if this situation is not addressed, then the achievement “gap” between
these students and average achievers gets wider. Really, students need to be proficient
or fluent in basic mathematics before the end of primary education (when they are
around 11 or 12 years of age). Any real chance of students developing number sense, or
forms of mathematical reasoning in secondary school, depends on this occurring.

While poor self efficacy is prevalent, these students can also be described as
“classwise’. Thisterm (Pegg & Graham, 2007) is analogous to people being described
as “streetwise”. It highlights how these students have become familiar with the ways of
the classroom and how to “survive’ within it. Characteristics of this form of student
behaviour include the ability to have their lack of learning and understanding become
“invisible” to the teacher. For example, students may conceal their lack of basic skills
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through various behaviours like copying and denial, so that neither the teacher nor peers
are fully aware of their academic difficulties.

What features bring about change? The salient points related to QuickSmart
instruction were addressed earlier, however, a few need to be emphasised. Students
need time to acquire the desired skill and understanding level, and time to establish new
neural pathways. They need to be aware that during changes to cognitive functioning,
particularly early in the process, people are extremely vulnerable as they let go of
familiar routines and embrace new ones. Motivation is a key factor underpinning the
will of the student to try again because they want to improve their performance and
because they realise that simply doing what was unsuccessful before is not the best
approach. Improvement requires a genuine cognitive reorganisation of the processing
underlying the skill needed. One catalyst QuickSmart uses to bring about this change is
using time as a dimension of learning to build students awareness of their progress and
possibilities for improvement: i.e., through feedback and deliberate (systematic)
practice that is targeted at particular goals that are achievable and understandable for the
students such as between 35 to 40 flashcards correct in one minute.

Cognitive processing

There are three elements to this discussion of the role of cognitive processing in
learning. The first is about the meaning and functioning of working memory; the second
concerns the importance of automaticity, and; the third discusses how these ideas are
operationalised through the theoretical frame of the SOLO (Structure of the Observed
L earning Outcome) model (Biggs and Coallis, 1991; Pegg 2003).

Our view on mental activity is guided by Baddeley (1986) and his co-workers who
introduced the notion of working memory. Working memory is defined as a processing
resource, of limited capacity, involved in the preservation of information while
simultaneously processing the same and/or other information (Baddeley and Logie,
1999). This differs from long-term memory in which procedural and declarative
information is stored for long periods of time, and short-term memory where small
amounts of material are held passively and reproduced in an identical form to which
they were encoded. Activation of short-term memory draws upon minimal resources in
long-term memory.

Working memory is considered by Baddeley (1986) to have three components. These
are. a central executive system that interacts with two subsidiary storage systems. a
speech-based phonological loop for storage of verbal information and: a visual-spatial
sketchpad that is involved in the generation and manipulation of mental images. The
central executive system coordinates these two subsidiary systems, as well as activating
information from the long-term memory. Swanson and Siegel (2001) stated that thereis
also a mental work space that has limited resources and has a combined processing and
storage facility that is under the control of the central executive system, and can operate
in adistinct fashion from the two subsidiary systems.

We believe that difficulty with working memory capacity underlies many of the
problems low-achieving students experience in acquiring mathematical competence, or
undertaking more difficult mathematics tasks. Hence, a critical step in supporting these
students is to provide them with experiences that enable them to reduce the cognitive
load of processing basic skills. Similarly, if we can support students to replace effortful
(high cognitive load) strategies with more strategic, and less demanding, approaches
then their performances in mathematics will improve. One approach to reducing
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cognitive load and, hence, free working memory space is to develop automatic
responses in routine tasks.

It is our belief that automaticity in basic mathematics facts and skills is fundamental
to a student being mathematically proficient, and able to achieve success in higher
mathematics. Hence, an important part of teaching is helping students reduce the
cognitive load associated with basic and routine tasks to facilitate deeper mathematical
experiences. There are large processing demands associated with inefficient methods
and finger counting strategies, etc., as opposed to direct retrieval approaches.

The SOLO model offers us a potential framework to consider when and how
teaching might facilitate student development. In particular, SOLO can provide ideas on
where direct teaching, explicit teaching, and drill and practice are more appropriate than
indirect teaching where problem-solving inquiry, and reflective discussion, might be
more useful.

The SOLO model posits that there is a learning cycle comprised of a focus on a
single aspect (referred to as unistructural), followed by a focus on several independent
aspects (referred to as multistructural) and subsequently a focus on the integration of the
individual aspects (referred to as relational). This unistructural, multistructural and
relational cycle repeats itself with the acquisition of new ideas and concepts as well as
adapting to accommodate the growing abstraction of ideas.

QuickSmart is primarily focused on unistructural elements of learning where students
are helped to understand separate individual aspects related to basic mathematical facts
and, then, provided with an opportunity to focus directly on these specific aspects
through deliberate practice. The purpose of focusing on these unistructural elementsis
to reduce working memory demands that, in turn, frees working memory resources and
facilitates the development of multistructural thinking. At the multistructural level,
students have sufficient working memory space to access several aspects separately and
to undertake sequential procedures that do not require interconnections among the
aspectsto be utilised.

Hence, for both the unistructural and multistructural levels, directed learning or
explicit teaching is beneficial, and required, to help students come to know the
individual elements needed and to practice and consolidate their understandings.
Instruction that targets the integration of ideas, and attempts to move students into the
relational level, is more about creating an environment for students to make the links
themselves through their own motivation and understandings.

Deliberate practice

Practice, in terms of repeating similar procedures or exercises, has value in terms of
establishing routines for certain activities and, hence, reducing cognitive load. However,
in terms of moving students beyond their current state of performance, practice can
actually limit what can be achieved in education. Most practice, even when engaged in
over along period of time, leads to plateaus or ceilings in performance. The amount of
practice, past a certain point, does not necessarily lead to ongoing improvement in
performance. The reasons for this is that if students are to improve they must either
think differently about situations or replace inefficient strategy use. To obtain
improvement in performance there needs to be a cognitive reorganisation of the skill,
which is accomplished through targeted practice activities. Thisis achieved by applying
deliberate effort (or practice) to improve performance.

We use the term “deliberate practice” drawn from research that has explored and
attempted to explain expert performance in a range of areas outside of education
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(Ericsson, Krampe, and Tesch-Romer, 1993). For us, deliberate practice within an
education context takes four key positions. It:

» isahighly structured activity that has been specifically designed to improve the
current level of performance;

» allows for repeated experiences in which the individual can attend to critical
aspects of tasks;

* involves specific tasks that are used to overcome weaknesses; and
* enables performance to be monitored carefully to provide feedback.

Students are motivated to exert effort to improve because focused practice improves
their performance. Evidence of thisimprovement is available to all observers, and to the
students themselves. In QuickSmart deliberate practice takes the form of consistently-
encountered, supported and timed tasks that are graduated in terms of difficulty and
cognitive demands.

Feedback

Like practice, feedback is a complex feature of teaching and learning that is
fundamental to improvements in student achievement. However, there are some features
of feedback that make it particularly effective. We draw on the work of Hattie and his
colleagues (e.g., Hattie and Timperley, 2007) to explore these ideas.

Feedback needs to be carefully defined and used thoughtfully as an integral part of
instruction in order to engender student improvement. Hattie identified four levels of
feedback:

1.  Feedback about the self unrelated to performance on atask.

2. Feedback on self-regulation so that the student knows how to complete the task
with less effort and more success.

3. Feedback aimed at how the task is completed. This includes feedback on strategic
levels of understanding and how to process information required to complete the
task.

4. Feedback about the task that allows students to acquire more, different, or
improved information.

Hattie's argument is that these levels of feedback are least effective at the first level,
powerful at the second and third levels in terms of deep processing and task mastery,
and most powerful at the fourth level when information is used to improve strategic
processing.

With regards to QuickSmart, feedback is continuous — even relentless. It is our
belief that, without adequate feedback, students will not automatically improve. We
provide feedback in the form of praise when both the teacher and student can see that
there are genuine improvements in understanding or performance. However, the
majority of feedback is focused at a more strategic level. Feedback on activities
completed as part of the QuickSmart program provides information to students on what
they understand or do not understand, why the student is correct or incorrect, what
needs to be changed or improved, and what information needs to be focused on or
practiced in order to improve.

Thisform of feedback is linked to formative assessment practices, where the teacher
uses assessment information to focus and guide teaching approaches. Formative
assessment concerns finding out what the student understands and can do, during the
teaching/learning process as students are forming their ideas. It is this information,
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when shared with students, that seems to have the greatest possible effect in terms of
bringing about real change in student learning.

There are three further important characteristics of feedback. Firstly, feedback needs
to provide information to the student on the substance of their performance and, at the
same time, be supportive, yet challenging, to students. Secondly, feedback needs to be
delivered in such a way that it sets a context that will move students on, from their
current performance to the attainment of improved performance. Thirdly, feedback is
instrumental in allowing teachers and students to set realistic and attainable goals that
are clearly-defined, shared and continually move students towards improved
performance.

Within QuickSmart the process of effective feedback is facilitated because of the
small class instruction mode of delivery that enables and expects the teacher to monitor
and react quickly to students’ approaches to tasks, their understandings and errors.
Small classinstruction provides a context for immediate feedback to students, while the
consistent lesson structure of QuickSmart allows teachers the time and space to follow
the performance of students, through repeated trials (what we refer to as deliberate
practice) over an extended period of time.

It is possible that one important reason for low-achieving students' poor performance
isthat, in large class instructional settings, these students have not been able to receive
sufficient feedback on their performance to enable them to make the changes necessary
to improve their performance in mathematics.

Conclusion

In short, the QuickSmart program represents an innovative direction for supporting both
basic mathematics (and literacy) skills development. Our monitoring and evaluation of
the QuickSmart instructional approach since 2001, using quantitative and qualitative
indications, have already established that this program significantly improves basic
mathematical (and literacy) outcomes for educationally disadvantaged students (e.g.,
Graham, Bellert, Thomas, and Pegg, in press).

Since its inception in 2001, approximately 800 students have been involved in the
QuickSmart program. Without doubt, the focus of this work on changing the
performances of low-achieving students is an important one in school education. It is
also particularly important, in terms of intervention research, that findings are
rigorously evaluated because the student population targeted in this work is among the
most vulnerable in our education system (Dobson, 2001; Fuchs and Fuchs, 2005). It is
obvious that educationally disadvantaged students should only participate in
interventions that are accepted as educationally sound. Interventions, based on
unsubstantiated ideas, have the potential to take up these students’ valuable instructional
time and result in little, or no, maintained gains in performance (Strain and Hoyson,
2000).

Central to the research and ideas reported in this paper is the belief that carefully
obtained data collected over time are powerful in determining the robustness and utility
of educational interventions. In the case of QuickSmart our research has provided
additional insights concerning the role of working-memory and automaticity in
information processing. It aso has highlighted the need for further research.

This work is not easy. There are no quick fixes for students who have significant
difficulties in mathematics. For example, it takes considerable financial and human
resources to run the QuickSmart program and it is difficult to obtain sufficient funds to
provide arobust intervention to a sample population sufficiently large, so that statistical
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procedures can be appropriately employed. The importance of control and comparison
groups adds further to the cost and complexity of intervention research. However, such
work must be pursued so that an important avenue of help for low-achieving studentsis
not lost, but carefully explored and fully justified.

The benefits for students are immense. Programs such as QuickSmart change
students’ lives in profound ways. They allow students, who are consistently achieving
poor results in their classrooms, a chance to become active participants in the “main
game” of mathematics. Students who have been involved in QuickSmart report that
they:

» come to understand and are able to talk about their own learning as the program

progresses,

» are ableto establish goals and targets for their learning;

» beginto feel they can perform “just like the good kids’; and

» experience genuine improvement and success that encourages them to expend
more effort to improve — they are motivated from within.

Most importantly, students who have participated in QuickSmart begin to embody a
new confidence in what they have learnt, based on genuine observable improvements
that are obvious to their peers, parents, teachers and themselves. As students gain
confidence and become active contributors to their own mathematics learning, they
begin to succeed in ways that surprise themselves and that they can build on their
developed foundation to achieve further classroom success. QuickSmart students report
that they cometo “Trust their heads’ as effective learners of mathematics.
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Learning difficulties in middle years
mathematics: Teaching approaches to support
learning and engagement”

Judy Anderson
The University of Sydney

Excellent teachers of mathematics seek to support all students in their classrooms
(AAMT, 2006a). This aim can be challenged when teachers are confronted with a
class of 30 students from diverse backgrounds, with varying levels of
understanding, and in some cases, particular learning needs. In addition, student
disengagement in mathematics adds another layer of challenge. This paper
summarises findings from the literature into learning difficulties in mathematics
and presents a range of modifications and accommodations for the middle years
classroom. While targeting students with special needs, all students can benefit
from the recommended teaching approaches.

The AAMT communiqué Quality Mathematics in the Middle Years (AAMT, 2006b)
highlights the importance of supporting students at this critical time in their schooling.

[Students] experience mathematics as a coherent, meaningful and purposeful
aspect of their schooling that is connected to their lives as learners and as
adolescents developing into adults. Teachers gain great satisfaction from meeting
the intellectual and professional challenges they face, and working with colleagues
and the community to turn into a reality their belief that all students can learn, do
and enjoy mathematics (p. 5).

Most teachers are familiar with the experience of students in their classrooms who
have difficulty learning mathematics. These students often require considerable
assistance from the teacher and yet they still seem to have problems retaining
information and improving their knowledge and understanding. The types of learning
difficulties in mathematics are many and varied, all requiring specific modifications and
accommodations to support student learning. Individualised instructional materials,
withdrawal schemes and other special programs are all attempts to try to overcome the
burden placed on teachers. While there may be some advantages in using these support
procedures, teachers of mathematics are often best placed to support their students
learning by selecting teaching strategies suitable to their needs (Westwood, 2000).

Appropriate assessment and early identification of students with specific learning
needs are critical. In this paper, identification of these students is discussed and
accommodations, which relate to good teaching practice are outlined. Some students
who are identified as having learning difficulties are actually disengaged for other
reasons, which need to be considered and addressed by teachers. The importance of
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addressing language difficulties in the learning of mathematics is highlighted followed
by arange of appropriate teaching approaches.

Identification of students with learning difficulties

The focus of this paper is to consider strategies for supporting those students who are
having difficulty comprehending and retaining information in mathematics lessons, and
for those who are generally disengaged. Students with learning difficulties in
mathematics usually have processing problems that could include visual, auditory,
motor or memory problems (Steele, 2004). These difficulties may then affect visual
processing such as difficulty copying work from the board, auditory processing such as
difficulty interpreting oral instructions or general task-related behaviours such as
insecurity and lack of confidence. In addition, language difficulties can interfere with
reading, vocabulary, listening and making sense of new ideas (Bley & Thornton, 2001).
The discussion in this paper does not include those students who have special needs
such as the hearing impaired, sight impaired, emotionally disturbed or whose
development is severely handicapped.

Students with learning difficulties in mathematics classrooms may be readily
identified as they can exhibit one or more of the following behaviours. disruptive or
withdrawn; ask many questions to the point of being a nuisance; leave books and
equipment at home or lack general organisation; have a very short attention span;
readily forget the work from yesterday’s lesson; have trouble finding the questions in
the textbook, or confuse the meanings of symbols and words in mathematics. Targeted
diagnosisis necessary and may be facilitated by the specia needs teacher at your school
or the school counsellor. Interview protocols or specifically designed tests are also
available for this purpose (e.g., Booker, 1994). However, when attempting to diagnose
the nature of students’ difficulties, Geary (1994) notes the following word of caution.

In our studies, roughly half of the children who had been identified as having a
learning problem in mathematics did not show any form of cognitive deficit...
These children probably perform poorly in mathematics because of a lack of
experience, poor motivation, or anxiety... (p. 157)

The real issue then becomes one of deciding exactly what can be done in the
classroom to help support the disengaged students as well as the students with learning
difficulties as they attempt to learn mathematics. Consideration needs to be given to
enhancing engagement and motivation as a first priority through the provision of a
supportive learning environment and opportunities for success, as well as to exploring
the possible modifications and accommodations which address learning difficulties. So
what advice is provided for teachers in the literature about student engagement and
learning difficulties in the middle years of schooling?

Recommended teaching approaches

Excellent teachers make “a positive difference to the learning outcomes, both cognitive
and affective, of the students they teach” (AAMT, 2006a, p. 4). To meet the needs of
the full range of students, teaching practices should incorporate a range of approaches
and accommodations to promote attitudes and engagement as well as understanding and
meaning making of mathematics. These accommodations can involve changes in
teaching style which could include variations to the pace of instruction, increased use of
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suitable materials and a wider variety of activities, and changes in the curriculum to
include problem solving as well as consolidation (Chinn, 2004; Steele, 2004,
Westwood, 2000).

Addressing attitudes and engagement

Engagement is an important element of quality teaching and learning which helps to
promote working mathematically (Anderson, 2005). Lack of engagement may be
evidence of a poor attitude which interferes with learning. What causes such attitudesis
an important consideration when planning for quality teaching and learning. Students
will often develop a poor attitude if they see mathematics lessons as boring, the work as
difficult or irrelevant, or if they continually fail assessment tasks. Certainly students
need to become competent in carrying out basic numerical operations but if these
procedures are rehearsed daily using the same teaching strategies then it is not
surprising that many students will describe mathematics lessons as boring. Review is
important and consolidation is necessary to enhance recall and support automaticity but
adiet of pure arithmetic is hardly inspiring, particularly if this rehearsal is continually
performed alone from sheets or textbooks. A variety of teaching strategies including
cooperative learning activities, games, prompts, demonstrations and concrete materials
may assist. However, organisation, planning and structure are still important.

Students with learning difficulties need teachers to spend most of their time teaching
within a positive, orderly and predictable classroom (Spencer, 1994). Students should
know exactly what is required of them and be given clear direction before independent
practice. Identifying errors in work samples helps to highlight misconceptions and
allows for targeted practise and a focused teaching approach (Anderson, 1996). Regular
and consistent feedback is necessary and students need to be aware that they can learn
from errors.

For those students who have only ever received poor marks in mathematics, the
expectation of continued failure is enough to destroy any interest or enthusiasm to learn
and may result in lack of participation and disengagement. This can then lead to anxiety
about mathematics with a fear of taking examinations. Praise and positive support are
critical so that students believe they can be successful and will be prepared to be
challenged and even take some risks. Martin (2003) recommends the use of PBs
(personal bests) so that students set goals and aim to improve their individual
performance. Keeping atrack of performance through charts and graphs (Steele, 2004)
or personal logs (Martin, 2003) assists goal setting and enhances motivation and
engagement. Building sound relationships between teacher and student helps to enhance
a positive self-concept and the feeling that improvements are possible and worthwhile
aiming for.

Addressing learning difficulties

A range of modifications in practice can be used to address specific learning difficulties
(Steele, 2004). For example, advance organisers help students keep track of lessons.
Noting on the side of the whiteboard the steps in a lesson at the beginning helps
students follow the progression of the teaching sequence. If new work is presented too
quickly with not enough time for students to think and absorb the information or if the
prerequisite skills have not been developed then it is also not surprising that
mathematics is seen as a difficult subject. This problem is further compounded if each
lesson represents a new and unique idea with few connections made to existing
knowledge.
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Students learn at different rates and many students are exposed to abstract concepts
well before they can make sense of these ideas (Westwood, 2000). Bley and Thornton
(2001) emphasise the use of concrete experiences for all new concepts. However, if
students experience motor problems, the materials may not be easy to handle. Some
students may be distracted by the materials and may not be able to make the necessary
links to the mathematical concepts being portrayed (Steele, 2004).

If necessary, tasks need to be modified by altering quantity, level of difficulty,
presentation, or the time allowed (Spencer, 1994). Tasks become more manageable by
breaking them down into subtasks. When asking questions, students with learning
difficulties need a longer wait time. Spencer surveyed students who reported that they
learn better if they are given one instruction at atime, they have more time, they can see
apurpose in the learning, and if the teacher helps them to organise their work. Students
need to be taught how to organise themselves as well as how to summarise, revise work,
study for atest, and sit for an examination.

Language difficulties in learning mathematics

L anguage hel ps students organise knowledge in both written and oral form (MacGregor
& Moore, 1991). To that end, students need opportunities to read mathematics, to write
about mathematics, and to talk about mathematics using their own language. For some
students, language difficulties interfere with their learning as they attempt to make
sense of new language demands. For example, students may experience difficulty
converting between words to numbers (Miller & Mercer, 1993). In addition, the
vocabulary of mathematics can create problems for students (Chinn, 2004; MacGregor
& Moore, 1991). Students who have difficulty with reading and comprehension
experience problems when mathematics is presented in real contexts, frequently with
much information to comprehend and interpret (Newman, 1983).

Many students have difficulties with the technical as well as the symbolic language
of mathematics and reading mathematical textbooks is challenging. The vocabulary,
symbol system and technical language confronted in textbooks must be discussed with
the students (Shield, 1991). Textbooks should be read aloud in class so that students
practise saying mathematical terms, they ask questions to clarify understanding, and
become familiar with the language used in problems and exercises. Students often
report that they did not do set homework because they could not interpret the questions
or instructions. Extra time in class needs to be allocated to reading the homework
exercise particularly for the benefit of those students who experience reading and
comprehension difficulties.

Investigations and projects require clear communication of mathematical thinking.
Writing activities support the development of students’ use of mathematical language
(MacGregor & Moore, 1991). However, higher-order thinking skills are required and
this can be extremely difficult for students with learning difficulties. Allowing students
to work in mixed-ability groups to complete writing tasks will help to reduce anxiety
and give students the opportunity to share and clarify understandings (Ridlon, 2004).
Suitable writing tasks include writing prompts, open-ended questions, and journal
writing.

Supporting problem solving

Many students perceive that school mathematics is totally irrelevant and does not have
any application to their future aspirations. Achieving good grades in external
examinations may be the only motivation to try to understand the concepts confronted
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in each lesson. Mathematics would be seen as more useful if connections were made
with problem-solving situations related to everyday experiences.

Ridlon (2004) explored the impact of a problem-centred mathematics curriculum on
26 low-achieving Grade 6 students over a nine-week period, and compared their
learning to a control group who were taught the same concepts using a more traditional
textbook approach. She reported significant improvements in both attitudes and
achievement for the experimental group citing evidence from the students, their parents,
and an independent observer in the classroom who could not believe they were the “low
achievers'.

Modelling the process of problem solving and providing prompts helps students to
ask the right questions and organise their thinking. Another useful strategy is to use
acronym mnemonics, which help students to remember the steps in the problem-solving
process. One exampleis SOLVE (Miller & Mercer, 1993) where each letter stands for a

separate step:

Study the problem.

Organise the facts.

Lineup aplan.

Verify your plan with computation.
Examine your answer. (p. 80)

agrwdPE

This strategy helps those students with memory deficits although all students will
benefit from using this organiser as it promotes the use of metacognitive strategies.
Awareness of one's own thinking is critical in the problem-solving process as it gives
the student control and helps them to organise and plan a solution. Not understanding
what the problem is about and misinterpreting the language used in mathematical
problems can lead many students to additional difficulties in mathematics (Newman,
1983).

While these recommendations are not new and represent good teaching practice,
many teachers still spend a disproportionate amount of time on the practice of
computation skills without trying to develop understanding or without giving students
the opportunity to think mathematically. Problem solving is accessible to these students
provided the teacher chooses the right problems. Open-ended problems are ideal for use
in mixed-ability classrooms as they allow all students the opportunity to make an
attempt at the problem. Sullivan, Zevenbergen and Mousley (2005) have used open-
ended tasks with enabling prompts for students who experience difficulty making a start
on the problem.

Conclusion

In this paper, many issues related to teaching students with learning difficulties have
been outlined as well as a range of recommended teaching approaches to support
learning. Critical to this support is the provision of a classroom environment which
supports the learning of all students. Often this will mean addressing poor student
attitudes and disengagement, possibly resulting from continued failure. Providing
opportunities for success in a positive, non-threatening classroom will do much to help
many students begin to want to learn and enjoy mathematics.

Other important modifications may be required to support the learning needs of
particular students. The difficulties which these students experience can be a result of
ineffective processing of information, poor retrieval skills or language problems

© The Australian Association of Mathematics Teachers Inc.

51



Mathematics: Essential for Learning, Essential for Life

Suggestions have been made to help mathematics teachers in their endeavour to teach
these students. These are worth considering as all students may in fact benefit from the
variety of new teaching strategies.

Finally, good teaching practice provides opportunities for students with learning
difficulties to experience success. Teacher expectations can strongly influence the
performance of these students and so teachers are encouraged to reflect on their
attitudes towards learning difficulties students. There is evidence that teachers tend to
demand less work, give less feedback, ask fewer questions, criticise more often and
have less friendly interactions with low achieving students (Brophy & Good, 1987). It is
important that all students are supported to improve their knowledge, skills and
understanding in mathematics by focusing on effort to enhance students' self-esteem
(Martin, 2003).
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From here to there: The path to computational
fluency with multi-digit multiplication”

Janette Bobis
University of Sydney

Drawing upon research, theory, classroom and personal experiences, this paper
focuses on the development of primary-aged children's computational fluency with
multi-digit multiplication. Getting children from 'here' (current strategy use) to
'there' (a more efficient strategy) is often not a straight-forward path. The critical
links between number sense and a child's ability to perform mental and written
computation with ease are examined.

Many readers will know the story of the famous mathematician Johann Carl Friedrich
Gauwss (1777-1855). As a young boy he was prone to daydream in class. One day his
teacher decided to punish him for not paying attention. He was asked to add all the
numbers from 1 to 100. Much to the annoyance of the teacher, young Carl was able to
derive the correct answer in seconds. Fortunately for Carl, he knew a short-cut. He
realised that adding pairs of nhumbers (e.g., 1 + 100, 2 + 99, etc.) al equalled the same
number: 101. He figured that there were 50 such pairs, so calculated the total to equal
50 x 101 or 5050.

Recently | related this story to a group of primary-school teachers. One teacher
immediately asked, “But who taught him that?’ This question sparked a discussion
about the critical relationship between a person’s understanding of mathematics and
their computational fluency. The teachers agreed that Carl’ s in-depth understanding of
mathematics enabled him to see patterns and relationships that made the computation
more manageable, but that his knowledge of basic facts and the fluency with which he
could compute were equally important. The teachers concluded that understanding
without fluency can inhibit the problem solving process.

This paper focuses on the development of primary-aged children’s computational
fluency. It emphasises the critical links between number sense and a child’s ability to
perform mental and written computation. The case of multi-digit multiplication is used
to illustrate these important links.

Computational fluency:
Number sense and the standard algorithm

The idea of teaching mathematics for understanding and for meaningful learning to
occur has been advocated for over half a century (Brownell, 1935). However, it was not
until the 1980s that the term “number sense” was first used to refer to those who had a
deep understanding of numbers. The focus on number sense is manifested in the recent
and on-going emphasis in international curriculum and policy documents on mental
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computation (e.g., Australian Education Council, 1991; National Council of Teachers of
Mathematics, 2000). Research has shown that those who are good at mental
computation possess a well-devel oped sense of number (Mclntosh & Dole, 2000).

The increased emphasis on mental computation and number sense has seen a
corresponding de-emphasis in curricula on standard algorithms. An algorithm is a
specified multi-step procedure that produces an answer for any given set of problems
and is characterised by long-term practice. While still recognised as important, some
Australian state syllabus documents have delayed the introduction of standard
algorithms for around two years to allow a focus on mental strategies for as long as
possible (e.g., Board of Studies, New South Wales [BOSNSW], 2002). The worry with
an early emphasis on standard algorithms is that students will shift their focus to
executing convenient procedures rather than on understanding the mathematics.

A concern is that educators will view the development of number sense and fluency
in written and mental computation as separate bodies of knowledge requiring separate
instruction. In fact, computational fluency, whether employing mental or written
methods, and number sense are intertwined and should be developed together. The aim
of the following sections is to examine how children develop proficiency in their
computational methods while instruction remains focused on learning with
understanding.

Understanding the development of children’s strategies

While a number of research-based “frameworks’ provide excellent descriptions of
learning pathways by which children’s computational strategies develop, they fail to tell
us about how children progress to use a more efficient strategy in preference to another
less efficient one. It isimperative that teachers understand how children make this shift.

As children become more competent mathematicians, they develop a variety of
thinking strategies for solving mathematical problems. Generally, children initially
apply basic counting strategies to help them solve simple numerical problems before
moving onto using more complex non-counting strategies. While the strategies that
develop usually become more sophisticated as children learn more efficient ways of
doing mathematics, it is now well acknowledged that at any one time, a child will use a
multiplicity of strategies and that often these strategies will not be the most efficient
ones a child is capable of performing. Such inefficient strategies persist because while
they may be slow, they eventually yield the correct answer (Gould, 2000). When a child
is placed under some form of cognitive demand, such as an imposed time limit, mental
fatigue or even boredom, they will often revert to a less sophisticated strategy that they
know well and can perform with minimal effort. A nine year old explained this to me
once while | questioned her about her strategies for addition:

| know when | just have to add a small number—say five or less—then its fast for
me to count by ones. But if its 20 or 30 to add, then | will stop and think of a better
way that does not use just ones because | know it will take me too long to count
that many. Sometimes | just want to count by ones because it's too hard to think of
another way.

| learnt from this little girl that children modify their strategy use according to at
least two things: the demands of the mathematical problem and the limitations of their
knowledge. Another influence on children’s choice of strategy that | have observed
during my time in schools is that of textbooks or even teachers themselves. In the
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attempt to introduce students to a variety of mental and written methods, instructional
material may overemphasise or specify the use of a particular strategy or scaffold (e.g.,
the empty number line) when students are already working beyond what is specified
(see Bobis & Bobis, 2005). The challenge for teachers is to encourage the devel opment
of, and consistent use of, more efficient and appropriate strategies for solving
mathematical problems without it being “too hard” for children. To do this, it is
imperative that teachers not only understand what these strategies are, but how a more
efficient strategy becomes a student’ s preferred strategy even when placed in a stressful
situation. The diagrammatic representation of Siegler’s (2000) overlapping wave theory
has helped further my own understanding of how this can be achieved (see Figure 1). |
have shared Siegler’'s theory with practicing and prospective teachers and found it
beneficial in explaining how a more efficient strategy can become a child’'s preferred
strategy.

Siegler’s (2000) overlapping wave theory is based on three assumptions: (1) children
typically use a multiplicity of strategies to solve a single problem; (2) less and more
efficient strategies may coexist over prolonged periods of time and not just for short
periods of transition; and (3) the relative reliance on existing and more efficient
strategies can be changed given appropriate experiences. The first two assumptions are
represented diagrammatically in Figure 1. The third assumption is addressed later in this
paper.

‘ Strategy 4

Strategy 1 Strategy 5

Strategy 2

Percent Use

Figure 1. Diagram representing Segler’s overlapping waves model.

It can be seen from Figure 1 that at any one point in time, a student may use a range
of strategies. However, the relative frequency with which particular strategies are used
over time may vary continuously, with new strategies becoming more prevalent and
some more inefficient strategies stopping. By following the path of a single strategy, it
can illustrate how some strategies will often be used for a prolonged period of time even
after more efficient strategies have been introduced. This can be exemplified by a
student who uses counting-on by ones to solve simple addition problems such as 7 + 2
asab year old, and who continues to use the same strategy to solve 47 + 12 asa 10 year
old. Siegler suggests that as a child progressively learns more efficient strategies they
pass through four dimensions or components of change. These components range from
the initial use of the strategy, which in some cases may at first be used at an
unconscious level, to a stable, precise and efficient use of the strategy. The four
dimensions along which learning occurs include:

1. Theacquisition or introduction of a more advanced strategy;
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2. Anincreased reliance or frequency of use of the new strategy within the set of the
child’s existing strategies,
3. Anincreased appropriate choice of the strategy; and
4.  An improved execution of the more advanced strategy that can lead to it
becoming increasingly automated.
While this model for strategy development is based on the assumption that children
learn by doing, it is important to emphasise that simply drilling the strategies is not
enough. Understanding is also crucial. We know that the greater the degree of
understanding, the less practice that is required to obtain fluency and to sustain the
change in strategy use. Additionally, each new strategy competes for a long time with
more familiar strategies, so it may not be used consistently as their preferred strategy
for some time and there may be occasions when a child seems to regress in their
strategy use. In other words, getting children to move from their current array of
preferred strategies (the “here” strategies) to a more efficient strategy (the “there”
strategies) is not a straightforward process.

The case of Crystal and multi-digit multiplication

| first met Crystal when her Year 6 teacher asked me to assist with the development of
an intervention program for a small group of studentsin her class. These students were
experiencing difficulty with the algorithm for multi-digit multiplication and the teacher
was unsure what remediation was needed. This section details the journey to
computational fluency of one child from that group.

Frameworks describing developmental pathways of children’s thinking strategies for
addition, subtraction and single digit multiplication are now quite common (see, Bobis,
Clarke, Clarke, Thomas, Young-Loveridge, Wright & Gould, 2005) and some are
actually embedded into curricula (e.g., BOSNSW, 2002; Van den Heuvel-Panhuizen,
2001). However, much less is known about multi-digit multiplication. Fuson (2003)
reports preliminary research that reveals children use a progression of strategies from
(a) direct modelling with concrete materials or semi-abstract drawings, to (b) methods
involving repeated addition, such as doubling, to (c) partitioning methods. Partitioning
strategies normally include the partitioning of one number or both numbers into tens
and ones or partitioning by a number other than 10.

The standard algorithm for multi-digit multiplication most commonly used in NSW
primary schools requires a number of stepsinvolving multiplication and addition. It also
relies on the answers at each step being properly aligned according to their correct place
value. Such alignments can be accomplished without any understanding of a number’s
true value. In Crystal’s case, errors in her multi-digit multiplication were the result of a
range of factors. The single-digit multiplication work samples in Figure 2 indicate that
Crystal could efficiently solve single-digit computations when multiplying by numbers
less than 7. However, she did not know all her multiplication facts from 7 onwards, thus
hindering her computational fluency. This was later confirmed in an interview with
Crystal. She had memorised most facts to 6x10, but seemed unaware of the
commutative property of multiplication. Hence, she was unable to see that 6x8 was the
same as 8x6. In addition, the work samples indicate that Crystal was not only making
procedural errors when carrying, but that she had little understanding of place value
when multiplying by tens. This is a very common error in students execution of the
algorithm for multi-digit multiplication and is generally a result of learning the
procedure by rote. To overcome these procedural and conceptual errors, Crystal needed
to understand the distributive property of multiplication.
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Figure 2. Examples of Crystal’s single digit and multi-digit multiplication.

A program of work starting with Crystal’s understanding of the commutative
property of multiplication was implemented by the classroom teacher. It was decided to
strengthen Crystal’ s knowledge base of single-digit multiplication before moving to the
more difficult multi-digit multiplication computations. While this initial instruction
spanned a few weeks, it is the understanding of the mathematics underlying multi-digit
multiplication that is my focus here. It was during our search for a strategy to help
Crystal understand the underlying mathematics that the classroom teacher and | learnt
most about Crystal’s mathematical abilities and about teaching multi-digit
multiplication via a number sense approach.

We soon learnt that if Crystal was going to develop an understanding of the
distributive property of multiplication, it needed to be presented in avisual form. Early
attempts to explain this property through purely abstract means (e.g., 14x 5=10x 5+
4 x 5) had little success. Visual representations of double-digit numbers became very
cumbersome and messy for Crystal, thus making the learning and teaching tedious. It
was at this point that we encountered a method involving partitioning of numbers
according to their place value and a convenient visual model (Fuson, 2003). We started
by introducing Crystal to array’s incorporating tens and ones (see Figure 4 for an
expanded and abbreviated model of an array). The visual representation supported
Crystal’s understanding of multiplying all the combinations in two double-digit
numbers.
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Figure 4. Array structures used to model all combinations in multi-digit multiplication.
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The array models scaffolded the introduction of mental strategies involving
partitioning, and at the same time provided a convenient representation of the
distributive property of multiplication. Within two weeks of instruction, the visual
representation of the array was unnecessary and Crystal was able to record her thinking
numerically (see Figure 5). As she gained more confidence with this process, Crystal
eventually took short-cuts and discarded recordings to the right of the algorithm.

A = 3'0{, h
x 16 =~ "o+ 76k
71 O O - [Ox.gc

24 = 4 b
L& O <304 &
280 = Tox %
25 %4

Figure 5. The distributive property is emphasised to assist understanding of the algorithm.

While this sequence of instruction was first introduced to cater for the needs of
Crystal and a few other students in the class, the teacher decided to integrate the array
model into her regular classroom teaching of multi-digit multiplication. After
witnessing the benefits of this process of instruction the teacher interviewed more
students from her class to determine their level of understanding of multi-digit
multiplication. She was alarmed to find many other students implementing the standard
algorithm correctly, but without understanding the underlying mathematics.

Conclusion

High levels of efficiency in computation remain agoal of our mathematics curricula; the
process by which it is achieved needs to take account of how students develop a sense
of number. The path to computational fluency is not a straight-forward one for most
students. However, it is clear that the promotion of number sense is critical to a basic
understanding of mathematics and to a child s ability to compute easily.
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Collaborative development of a framework for
numeracy: A case study”

Natalie Brown Pat Rothwell Scott Taylor
University of Tasmania Department of Education University of Tasmania

A major curriculum reform in Tasmania has provided the impetus for teachers to
reconsider the place of numeracy in the curriculum. As one of the Key Elementsin
an Essential Learnings Curriculum, “ Being Numerate” has been the focus of
professional learning throughout the state, addressing teaching, learning and
assessment. This paper describes a project implemented at one primary school
where teachers negotiated with researchers to develop a framework for the
teaching of numeracy in the school, drawing on curriculum support materials and
teachers understanding of the school context.

Introduction

Curriculum reform in Tasmanian schools has centred around the implementation of an
Essential Learnings framework (Department of Education, Tasmania (DoET, 2002;
2003). This framework has provided a catalyst for professional learning programs and
the development of centrally produced support materials designed to assist teachers in
implementing the new values-based curriculum.

Being Numerate is recognised in this curriculum framework as a cross-curricular
understanding, and one that isimportant for development in all students:

Being numerate involves having those concepts and skills of mathematics that are
required to meet the demands of everyday life. It includes having the capacity to
select and use them appropriately in real life settings. Being truly numerate
requires the knowledge and disposition to think and act mathematically and the
confidence and intuition to apply particular principles to everyday problems.
(DOET, 2002, p.21)

This shift in emphasis, together with a set of defined outcomes and standards (DoET,
2003) has required teachers to reconsider the teaching of numeracy, in a climate where
they have been met with a number of other challenges. These challenges have included
the need to adopt different planning practices — using the features of the Teaching for
Understanding (TfU) framework (Blythe, 1998) and where possible to plan cross-
curricular and collaborative units. Teachers have also needed to think outside of the
traditional Key Learning Areas as organisers and, with content not prescribed, consider
what they will teach and importantly, why they are teaching it. This is then linked
closely with how the teaching will occur — closely matching purposes with appropriate
teaching, learning and assessment activities.

The MARBLE (Mathematics in Australian Reform Based Learning Environments)
research project was conceived in the context of this curriculum reform, focussing on
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the Middle Y ears (5-8). Recognising this as a critical time to support teachers as they
work through the challenges outlined above, the project aims to improve student
numeracy outcomes through provision of teacher Professional Learning. The
importance of paying attention to teaching and learning practices required for the
success of curriculum innovation is not new. The work of Fullan (1993) addressed this
in the broader context of Educational reform, with Clarke (1994) specifically addressing
this need with respect to supporting reform amongst mathematics teachers.

The researchers recognised that there are a number of important factors that
contribute to successful Professional Learning. Two key features that have been
identified in the seminal work by Hawley and Valli (1999) are the involvement of
teachers in the identification of what they need to learn, the process to be used and the
facilitation of collaborative problem solving. In terms of mathematics, Schifter (1998)
found that professional learning experiences in which teachers were engaged with the
content of the mathematics curriculum that they taught, in ways that challenged and
deepened their own mathematical understandings, assisted them to make significant
changes in their classroom practice. The importance of involving teachers in the
professional learning process, and the need for collaboration is further borne out in the
review of Ewing et al. (2004).

In order to address specific areas of concern for individual teachers and schools
involved in the MARBLE project, in the manner described above, schools were invited
to participate in school-based case studies. The focus of these was negotiated between
teachers in schools and the researchers. In the present study, teachers expressed a need
for a whole school framework for the teaching of numeracy consistent with the new
curriculum outcomes and standards. It was agreed that the development of this
framework was to take into account both the curriculum documents and the teachers
own knowledge of context and current practice.

Method

The underpinnings to this research lie at the intersection of pragmatic and participatory
research paradigms (Creswell, 2003). Steeped in the “real world” of the teacher making
everyday decisions about curriculum content, the researchers have adopted a
collaborative approach with the teacher participants, involving them in design,
collection of data and data analysis. The final phase of the project will involve teachers
and researchers producing a document that can be used to outline a scope and sequence
for the teaching of numeracy in the school.

Consistent with a case study approach, the project was sited in a single school which
conforms to Stake's description of a “bounded system” that is “complex” and
“dynamic” (Stake, 1980). The study took place at Valleyfield Primary School, a
government K—6 school situated in arural areain Southern Tasmania.

The project consisted of the following phases:

1. Identification of the school focus through consultation between teachers and the
researchers. A key participant in this stage was the coordinating teacher at the
school who worked as part of the research team.

2. Preparation, by the researchers, of rubrics describing teaching emphases at each
standard for each strand of the numeracy/mathematics curriculum. These rubrics
used the strands defined by National Statements on Mathematics for Australian
Schools (Curriculum Corporation, 1990) and the curriculum support document
“Teaching Emphases’ prepared by the School Education Division of the DoET,
(DOET, 2005). The latter outlines the teaching and learning focus for each of the
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strands at each of the developmental standards. For the primary school, Standards
One to Three are appropriate for most students, with each standard being divided
into three divisions (lower, middlie and upper). An example of the audit rubric is
reproduced in Figure 1.

The undertaking of an audit of numeracy teaching and learning in the school
against the rubric by all staff at the school. This occurred after the documents
were introduced by the researchers at a staff meeting. Teachers were invited to
take away all rubrics that were relevant to the students in their classes. In addition
to the audit, teachers were invited to add any teaching and learning activities they
had found to be particularly successful or relevant and any resources that were
useful.

Standard/ 3 Middle
Progression

Thinkin g an d actin g Focusing on reflecting, refining and sharing strategies for problem solving.
mathematical |y Using different strategies to comparing strategies to determine efficiency.

Continuing to build specific mathematical terminology and recoding methods.
Developing confidence with mathematical language and recording methods to communicating
their numerical understandings to a wider audience.

Number Continuing to focus on mental computation with multiplication and division.

Focusing on refining and sharing mental computation strategies in addition, subtraction,
multiplication and division.

Building a deep understanding of common fractions through the use of a wide range of
approaches (not over emphasising “pizza” fractions for example) including an explicit focus on
partitioning. *

Beginning to independently select a strategy to selecting the most efficient mental
computation strategies and justifying their choice.

Exploring a range of informal written computation methods for addition and subtraction of 2
digit numbers to establishing a secure written method for addition and subtraction

Measurement Developing skills in measuring length, mass, time, angle and capacity

Providing opportunities to quantify attributes [length, mass, time, angle, volume (capacity) and
temperature] for the purpose of comparing and/or ordering.

Using formal measurement units (and tools) with teacher guidance to using the appropriate
unit (or tool) for length, mass, time, angle, volume (capacity) and temperature more
independently

Patterning and algebra Making predictions based on the growth of a pattern e.g. ‘If one costs fifty cents, then | can
find how much it costs to buy 20 by multiplying fifty cents by 20. So, 10 lots of $0.50 is $5 and
| can double that

Making predictions using simple patterns based on costs to making predictions using a
broader set of contexts.

Systematically recording patterns in a table to connecting how a table, a set of diagrams and
words can represent the same pattern.

Proportional reasoning

Space Focusing on how 3D objects are constructed from 2D nets.

Identifying shapes to constructing and deconstructing shapes and objects based on specific
attributes e.g., “What shapes would | need to make a model lighthouse?”

Reading maps to constructing simple maps taking into account orientation.

Data and chance Exposing students to a range of ways to record data and developing their confidence to
construct different graphs and charts.

Collecting and representing data in simple bar graphs and charts to using an increasing range
of data representations — stacked dot plots and pictographs (including use of technology).
Interpreting data in order to quantify differences between items in the data set.

Analysing data to locate measures of centre (median and mode) and spread (range) with
teacher support.

Exploring fairness through experiences with chance devices such as spinners, dice, cards,
etc.

Figure 1. Example rubric used for audit.

Initial analysis of the audit was used to produce a summary of teaching and
learning in the schools and which was subsequently presented to staff for
comment.
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2. Supplementation of the audit data through individual staff interviews.

3. Anaysisof databy Strand and Grade and preparation of a draft document.

4.  Presentation of Draft sequence to staff for further refinement and for reference to
revised curriculum being produced through the DoE.

Results

The initial audit completed by the teachers was analysed against the “Teaching
Emphases’ document based on the Being Numerate Outcomes and Standards (DoET,
2004). The results are summarised in Figure 2. This graphic representation indicates the
proportion of each of the strands (represented by colours consistent with the audit
documents) covered in each of the grades at Valleyfield Primary.

Analysis of the audit indicated that the majority of the curriculum for Standard 1 was
covered by the Prep teachers. Grades 1-2 appeared to concentrate on curriculum foci
for Standard 2 (Lower), Grades 3—4 on Standard 2 (Upper) and Standard 3 (Lower) and
Grades 4, 5 and 6 covering material predominantly from Standard 3. Interestingly, the
two teachers with composite Grade 5 and 6 classes indicated they also covered material
from Standard 2 (Upper).

The extent to which teachers provided additional information in the audit process
varied, however the Prep teachers provided comprehensive information on both
teaching and learning activities and resources that they had found useful. Nevertheless,
many teachers took this opportunity to share resources, and in some cases noted units or
cross-curriculum contexts for numeracy that they had found to be successful:

Where is number in our world?
Attendance

House numbers

Telephone

Measurement: Use with integrated units
Growing plants
Body measurements

Two significant findings from this audit concern what had been indicated as not
covered by the teachers. No teacher had indicated coverage of the curriculum
designated at the Standard 2 (Middle) level. Additionally, there were substantial areas
of the curriculum that did not appear to be covered. Very little Pattern and Algebra was
listed as being taught above Standard 2 (Upper). Similarly aspects of Number and
Thinking Mathematically were not covered in either grades 4, 5 or 6.

Raising alarm bells, these findings were looked at more closely with a view to
uncovering reasons for gaps in the curriculum. It became clear that not all teachers had
returned their audit rubrics, and in some shared classes, only one of the teachers had
completed the audit. In the latter instance, teachers had under-reported what the class
had covered, documenting only material taught during their teaching time. In
consultation with the coordinating teacher, it was decided to present the data and ask
teachers how best they believed we could address the issue of missing data.
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1Lower |1 Middle

2 Lower [ 2 Middle| 2 Upper| 3 Lower | 3 Middle| 3 Upper

Covered

Mot
Covered

1102 1lower |1 Middle [ 1 Upper | 2 Lower | 2 Middle| 2 Upper | 3 Lower | 3 Middle| 3 Upper

Covered

Mot
Covered

3 Lower

Jtod 1Lower |1 Middle [ 1 Upper | 2 Lower | 2 Middle

3 Middle| 3 Upper

Covered

Mot
Covered

3 Lower | 3 Middle

410h 1Lower |1 Middle [ 1 Upper | 2 Lower | 2 Middle| 2 Upper

Covered

Mot
Covered

Stoh 1Lower |1 Middle [ 1 Upper | 2 Lower | 2 Middle 3 Middle

Covered

Mot
Covered

Figure 2. Overview of coverage of each outcome and standard from first reporting cycle.

Presentation of the datain overall form, and Standard by Standard, occurred at a staff
meeting and staff were asked to indicate how to proceed. The comprehensive nature of
the information provided by the staff of the Prep classes was used as a model, with staff
agreeing to pursue the audit via individual teacher interviews with the researcher.
Teachers were provided with relief and asked to bring their mathematics plans for the
year to the interview.

The teaching, learning and assessment covered by each of these teachers was clearly
identified during the interviews and used to amend the audit and identify areas that were
poorly represented in the curriculum. This two stage process enabled teachers
themselves to recognise areas of the curriculum that were missed, or received scant
attention. In particular, Chance and Data, Space and Pattern, and Algebra were singled
out by upper primary as receiving less attention, with teachers focussing more on
Number and aspects of Measurement.
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In addition to informing the audit process, the teacher interviews provided valuable
supplementary data to the researchers. This included an insight into the issues faced by
teachers in this context and informative comments on the process used during the
professional learning program. All teachers interviewed could see the value in a school
wide document outlining the numeracy curriculum. In particular, teachers of the higher
grades faced with struggling students saw value in knowing what material had been
covered previously, and how this had been covered. Teachers new to the school also
found it difficult to plan their mathematics program in the absence of any whole school
plan.

In terms of the process of data collection, one teacher commented that he had found
the process valuable because he “was put on the spot.” The opportunity to reflect on his
own mathematics plan, and its implementation, was clearly personally valued. Although
timing of the interviews (in the last full week of the school year) was slightly
problematic, all teachers indicated they found the process straightforward and thought
the exercise worthwhile. Teachers also indicated support of the structure of the
professional learning program MARBLE, seeing the individual school Case Study as
complementing the cluster-wide professional learning days. Indeed, all teachers
indicated that they had successfully incorporated ideas and activities from these days
into their classrooms.

The amended audit, including teaching and learning ideas and teacher resources, was
then used by the researchers to construct a draft framework. The curriculum documents
“Teaching Emphases” (DoET, 2005) and the Outcomes and Standards for Being
Numerate (DOET, 2004) were used as a basis and interwoven with the teachers' own
teaching emphasis for each grade. Further consultation with Tasmanian curriculum
documents “K—-8 guidelines’ (Department of Education and the Arts Tasmania[DEAT],
1992) and the Margate Primary School Whole School Plan (at
http://Itag.education.tas.gov.au/focus/beingnumerate/M argateplan.doc) allowed the
development of Key Understandings in each of the strands for each grade. The
understandings have been presented in conjunction with the relevant teaching emphases
for the grade together with possible activities. These activities were primarily drawn
from teachers' reports of their own classroom activities, with additional activities
sourced from the K—8 Guidelines (DEAT, 1992), where necessary. An example of the
format is reproduced in Figure 3.

Year: Five to Six

Key Understanding

Understands how to select and justify effective mathematical strategies and choose the most
appropriate strategy for communicating information and solving problems in a variety of situations.
Possible Activities

Mathletics

Problem solving — set formulae

10 mental maths problems first thing each lesson

Heads and Tails —lesson 41 (Maths300)

Farmyard Friends —lesson 47 (Maths300)

Links to Numeracy Standards: Teaching Emphases

3 Lower 3 Middle 3 Upper

. Focusing on building the | < Focusing on reflecting, | Consolidating students’
‘mathematician’s tool box’ [See refining and sharing strategies for problem solving strategies.
Addendum] of strategies to use problem solving. . Refining and extending
when attempting a problem. . Continuing to build specific mathematical terminology and

. Explicitly teaching problem mathematical terminology and recording methods.
solving strategies will be a major recoding methods. . Giving opportunities for
teaching focus throughout | < student’'s to challenge each
standard 3. other’s thinking.

. Teaching of mathematical .
terminology and recording
methods.

Figure 3. Excerpt from framework document: Thinking and Acting Mathematically, Grades 5/6.
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Discussion

The numeracy teaching framework has been produced in collaboration with the teachers
at the Valleyfield Primary School, in response to a perceived need for a school wide
progression document. The progressions, based on the teachers own reporting of their
numeracy practices in their own classrooms, have been divided into strands and linked
to the Tasmanian Being Numerate standards (DoET, 2004).

The document has been presented in two ways: by strand and by year group. Each
year and progression has a Key Understanding, representing the primary numeracy
concept for each year and numeracy strand. Following this are some possible activities
that may aid development of this understanding. Presenting the results by year/class
group provides a'one stop' resource for teachers to plan their numeracy units across the
year. As these are primarily based on teachers current numeracy plans, this does not
radically change the emphasis of their present teaching and recognises their expertisein
the context in which they are working.

The alternative presentation, by strand, provides the opportunity for teachers to see
the progression of students' understanding through the primary years of schooling.
Firstly, this provides an expectation of knowledge and understandings for teachers at
the beginning of the academic year. Secondly, by looking at earlier and later year
groups it provides a resource identifying possible activities for those students that may
be falling behind the majority of their class, for classes finding a concept difficult to
grasp, and for those exceeding standard expectations. In this format, teachers can use
the document to ensure their students continually improve and extend their numeracy
skills.

Clearly, the linking to particular numeracy standards can be seen as a limitation.
Since beginning this project a new Education Minister has mandated a revision of the
curriculum delivered in Tasmania government schools, and a refinement of curriculum
is currently underway. However, the use of Key Understandings-supported numeracy
standards is a model that can be adjusted to incorporate future changes in numeracy
outcomes. This document, therefore, should be viewed as awork in progress.

This school-based project, driven by pragmatic needs of teachers, has been
enthusiastically received by the teaching staff. The planning has been aligned with the
recommendations of Hawley and Valli (1999), involving teachers in identification of
issues and in collaborative problem solving. Not withstanding the support from the
teachers, this Case Study has also uncovered the importance of the context in
influencing school based research. In this case, the broader context of curriculum
reform at state level has provided both the impetus for the project and barriers to its
progress. Introduction of a new (refined) curriculum at the concluding stages has halted
the implementation phase with researchers waiting for an opportunity to align this work
with the new documentation.

The context of the school itself is also of interest. External projects, regardless of
relevance, impinge on the time of teachers who, in Tasmania at present, are feeling the
strain of a major reform process. Using an interview process where teachers were
released from class (and teaching relief supplied) proved to be an effective way of
involving teachers in the project without undue additional work. As well as providing
information with respect to teaching and learning, the interview process itself was able
to uncover aspects of context which are useful in planning support for teachers. At
Valleyfield Primary, issues such as removal of teachers from class for administrative
duties, and the appointment of short term contract and permanent replacement teachers
were clearly seen by the teachers themselves as impacting on the program for students.
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These particular contextual issues provided even greater support for the objectives of
this particular project, as a way of addressing the needs of teachers in planning for
quality teaching and learning.

Conclusion

The documents produced to date are seen as important works in progress that will be
refined by the teachers and researchers during the current school year. At time of
writing, arevised curriculum for Tasmanian schools is being written for implementation
in 2008. As afirst step, key ideas in the draft document are being reviewed in light of
the revised Numeracy curriculum document. Following this process, teachers will be
asked to critique and amend the document. The updated version of the framework,
together with an outline of this refinement process will be presented in July.
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An investigative approach to teaching
secondary school mathematics”

Merrilyn Goos
The University of Queensland

A new syllabus for mathematics in Years 1-10 was launched in Queensland in
2004. The challenge for teachers implementing this syllabus lies not only in using a
new structure for curriculum planning, but also in designing learning experiences
that take an investigative approach to “working mathematically”. This paper
describes a professional development project that supported a group of secondary
mathematics teachers in implementing the new syllabus. A case study of one pair of
teachers shows how they developed their planning, pedagogy and assessment to
engage students in meaningful mathematical investigations.

Queensland’s new Mathematics Years 1-10 Syllabus (Queensland Studies Authority,
2004) has an outcomes focus that gives it a different structure from syllabuses
previously developed in this state. Instead of specifying what should be learned in
particular years or grades of school, the mathematics syllabus is organised around key
learning area outcomes that describe how students think, reason, and work
mathematically, and core learning outcomes that describe what students should know
and do with what they know in the strands of Number, Patterns and Algebra,
Measurement, Chance and Data, and Space.

The challenge for teachers implementing the new syllabus lies not only in using the
new structure for curriculum planning, but also in designing learning experiences and
assessment tasks that take an investigative approach to “working mathematically”. This
was the focus of a professional development project commissioned by the Queensland
Department of Education and the Arts and undertaken by researchers from The
University of Queensland from October 2005 to February 2006 in conjunction with
teachers from secondary schools in the Mackay District. The main aim of the project
was to explore the potential for the new syllabus to support improved classroom
practices by documenting innovative aspects of, as well as hindrances to, successful
implementation.

This paper describes the professional development program and its impact on a pair
of teachers in one school. The purpose of the paper is to give these teachers a voice in
reflecting on their own professiona growth and to identify issues that are critical to the
success of professional development initiatives such as this. The next section takes a
research perspective on factors that influence professional learning. Thisis followed by
a brief outline of the professional development program in which the teachers and
researchers jointly engaged. A case study of the pair of teachers shows how they
developed their planning, pedagogy and assessment to engage students in meaningful
mathematical investigations. Implications are then considered for extending similar
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professional development opportunities to secondary mathematics teachers in other
schools.

Teacher professional learning

Researchers have identified a range of factors that influence teacher professional
learning. Rather than considering each separately, it is helpful to organise these factors
into three “zones of influence”. The first zone represents teacher knowledge and beliefs,
and includes teachers disciplinary knowledge, pedagogical content knowledge
(knowledge of how to represent concepts and to use examples and analogies, as
described by Shulman, 1986), and beliefs about their discipline and how it is best taught
and learned. The second zone represents constraints within the professional context.
These may include teacher perceptions of student background, ability and motivation,
curriculum and assessment requirements, access to resources, organisational structures
and cultures, and parental and community attitudes to curriculum and pedagogical
change. The third zone represents the sources of assistance available to teachers that
define which teaching actions are specifically promoted. This assistance is typically
provided by colleagues and mentors in a school or by formal professional development
activities.

Teacher knowledge
& beliefs Sources of assistance

Professional context

Figure 1. Three“ zones of influence” in teacher professional learning.

To understand teacher learning we need to investigate relationships between these
three zones (represented by the overlapping circles in Figure 1). Professional learning
may be most effective when teachers experience enough challenge to disturb the
balance between their existing beliefs and practices, but also enough support to think
through the dissonance experienced and either develop a new repertoire of practice or a
new way of interpreting their professional context that fits with their new
understanding.

The professional development program

Four pairs of teacher from four schools in the Mackay region volunteered to participate
in the project. Two schools were in Mackay, one was in a small rural town, while the
fourth school was located on the coast approximately 125 km from Mackay. The
university-based researchers made three visits to Mackay to work with the whole group
of teachers, each time for two consecutive days. During these visits we gathered
information on the teachers' knowledge and beliefs and their professional contexts (see
Figure 1) via questionnaires and structured group discussions.
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As asource of assistance that was deliberately promoting new teaching approaches
(see Figure 1), the professional development program recognised the importance of
providing teachers with authentic, practice-based learning opportunities that included
examples of mathematical investigations, opportunities to experience these
investigations as learners themselves before planning their own investigations and
trying them out with their students, and opportunities to share their ideas and
experiences with colleagues, including the challenges encountered and their insights
into the process. An action research approach (Loucks-Horsley, Love, Stiles, Mundry &
Hewson, 2003) was adopted to provide for iterative cycles that would alow the teachers
to reflect on the initial experience teaching their investigative unit and apply those
experiences and learning to a second iteration, and for an on-site visit to each teacher’s
classroom to gain insight into their classroom and school context.

The case study that follows illustrates how relationships between these three “zones
of influence” shaped the professional learning experiences of one pair of teachers.

Sugartown’ State High School: Engaging learners

Skye and Chris had been teaching for only three years. Skye qualified as a middle years
teacher and taught primary school for eighteen months before moving to the secondary
school so she could specialise in mathematics teaching. She was motivated to volunteer
for this project because she was assigned to teach a new subject, Practical Mathematics,
designed for Year 8 students who were not achieving success in regular mathematics
classrooms. Chris had completed a degree in secondary mathematics teaching, and
previously had almost always taught senior mathematics classes. He volunteered for the
project because he was looking for help in planning new programs and devising new
forms of assessment.

Knowledge, beliefs, professional context

Skye's and Chris's questionnaire responses showed they held very similar beliefs about
the nature of mathematics, and mathematics teaching and learning. For example, they
both agreed that there are many ways of interpreting and solving a problem. However,
Skye also agreed with more traditional views that in mathematics something is either
right or wrong, and solving a problem usually involves using a rule or formula. Both
expressed agreement with strategies such as showing students many ways of looking at
a question and negotiating meanings through class discussion. Yet they also saw their
role as showing students the proper procedures for answering questions. Both agreed
with emphasising understanding rather than getting the right answer, encouraging
students to build their own mathematical ideas, and using manipulatives and real life
examples; but they were uncertain about the benefits of more traditional approaches
such as memorisation and practice. These responses suggest that Skye and Chris were
interested in moving towards more student-centred, investigative teaching practices, and
that they needed to try out these practices with their own classes to find out whether this
would lead to improved learning.

Skye and Chris considered their students' mathematics achievement and social
background to be the key characteristics influencing their professional learning goals.
Many students entering Year 8 were achieving at below the Year 7 numeracy
benchmark, and both teachers were very concerned that these students “had no idea
about alot of things” when they started secondary school. Both teachers also referred to

" Names of schools and teachers are pseudonyms.
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the students’ family and community context. In common with many small rural
communities, Sugartown was experiencing social and economic challenges exacerbated
by the town’s proximity to the thriving city of Mackay. Many students also came from
low socio-economic status, single parent families, and the teachers felt that, on the
whole, parents did not care much whether their children were learning anything at
school. In these circumstances, they struggled to interest students in academic work.

Sugartown State High is a medium sized school with about 600 students. The Head
of the Mathematics Department was very supportive of Skye and Chris's desire to be
involved in this project, organising their timetables so they had spare periods at the
same time that they could use for collaborative planning.

Goals

Skye and Chris agreed that the most frustrating obstacle in their professional context
was the students themselves, and their apparent lack of interest in learning. This was
evident, for example, in their disruptive and uncooperative behaviour, and their
frequently stated belief that they were “dumb” and simply could not do mathematics.
These teachers' personal histories and the experience of teaching unmotivated students
led them to formulate a goal of engaging learners, or, as Skye explained, “for them to
learn maths without being terrified of it”. Both teachers saw investigations as a way of
presenting mathematics differently that would allow them to make mathematics more
interesting for students by engaging them in purposeful tasks with real world relevance.

Skye and Chris planned and implemented two units of work with Year 8 Practical
Mathematics classes. For the first unit, taught towards the end of 2005, Chris
volunteered to give up one of the spare lines in his timetable to work with Skye in team
teaching her Year 8 class. Together they planned and taught a unit on Shopping
involving operations with whole numbers, common and decimal fractions, and money.
The following year, Chris asked to be given his own Year 8 Practical Mathematics
class, and both teachers team-taught the two classes. The first unit they taught together,
“School Rage”, asked students to design and administer a survey to find the school’s
favourite top 20 songs.

Shopping investigation

In developing this first investigation, Skye and Chris decided that the most important
aspects to consider were the students' previous experiences in learning mathematics,
and the school’s geographical and social contexts. They drew on the experience of
families having to travel to Mackay to do their grocery shopping. The task was to
investigate which situation is more economical, purchasing groceries in the local
supermarket in Sugartown or driving to Mackay to buy groceries. In their final report on
the investigation, students had to include a supermarket shopping list of at least 20
items that their family would normally purchase, a price list for these items from the
local supermarket in Sugartown and a supermarket in Mackay, a price comparison
between the two supermarkets, a calculation of the cost of fuel in driving to Mackay,
and a comparison of advantages and disadvantages of shopping at the two chosen
supermarkets.

Although Skye and Chris saw evidence that around half the students were much
more engaged with the mathematics and more willing to persist with tasks than
previously, they were not entirely satisfied with this investigation because they realised
that the topic of “grocery shopping” was not of much interest to young adolescents.
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This meant that many students did not complete the investigation and did not hand in
the final report.

“School Rage” investigation

For their next attempt, Skye and Chris took advantage of local resources in the form of
the school based radio station and their students' universal interest in popular music. In
the “ School Rage’ investigation students had to create a Top 20 song list for the school
radio station, based on a survey of fellow Sugartown State High School students. To
make the task more realistic, Sky and Chris gave students a letter from the “radio station
manager” (in reality one of the mathematics teachers) asking them for their assistancein
providing input into the design of a new radio program similar to the Rage Top 20. The
teachers also told their classes that the group submitting the best quality report would
have their Top 20 songs played on the radio station during a designated lunchtime. Thus
the task had an authentic purpose and a real audience comprising the entire school
community.

Core learning outcomes demonstrated through successful completion of this task
were related to designing and carrying out data collections to investigate their own and
others' questions, using data record templates, organising data and creating suitable
displays, making comparisons about the data, and working with whole numbers,
fractions and percentages.

Classroom observation confirmed Skye and Chris's judgment that students were very
much engaged in the investigation. For example, although the desks were arranged in
rows, students formed informal groups to discuss wording of survey questions and
sampling techniques and often moved around the room to speak to other peers or one of
the two teachers. The teachers listened to conversations between students, and
intervened where necessary to answer questions, repair faulty understanding, or offer
suggestions. Skye also brought her laptop computer to the classroom with several
relevant websites saved so that students could browse them offline (as there was no live
Internet connection available): she suggested they could find out which songs were
currently topping the charts based on CD sales or polling of radio station listeners.

Evaluation

Students’ comments during lessons showed they recognised the difference between
investigations and the more traditional, teacher and textbook centred lessons they were
accustomed to. The following exchange, overheard during my visit to the school to
observe a “ School Rage’ lesson, is typical of students’ response to the new approach
adopted by Chris and Skye:

Student: Why are we doing this? Thisisn't mathsl!

Chris: What do you mean?

Student: It's like we're doing SOSE (Study of Society and Environment) —
thisisn’t like a normal maths classroom.

Chris: Isthat a negative thing?

Student: No, | normally hate maths but | don’t mind doing this.

The teachers’ own evaluation of the investigative units identified not only the
benefits for the students (engagement, confidence, alternative opportunities to
demonstrate their learning) but also the challenges the teachers faced and how they
overcame them. They were now spending more of their time in class responding to the
unanticipated ways in which students tackled investigations, often by asking questions
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to scaffold students' thinking, such as “What does it mean if you include the same
person twice in your survey?’, “What if this person votes for two different songs?’,
“What will you do if you end up with a list of 60 songs?’ However, as Skye pointed
out, the unexpected is to be welcomed as this is often a sign that students are thinking in
more sophisticated ways than the teacher thought possible.

Skye and Chris identified several reasons why they had been successful in
implementing an investigative approach. They frequently emphasised the importance of
taking into account the students' prior experience and interests, and the local context of
the school and community. Access to mathematics teaching resources was also critical,
especially examples of investigations designed by other people. So too was access to
human resources in the form of a supportive school administration team, a network of
like minded mathematics teachers across the schools participating in the project, and
their teaching partner. Planning and teaching as a team, rather than individuals, was a
significant benefit for both teachers because they recognised that this reduced their
workload, expanded their repertoire of teaching strategies, and provided opportunities
for mutual observation and feedback.

Support for development of new teaching approaches
was consistent with teacher knowledge & beliefs

! '

Teacher knowledge & Sources of assistance:
beliefs: e Project offered immersion
e Waell quaifiedin in mathematical
mathematics and investigations, support for
mathematics education curriculum implementation
e Mathematical beliefs in school, collaborative
are student-centred and professional partnerships
non-rule based A
A

Professional context:
e Low achieving students, lacking

confidence, streamed into Practical < —
> Mathematicsin Year 8 I nvestigative approach was
Productive tensions e Limited accessto material resources feasible in context because
between beliefs, = Yrs1-10 mathematics syllabus supports ~ Of “nothing to lose”
student investigative approach to teaching and approach to student
characteristics, and assessment learning & HOD's
syllabus led to * HOD arranged timetables to allow organisational support for

teachers to plan together and teamteach  ggm teachi ng
Little parental support for children’s
learning

formulation of goals

Figure 2. Relationships between professional growth factors for Skye and Chris.

Skye and Chris's professional learning experience is summarised by the relationships
between their knowledge and beliefs, professional context, and sources of assistance
shown in Figure 2.
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Implications and critical issues

Each of our case studies documented a different configuration of teacher knowledge and
beliefs, professional contexts, and sources of assistance that came together to shape
opportunities for professional learning that involved an investigative approach to
“working mathematically”. Although the four pairs of teachers worked in different
professional contexts that offered both support for, and hindrances to, innovation, they
were able to draw on their knowledge and beliefs and the sources of assistance available
to them to plan and implement teaching approaches consistent with the intent of the new
syllabus.

There are several critical issues that must be taken into account when considering
how to extend similar professional development opportunities to secondary
mathematics teachers in other schools (Loucks-Horsley et al., 2003). One issue
concerns the need for building a professional culture characterised by a strong vision of
learning and collegial interactions between teachers. A second issue involves
developing leadership in teachers who have the capacity to improve the quality of
teaching and learning in their schools. Often the most powerful leadership exercised by
teachers is simply in modelling new practices for colleagues to demonstrate that they
actually work with students. Building capacity for sustainability is necessary to ensure
that any changes achieved within the life of a professional development project are
sustained after it ends. Similarly, scaling up is avital concern for education systems as
teachers and school districts implement new teaching and learning approaches. Finally,
gaining public support for mathematics education is necessary for building consensus
around curriculum and pedagogical reform, thus leading to a more informed public
understanding of effective methods for teaching mathematics and of the role of
mathematics in preparing young people for productive work, leisure, and citizenship.
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Adventure and adolescence: Learner-generated
examples in secondary mathematics”

Anne Watson
University of Oxford

The Tasmanian document “ Essential Learnings’ offers opportunities to change
radically the teaching and learning of mathematics. In my talk | draw on the
learning theories of Vygotsky, and on the psychology of adolescence, to give
examples of tasks which afford the generation of abstract mathematical concepts
and simultaneously enhance adolescents' feelings of self worth and autonomy. |
shall show how even the most esoteric mathematics can be taught in ways that
include all students, and that adhere to the principle of essential learning, without
“ dumbing down” the subject.

In this paper | will show how adventure in mathematical learning relates to the
adolescent project of negotiating adulthood. Further, | will relate this to some of the
“essential learnings’ identified by Tasmanian educational policy-makers by illustrating
how autonomous thinking might be embedded in the teaching and learning of
mathematics.

This kind of comment is usually taken to mean that mathematical tasks need to be
“relevant.” Then the word “relevant” is often taken to mean that adolescent interests,
(such as music, skateboarding and pocket money), should provide contexts for
mathematical tasks — otherwise they will not be interested. The consequence of this
line of thought can be that mathematical calculations are dressed up in artificial
contexts, yet adolescent students are not fooled by this. A more interesting consequence
is that students can be asked to solve “real life” problems in the classroom in the hope
that through this process they will learn some mathematics. Thus they calculate batting
averages, compare journeys to school, divide n dollars between m people, but these
experiences do not necessarily lead to further knowledge of means, graphs, gradients, or
ratio.

We know, thanks to the work of Freudenthal, that we can explain this problem not in
terms of poor teaching or lack of learning effort but in terms of the difficulty (Lave
would say the impossibility (Lave & Wenger, 1991)) of lifting the ways we think in one
context and applying them in other contexts (Freudenthal, 1973, p. 130). When we
compare pocket money we are in the world of money and adolescent notions of
fairness, not in the abstract world of ratio; when we compare journeys to school we are
imagining ourselves and our mates arriving at the school gate, not constructing images
of time-distance relationships (Coleman & Hendry, 1990, p. 48). Shifts from proximal,
ad hoc, methods of solution to abstract concepts are hard to make and need deliberate
support — indeed this is what is at the heart of Vygotsky’s insistence that talk is a
necessary aspect of learning “scientific” concepts (1978, p. 131), otherwise one gets
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stuck with intuitive and everyday notions such as “multiplication makes things bigger”
or “the bigger the perimeter the bigger the area’ (Fischbein, 1987). This shift towards
seeing abstract patterns and structures within a complex world is typical of adolescent
development (Coleman & Hendry, 1990, p. 47) but the verbal and kinaesthetic
socialised responses to sensory stimuli (including mathematics questions) which have
satisfied teachers at elementary level have to be put to one side.

Realistic tasks — tasks that mimic the ways we think in complex, messy, everyday
situations — can provide contexts in which mathematics can be learnt, so long as the
ideas encountered while doing the tasks can then be related to overarching mathematical
ideas and universal structures through paying attention to patterns, properties and
relationships. This is what (Treffers, 1987) has called “vertical mathematising.”
Furthermore, the processes of working with such tasks appeal to adolescents because
they provide room for adolescent concerns about identity, belonging, being heard, being
in charge, being supported, feeling powerful, understanding the world, and being able to
argue in ways which make adults listen (Boaler, 1997).

Such tasks can indeed provide contexts for inquiry, as defined in the Tasmanian
curriculum document, which includes “identifying and clarifying issues, and gathering,
organising, interpreting and transforming information. It encompasses the processes of
creatively, imaginatively and inquisitively thinking about possibilities; analysing,
synthesising and evaluating proposed solutions; and explaining and justifying decisions.
The skills of inquiry can be used to clarify meaning, draw appropriate comparisons and
make considered decisions.”

Historically, mathematics has been inspired by observable phenomena, and
mathematicians develop new ideas by exploring and inquiring. It is also possible to
conjecture relationships from experience with examples, and thus getting to know about
general behaviour. But mathematics is not essentially an empirical subject at school
level. Its strength and power are in its abstractions, its reasoning, and its hypothesising
about objects which only exist in the mathematical imagination. Many secondary school
concepts are beyond observable manifestations, and beyond intuition. Indeed, those
which cause most difficulty for learners and teachers are those which require rejection
of intuitive sense and reconstruction of new concept-based images and understandings.
Examples of these problematic topics include probability, proportional relationships,
non-linear sequences, symbolic representations and the wretched adding of fractions. In
mathematics, inquiry alone cannot fully justify results and relationships, nor can
decisions be validated by inquiry alone.

| could argue that, for the adolescent, this can be the beginning of the end of
mathematical engagement. If | cannot understand the subject by seeing what it does and
where it is and how it works, but instead have to believe some higher abstract authority
that | do not understand, then it holds nothing for me. But this misses the point. The
authority of mathematics does not reside in teachers or textbook writers but in the ways
in which minds work with mathematics itself (Freudenthal, 1973, p. 147; Vergnaud,
1997). For this reason, mathematics, like some of the creative arts, can be an arena in
which the adolescent mind can have some control, can validate its own thinking, and
can appeal to a constructed, personal, authority. In mathematics, | can always support
my thinking by looking at my work in a different way and adjusting it if necessary or
seeking help on my own terms. Thus, in mathematics, there is always the possibility
that learners can be absolutely sure they are right, and have grounds to argue with. By
“sure” | do not necessarily mean the use of mathematical proof — athough if a learner
understands a proof, thisis one way to be sure. Instead | mean that they can back their
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arguments with demonstration, generalities, counter-examples and other tools of
intellectual expertise.

Jenny Houssart, in her research with pre-adolescents, spotted some students who
were rapidly becoming disaffected in the classroom, with a hostile atmosphere between
them and the teacher. One feature of this deteriorating relationship was that they were
sometimes right about mathematics when the teacher was wrong, but their comments
were ignored, sidelined, or even punished by the teacher (2004).

By contrast, students whose ideas and thinking are valued explicitly in lessons are
more likely to feel and behave as if they belong. Thus some adolescent boys arrange
themselves to be directly in the teacher’s line of vision and make sure she knows that
they know the answers, or that they understand what is going on. As the Tasmanian
curriculum document says: “People who have a sense of competence in their ability to
think and learn... will be eager to pursue questions that really matter.”

Those whose thinking never quite matches what the teacher expects, but who never
have the space, support and time to explore why, can become disaffected at worst, and
at best come to rely on algorithms. While all mathematics students and mathematicians
rely on algorithmic knowledge sometimes, to have that as the only option places
learners totally at the mercy of the authority of the teacher, textbooks, websites and
examiners for affirmation. Since a large part of the adolescent project is the
development of autonomous identity, albeit in relation to other groups, something hasto
break this tension — and that can be a loss of self-esteem, rejection of the subject, or
disruptive behaviour (Coleman & Hendry, 1990, pp. 70, 155). | would argue that
presenting mathematics in imaginary contexts does not necessarily touch their need for
self-actualisation; nor do contrived references to what might be useful in future
employment. What is required instead are ways to engage the person as they are here
and now in the human activity of doing mathematics using their own thinking. This
might include contexts of genuine interest, and information about how human beings
developed the subject by asking pertinent and curious questions, but it could also
include intriguing and puzzling situations, unanswerable questions, ways to use what
they already know to generate new big ideas.

My aim is to develop ways in which all students, not just those whose arm-waving
attracts the teacher’ s positive attention, can be engaged in mathematics for its own sake
and thus begin to see that mathematical thinking is a part of who they are, and might
form a part of who they become. In the development of adolescent identity, | suspect
that using football as a context for mathematics affirms the identity of football fans;
using the school disco affirms the identity of organisers and music freaks. The ability of
the stronger mathematicians to take over such contexts and claim ownership can
exclude and deskill and therefore further dishearten some of the students whom the
context was supposed to help. In addition, Cooper and Dunne’s finding that context can
confuse students from disadvantaged groups because it supplies a layer of necessary
discernment about what is, and is not relevant (2000). Instead, there is a mathematical
component of identity — the human capacity to reason spatially, numerically and
logically, which can be nurtured by participation in mathematics, by having one’'s
thinking valued, and by having some autonomous control over the locus of
mathematical understanding in lessons.

| shall now give some examples of tasks which generate and nurture this aspect of
identity, and which fit very well into Tasmania's description of “essential learnings’.
Each task is of a type that can be applied to many mathematical contexts. | am not
claiming these task-types are new, but representing them as tools for engaging
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adolescents into personal engagement with mathematics, and ceding authority and
validation to their relationship with mathematics.

Learner-generated examples

Students in a lesson were familiar with multiplying numbers and binomials by a grid
method:

X 20 7 X z +3
50 1000 350 2z 27° 6z
9 180 63 -1 —Z -3

They had been introduced to numbers of the form a +vb. The teacher then asked
them to choose pairs of values for a and b, and to use the grid method to multiply such
numbers to try to get rational answers. Students worked together and began to explore.
At the very least they practised multiplying irrationals of this form. Gradually, students
chose to limit their explorations to focus on numbers like 2 and 3 and, by doing so,
some realised that they did not need explicit numbers but something more structural
which would “get rid of” the roots through multiplication. Although during the lesson
none found a way to do this, many carried on with their explorations over the next few
daysin their own time.

Tasks in which students gain technical practice while choosing their own examples,
with the purpose of finding a particular property or relationship, can be adapted to most
mathematical topics. During the work there are many non-trivial features of their
thinking that are valuable and can be praised: exemplifying, controlling variables,
conjecturing, limiting the range of variation used, observing and testing special cases,
designing spreadsheets to carry out the task, seeing implications of some results,
generalising and so on.

Equivalence

Shifting the focus of lessons from finding answers to generating equivalence alters the
locus of power in lessons. Here are two examples:

Given a point on a number line drawn on grid paper, how many ways of
representing it as afraction can you find?

This reverses questions which ask people to reduce fractions to their ssimplest form. It
also gives each student a set of fractions they can use for future activity, augmented by
each other’s findings — a kit of examples for demonstrating and validating future
calculations.

Given y = 5, how many equations can you write in which y is secretly 5, but this
fact ishidden, suchasin 17 = 3y + 2?

This task generates a set of questions which everyone can then try to answer; the
class has created its own practice exercise.
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Another and another...

Ask students to give you examples of something they know fairly well, then keep
asking for more and more until they are pushing up against the limits of what they
know.

Give me a number between zero and a half; and another; and another... Now give
me one which is between zero and the smallest number you have given me; and
another; and another...

Each student works on a personally generated patch, or in a place agreed by a pair or
group. Teachers ensure there are available tools to aid the generation; in this case some
kind of “zooming-in" software, or mental imagery, would help.

This approach recognises their existing knowledge, and where they draw
distinctions; it then offers them opportunity to add more things to their personal
example spaces, either because they have to make new examples in response to your
prompts, or because they hear each other’s ideas (Watson & Mason, 2006). Self esteem
comes at first from the number of new examples generated, then from being able to
describe them as a generality, and finally from being able to split them into distinct
classes.

Putting exercise in its place

If getting procedural answers to exercises in textbooks is the focus of students
mathematical work (whether that was what the teacher intended or not) then shifts can
be made to use this as merely the generation of raw material for future reflection. Many
adolescents have their mathematical identities tied up with feeling good when they
finish such work quickly, neatly and more or less correctly; others reject such work by
delaying starting it, working slowly, losing their books and so on. Restructuring their
expectations is, however, easy to do if new kinds of goal are explicated which expect
reflective engagement, rather than finishing, so that new mathematical identities can
develop more in tune with the self-focus of early adolescence (Dweck 1999).
Examples of different waysto use exercises are:

Do as many of these as you need to learn three new things; make up examples to
show these three new things.

At the end of this exercise you have to show the person next to you, with an
example, what you learnt.

Before you start, predict the hardest and easiest questions and say why; when you
finish, seeif your prediction was correct; make up harder ones and easier ones.

When you were doing question N, did you have to think more about: method,
negative signs, correct arithmetical facts, or what? Can you make up examples
which show that you understand the method without getting tied up with negative
signs and arithmetic?

Since the Tasmanian “essential learnings’ have been written to cover all subjects,
many of the special features of mathematical thinking are only hinted at. “Active
reflection” it says “enables connections to be made between different types of subject
matter, and this enhances the likelihood of knowledge being transferable to new
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situations.” Thisistrue, of course, but the active reflection | describe here does more: it
enables connections to be made within particular concepts and methods, so that learners
become better at developing critical relational knowledge. It is this recognition of
methods at a structural, rather than operational, level that makes adaptable and
transformable understanding more likely.

Rules versus tools

“Learning is more effective, interesting and relevant when learners consciously choose
and use particular methodologies, devise their own strategies to deal with challenges,”
says the Tasmanian document.

Student-centred approaches often depend on choice of method, and this, of course,
celebrates autonomy. However, mathematics is characterised by, among many other
things, variation in the efficiency and relevance of methods. For example, “putting a
zero on the end when multiplying by ten” isfine so long as you are working with whole
numbers — and mathematicians do not abandon that way of seeing it. Rather than it
being arule it becomes atool to be used when appropriate. Adolescents often cannot
see why they should abandon methods which have served them well in the past
(repeated addition for multiplication; guessing and checking “missing numbers’; and so
on) to adopt complex algorithms or algebraic manipulations. One way to work on thisis
to give a range of inputs and to ask students to decide which of their methods works
best in which situation, and why. This leads to identifying methods which work in the
greatest range of cases, and the hardest cases. “ Supermethods’ need to be rehearsed so
that they are ready to use when necessary, and have the status of tools, rather than rules.

In all of the above types of task, students create input which affects the direction of
the lesson and enhances the direction of their own learning. | see this as an adventure,
since they are each starting out from the safe ground of their own knowledge-so-far and
moving elsewhere within a mathematical community. Classrooms in which these kinds
of task are the norm provide recognition and value for the adolescent, a sense of place
within a community, and a way to get to new places which can be glimpsed, but can
only be experienced with help. To use the “zone” metaphor, these tasks suggest that
mathematical development, relevance, experience and conceptual understanding are all
proximal zones, and that moves to more complex places can be scaffolded in
communities by the way teachers set mathematical tasks.

References

Boaler, J. (1997). Experiencing School Mathematics: Teaching Styles, Sex and Setting. Buckingham:
Open University Press.

Coleman, J. & Hendry, L. (1990). The Nature of Adolescence (3rd edition). London: Routledge.

Cooper, B. & Dunne, M. (2000). Assessing Children’s Mathematical Knowledge: Social Class, Sex and
Problem-solving. Buckingham: Open University Press.

Dweck, C. (1999). Self-Theories: Their Role in Motivation, Personality and Development. Philadelphia:
Psychology Press.

Fischbein, E. (1987). Intuition in Science and Mathematics: An Educational Approach. Dordrecht:
Reidel.

Freudenthal, H. (1973). Mathematics as an Educational Task. Dordrecht: Kluwer.

Houssart, J. (2004). Low Attainersin Primary Schools: The Whisperers and the Maths Fairy. London:
RoutledgeFalmer.

Lave, J. & Wenger, E. (1991). Stuated Learning. Legitimate Peripheral Participation. Cambridge:
University of Cambridge Press.

© The Australian Association of Mathematics Teachers Inc.

80



Mathematics: Essential for Learning, Essential for Life

Treffers, A. (1987). Three Dimensions. A Model of Goal and Theory Description in Mathematics
Education: The Wiskobas Project. Dordrecht: Kluwer.

Vergnaud, G. (1997). The nature of mathematical concepts. In T. Nunes & P. Bryant, Learning and
Teaching Mathematics: An International Perspective. London: Psychology Press.

Vygotsky, L. (1978). Mind and Society: The Development of Higher Psychological Processes.
Cambndge, Mass.: Harvard University Press.

Watson, A. & Mason, J. (2006). Mathematics as a Constructive Activity. Mahwah, NJ.: Erlbaum.

© The Australian Association of Mathematics Teachers Inc.

81



Linking the big ideas in
middle school mathematics”

Jane Watson
University of Tasmania

This paper considers three mathematical settings from the middle years of
schooling and some links that may help to motivate both teachers and students.
Nearly everyone agrees that proportional thinking is the most fundamental
building block in the middle school mathematics curriculum. The transition from
additive to multiplicative reasoning requires much time and many varied
experiences. Three types of experience are suggested: links between percent and
data handling, proportional links between geometry and algebra, and links
between rates and quantitative literacy.

Introduction

Van de Walle (2007) is among many writers for preservice teachers to stress the
importance of proportional reasoning, devoting an entire chapter of his latest edition to
it (Chapter 19): “The development of proportional reasoning is one of the most
important goals of the 5-8 curriculum... Proportional reasoning is indeed the
cornerstone of a wide variety of topics in the middle and high school curriculum”
(p. 353). He goes on to list the topics of fractions, algebra, similarity, data graphs, and
probability, each of which is considered as part of a separate chapter.

Two gquestions arise from acceptance of Van de Walle's views and abundance of
associated material and suggestions. How is enough time to be found in preservice
teacher education programs for primary, middle school, and secondary preservice
teachers to understand and absorb the topics, as well as learn to teach them effectively?
How can inservice teachers be brought up-to-date on the importance of focussing on
proportional reasoning and the links across the mathematics curriculum that will
reinforce understanding?

The goal of this paper is to address in a small way the second question. It is likely
that many inservice teachers had experiences similar to the author in learning about
proportional reasoning: tables relating the cost of various numbers of balloons
(multiples of 3) if 3 balloons cost 5¢. This progressed to the famous “ cross-multiply”
algorithm that allowed for finding any one of the four values of a, b, ¢, or d, if the other
three were known:

impliesaxd=bxc.

o0

a
b

Large arrows connecting a and d, and b and c, helped one to remember the rule. An off
shoot of this was the adaptation for percent problems that solved the three types of
missing value problems:

* Invited paper
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250 _ ¢ a 35 q 700 _87.5

= = an .
650 100, 375 100, b 100

The only difficulty with using these formulas was deciding where the box went and then
applying the cross-multiply algorithm correctly.

There is nothing wrong with the above mathematics (except that inflation has
affected the price of balloons) but what Van de Walle (2007) and others (e.g., Lanius &
Williams, 2003; Thompson & Bush, 2003) suggest is a more developmental approach
that is based on problems from many contexts (less artificial than might have been used
previously), on specifically contrasting additive and multiplicative situations, and on
linking arithmetic to visual and geometric models. Van de Walle is definitely a
recommended foundation for any middle school professional development program.
Both reinforcement and extension are the goals for middle school mathematics teachers.
Avoiding a strictly algorithmic approach from the start is a necessity if students are
going to develop the intuitions required for the other topics of mathematics curriculum
noted by Van de Walle. Although not disparaging the development of useful agorithms,
even for cross multiplying, these must be built upon a strong foundation of
multiplicative thinking. Reinforcements and applications from other topics is one way
of assisting in this task.

This paper considers three topics encountered in research, teaching, or professional
development that may add to what is currently in the literature in the area of
proportional reasoning. They may be alittle surprising in that they do not directly relate
to the form, a/b = c/d. First, graphical representations of percent are presented,
reinforcing the meaning of percent in a part-whole sense rather than in the formula
sense noted above. Second, the multiplicative reasoning that extends a linear
proportional relationship is explored in the creation of an algebraic equation to describe
a geometry problem, focussing on the ultimate meaning of the various components of
the equation. Third, ratios, “halves of proportions,” are considered in terms of the
ability to summarise and compare information as required for quantitative literacy.

Percent and hats

Although it surely must be the case that a survey of the news section of the daily
newspaper would show that reference to percents occurs more frequently than reference
to either fractions or decimals, percents seem to be the poor relation of the three in most
school mathematics curricula. Considering that conceptually percents are an exact
parallel of fractions, it would appear feasible to learn about them at the same time,

especially in relation to the well-known equivalents, * = 25%, , =50%, ; = 75%, and
the part-whole aspect in applications. Emphasis on “the whole” and “100%” is a
common feature for the two topics. Besides talking about discounts, or perhaps today
the GST in Australia, examples of the usefulness of percents may be difficult to find.

A new statistical software package for the middle school, Tinkerplots (Konold &
Miller, 2005), offers the potential to reinforce basic percent understanding at the same
time as serving a statistical end. The package is based on the developmental premise
that students should be allowed to a large extent to create their own representations
(Konold, in press). Data can be entered on cards that appear in “concrete” form but are
also stored in tables. Initial graphs of data appear with two unlabelled axes and data
values randomly distributed in the two-dimensional space between the axes. Tools are
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provided to allow students to create graphs to tell stories that interest them; these are
shown in Figure 1.

Separate  Order Stack Eef. Lriw.  Hat Counts fverages Label Key

Figure 1. Graphing toolsin Tinkerplots.

Using the tools students can drag-and-drop attributes onto the axes as they desire and
they can stack values in bins or along a scaled axis. Two aspects of the tools provided
by the software link effortlessly to the concept of percent. For a particular stacked dot
plot as seen in Figure 2(a), the values constitute the whole visible data set (100%). This
representation is typical of what mathematics teachers would expect to see in a graph.
Tinkerplots, however, provides the opportunity to group the data in “bins;” movement
between representations is achieved by dragging a data icon either to the right or the
left. The Count tool in the menu allows for the number of values in each bin or the
percent of the data set (or both) to be displayed. This is shown in Figure 2(b) for seven
bins. In working with grade 7 students and Tinkerplots, it has been observed that many
prefer the representation in Figure 2(b) to the more conventional graph in Figure 2(a).
They like seeing the groupings, which although similar to histograms, are a form they
have not yet met, and they use the language of percent to discuss the relative frequency
of valuesin the bins. The students naturally see the largest percent in terms of the whole
100% of the data set. Comparing the contents of the bins is also more intuitive using
percents rather than numbers.
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Figure 2. Data displays in Tinkerplots.

When the data are viewed in the form shown in Figure 2(a), the Count (%) tool
shows “100%,” emphasising the whole data set. The second tool that links to
understanding of percent is the Hat Plot. The Hat Plot is a precursor to the Box Plot
with which most mathematics teachers are familiar. The basic Hat Plot produces a hat
over the top of the data set as shown in Figure 3(a). It has 50% of the data under the
crown of the hat and 25% under each brim. A difference in the lengths of the left and
right brims provides an opportunity to discuss how the data are represented along the
scale on the horizontal axis and how cramped or spread out the data appear to be. The
middle 50% or half of the data can be checked by counting points. The Hat Plot always
appears with the data below it, never alone, reinforcing what it represents. Students
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have been observed to be quite comfortable with this representation and able to explain
the representation in terms of the placement of the data on the scale. They also are able
to compare two representations by comparing the shapes of their respective Hat Plots,
as shown in Figure 3(b).

Collection 1 Callection 1
25-75 Percentile Hat Plot of Armspan (em) 25-75 Percentile Hat Flot of Armspan (em)
25 (100%) 13 (100%)
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125 140 145 150 155 160 165 170 175 180 185 190 125 140 145 150 155 160 165 170 175 180 185 190
Armspan Com) Armspan (om)
Ty Bl T[4 [ 7[> QyEEE e T < [+ OB
<new filter> <new filters
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Figure 3. Hat Plots for one (a) or two (b) data sets.

It should be noted that Tinker plots has the capability to merge back and forth from a
Hat Plot to a Box Plot. This can greatly assist in understanding the slightly more
complex nature of the Box Plot. Again the Box Plot does not appear without the data
being present. To most teachers the two representations shown in Figure 4 are nearly
identical, with the Hat Plot on the left (a) and the Box Plot on the right (b). For students,
however, the presence of the median in the Box Plot and the implications of the smaller
part of the box containing more densely packed data values, is notoriously difficult for
students to accommodate. The problem has led some statistics educators to recommend
that the Box Plot not be introduced at the middle school level (Bakker, Biehler &
Konold, 2005). The difficulty of density is not present with the Hat Plot and it offers
two visual bonuses for middle school students: reinforcement for the meaning of
percent and away of describing clumps and spreads in a data set.
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Figure 4. Hat and Box Plots for the same data set.
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Cubes, constants and variables

The following comment is from a preservice primary teacher: “I’m really nervous about
teaching algebra. You know all those equations? | never know which letters are
supposed to be constants and which are variables and why. Everything seems to vary,
take y = mx + ¢.” This dilemma is reminiscent of a comment made years ago by a
colleague impressing listeners about how students must view the mathematics teacher
who says, “Let x be a number,” when x is obviously not a number. It would be like an
English teacher announcing, “Let 4 be aletter.” What would the class say to that?

An equation such asy = 2x + 3 expresses both a multiplicative and an additive
relationship, whereasy = 2x is itself a multiplicative proportional statement. The
equation y = 3x represents a different proportion, as doesy = 5x or ¢ = 2ar. Thislast ¢
however is a variable, whereas the c in the above paragraph represents a constant, but
one that may be changed (or varied). For students who try to regurgitate and manipulate
the expressions with no conceptual understanding, it is no wonder they suffer frustration
and often fail.

Strangely, or perhaps not, given the connections among mathematical concepts, a
geometry puzzle may offer some clues as to the potential meaning for variables and as
to when multiplicative thinking can be useful. The problem presented in Figure 5is one
that has been used in research to explore students’ ability to visualise and manipulate
geometric objects to solve a problem (e.g., Campbell, Watson & Caoallis, 1995). In the
research setting students are asked to describe verbally what they do in their minds to
solve the problem without any other aids such as pencil and paper. Thisis also a useful
classroom exercise perhaps with students describing their thinking to a partner. The
problem, however, has even greater potential for exploring patterns and relationships.

Problem to visualise

A cube that is 3 cm by 3 cm by 3 cm was dipped in
a bucket of red paint so that all of the outside was
covered with paint. After the paint dried, the cube
was cut into 27 smaller cubes, each measuring 1
cm on each edge. Some of the smaller cubes had
paint on 3 faces, some on 2 faces, some on only 1
face, and some had no paint on them at all. Find out
how many of each kind of smaller cube there were.

Figure 5. The painted cube problem.

In justifying solutions to the problem various facts about numbers and cubes are
likely to be employed: 3 x 3 x 3 = 3° = 27; a cube has 8 corners; a cube has 12 edges;
and a cube has 6 faces. Each corner mini-cube has paint on three sides, each “edge’
mini-cube that is not a corner has paint on two sides, each “face” mini-cube that is not
an edge or a corner mini-cube has paint on one side, and there may be cubes in the
middle of the cube with no paint at all. To find this out a check that all 27 cubes are
accounted for can be made: 8 corner mini-cubes + 12 edge mini-cubes + 6 face mini-
cubes = 26 mini-cubes, so there must be one left in the centre with no paint. Many
people do not have to carry out the subtraction but “see” the central mini-cube with no
paint.

Now the problem becomes more interesting: imagine alarger painted cube 4 cm by 4
cm by 4 cm, again cut into smaller mini-cubes with 1 cm on each side. The same
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guestion applies for how many cubes of each type there are. Thistime there are 4 x 4 x
4 = 64 cubes to account for and different strategies are seen as people work out how
many of each type of mini-cube there are. Recalling the numbers of corners, edges, and
faces can be useful, as can visualising, drawing, or actually constructing a cube from
blocks. Figure 6 shows a3 x 3 x 3 and a 4 x 4 x 4 cube with different colours
representing corners, edges, and faces; the unseen centre is also a different colour.

Figure 6. Constructions of “ painted” cubes colour-coded for the number of mini-cube sides painted.

The expression enumerating the numbers of mini-cubes with various sides painted
can take several forms. One formisshownin Table 1.

Table 1
Number of painted sides Part of the cube Number of these
3 Corner 8
2 Edge (not corner) 12x2=24
1 Face (not edgeor corner) 6x4=24
0 Centre 64-8-24-24=8

In working out that there are 24 mini-cubes with two sides painted and 24 mini-cubes
with one side painted many people miss the difference in how the two values are related
to the number of edges (12) and faces (6). In fact there is an interesting pattern
developing here. It may become clear if a5 x 5x 5 cube and a 6 x 6 x 6 cube are
considered. Thisisdonein Table 2, where the summary is presented in a different form.

Table 2
Sizeof large  Total Number Number Number Edges  Number Faces Centre
cube mini-cubes corners (3 (2 sides (1side (no paint)
sides painted) painted) painted)
3x3x3 27 8 12 6 1
4x4x4 64 8 12x2 6x4 8
5x5x5 125 8 12x 3 6x9 27
6x6x6 216 8 12x 4 6 x 16 64
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For every cube the number of mini-cubes with three sides painted is the same, or
“constant.” For the other three types of mini-cube, however, there is a multiplicative
relationship involved. The number of mini-cubes with two sides painted is proportional
to the “length of the large cube — 2.” The number of mini-cubes with one side painted is
proportional to the “square of the (length of the large cube — 2),” whereas the number of
mini-cubes in the centre with no paint is equal to “the cube of the (length of the large
cube — 2).” Having expressed this relationship in words several times it would seem
appropriate to use asymbol, perhaps or “n,” for the length of the large cube. Then the
large cube is made up of n x n x n mini-cubes, of which 8 have three sides painted,
12(n — 2) have two sides painted, 6(n — 2)* have one side painted, and (n — 2)° have no
sides painted. Putting all of this information together to account for al of the mini-
cubesin the large cube revedls:

n*=8+12(n—-2) + 6(n—2)* + (n—2).

This relatively complex equation is made up of an additive component (8) and three
multiplicative components. One factor in the product each time is a constant: the
“number of edges’ (12), “the number of faces’ (6), and “the number of centres’ (1).

It is because the length of the large cube, n, can vary, that the proportions involving
(n — 2) are introduced. Hence the “variables’ that occur in the equation are there
because the large cube can increase in size creating more mini-cubes. “How many
more” mini-cubes are there each time is related to the constants 12, 6, and 1. The fact
that the number of corners, edges, faces, and centres for the large cube do not change is
observable from the nature of the cube. The constants and variables in the equation in
Figure 7, hence have concrete meaning in the physical construction of the large cube. In
one context, algebra, constants, variables, multiplicative properties, additive properties,
and geometry are linked.

Constants and Variables

Constants: Number of Number of Numberof Qpe
corners edges faces _‘middle’

3=+ 15L-2)+6T-2)2+@L-2)

s V;fiabfles

Figure 7. The constants and variables in the “ cube equation” .

The other interesting observation in the equation in Figure 7 is that 12, the number of
edges, is multiplied by the length n — 2; 6, the number of faces, is multiplied by the area
(n — 2)% the centre (of which there is 1) has the volume (n — 2)°. The edge is a length,
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the face is an area, and the centre is a volume, so these algebraic representations with
the exponents (1, 2, and 3) fit the geometry of the large cube.

An interesting specia case to consider is when n = 2. Students who understand what
has been happening in this development should be able to explain coherently about the
8 corner mini-cubes accounting for the entire cube (cf. Reys, 1988).

Observations: some primary and middle school preservice teachers completing this
activity claimed they had never before appreciated what constants and variables werein
algebra.

Rates and risk

Rates are examples of ratios that are useful in a huge number of contexts. A rate is a
ratio that compares two measurements in different units, for example kilometres per
hour (km/hr), price per kilogram ($/kg), and passengers per busload. This representation
is different from the part-whole ratio of a fraction where like units are being compared,
e.g., girl studentsto all students or the number of pointsin a chance event to the number
of pointsin an entire sample space (probability as a fraction ratio). It is also possible to
have part-part ratios, for example Liberals to Labor, or chances for and against winning
(odds in probability). All three types of ratios, as well as “famous ratios,” such as mx,
need attention. This section focuses on the rate in the context of measuring risk.

Among the goals of the middle school curriculum is to prepare students to use the
content they learn in the world around them. In relation to mathematics this is often
termed quantitative literacy and proponents such as Lynn Arthur Steen (2001) advocate
that it isan essential contributor to the success of a democracy.

Quantitatively literate citizens need to know more than formulas and equations.
They need a predisposition to look at the world through mathematical eyes, to see
the benefits (and risks) of thinking quantitatively about commonplace issues, and
to approach complex problems with confidence in the value of careful reasoning.

(p-2)

The examples presented in this final section are intended to motivate teachers and
students to think quantitatively with the concept of ratio in authentic contexts. Similar
contexts from newspapers have been used by Watson (2004) to exemplify the
importance of understanding terminology, appreciating it in context, and becoming
critical thinkers where necessary to question or interpret clams.

One aspect of quantitative literacy that is prominent in many aspects of life is that of
risk. Risks are well known in all phases of life, from walking across a busy street to
drowning in the bath tub. The school curriculum acknowledges the need to address
students’ decision-making ability in situations of risk (AEC, 1994). Of concern for
example are substance use, sexual practices, road behaviour, suicide, and dietary habits.
Outside of these there are also concerns about risks from pollution, bird flu, global
warming, playground equipment, terrorism, and lightning strikes. How is it possible to
compare and contrast these risks? Why do some of them bother people and others do
not?

Sandman (1993) made an interesting observation about the public’s perception of
risk. He claimed

Perceived Risk = f (Hazard, Outrage).
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The hazard component is made up of the mathematical risk usually expressed in the
form of a rate, such as 45 000 Americans die per year in motor-vehicle accidents,
whereas about 82 die per year in commercial airplane accidents. Outrage, however, is a
psychological perception that can be manipulated by other factors than the statistics.
The media may at times contribute to such perceptions by the desire to make headlines
and sell stories. Over half of the deaths from disease in the US each year are caused by
heart disease and cancer (1.2 million deaths), whereas exotic diseases, like avian flu and
mad cow disease, prevaent in the media, have so far killed none.

It would appear that middle school mathematics can contribute directly to the
assessment of the Hazard component of the Perceived Risk equation through an
appreciation of rates. The issue of Outrage is a cross-curricular one to which critical
literacy can contribute. The two combined should be the goal of critical quantitative
literacy. Kluger (2006) recently wrote a well-titled report for Time magazine: “Why we
worry about the things we shouldn’t... and ignore the things we should.” Including
many examples of relative risk, Kluger considered factors that influence people’'s
assessment of risk, such as evolutionary development, dread of death, immediacy of
threat, and comfort associated with control. In questioning how improvements can be
made in people’ s perceptions of risk, he detailed (i) difficulties in people s intuitionsin
interpreting percents, (ii) deliberate stating of numerical values rather than percents by
those who want to increase perception of hazard, and (iii) the need for people “to learn
more about the real odds’ (p. 45). In considering risks, “If you can just get people to
compare... then you're in a situation where you can get them to make reasoned
choices’ (p. 45). These points are related to the critical quantitative literacy skills
required across the curriculum based on rates as ratios.

What are the kinds of rates used to quantify risk? Consider afew examples. A recent
snippet in The Weekend Australian (“Nature wild about elephants,” 2006) brought
attention to attacks by elephants that had killed people, for example, “In the Indian state
of Jharkhand, near the western border of Bangladesh, 300 people were killed by
elephants between 2000 and 2004” (p. 32). This translates to “75 deaths by
elephant/year,” quite impressive for Australians. This sounds more hazardous for
example than fatal shark and crocodile attacks (e.g., Cribb & O’ Brien, 1995). Between
1980 and 1990 for example there were 8 accidental deaths caused by crocodiles and 11
caused by sharksin Australia. When a person is killed by a shark or crocodile (or sting
ray) the event is likely to attract headlines. The statistics imply that this is because of
the low occurrence of shark attacks rather than their high frequency: low Hazard but
high Outrage. During the same period (1980-1990), when 1.1 people/year were killed
by sharks and 0.8 people/year killed by crocodiles, 3277 people/year were killed in car
smashes in Australia. Yet very often a single fatality gets little more than a cursory
mention in the local media: high Hazard but low Outrage.

How can the risks reported be compared? Certainly the death rate for elephantsis not
relevant in Australia. What about sharks or cars in India? From this point the critical
aspects of quantitative literacy come to the fore. It is the integration of knowledge about
what rates as ratios represent with the context of the information to be compared that
forms the foundation for making critical decisions about risk. What are the significant
guestions that need to be asked in gathering information and then in making personal
judgments about risk? These should be canvassed in the classroom and students need to
be involved in contributing suggestions not just presented with alist of questions. Some
of the suggestions should be the following.
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e Over what period of time were data collected? How long is reasonable?

e Have conditions changed over that period of time?

e What parts of the world are the data relevant for? |s geography important?
e For what population of people are the data relevant?

e If based on a sample, what isits size and how was it collected?

e What comparisons should be made? Which can legitimately be made and which
cannot?

These questions often will lead to a discussion of conditional risk.

Data on risk and hazard appear in many forms. Sometimes the method of
representation is chosen in absolute numerical terms and sometimes it is relative in
terms of multiples. This can be misleading, whether done inadvertently or on purpose.
Consider the variety of ways in which hazard can be reported.

Males from 17-22 are 21.9 percent more likely to have multi-vehicle crashes than
females of the same age. (“ Females come out best,” 2006)

Smokers in their 30s and 40s have five times as many heart attacks as hon smokers
a study of more than 10,000 UK heart attack survivors reveals. (“Heart attack
risks,” 1995)

Driving 10 km/h over the speed increased the risk of a casualty crash fourfold.
(Molloy, 1998)

Australian Bureau of Statistics figures on bee/wasp sting mortality show the
average incidence of death is 0.084 per one million population each year. (Carter,
2007)

Tasmania's rate of deaths arising from transport-related injuries in 2003/04 was 13
per 100,000 people, or 50 percent higher than the national average. (Martain, 2007)

In the last two examples the absolute hazard is quantified. For the final one, if this were
stated as a probability of death for an individual in this period, it would be incredibly
small, 0.00013. This then presents a problem in attracting attention of readers. “Fifty
percent” more than the national average, however, sounds more impressive. This makes
the national average 8.7 deaths per 100 000 people; and incidentally thisis a nice little
proportion problem for students to work out from the information given (cf., Tabart,
Skalicky & Watson, 2005). These extracts should lead to questions about how the data
were gathered, from where were they gathered, and what would the sets of numbers
look like? These are all legitimate quantitative literacy questions for class discussion
and exploration.

Collating information on relative risk should take into account the above questions
and make comparisons of risk as transparent as possible. Consider for example
information from the International Shark Attack File (2005) indicating that between
1580 and 2005, there were 468 confirmed shark attack deaths worldwide. This is an
average of 1.1 deaths/year, the same as Australia over the 10 years 1980-1990. How
can these be compared? For many of the 425 years there were no figures collected by
the aboriginal occupants of Australia; but even if the worldwide data were for the
shorter period of time, Australia being a relatively small subset of the world, would
pose a much greater threat of shark attack. Another source (Burgess, 2006) suggests a
current rate of 5-15 deaths from shark attacks per year worldwide. Comparing Australia
with the rest of the world, perhaps deaths per 10 million people would be reasonable,
since Australia’s population is about 20 million. Given the approximate world
population of 6.5 billion, the comparison still makes Australia “above the world
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average,” with 0.55 deaths/10-million-people/year, compared with 0.0077-0.023
deaths/10-million-people/year worldwide. There are quite a few context based reasons
for this difference and students can be encouraged to write reports to show their critical
literacy, as well as quantitative, skills. One can imagine a headline like: “ Shark attack
deaths 25-70 times more likely in Australia” What would this do for the tourist
industry trying to attract Scandinavians to Australia’ s beaches?

Unfortunately it appears to be difficult to find information on the worldwide death
rate by elephant attack. Following up on The Australian elephant story leads to the New
York Times Magazine (Siebert, 2006), which contains some further data on the
behaviour of elephants. “In the past 12 years, elephants have killed 605 people in
Assam, a state of north-eastern India, 239 of them since 2001; 265 elephants have died
in that same period, the majority of them as a result of retaliation by angry villagers,
who have used everything from poison-tipped arrows to laced food to exact their
revenge.” Although data were not provided, the report also notes conflict between
humans and elephants across Africa from Zambia to Tanzania and from Uganda to
Sierra Leone. What about the rest of the world? Among the anecdotes in the article are
the stories of Mary, a circus elephant in Tennessee who killed a hotel janitor and Topsy,
acircus elephant in Coney Island who killed three trainers. Both were eventually killed
by authorities. In fact arecent children’s book in Australiatells the story of Queenie, an
elephant at Melbourne Zoo who suffered a similar fate after killing her keeper (Fenton,
2006). These “sample of size one” Outrage stories make excellent media headlines but
contribute little to the appreciation of death rates from elephant attacks worldwide.
Deaths by shark attack are familiar to Australian students, whereas deaths by elephant
attack are unlikely to be. Project work comparing the two could produce some excellent
examples of quantitative literacy.

In the social sciences, risk may reflect more qualitative than quantitative
understandings, especially in the advocacy of strongly held causes. Students need to
move from the mathematics classroom armed with an understanding of rates and their
use in contexts so that they can question every assertion of outrage and demand accurate
assessments of hazard.

Conclusion

Many other illustrations of proportional reasoning exist in text books and the National
Council of Teachers of Mathematics recognised its importance in a focus issue of
Mathematics Teaching in the Middle School in 2003. Besides setting the scene
informally (e.g., Lanius & Williams, 2003; Thompson & Bush, 2003), formal links to
a/b = c/d were developed (Chapin & Anderson, 2003), as well as ratios linked to
polygons (Dwyer, Causey-Lee & Irby, 2003) and a focus on context (Sharp & Adams,
2003). Watson and Shaughnessy (2004) followed up with a consideration of probability
sampling and comparing two data sets in linking proportional reasoning to the chance
and data curriculum and Austin, Thompson and Beckmann (2006) offered a tantalising
exposé on locusts also employing proportional reasoning. The topic of risk and
quantitative literacy was further explored by Watson (1998) using a newspaper article
claiming that smoking a pack of cigarettes a day for more than 50 years increased the
risk of premature wrinkling by 4.7 times. There is no lack of resources for approaching
proportional reasoning in intriguing and challenging ways. All of these examples and
links contribute to the goal of Quality Mathematicsin the Middle Years (AAMT, 2006).
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Bush tucker: Nourishing early mathematics
learning in a rural school through a variety of
forms of curriculum integration”

Karen Wood Sandra Frid
Mingenew Primary School, WA Curtin University of Technology, WA

Early mathematics learning can be motivating, engaging, and rich in mathematical
meanings and skills, particularly if children's interests, and local cultural and
environmental contexts are used to focus curriculum planning that caters for
diverse levels of achievement and diverse learning needs. This paper examines
mathematics teaching and learning in the early years that is developed from
principles for multi-age environments, the integration of technology, different
learning styles, and integration across curriculum learning areas. It uses examples
of curriculum planning and student learning outcomes from a K-3 class in a
remote school in Western Australia.

Background

In small remote schools in Australia it is common for students to be in classes of mixed
year levels, requiring teachers to plan curricula that meet the learning needs of children
from a range of ages, language experiences, family and cultural backgrounds, and
developmental and academic achievement levels. One way to cater effectively for this
high degree of student diversity within one classroom is to adopt a “multi-age”
educational approach in which “graded [Y ear] distinctions are minimalised and where
teaching and learning make use of the range of knowledge inherent in the group”
(Rathbone, 1993, p. iv). Children are not compared one to another on their
achievements, as is often the case in single age group classrooms, but instead the focus
isupon their overall progress. Teachers who adopt a multi-age philosophy must plan for
a classroom environment, curricula and related teaching strategies that ensure the
learning activities provide opportunities for: peer learning and collaboration, in-depth
discussions and sharing of ideas, taking responsibility for one’s own and others
learning, and cognitive conflict and challenging of ideas. These principles are consistent
with early childhood education philosophy in their focus upon inquiry and exploration,
social constructivist learning, and a degree of self-generation of learning directions
(Biggs & Potter, 1999).

The class

The K—3 classroom upon which this paper reports was based on a multi-age, early
childhood education philosophy. The school had an enrolment of about 80 in
Kindergarten up to Year 9, and was located in a small community of about 300 people
in what was once a vibrant mining area several hundred kilometres northeast of Perth.

* Invited paper
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Key aspects of early childhood education emphasised by the teacher included: using
hands-on learning activities, encouraging children to be inquisitive and questioning of
their experiences with the world around them, and finding out things for themselves
rather than being given facts by the teacher. However, to ensure all children made
progress in their learning, particularly within literacy and numeracy, there was also
explicit, direct instruction by the teacher. The teacher also had to plan for catering for
much diversity in achievement levels and rates of progress in learning because the
children had numerous social challenges that acted as inhibitors to learning. The 90%
indigenous population in the class included children who had not attended school
regularly, or who had little language development before beginning school, or who had
little social and emotional skill development to support classroom learning.

Planning for an “integrated” curriculum

The outcomes focused, integrated curriculum approach adopted by the teacher was
consistent with both early childhood and multi-age educational philosophies, and
thereby necessitated curriculum content and assessment practices that were relevant and
contextual within the environment of that community and the children’sinterests. Thus,
through a reflective practice approach to long and short term programming, along with
ongoing formative assessment of children’s learning, the teacher developed and
implemented an “integrated” learning program that included mathematics as a focus.
How this program was designed, and samples of some of the learning activities and
related student learning outcomes are outlined next.

Initial planning via a “theme”

Each term the class picks a “theme” that is a topic of interest to them. For example,
China, Fantasy, the Circus, The Man from Snowy River, and Aliens are recent themes
chosen by the children. The teacher then does an initial “mind map” of ideas for how
the theme might be used to address specific learning outcomes across the eight learning
areas of the Western Australian Curriculum Framework (Curriculum Council, 1998)
and the six early childhood learning domains. Formal assessment and reporting
requirements of the state Department of Education are also consulted in this initial
process (e.g. Schedule A), so that the emphases for required learning area content and
processes are met. To plan within a specific learning area, for example mathematics, a
matrix outlining content strands and related targeted outcomes is then constructed so
that possible theme-oriented learning activities can be included.

Figure 1 shows some initial ideas for addressing specific mathematics learning
outcomes related to the Aliens theme. Specifically, the plan outlines how shapes will be
explored through the use of big fabric stretchy body bags. The children don the bags as
their alien skin and then create shapes such as triangles, rectangles, squares, pentagons,
and other polygons. The activity can then be extended to integrate with the Arts
Learning Area by using dance and movement to explore how the body can be used to
create shapes. When put to music this activity can then be used for counting beats and
bars of music, or for simple fraction concepts related to music such as whole, half, and
quarter.

Initial planning for curriculum integration

Thus, “integration” is achieved in that more than one strand within mathematics is
addressed (e.g., space, number, and measurement), and at least one other learning area
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is addressed (e.g., Arts). Catering for the diverse learning needs and styles of the
children is addressed through the use of kinaesthetic activities alongside the more
formal use of technical mathematical language. At the same time, as children move
about they talk about what they see and what they are doing, once more emphasising
language, along with visually and physically based learning.

Figure 1. Aninitial matrix for a mathematics program linked to the Aliens theme.

Implementing an “integrated” curriculum

The examples outlined next include learning activities planned for in advance of a
school term, as well as those that emerged from more short-term planning as the
children’s interests directed them to pursue finding out more about particular things of
interest to them.

The Man from Snowy River — Ponchos

During the term when the theme chosen by the students was The Man from Snowy
River, one thing the students found out was that migrant workers from many countries
participated in building the Snowy River Dam. A country the children took particular
interest in was Mexico. From this interest the teacher created the project of having the
children construct and decorate their own ponchos (see Figure 2).

Figure 2. An example of one child’s Mexican poncho.
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The poncho activity involved arange of mathematics skills and processes, including:

e deciding how big to make the initial square of fabric, and then measuring the
square;

» deciding how to cut a suitable hole for the head (e.g., folding the shape in half to
create atriangle;

e deciding how big to cut a semi-circular shape in the “middle,” and then actually
measuring and constructing the circular hole;

e designing a pattern to go around the edge (with arequirement that they must use a
reflection (“flip”) to create the line pattern, and it must also have a colour pattern);

e designing a pattern to go on the front and the back of the poncho (with a
requirement that it must using rotation of a shape and must have a colour pattern).

At the end of the poncho project the children learned the Mexican Hat Dance, and
then wore their ponchos to perform the dance as a group. Thus, the project was then
followed on with alink to physical education and cultural learning outcomes.

Medieval murals

Some of the things the children learned about during the term when the theme was
Fantasy were knights and dragons, and this then led to learning about castles in
medieval times. how they were built, what shapes were involved, and how they were
furnished and decorated. They found out that wall hangings were often used in castles,
so the teacher set a mathematics project for the children to create their own wall
hangings by making use of 2-dimensional shapes. The Years 1land 2 children chose to
make a knight (Figure 3). They designed their knight on paper before constructing the
wall hanging with fabric. The mathematics involved included:

e identifying what 2-dimensional shapes can be used and positioned to build an
image of aknight;

e deciding upon the needed sizes of the shapes, overall and relative to one another,
and then measuring and cutting out the shapes; and

e using 2-dimensional shapesto build a border pattern.

Figure 3. Year1/2 wall hanging of a knight.
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Teaching “number” in a multi-age classroom

Not all learning outcomes targeted for a term can be effectively addressed through the
theme for that term; that is, the curriculum also must include explicit teaching,
particularly within the core areas of early literacy and numeracy. For example, counting
is a key concept and skill in mathematics learning, and within a multi-age classroom
there will be a diversity of achievement levels for which to cater. One way the teacher
structured the explicit teaching and learning of mathematics concepts and skills was by
integration with the literacy curriculum through the use of storybooks. A suitable book
would be chosen to focus upon a concept or skill, for example counting. The book is
then used as a whole class reading activity before children then break away into
individual or small group learning activities designed for their current achievement
levels. For example, books such as The Very Hungry Caterpillar (Carle, 1969) or Ten
Terrible Dinosaurs (Stickland, 1997), which are basic counting books, can act as an
engaging stimulus for the children to think about numbers and the related words and
symbols. Subsequent activities can then focus on a wide range of concepts and skills as
needed, including:

e counting forward starting at 1, or starting at a different number;
e counting backward starting at 10, or starting at a different number;

e counting forward or backward starting at numbers bigger than 10 (for more
advanced children);

e counting on, for addition of two numbers
= recognising and/or constructing the words and symbols for numbers.

The subsequent activities might make use of games (e.g. Snakes and Ladders), the
interactive whiteboard (e.g. for tracing or drawing symbols for oneself), or a variety of
hands-on or visual materials (e.g. counters, base 10 blocks, plasticine, wall charts).

Community and contextual integration — Chance and data

The theme for each term was not the only pathway by which the teacher planned for
learning activities that emerged from the children’s interests or world around them.
Events within the local community or school also often provided relevant, meaningful
contexts by which to plan curricula. For example, to integrate with the Wastewise
environmental program, the children did an audit of the rubbish in and around the
school perimeter. They collected the rubbish and then sorted it into categories (e.g.
plastics, paper, metal, etc.). Next they created tables and graphs of the results, and
finally they made predictions about the chances on a future collection of finding relative
amounts of particular kinds of rubbish (e.g., Would it be likely you would find more
plastic than paper? Why do you think that?). Thus, using the relevant local context and
happenings, children were involved in Chance and Data concepts and skills related to:

e collecting, organising, summarising, representing, and interpreting data; and
e using everyday language to make statements related to chance.

Summary

There are many ways by which early mathematics learning can be relevant and
effective, particularly if children’s interests are used as afocus for developing curricula.
In particular, the use of themes can allow ateacher to attend to children’s interests while
also developing meaningful relevant mathematics learning activities. These activities
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can often be planned to integrate across more than one content strand within
mathematics, and they generally lend themselves, due to their real-world contexts, to
integration with other learning areas such as English, science, or the arts. At the same
time, the use of, investigations, open-ended as well as more directed activities, hands-on
materials, visual and/or kinaesthetic experiences, and discussion and talking about
learning caters for diverse learning styles. The range of developmental and achievement
levels found in most classrooms, and especially in a multi-age classroom, are also able
to be well catered for by the use of these forms of curriculum integration.
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Using concept maps and vee diagrams
to interpret “area” syllabus
outcomes and problems

Karoline Afamasaga-Fuata'i
University of New England

Data presented is from a case study, which investigated a primary student
teacher’'s developing expertise concept mapping syllabus outcomes and
constructing vee diagrams of problems. Findings suggest the student teacher
developed enhanced skills to critically analyse syllabus outcomes and a related
problem, competently justify multiple methods using principles and effectively
communicate mathematical ideas, and as a result, developed a deeper, conceptual
under standing of the developmental and sequential nature of the sub-strand across
different stages. Implications for teaching primary mathematics are provided.

Student teachers need to develop deep knowledge and understanding of the concepts
they are expected to teach their future students (AAMT, 2006). The New South Wales
Board of Studies (NSWBOS, 2002) encourages teachers to develop students
conceptual understanding through investigation and implementation of working
mathematically strategies. This paper proposes that the metacognitive tools, hierarchical
concept maps (cmaps) and vee diagrams (v-diagrams), and the innovative processes of
concept mapping and constructing vee diagrams can influence the (a) development of
students’ conceptual understanding and (b) dynamics of working mathematically within
asocial setting.

Ausubel’s cognitive theory of meaningful learning underpins the process of
constructing cmaps/v-diagrams. Meaningful learning takes place by linking new
knowledge to old knowledge via progressive differentiation (reorganisation of existing
knowledge under more general ideas) and/or integrative reconciliation (merging many
ideas into one or two when apparent contradictory ideas are reconciled) (Novak &
Canas, 2006; Novak & Gowin, 1984). Through social interactions while critiquing
cmaps/v-diagrams, teacher and students engage in critical thinking, reasoning and
communicating mathematically (Afamasaga-Fuata'i. 2005, 2006).

Cmaps are hierarchical networks of interconnecting nodes, representing concepts of
a knowledge domain, with linking words describing the interrelationships of connected
nodes to form valid propositions. For example, given

Scatterpl ot — I eusdoeinde , ooprel atjon

the proposition is, “Scatterplot may be used to estimate correlation”. V-diagrams, in
contrast, are heuristics that illustrate the epistemological, conceptual and
methodological frameworks of a phenomenon (Novak & Canas, 2006; Novak & Gowin,
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1984). Gowin's epistemological vee was later modified for solving mathematics
problems (Afamasaga-Fuata’ i, 2005) (examples are discussed later).

Research examined the usefulness of cmaps/v-diagrams in the sciences (Novak &
Canas, 2006; Brown, 2000; Mintzes, Wandersee & Novak, 2000) and mathematics
(Afamsaga-Fuata' i, 2005, 2004; Williams, 1998), and recently in teacher education with
primary (Schmittau, 2004) and secondary student teachers (Afamasaga-Fuata'i, 2006,
Brahier, 2005) and with teachers (Liyanage & Thomas, 2002). Three main uses are
relevant to this paper. These are as (@) learning tools for individual learners to make
sense of a knowledge domain, (b) analytical tools to analyse the structure of knowledge
in atopic; and (c) pedagogical tools to guide the planning of learning activities.

The paper’s focus question is: In what ways do hierarchical concept maps and vee
diagrams facilitate the preparation of primary student teachers for teaching mathematics
more conceptually? Presented here is the case study of a BEd (Primary) student teacher
(Susan), who constructed cmaps/v-diagrams over a semester, in her third year elective
unit.

Methodology

Susan was introduced to constructing cmaps/v-diagrams using simple topics/problems.
The unit’'s main project was the construction of a comprehensive topic cmap in three
phases. The topic was to be selected from primary mathematics. Susan was also
required to construct v-diagrams of problems, which demonstrate the applications of the
mapped concepts. The first phase required that Susan compile an initial list of concepts
to construct an initial topic cmap and v-diagrams of two related problems. These were
presented and critiqued in class before further revision and expansion. The second
phase involved the presentation of a more structurally complex, expanded cmap and v-
diagrams of more problems. These were socially critiqued and returned for further
revision and expansion. The third phase was the final submission of a more
comprehensive, hierarchical topic cmap and more v-diagrams of related problems,
which extend upon previous work and incorporating comments from previous critiques,
and including areflection journal.

Cmaps/v-diagrams were collected from the familiarisation phase and the main
project including areflection journal. This paper presents Susan’s work to illustrate the
application of cmaps/v-diagrams as analytical and pedagogical tools.

Results

Sample cmaps are presented to display Susan’s conceptual analyses of the Area syllabus
outcomes from Early Stage One through to Stage 3 (NSWBOS, 2002) followed by an
example v-diagram. The latter demonstrates her understanding of area concepts and
their applications in problem solving. The final data are excerpts from the reflection
journal.

Concept maps of syllabus outcomes

The cmaps are presented in the order of the staged outcomes to illustrate their use as
analytical and pedagogical toolsin teacher education.
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Early Stage One MES1.2 syllabus outcome

Susan’s conceptual analysis (Figure 1) showed main concepts such as area and closed
shapes, and strategies such as covering surfaces and direct comparison. lllustrative
examples of concepts/strategies are provided.
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Figure 1. Area - Early Stage One concept map.

Progressive differentiating links from direct comparison show different strategies
appropriate for this stage (order three or more areas, one inside the other, cut and
pasted on, superimposing). Also displayed are links to record area and describe area.
Whilst differentiating links from the former node display different ways of recording,
those from the latter differentiate between comparative language and everyday
language with further links showing examples. Some displayed propositions include
“Early Stage One MESL1.2 looks at the measure of the amount of surface Area” and
“Area isfound by using informal units and covering surfaces.”
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Stage One MS1.2 syllabus outcome
Susan’s conceptual analysis (Figure 2) identified main concepts (surface, area,
constant) and strategies (measured; estimated, compared and ordered; compared).
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Figure 2. Area - Stage One concept map.
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Progressive differentiating links from measured display different strategies, which if
read horizontally (left to right), indicate an increasingly sophisticated trend from
informal counting of whole parts (and) left-over through drawing grids (spatial
structure of repeated units), to using identical informal units in rows and columns; the
latter is linked to tessellations. Integrative reconciliation links from tessellations and
drawing grids merge at the diagram of a 2-by-7 grid. To the left is a contrasting grid of
repeated units with gaps.

Consolidating strategies encountered at Early Stage One is described by the second
and third sub-branches (left to right) of the area branch. However, new strategies are
evident by the next two area sub-branches with repeated addition and number and type
of the appropriate unit. The former links to rhythmic counting while the latter connects
to size and number. Each sub-branch terminates with an example.

A comparison of Figures 1 and 2 highlights the progressive development of main
concepts and strategies from the concrete and informal to the increasingly more formal
rhythmic counting in row-and-column arrays. The cmap ends with the selection of units
appropriate to the object’s size. Nodes are colour coded to indicate connections to prior
knowledge.

Stage Two MS2.2 syllabus outcome

Susan’s conceptual analysis (Figure 3) showed that formal units of measuring area are
introduced at this stage, namely, squared centimetre and squared metre (symbolised as
cm?® and m? respectively). An extended proposition is, “Squared centimetre is used to
formally estimate, measure, compare and record a variety of areas by applying (a)
variety of strategies such asusing a 10 cm x 10 cm tile grid to determine areas that are
same as 100 ¢, greater than, (or) less than.”

A crosslink between two nodes forms the proposition, “Squared centimetre is one
ten-thousandth of a squared metre.” Another proposition is “ Squared metre which need
not be an exact square, for example 2 m x 0.5 m.” A crosslink to the next cmap is
visible at the top right of Figure 3 (discussed next). Yellow coding indicates
consolidation of prior knowledge. A comparison of Figures 1 to 3 indicates increasingly
sophisticated means of measuring area and formalisation of units.

Stage Three MS3.2 Syllabus Outcome

Susan’s conceptual analysis (Figure 4) identified a new unit (squared kilometre) and
areaformulas are introduced at this stage. Some displayed propositions include “M S3.2
discovers the need for the squared kilometre and looks at where it is used for example
scales and everyday situations which students then interpret” and “MS3.2 is concerned
with the surface area of rectangular prisms found by centimetre grids or units which
leads to the formula how many rows x number in each row”. The rightmost propositions
are “MS3.2 discovers the need for a convenient unit to use, the hectare which is the
same as 10 000 m* and “ hectare which is abbreviated to ha’. To the left of hectare are
variations of constant rectangular areas with different perimeters, and extensions of
areas to surface areas of rectangular prisms. Visible at the top left is an incoming
crosslink from squared metre (Figure 3) to squared kilometre (Figure 4) explicitly
connecting two staged outcomes. Purple coding a node also reinforces a connection to
previous knowledge.

In summary, the four hierarchical cmaps highlight developmental and progressively
sophisticated means of measuring and recording area. Colour coding indicates
connections to prior knowledge distinguishing them from new knowledge within stage.
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Figure 3. Area - Stage two concept map.

Vee diagram of a problem

Figure 5 shows a v-diagram with a conceptual Thinking Sde on the left and a
methodological Doing Sde on the right. The vee is contextualised in the Problem to be
solved with the focus question under What is the question | need to answer? The
conceptual analysis of a problem and the relevant mathematical principles required to
solve it are displayed as responses to What do | know already? (mathematical
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principles) and What are the main ideas? (main concepts). A statement of mathematical
beliefsis aresponse to Why | like mathematics?
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Figure 4. Area - Stage three concept map.

On the Doing Side, the given information is under What is the information given?
and the methods under How do | find my answers? Critical reflections are as responses
to What are the most useful things | learnt? Once the mathematics problem is identified,
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completing the v-diagram’s sections is done in any order with the provision that the
information coherently describes both the methods and principles underlying the
methods.

The Thinking Side (Figure 5) lists eight principles and five main concepts, which
Susan concluded, underpin the two methods. Her statement of mathematical beliefsis
deeply meaningful given the displayed evidence on the cmaps/v-diagram. Both the
conceptual and methodological information (Figure 5) connect to those in Figures 1 to
4,

My Thinking Side My Doing Side
is th tion | n 1

What are the most useful things | learnt?

Cutting the shapes down into
recognisable figures makes
calculations simpler.

Why | like mathematics?

What is the area of the
shape?

It combines knowledge of several
different areas and combines them
together to solve major problems.

my answ ion?
What do | kn 1 ?
Composite figures are figures that consist of two or more shapes.
Area is the measure of the amount of surface.

Area of a rectangle is found by multiplying length by breadth.
Area of a tnangle is found by multiplying the base by the
perpendicular height before halving it

Kilometres are squared when referring to arca.

Surface refers to the outer faces or outside of an object.
Tessellated shapes requires there 1o be no gaps or overlaps
between the shapes used.

Strategies such as repeated addition and rhythmic counting allow
the calculation of the area of different shapes.

Area =108 + 12 = 120km"

How:do | find my answers?

Method | Gried overiay Method 2
e = L]

k]
7

@ MHen awNe

™

(e e ;
What s the information given? (859 +($xiren)
Sides are 18km, 22km and 6km WSk VAL
Composite figure

What are the important ideas?

Composite figures, areas, rectangles,
triangles, kilometres.

Problem
Find the area of this composite
figure. 18km

fkm

27km

Figure 5. Vee diagram of a problem.

Reflection journal

Susan took the unit to develop a better understanding of the mathematics syllabus and
of teaching its concepts to primary students. Rather than the Year 12 style she “was
used to, of formulas are everything,” she wanted to approach primary mathematics from
aprimary perspective.

Initially, Susan viewed mathematics problems as simply questions to be answered,
and topics as containing information to be taught. However, upon completing the first
phase, it became clear that “there was more to a problem than a formula and an
answer”; that solving a problem was more than just “an answer finder”. Instead, “[it]
consisted of a wide variety of factors that contribute to the understanding and
subsequent answer” such as prior knowledge one possesses, which influence the
selection of methods. Also, constructing cmaps first facilitated the generation of
multiple methods and identification of relevant principles.

Susan initially found v-diagrams difficult particularly the Thinking Sde: “1 did not
know how | constructed the answer on the right side... thus, did not know what
principles| had to list nor the important ideas... | struggled with it as, as a student | had
only been taught the formulas never what was behind them.” With this self-realisation,
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Susan chose to challenge herself in subsequent activities, “Before finding the answer...
| would look only at the question and think about what | need to know about it before |
actually solved the problem.”

Susan admitted, “1 always had difficulty in explaining what | wanted them to do... it
frustrated me that they did not understand when | explained it the first time.” By the end
of the semester, her “communication skills verbally [had] been assisted greatly by [her]
written communication in both cmaps and v-diagrams.” She claimed “1 now have the
basic [information] written before me and because it was me that had to construct the
written version | was able to explain what | did verbally better than | had done before.”

Susan’s cmap/v-diagram experiences made her realise that a topic has a number of
main and relevant concepts and recommended strategies that must be introduced,
consolidated and extended through a suitable sequence of learning activities to ensure
development of deep understanding. Summarising, she said, “[the Area sub-strand] has
many connections that linked across a broad range of subjects and through the
construction of cmaps and v-diagrams a deep understanding of the topic was achieved.”

Over the semester, Susan developed critical (i) proficiency completing the Thinking
Side of v-diagrams “as quickly and as effectively asthe [Doing Sde]” and (ii) analytical
skills: “I am now able to see where a problem is going before the actual completion...
there are problems | can work backwards [from solution to principles] to see where | am
going.” She aso found cmaps useful guides for completing v-diagrams: “I could see the
links and the next step [more clearly] in the solving of problems in relation to the sub-
strand.”

Discussion

Findings suggest Susan became competent and confident in her critical abilities to
analyse syllabus outcomes and problems using cmaps/v-diagrams. She analysed the
syllabus outcomes for key concepts, strategies and illustrative examples before placing
the results in a conceptual, developmental order within each stage from left to right on
cmaps. Making connections between stages was achieved by colour coding nodes (and
crosslink) to differentiate between prior and new knowledge within a stage. Using a v-
diagram, she systematically analysed a problem to make explicit both the conceptual
and methodological information involved in generating plausible solutions.

Communicating effectively with her audience was enhanced through cmaps/v-
diagrams. Because she individually constructed them, she is in a better position to
explain and justify her ideas publicly, “I had to critically think of the reasons of why
each map or diagram is constructed in the way that it is.” By the third phase, Susan
realised that she could “see the connections that infiltrated the topic” more clearly,
consequently gaining a better understanding of how to sequence activities, “I now
understand what needs to be taught first and where | need to go from there” by
following the visual connections.

Finally, Susan concluded that constructing cmaps/v-diagram had begun “a new
chapter in (her) understanding and teaching of mathematics.” She felt confident and her
understanding of the sub-strand had deepened particularly in “how each and every one
of [the concepts and strategies] builds upon the prior knowledge of the last”. Findings
from this case study contribute knowledge to the development of primary teachers deep
understanding of mathematics and the pedagogical use of cmaps/v-diagrams.
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Implications

Constructing cmaps engenders a deep understanding of how concepts and
recommended strategies are developmentally progressed and consolidated across the
stages. Constructing v-diagrams enhances critical synthesis of the relevant mathematical
principles and procedures in generating solutions to problems. These findings imply that
cmaps/v-diagrams are potentially useful tools for primary students to use in
mathematics learning and problem solving. This is an area worthy of further
investigation.
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Concept maps and vee diagrams as tools
to understand better the “division” concept
In primary mathematics

Karoline Afamasaga-Fuata'i Laura Cambridge
University of New England University of New England

The paper presents a case study, which investigated a primary student teacher’s
developing proficiency with constructing concept maps and vee diagrams as tools
to guide the analyses of syllabus outcomes and to facilitate the design of activities
that develop deep understanding of mathematics concepts. Findings suggest the
student teacher developed a deeper understanding of the developmental nature of
the division concept as outlined in syllabus outcomes, which empowered her to
confidently provide mathematical justifications for strategies to solve problems.

Introduction

The Australian Association of Mathematics Teacher's Standards for Excellence in
Teaching Mathematics in Australian Schools (AAMT, 2006) identified the need for
knowledge of conceptual understanding, and the ability to plan learning sequences to
develop students' understanding, as essential to achieve excellence in teaching
mathematics. Thus, student teachers need to develop deep understanding of concepts
they are expected to teach their future students. The underlying philosophy and
theoretical principles of the New South Wales Board of Studies K—10 Mathematics
Syllabus (NSWBOS, 2002) also encourage the development of students' conceptual
understanding through an appropriate sequencing of learning activities and
implementation of working and communicating mathematically strategies. This paper
argues for the application of the metacognitive tools, hierarchical concept maps (cmaps)
and vee diagrams (v-diagrams), and the innovative processes of concept mapping and
vee diagramming as viable strategies (a) for developing students’ conceptual
understanding and (b) for facilitating the design of learning activities.

Literature review of concept mapping and vee diagrams

Ausubel’s theory of meaningful learning underpins concept mapping particularly its
principle that learners’ cognitive structures are hierarchically organised with more
general, superordinate concepts subsuming less general and more specific concepts.
Linking new concepts to existing cognitive structures may occur via progressive
differentiation (reorganisation of existing knowledge under more general ideas) and/or
integrative reconciliation (synthesising many ideas into one or two when apparent
contradictory ideas are reconciled) (Ausubel, 2000; Novak & Canas, 2006). By
constructing cmaps/v-diagrams, students illustrate publicly their interpretation and
understanding of topics/problems. Hierarchical cmaps were first introduced by Novak
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as aresearch tool to illustrate the hierarchical interconnections between main concepts
(nodes) in a knowledge domain with descriptions of the interrelationships (linking
words) on the connecting lines. The basic semantic unit (proposition) describes a
meaningful relationship as shown by the triad

valid linking words

valid node valid node

(Novak & Canas, 2006; Novak & Gowin, 1984). V-diagrams, in contrast, were
introduced by Gowin as an epistemological tool, in the shape of a vee that is
contextualised in the phenomenon to be analysed. The vee's left side depicts the
philosophy and theoretical framework, which drive the analysis to answer the focus
guestion. On the vee' sright side are the records, methods of transforming the records to
answer the focus question and value claims. The epistemological vee was later modified
(Afamasaga-Fuata'i, 1998, 2005) to one that is focussed on guiding the thinking and
reasoning involved in solving a mathematics problem (an example is discussed | ater).

Numerous studies examined the use of cmaps and/or v-diagrams as assessment tools
of students' conceptual understanding over time in the sciences (Novak & Canas, 2004;
Brown, 2000; Mintzes, Wandersee & Novak, 2000) and mathematics (Afamasaga-
Fuata'i, 2004; Schmittau, 2004; Liyanage & Thomas, 2002; Williams, 1998). For
example, investigations of the usefulness of cmaps/v-diagrams to illustrate university
students' evolving understanding of mathematics topics found students’ mapped
knowledge structure became increasingly complex and integrated as a consequence of
multiple iterations of the processes of presentation — critique — revisions —
presentation over the semester (Afamasaga-Fuata'i, 2004). Two primary student
teachers receiving the same instruction on the historical and conceptual development of
“multiplication”, each constructed vastly different cmaps, “one internalised the concept
in its systemic interconnections, while the other continued to see it through formalistic
lens” (Schmittau, 2004, p. 576). Others also demonstrated the value of cmaps as
pedagogical planning tools to provide an overview of a topic (Brahier, 2005) or to
analyse mathematics lessons (Liyanage & Thomas, 2002). As a consequence of in-class
concept mapping activities, presentations and critiques and independent practice, a
secondary student teacher constructed topic cmaps, which explicitly illustrated both the
conceptual development of derivatives and an implicit sequence of lessons (Afamasaga-
Fuata'i, 2006). Research also demonstrated the usefulness of v-diagrams to scaffold
students’ thinking and reasoning and to illustrate their understanding of the
interconnections between theory and application in mathematics problem solving
(Afamasaga-Fuata' i, 2005), scientific inquiry (Mintzes, Wandersee & Novak, 2000) and
epistemological analysis (Novak & Gowin, 1984, Chang, 1994). In summary, the
literature shows three uses of cmaps/v-diagrams that are relevant to teacher education.
Firstly, cmaps/v-diagrams as learning tools to illustrate students evolving knowledge
and understanding of a content domain. Secondly, cmaps/v-diagrams as analytical tools
to scaffold the content analysis of topics or problems. Thirdly, cmaps/v-diagrams as
pedagogical tools to organise and sequence teaching and learning activities using the
results from the content analyses of syllabus outcomes.

 Learning tools. Individuals construct cmaps/v-diagrams to prompt the
development of deeper understanding of the conceptual structure of mathematics
topics and the reinforcement of connections between mathematical principles and
their applications in problem solving. The constructive activities can result in a
single cmap/v-diagram, which is a visual snapshot of a student’s knowledge,
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understanding and skills at that time. Alternatively, the activities may be repeated
over aperiod of time, with socia critiques and revisions in-between presentations.
The resulting parade of progressive cmaps/v-diagrams, records the developmental
trend of students' increasingly sophisticated knowledge, understanding and skills.
Having school students individually or collaboratively construct cmaps/v-
diagrams is a viable “assessment for learning” and “assessment of learning”
strategy.

» Analytical tools. Student teachers construct cmaps/v-diagrams to visually display
their interpretations and content analyses of syllabus outcomes. The displayed
language, principles, concepts, methods and interconnections should be
developmentally appropriate to be commensurate with the staged outcomes of the
relevant syllabus.

» Pedagogical tools. Student teachers construct cmaps/v-diagrams to plan teaching
and learning sequences, by distinguishing between prior, new and future
knowledge to facilitate developmental teaching and learning approaches. Teacher-
constructed cmaps/v-diagrams (of topics, problems or activities) can be used as
advance organisers to scaffold instruction and assessment.

The focus question for this paper is: In what ways do hierarchical concept maps and
vee diagrams facilitate the development of primary student teachers deep
understanding of mathematics? Figure 1 shows a hierarchical cmap which describes the
paper’s main ideas. The data presented is from a case study of a BEd (Primary) student
teacher (Susan) who was concept mapping and vee diagramming over a semester, in her
third year mathematics education unit.

Methodology

The case study started with a familiarisation phase in which Susan was introduced to the
metacognitive strategies of concept mapping and vee diagramming using simple topics
such as fractions and operations with fractions. The main project for the unit required
Susan to construct a comprehensive, hierarchical cmap of a mathematics topic to be
selected from the primary mathematics syllabus, and v-diagrams of related problems,
which demonstrate the applications of the mapped concepts. There were three phases to
the project. The first phase required Susan to compile an initial list of concepts, based
on a content analysis of the relevant syllabus outcomes, to construct an initial topic
cmap and v-diagrams of two problems. These were presented and critiqued in class
before further revision and expansion. The second phase involved the presentation of a
more structurally complex, expanded cmap and v-diagrams of more problems. These
were socially critiqued and returned for further revision and expansion. The third phase
was the final submission of a more comprehensive, hierarchical topic cmap and more v-
diagrams of related problems and activities, which extend previous work and
incorporate comments from previous critiques, and a reflection journal of her cmap and
v-diagram experiences. Data collected included cmaps/v-diagrams from the
familiarisation phase and three phases of the main project including a reflection journal.
This paper presents samples of Susan’s submitted work to illustrate the application of
cmaps and v-diagrams as analytical and pedagogical tools for the topic “division”.
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Findings

Samples of Susan’s individually constructed cmaps/v-diagrams are shown to indicate
her interpretations of the relevant syllabus outcomes and her conceptual understanding
of division problems.
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Figure 1. A hierarchical concept map of the paper.
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Shown in Figure 2 is Susan’s v-diagram of a problem “What is 4263 divided by 97",
The v-diagram’s left side is called the Thinking Sde while the right side is the Doing
Side. The latter displays the given information, methods, and answer to the focus
guestion including useful things learnt or potential directions for future extension while
the former illustrates the relevant conceptual information (mathematical principles and
main concepts) and including statements of one’ s mathematical beliefs.

My Thinking Side My Doing Side
What is th tion | n to answer?
Why | like mathematics? I things | leamt?

* incerporares several +Remaimders as decirmals

comcep’s 1=, rauihphoah: rather than frochoms.
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Figure 2. Susan’s vee diagram of a division problem.

Displayed in Figure 2 are the results of Susan’s content analysis of the relevant
syllabus outcomes on the Thinking Side in terms of the mathematical principles for
division of 4 digit numbers (underneath What do | know already?). These principles
underpin the two methods of solutions displayed on the Doing Sde (underneath How do
| find my answers?). The main and relevant concepts (i.e., What are the important
ideas?) are listed as “division (and) remainders’. At the tip of the vee is the main
learning activity, namely, the given problem statement. Moving onto the right side of
the vee, the given information is “4263 + 9” (underneath What is the information
given?) and the answer “9)4263 = 4732" (underneath What are my answers to the

guestion?). At the top right corner are Susan’s perceptions of What are the most useful
things | learnt?, or, alternatively, Where do | go from here? or What is the future
learning? as aresult of solving the problem. These are “remainders as decimals rather
than fractions’ and “short division”, as potential topics for future learning activities.
Directly on the opposite side of the v-diagram are Susan’s mathematical beliefs (Why |
like mathematics?) as contextualised in this particular problem, namely, “It incorporates
several concepts i.e., multiplication, division and remainders.” In summary, the v-
diagram displays, on the left, the relevant mathematical principles and concepts,
expressed in the appropriate language for primary students at Stage 3 (10-11 year-old
students) (NSWBOS, 2002) with the two methods of solving the problem on the right.
Susan’s mathematical beliefs are on the left with suggestions for future learning on the
right.
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A cmap of the problem (Figure 3) was constructed using the theoretical information

displayed on the Thinking Side, namely, the entries for What do | know already? and
What are the important ideas?
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Figure 3. Susan’s concept map of the division problem.

Constructing a cmap challenged Susan to meaningfully organise the nodes (concepts)
to demonstrate her deep understanding of their interconnectedness and of their
applications in solving the problem. The cmap’s focus question was “What is 4263
divided by 97" The cmap illustrates the process of finding an answer to the problem and
including the relevant syllabus indicator (division of a 4 digit number by a 1 digit
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number), main concepts (mental strategy, written strategy, breaking down, short
division, long division, and remainder), relevant concepts (fractions, decimals,
equivalent/simple fraction), and various illustrative examples; e.g.,
4735
9

9) 4263 and g.

The top two-thirds of the cmap illustrates the process and linked concepts (from the
relevant syllabus outcomes) with rich descriptions of interconnections before merging at
node “ 473%”, which thereafter shows the relevant concepts “fractions” and “decimals’

applied to the “remainder”. The latter was flagged in the “future learning” section (top
right of the Doing Sde) of the v-diagram, as a potential extension to the current division
problem. The conceptual meaning of remainder and its different representations are
further encapsulated by the second principle (underneath What do | know already?) on
the v-diagram. In summary, the cmap illustrates the connections between different types
of strategies and methods, illustrative examples of strategies and concepts, and types of
representations of the remainder. Further to showing the two methods on the v-diagram,
the cmap also includes “future learning”, namely, a third method (short division) and
decimal representations of the remainder and final answer.

Evidently, the combined usage of a v-diagram and cmap to analyse a problem
(quided by the relevant syllabus outcomes), was an effective combination to cogently
communicate the richness of meanings that exist between mathematics principles, main
concepts and methods. Susan’s v-diagram and cmap of the simple division problem
represent the “expert” view of division in primary mathematics and the teacher’'s
conceptual view of the division curriculum to be taught.

Discussion

The presented data is only a sample of Susan’s work over the semester. However, it
visually illustrated the richness of information that can be captured by the combined
usage of cmaps and v-diagrams in analysing syllabus outcomes and mathematical
problem solving. Through her statements of mathematical principles using the
appropriate mathematical language (v-diagram), Susan captured the conceptual and
developmental essence of division as recommended in the syllabus outcomes. The cmap
on the other hand, visually illustrated the two strategies to be promoted in primary
mathematics, as well as making explicit visual connections between division, remainder
and relevant prior knowledge. Future extensions of the current problem are displayed as
decimal representation of the remainder and the short division method. The rich linking
words describing the nature of the interrelationships between nodes resulted in valid
propositions. The latter converted the hierarchical cmap into a network of meaningful,
interconnecting propositions that coherently describe an answer to the cmap’s focus
question.

Susan’ s cmap/v-diagram both demonstrated that a deep understanding of the division
concept can be developed and reinforced. The v-diagram structure provided not only the
space to express one’'s mathematical beliefs and critical reflections, but also projections
for future learning as evident from Susan’s rationale for an activity sequence. Overall,
constructing cmaps/v-diagrams evidently encouraged Susan to move beyond a
procedural view to a more conceptually based justification of methods and a purposeful
and clearer understanding of sequencing prior, new and future learning activities to
minimise student confusion. Findings from this paper contributes knowledge to the
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literature on (@) the pedagogical use of concept mapping in mathematics as a means of
developing deep understanding of mathematics concepts and (b) the innovative use of
v-diagrams to display prior and new knowledge and future learning directions.

Implications

The visual display of the theoretical and procedural information of a problem, on a
cmap and a v-diagram, effectively encapsulated the interconnection between the
Knowledge and Skills and Working Mathematically Syllabus Outcomes. This suggests
the potential educational value of regularly exposing primary students to the strategies
of concept mapping and vee diagramming to enhance and develop both their conceptual
and procedural understanding of mathematics. Doing so would necessarily enable
working and communicating mathematically amongst students in the classroom. Having
students construct their own cmaps and v-diagrams before and after a topic, as part of
their normal mathematics classroom practices, is an area worthy of further
investigation.
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Sketching graphs from verbal,
rather than numerical, information

Tony Bill
University of Tasmania

Contemporary statistics education research emphasises the development of
intuitions and sense-making and the cultivation of students' ability to communicate
orally, in writing, numerically, and using graphs. Tasks with data-free scenarios
provide students with an opportunity to look beyond procedures and the
mechanical aspects of data-processing. This article describes a series of three
tasks in which students sketched graphs directly from verbal, rather than
numerical, information. The tasks also allowed students to develop a deeper
under standing of the purpose of creating a graph. The performance of the students
was superior to that reported by other researchers.

Introduction

A criticism of traditional statistics education is the emphasis on calculation and
procedural competence at the expense of the development of intuitions and sense-
making. Influential statistics education researchers (Mokros & Russell, 1995; Garfield
& Ben-Zvi, 2004) have argued that traditional teaching actively interfered with
students’ natural intuitive sense and obscured “the big ideas of statistics’.

A key recommendation of current statistics education research is that teachers should
facilitate the development of a classroom culture where students communicate their
understanding through class discussion, written work, numerically, and the focus of this
article: graphs.

To encourage the development of intuitive notions and to shift teaching practices
away from procedures, Garfield (2003) recommended the inclusion of data-free
scenarios when teaching statistics. Bakker and Gravemeijer (2004) recommended
students should be given the opportunity to construct their own representations of
information. Mevarech and Kramarsky (1997), in a study of Year 8 students, reported
that only one quarter of students could create what they considered a robust graphical
representation directly from verbal information. Rossman and Chance (cited in Garfield,
2003) reversed the traditional sequence of students statistical analysis, and provided
students with tasks matching verbal descriptions to plots of data. Friel et a. (2001), in a
study of critical factorsin comprehension of graphs, recommended tasks where students
were encouraged to “read the data, read between the data, and finally, to read beyond
the data”. The use of graphical representations may also provide an alternative learning
pathway, particularly for visual learners.
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Method and results

The three tasks were part of a two-week research study of the statistical concept of
distribution. The study was conducted with a Year 9 class of 29 students in a Hobart
metropolitan co-education high school.

The first of the three tasks was highly “scaffolded” and conducted in a conventional
classroom, where students were supported by teacher instruction, classroom discussion,
and interaction with their peers. The statistics education software Fathom, a product of
Key Curriculum Press, was used as a teaching aid. In tasks two and three students
worked independently under traditional examination conditions.

A principal objective of the research study was the introduction of continuous
distributions as a foundation for the study of normal distributions, in more senior years.
All three tasks were selected to provide a familiar context for students. The researcher
emphasised to students that the graphs they sketched should “tell a story”. All tasks
allowed for a wide-range of responses — all students submitted graphs — but more
capable students were able to demonstrate their understanding by producing a more
sophisticated response.

Task 1: Cross country run

The Cross-country Run task was based upon a task developed by Bakker and
Gravemeijer (2004).

Scaffolding and cues for the task was provided by an introductory exercise
examining the “Murders in Chicago” dataset, supplied with the education statistics
software Fathom. A data projector displayed a Fathom-generated dot-plot as an image
on a whiteboard. The relatively large database of 1670 sample points allowed the
construction of a smoothed continuous curve. The task was constructed in three stages.
Firstly, a whole-class discussion of the dot-plot representation of the “Murders in
Chicago” data set identified the key features of the distribution. Secondly, the students
were asked to copy the distribution from the whiteboard. Copying a 1670 sample point
distribution is clearly impracticable, and the class responded accordingly. The
researcher sketched an outline of the dot-plot to demonstrate that a smoothed curve can
accurately convey the essential features of a distribution. Finally, the “ Cross-country
run” worksheet was distributed to the students. Students were asked to sketch the three
distributions demonstrating how the performance of a class of students, as shown by the
time taken to complete a 5 km run, had improved through training. Additional
scaffolding was provided by aligning the “set of three” axes vertically to allow easier
comparison of the three graphs. The researcher again emphasised that the graphs should
“tell astory.”

A Year 9 group is training for a school 5 km cross-country race. The race is to be
held in 6 weeks time. The students have decided to train for an hour, 3 days every
week leading up to the race. The training program includes a5 km run every week.
To monitor their improvement, they want to make three graphs: one before the
training program starts, one halfway through the training program and the third
graph at their final training session three days before the cross-country race.

Draw three graphsthat “tell” the following story:

Graph 1: Before training started, some students were slow and some students were
already very fast. The fastest ran the 5 km in 22 minutes. Most of the students were
on the slow side.
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Graph 2: Halfway through the training program, the majority of the students ran
faster. The fastest and the slowest students had only made a small improvement in
their time.

Graph 3: On the students' final training session the spread, of times was much
smaller than at the beginning. Most students had improved their time by about 5
minutes during the 6 weeks. The fastest students had only improved their time by 2
minutes. There were still afew slow students but most had a time that was closer to
the fastest runner than at the beginning of the training program.

Draw your graphs on this page. Use whatever scale, notes, type of graph, etc., you
think helps best “tell” the story.

A high proportion (83%) of students provided a robust response to the task
demonstrating that the task was understood, but the task was highly scaffolded.
Examples of a strong response are provided in Figures 1 and 2. Five (17%) of students
provided an idiosyncratic, or weak, response showing that the task was not understood.
An example of an idiosyncratic response is provided in Figure 3.

Student G1408E provided a response which showed the fastest running time, and
that the fastest time had decreased by two minutes. The majority of students are shown
astaking “half aslong again” as the fastest students, and the shift in the peak shows the
majority of students hasimproved by five minutes. A scale has not been included on the
y-axis as the number of students is not known. A subtle point made by the student
(intentional or otherwise) is that the area under the curve has stayed constant. Thisis a
point worthy for subsequent class discussion as it a key concept underlying normal
distribution.

Figure 1. Sudent G1408E Cross-country run.

Student D2806C provided a similar response with a detailed and accurate time scale,
and a y-axis without a scale. The student annotated the graph to show how the time of
the maority (in thisinstance, the mode) has decreased by five minutes. The shape of the
curve is unconventionally discontinuous and could be interpreted as a response
transitional between bar charts and continuous distributions. The student’s graph
suggested the majority of students was represented by the mode — appearing as the
peak of the graph — rather than the area under the graph. A point worthy of class
discussion is that the graph shows that the slowest time is clearly defined, but that
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information had not been provided in the original question. This could be used to
prompt a class discussion on how best to use a graph to show this information.
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Figure 2. Sudent D2806C Cross-country run.

Student Y 2206D, shown in Figure 3, did not show a strong understanding of the task,
or the concepts involved. The student used a bar chart and a continuous distribution.
The student appears to consider the data set as a collection of individual students rather
than the more sophisticated thinking of seeing it as an aggregate.
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Figure 3. Sudent Y2206D Cross-country run.
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Task 2: Mid-year science examination

This task was conducted in atraditional examination environment, as one question, on
an hour-long assessment paper. The phrasing of the question “most students received
between 75-85%...” was designed to encourage students to consider “most” students,
not as the mode, but as the students lying within arange of scores.

Sketch a distribution describing the following situation. Your science teacher is
providing general feed-back to the class on their performance in the mid-year
exam. She said all students have passed. Most students received between 75-85%.
A few students who have missed lessons because of illness or overseas travel
received about 60%. The top mark was 96%. Clearly mark or show all the
information.

More than 70% of students provided a strong response showing that the task was
understood. Only one student provided an idiosyncratic response. Although not
specifically requested, almost all students used a continuous distribution.

Student G1408E provided a response showing that most students received a mark
between 75-85% and the highest and lowest marks awarded. A feature, common to
many other students’ responses, was the reversal of the scale, with the scale decreasing
from left to right. Thisis not incorrect, just unconventional.

Figure 4. Sudent G1408E Science examination.

Student L2103S provided a highly idiosyncratic response that shows features
normally portrayed in a cumulative frequency chart. The axis orientation is
unconventional with the “number of students’ given as the independent (x-axis)
variable. The axis has been labelled but a scale has, quite correctly, not been included
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Figure 5. Sudent L2103S Science examination.
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Task 3: Metro bus-service

This task was also conducted under traditional examination conditions, and included in
the same examination paper as Task 2.

Sketch a distribution describing the following situation. As the principal private
secretary to the Minister of Transport, you have been asked to sketch a distribution
of the performance of the Metro bus service. Y our minister is keenly aware that the
voting public expect the busesto run on time.

By definition, any bus arriving more than 4 minutes behind schedule is late.

Almost all buses arrive within 4 minutes of the scheduled time. About 5 percent
arrive late and a few buses in non-peak times arrive early. Occasionally buses do
not arrive at all. Clearly mark or show all the information.

This is a more complex task designed to extend students to the limit of their
knowledge and skill. Students provided a rich range of responses including continuous
distributions (45%), bar charts (36%), dot plots and tally sheets, and idiosyncratic
responses that appear to be based upon cumulative frequency graphs. The use of bar
charts was an unintended outcome, as the research study had focussed on continuous
distributions. The strong response of students using bar charts showed that many
students had made a considered decision as how best to represent the information.

A significant and sophisticated feature of one student’s response (Figure 6) was the
use of negative numbers to describe buses that had arrived early. A point worthy of
class discussion is that the distribution shows buses are as likely to arrive early as late,
but this is entirely consistent with the statement “amost all buses arrive within four
minutes of the scheduled time.”

Figure 6. Sudent G1408E Metro bus-service.

Several students used bar charts, but in two distinctly different ways. Student
L 2103S used time as the independent x-axis, but was then faced with the problem of
how to include buses that “did not arrive at al”; i.e., at infinity. This student resolved
this difficulty by including this information as a separate category in the top left hand
corner of the chart. This was a far superior response to ignoring or not including this
category of responses. The time axis showed the student using negative number to
describe buses that arrived early.
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Figure 7. Sudent L2103S Metro bus-service.

Student N2208B used a bar chart, but the bars represent categories of whether the
bus had arrived early, on-time, late, or not at all. On reflection, this chart most
accurately, concisely and effectively portrays the information provided in the question.

Figure 8. Sudent N2208B Metro bus-service.

Student N1902P provided a sophisticated response which sought to convey bus
arrival times at various times of the day. The area of the discs represents the number or

frequency of buses, and the student is clearly intending to show that, in non-peak times
of morning and afternoon, buses are likely to arrive early.

© The Australian Association of Mathematics Teachers Inc.

127



Mathematics: Essential for Learning, Essential for Life

ARFIaAE Y _@
MDAy
MoawE _‘@

bnin =Jny ~lnin 320 ~Zun [y ( O . tine tZmn 134 +limin T7min Fomm

o i)

Figure 9. Sudent N1902P Metro bus-service.

Discussion

The first task, the cross-country run, was a complex task. To successfully complete the
task students identified the key information, and simultaneously addressed the range
and the area beneath the distribution representing the majority of the student times. The
three component graphs must also be addressed simultaneously, as the three graphs
must be linked to demonstrate the decrease in students' running times.

Tasks 2 and 3 were less complex, but were also less supported. Neither of the two
tasks required students to make a comparison between graphs.

All three tasks involved constructing graphs without using data. To complete the
tasks, students needed to convey a deeper understanding of the information, rather than
constructing the graph applying a set procedure to a data-set. “Sense-making” has
application in statistics, agebra and mathematical modelling.

The range of student responses provided arich resource for subsequent class discussion.

The tasks did not allow student development to be demonstrated, as the first task was
the most complex, but also the most highly supported. Tasks 2 and 3 were conducted in
traditional examination conditions where students worked independently.

Students' performance on this series of tasks — although assessed under different
criteria — may have been superior to that found by other researchers. The study of
Mevarech and Kramarsky (1997) found a quarter of students correctly transform to
graphic representation; this study showed three-quarters of Year 9 students could
construct another representation.

A key recommendation of contemporary statistics education research is the
cultivation of students’ ability to communicate their understanding of key statistical
concepts. This understanding can be communicated in a number of ways. Students who
are not confident writers could convey their understanding in classroom discussion;
students who do not have the self-confidence to participate in classroom discussion,
may prefer to give a written explanation; and visual learners might find graphical
representations effective.

A goal of the research teaching unit was to encourage a shift in students thinking
from discrete, to continuous, distributions. This was designed to provide an essential
foundation step for the introduction of continuous normal distribution, at more senior
school years. Students' responses indicated that the first tentative steps to an
understanding of continuous distributions were being taken, and that the construction
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and interpretation of continuous distributions were being added to students’ repertoire
of skills.

The use of the bar chart in Task 3 — not the intention of the task — was note-
worthy. The students had made a conscious decision to use a type of graph introduced
outside the study unit, and used in earlier school years. If an indicator of deep
understanding is the ability to apply principles to a variety of tasks, then deep
understanding had been demonstrated.

Recommendation for teaching

* Include data-free, or largely data-free, scenarios when teaching statistics.
» Cultivate a sense that a graph must “tell astory”.
» Use students’ work as aresource for class discussion.
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Quality teaching of mathematics:
Common threads and cultural differences

Rosemary Callingham
University of New England

It is well established that Asian students achieve highly in international monitoring
tests such as PISA and TIMMS. This finding has led to a considerable interest in
identifying factors that contribute towards this performance, including teaching
approaches. Two lessons observed in Chinese schools are analysed using the
framework provided by the AAMT Sandards and the New South Wales model of
Quality Teaching. The lessons observed shared many of the characteristics
identified as exemplary mathematics teaching in the Australian context, although
there were also some differences attributable to the cultural context. The
implications of these findings for Australian teachers are discussed.

During the development of the AAMT Standards for Excellence in Teaching
Mathematics, teachers from all over Australia proposed three domains of practice that
they believed identified highly accomplished teachers of mathematics. These domains,
Professional Knowledge, Professional Practice and Professional Attributes, address the
diverse knowledge, skills and understanding that characterise quality teaching.
Professional Knowledge is concerned with understanding students, mathematics and
how students learn mathematics; Professional Practice deals with those day-to-day
aspects of teaching such as planning and assessment; Professional Attributes focuses on
the behaviour of teachers with respect to their colleagues, the school and wider
community. The attributes identified in the AAMT Standards are applied to individual
teachers, at a personal level.

A number of studiesin Australia have attempted to identify quality in teaching at the
classroom level, that is, what it is that good teachers do in their classrooms to develop
students’ understanding and develop learning e.g., Queensland School Reform
Longitudinal Study, (2001); Department of Education, Science and Training; New
South Wales et a., (2004). In New South Wales, amodel of quality teaching is used as
atool for analysing lessons with the aim of improving teacher standards and students
learning [Professional Support & Curriculum Directorate, (2003)]. This model has three
dimensions, and a number of elements within each dimension, that provide aframework
for considering classroom practices. These are summarised in Table 1.
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Table 1. Dimensions and elements of the NSW Model of Quality Teaching.

Dimension Intellectual Quality Quality | earni ngSignificance
environment
Elements Deep knowledge Explicit quality criteria  Background
knowledge

Deep understanding Engagement Cultural knowledge
Problematic knowledge High expectations Knowledge integration
Higher-order thinking ~ Social support Inclusivity
Metalanguage Students’ self-regulation Connectedness
Substantive Student direction Narrative

communication

When the elements of the NSW model are considered against the framework of the
AAMT standards, it appears that all the characteristics of highly accomplished
mathematics teachers would be called upon to deliver lessons that addressed all three
dimensions, in some way. For example, planning lessons that address problematic
knowledge and substantive communication requires understanding of how students
learn mathematics; engagement and explicit quality criteria implies good planning for
learning; and connectedness and cultural knowledge suggests community involvement.
All of these aspects are underpinned by knowledge of, and interest in, mathematics
itself. In other words, teachers who operate in ways that meet the expectations of the
Quality Teaching model, will also demonstrate many of the personal characteristics
identified in the AAMT Standards.

There is also, currently, considerable interest in learning from Asian countries
following the high performance of students from Hong Kong and Korea, for example,
in international programs such as PISA [Organisation for Economic Cooperation and
Development, (2004)] and TIMMS [Mullis, Martin, Gonzales & Chrostowski, (2004)].
Western countries are interested in understanding what teachers in these countries do to
achieve such high results. Popular perception of teaching in Asian countriesisthat it is
teacher-centred and based on “chalk-and-talk” approaches. These methods would be the
antithesis of the features of exemplary teaching identified in the AAMT Standards and
the NSW model.

There are many studies attempting to characterise mathematics classroomsin diverse
cultural settings e.g., Clarke & Keitel, (2006). The small scale study reported here was
opportunistic, based on lessons observed during overseas travel in Hong Kong and
China. As such, it is not generalisable, nor necessarily representative of mathematics
lessons in these countries. Nevertheless, it does provide an insight into what Chinese
teachers perceive as quality teaching, given that in both instances the teachers were
aware of visitorsto their classrooms.
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The lessons
Two lessons are described, onein a primary classroom and one in a high school.

The primary classroom lesson

The primary lesson was a demonstration lesson, focussing on technology use in a
mathematics classroom. The students were around 9- or 10-years old, and the lesson
addressed early ideas of permutations and combinations through a problem involving
choosing different ways of combining teddy bear clothing.

Before the lesson started, the teacher was laughing and joking with the students as he
checked the various bits of equipment that he was going to use. The desks were
arranged in rows, and each place had a set of three small teddy bears dressed in different
coloured jumpers, together with two small teddy-sized bags in two more colours. The
children were excited, chattering and rushing around. Then the lesson began. The
teacher bowed formally to the children and they bowed back, sat down with their arms
folded and focussed all their attention on him. This position they maintained for the
next 40 minutes or so.

The lesson started with a short video of Deng Deng, a cartoon cat obviously familiar
to the children, trying to choose a teddy bear with a bag. He had three different coloured
jumpers and two bags to choose from, exactly as the children had on their desks. The
teacher obviously asked children, “What would you choose?’ As the children
responded, they stood up, the teacher acknowledged their answer, clearly making the
point that different combinations were possible. He then looked puzzled. How many
different choices were possible? He placed large cut out teddies and bags randomly on
the board, as a prompt. The class quietly began working on the problem, individually.
Some used the teddies on the desks, others were getting out coloured pencils. Each child
recorded an answer in away that appeared to make sense to them.

The teacher quickly moved round the room and chose severa children to show their
solutions on the blackboard. He had obviously chosen a variety of solutions, including
some that would not lead to a correct response. One child was drawing each teddy,
others were using coloured chalks, making lists and so on. At this point there was
clearly a discussion about the solutions and each child explained the thinking behind
their response. Skilfully, the teacher selected two approaches and then demonstrated
how these could lead to a generalisable approach, using both the teddies he had
previously placed on the board and then a computer animation to illustrate a tree-
diagram approach to the problem. He then posed the extension problem of adding in an
extra bear. The children quickly responded as a class. Several related problems were
then shown: routes from school to home via the park or the temple, food choices for
dinner, and so on. In each case the solution was sought from the group rather than from
individuals. The lesson ended with the teacher asking the children if they had enjoyed
themselves, to which they responded enthusiastically. The formal end of the lesson
came when the teacher and children bowed and thanked each other. At this point, the
children lost their serious demeanour and began chattering and laughing with each
other.

The secondary classroom lesson

This lesson took place in a government secondary school in Hong Kong, in a second
year classroom. The school was a participant in a learning oriented assessment project
that aimed to develop teachers assessment skills. The lesson focus was rates and ratios,
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and three teachers chose to team teach it, an unusual situation for the class. The start of
the lesson included a formal greeting and a brief explanation of why there were three
teachers. Aninitial problem was posed:

| took 1.5 hours to run 16.5 km on one day and 2 hours to run 20 km on the next
day. Had my performance improved? Explain your answer.

The students were unused to being asked to explain their thinking and it was obvious
that, for some, this was difficult. After some time in which each student worked on the
problem in silence, the teacher collected the responses and then chose severa students
to explain their responses. The students' answers varied. One student admitted he had
no idea how to do the problem; another pointed out that it was unrealistic because no-
one could maintain the same rate for two hours; others explained their response in terms
of the amount of time taken or the distance run; and others used rates as a justification.
The teacher asked students to comment on these responses, gradually establishing the
idea of arate.

A second teacher then took over the class. He extended the idea of a rate into the
topic of apartment rentals. In Hong Kong, apartments are measured in square feet so the
students were asked to work on severa problems, from their text book, that involved
comparing cost per square foot. Thisinvolved some large numbers! Very little time was
given for completing the problems before the solutions were given and discussed.

At this point the class was beginning to be restless, shown by yawning and shuffling
feet. There was no disruptive behaviour. The third teacher took over. He was the
specialist physics teacher and showed a video comparing the speed of a snake attack
with that of a Kung Fu master. The students were engaged immediately. They sat up
and watched the video with great concentration. Finally, the data shown on the video
was used to emphasise the concept of arate and the comparison worked out formally on
the board. Incidentally, the Kung Fu Master was quicker. The lesson ended at this point
with homework being set and aformal completion to the classtime.

Discussion

Both lessons were impressive to watch. The students were engaged and worked
diligently on the problems posed, but also appeared to enjoy themselves. The
relationships between the teachers and the students were relaxed and it was evident that
students had no fear of making mistakes in the ways that they responded to the
guestions. The subject matter presented was appropriate for the students concerned and
the stimulus material, such as the cartoon and the teddies and the video, certainly struck
a chord in the students. In terms of the model of Quality Teaching, both lessons had
Significance, characterised by the Background Knowledge (the cartoon, video),
Connectedness (using familiar situations such as food for dinner and rental rates) and
some elements of narrative (the story of the cat). A Quality Learning Environment was
also evident in the students' Engagement, which appeared genuine. The High
Expectations and the Social Support ,that was implicit in the way that the students
answered questions, also suggested a Quality Learning Environment. In terms of
Intellectual Quality the lessons were impressive. Both lessons had a single focus
(permutations and combinations; rates and ratios) and this was explored in different
ways showing Deep Knowledge. Both lessons centred on Problematic Knowledge,
through their starting points, and Substantive Communication was also present.
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There were, however, some significant differences from Australian lessons. The pace
of the lesson was much faster. | remember thinking at the time of the Primary lesson
that it would probably have taken two lessons to reach the same point. | was told later,
by ateacher, that they taught to the best student rather than trying to support the weaker
students, as is the culture in Australian classrooms. Although there was considerable
discussion in both classrooms, this was always mediated by the teacher: children did not
talk to each other. It seemed that the job of the student in these classrooms was to work
hard at making sense of the lesson by yourself, rather than with the help of peers.
Students had little control over what was happening, although there was freedom for
them to get an answer in their own ways. These lessons were far from the “chalk and
talk” image of Chinese teaching, although the teacher did stand at the front for most of
the lesson, and controlled al classroom activity.

The teachers obviously knew their students well, and understood how to engage
them in learning. The lessons were well structured, with a clear beginning, middle and
end and were tightly focussed. A variety of approaches was used to address the same
concept, allowing for differences among learners in the class. Many of the qualities of
highly accomplished teachers were demonstrated by the teachers concerned.

Some aspects were missing, however. There was little student direction in either
lesson. All the problems were posed by the teacher and, although students could use any
route to obtain an answer, the teachers ultimately decided which solution strategies to
pursue. Both lessons started with a problem, although that problem was relatively
closed, so it is questionable the extent to which higher order thinking was needed. The
lessons aimed to develop understanding of some underlying and important concepts,
rather than creative problem-solving skills. There was little peer interaction. Students
were not asked, or expected, to work together, although there was some low level
conversation in the Hong Kong secondary school |esson.

Implications for teachers

What can teachers learn from these examples? Australian teachers could consider the
narrow focus of the lesson, but the deep way in which the concept was considered.
Although there was variety in the lessons, this did not distract attention from the core
idea of the lesson. There was also little time wasted on behaviour management.
Students did not move about the classroom, and neither did the teachers, to any great
extent. The lack of movement cut down possibilities for poor behaviour, and also
avoided time being spent on organising groups, for example. There was, maybe
surprisingly, little emphasis on practice: students did not work through a large number
of examples. Nor was time spent on checking homework, although homework was
given in the secondary lesson.

On the other hand, the Chinese students were not developing the skills of working in
teams or wrestling with a problem that was genuinely messy or ill-defined. They were
not asked to justify their answers, apart from the starting activity in the secondary
lesson, which was obviously unusual. The Chinese students appeared to be developing
conceptual understanding but with limited opportunities to use this knowledge in a
meaningful way.

The fast pace of the lesson also meant that, inevitably, some students did not fully
grasp theidea. In the Australian context it is the teacher’ s role to ensure that all students
understand; in the Chinese context it appeared that it was the students' responsibility to
learn. This difference implies a divergence of teaching philosophy based on the local
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culture. Whether that philosophy is transferable, or even whether transfer is desirable, is
amatter for debate.

It seems clear, however, that many of the qualities of exemplary teaching identified
in both the AAMT Standards and the Quality Teaching model are found in good
teachers and exciting classrooms in other cultures. Those aspects that were not observed
may be so culturally bound that they are applicable only in a specific context. This
thought reminds us that we should beware of making simplistic judgements about
teachers and teaching. All teachers, in whatever cultural situation, should avoid pressure
to adopt a particular teaching style because it is apparently linked to high achievement.
Teaching is a more subtle, and messier, task than such simplistic approachesimply.
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Year 7 students’ understanding
of area measurement

Michael Cavanagh
Macquarie University

This paper reports on a study of Year 7 students' understanding of area
measurement. 43 students completed a written test just before and immediately
after studying areas of rectangles and triangles. Twelve of these students,
representing the range of ability in the sample, were interviewed as they solved
three area tasks. Results indicate that many students confuse area and perimeter,
use slant and perpendicular height interchangeably, and do not understand the
basis of the formula for the area of a triangle. Implications for teaching are
discussed.

Introduction

Area measurement is an important topic in school mathematics. It has numerous real-
life applications and can be applied to mathematical concepts like multiplication of
fractions, enlargement and similarity. Area measurement is also used by many teachers
and textbooks to demonstrate number properties such as the commutative law of
multiplication and algebraic results like the expansion of binomial expressions (Schultz,
1991). A good understanding of area concepts is also essential when learning integral
calculus.

Area measurement is based on partitioning a region into equally sized units which
completely cover it without gaps or overlaps. Although the idea of a unit is
fundamental, it is often neglected as teaching tends to focus on numerical results,
ignoring the spatial relationships involved in measuring areas (Kordaki & Portari,
2002). However, students need substantial experience in covering regions by drawing
unit squares and noting the regularities that occur (Outhred & Mitchelmore, 2000). With
practice, students can recognise that the array of rows (or columns) are necessarily
equivalent and can therefore be regarded as a composite unit so that rows (or columns)
can be repeated instead of drawing each individual square.

It cannot be assumed that the row-column structure of rectangular arrays is
automatically recognised and understood by all students (Battista, Clements, Arnoff,
Battista & Borrow, 1998). However, many textbooks either pay little attention to
covering activities or provide regions which are already partitioned, so that all students
have to do is count the squares (Carpenter, Coburn, Reys & Wilson, 1975). Such tasks
can be easily done by simple addition and obscure the essential multiplicative
relationship of the rectangle’s length and width to its area (Battista, 2003). But the
process of tessellating a region with a unit must be well understood if students are to
develop a relational understanding of area measurement, especially in the correct
application of the areaformulae (Woodward & Byrd, 1983).
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Researching students’ understanding of area concepts

Students at all levels experience difficulties in dealing with area concepts, a
phenomenon documented in research with primary children (e.g., Reynolds &
Wheatley, 1996), middle school students (e.g., Comiti & Moreira Baltar, 1997) and pre-
service teachers (e.g., Baturo & Nason, 1996). Studies have sought to identify
misconceptions associated with area measurement. Hirstein, Lamb and Osborne (1978)
interviewed 106 elementary grade children. They observed five commonly held area
misconceptions, including: a tendency to make judgments about the area of a rectangle
by examining the length of one of its sides; basing conclusions on informal observations
when partitioning and recombining shapes to compare their areas; point-counting, or
counting all regions equally regardless of their geometrical shape when using a grid;
double-counting units around the corner of a rectangle; and counting tick marks rather
than counting units.

Dickson (1989) interviewed 20 students aged 9 to 13 on four separate occasions,
before and after a teaching program, about their understanding of area concepts and
their ability to find the area of rectangles. She reported that most students could
correctly describe the meaning of the word “area’” and that just over one third of the
students, who already knew the formulaA =1xw, used it ailmost exclusively, even
when it was inappropriate to do so. Another third learnt the result during instruction,
and the remaining students continued to use non-multiplicative approaches, despite
having been taught the area formula.

Kidman (1999) interviewed 36 students, 12 each from Years 4, 6 and 8 to investigate
strategies used in area measurement. She found that many confused area and perimeter:
19 students used additive approaches and perceived the area of a rectangle as the sum of
its dimensions, a phenomenon that was consistent across all grades. Students who
employed additive rules used a number of strategies when comparing the areas of two
rectangles during the interviews including an insistence on using a ruler to measure
sides, and a preference for vertical rather than horizontal alignment of rectangles. Those
who used additive rules also mistakenly believed that doubling the length of both sides
of arectangle would double its area.

Method

The present study uses a multi-method design combining written pre- and post-tests
with a semi-structured clinical interview. The sample consisted of two Year 7 classes,
one each from two coeducational, comprehensive high schools in middie-income
suburbs of Sydney. In one school, the class was of mixed ability, with 21 students,
while in the other, the class of 22 students was the bottom set of 6 classes. Each class
teacher chose 6 students (3 boys and 3 girls) to reflect the spread of ability and these 12
students constituted the interview sample.

The written tests

All 43 students completed a 20-minute written test of five questions on two separate
occasions, just prior to being taught the area topic and immediately afterwards. A 30 cm
ruler and a transparent, square-centimetre grid sheet were made available to students but
calculators were not permitted. Students were expected to record their calculations and
explain their thinking throughout the test.

Question 1 asked for a definition of the word “area’. Question 2 displayed a5 cm by
3 cm rectangle with tick marks each centimetre around its perimeter and students had to
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find its area and explain their method. Question 3 showed a right-angled triangle of
sides 3 cm, 4 cm, and 5 cm with tick marks at 1 cm intervals along the two
perpendicular sides and students had to calculate its area and justify their solution
strategy. Question 4 gave an L-shaped figure, labelled “not to scale”, with integer
values given for 4 of the 6 sides. Students had to calculate its area, setting out their
working. Question 5 required students to make an accurate drawing of two shapes with
area 24 cn?, one arectangle and the other not.

The interviews

Semi-structured clinical interviews were videotaped immediately after the area topic.
Each student was interviewed individually for approximately 15 minutes while they
attempted two tasks. First, the interviewer (author) gave each student a 10 cm by 8 cm
cardboard rectangle and asked them to find its area, explaining their method. Students
could use a 30 cm ruler and a transparent, plastic grid. In task 2, the ruler and grid were
removed and the interviewer gave the students two more cardboard shapes (a right-
angled triangle of sides 10 cm, 12 cm and approximately 15.5 cm, and a parallelogram
of base 10 cm and perpendicular height 8 cm) and asked them to predict whether either
shape had the same area as the rectangle. The students were encouraged to explain their
reasoning and the triangle and parallelogram were discussed in the order which the
students considered them.

When discussing the triangle and rectangle, the interviewer asked how the students
could compare the two areas. Students typically suggested superimposing the shapes,
aligning their edges, or measuring them. The interviewer allowed the students to try
their chosen method and interpret their results. When discussing the parallelogram and
rectangle, the interviewer again began by asking how the students could compare the
areas. Those who wanted to superimpose the shapes were asked for alternative ideas,
while those who wished to align or measure the sides were permitted to do so and
interpret their measurements. The interviewer next asked if there was another way to
compare the areas without measuring them and students who now suggested
superimposing the shapes were permitted to do so and talk about what they saw. A pair
of scissors was provided for students to cut and recombine the parallelogram and place
it over the rectangle. Having done so, the interviewer asked students to explain what
they saw.

Results
The results of the written tests and the interviews are reported separately.

The written tests

Most students defined area as the “space inside” a figure (pre-test = 53%; post-test =
72%). Others expressed similar ideas, including “how big a shape is’ (14%; 5%) and
“how many units [cm, m, etc.] fit into it” (5%; 5%). However some described area as
“length times width” (19%; 12%), or defined it in terms of perimeter (7%; 5%). Most
could calculate the area of the rectangle in question 2 (72%; 93%) by measuring the
sides or counting the tick marks and multiplying the numbers (53%; 47%), drawing a
grid inside the rectangle (19%; 44%), or using the transparent grid to add squares (9%;
5%). In question 3, about half the students were correct (44%; 49%) while those who
were not drew a grid inside the shape and added the squares, but could not count the
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fractional parts that resulted (21%; 40%). Some failed to divide by 2 (12%; 5%), and
some multiplied all of the side lengths together (12%; 0%).

Question 4 proved more difficult with few achieving the right answer (14%; 23%)
and many finding the perimeter; some did so correctly (5%; 37%), but others omitted
the lengths of the two unlabelled sides (30%; 21%), or did not attempt the task (19%;
2%). Most students accurately drew the rectangle in question 5 (58%; 79%), while some
did not measure the sides correctly (7%; 7%) and, as in question 4, others drew a
rectangle with perimeter 24cm (19%; 14%). Drawing a non-rectangular shape was more
difficult; those who were correct (26%; 30%) drew a right-angle triangle or created a
composite shape by drawing 24 unit squares one row at a time, but many who tried
were unable to do so accurately (33%; 14%). Here too, students predilection for
perimeter persisted (21%; 30%).

The interviews

All students found the area of the rectangle in task 1, either by measuring and
multiplying its sides (6 students) or by overlaying the grid, counting squares along two
adjacent edges and multiplying (6 students). Only one student could explain without
assistance why multiplying length by width guaranteed the correct answer; two more
students were eventually able to explain it after prompting, but the remaining nine could
not. For task 2, five students correctly stated that the area of the triangle was smaller
than the rectangle. They superimposed the shapes and described how the protruding
pieces of the triangle could be cut off and repositioned inside the rectangle without
covering the entire space. Three students claimed the triangle was larger “because it
looks bigger” but, after superimposing, they explained the task. Two students were
convinced that the triangle was larger “because it’'s taller” and the remaining two
students could not decide: one because he claimed he first needed to measure each
shape, and the other * because they’ re different shapes’.

Seven students stated that the parallelogram “looks about the same size” as the
rectangle, while the others were unsure. The students either aligned the corresponding
edges (7 students) or measured the sides (5 students). However, in doing so, al students
compared the slant height of the parallelogram with the perpendicular height of the
rectangle, thereby falsely concluding that the parallelogram had a greater area. When
they recombined the parallelogram to fit it exactly over the rectangle, only four students
could eventually explain what had occurred; the other eight remained completely
mystified.

Discussion

Three closely related misconceptions which emerged from analysis of the test and
interview data are now discussed.

Area—perimeter confusion

Students often confuse area and perimeter (Kouba, Brown, Carpenter, Lindquist, Silver
& Swafford, 1988). In test question 1, students labelled the rectangle’s sides 5 cm? or
3 cm? or, more commonly, gave its areaiin linear units as 15 cm. They confounded their
language during the interviews and spoke of perimeter when they should have referred
to area, and vice versa. For example, students referred to the “area of aside” or said that
the side was “eight square centimetres long”. Sometimes the students would correct
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their words, but often they gave the impression that they did not realise what they had
said.

Many based their written answers on perimeter rather than area. This occurred in
guestions 2 and 3, but was more prevalent in questions 4 and 5, which had a greater
degree of difficulty. Students tried various methods to calculate the perimeter of the
rectangle: some measured the sides and added the lengths; others used a variation of
counting around the corner (Hirstein, Lamb & Osborne, 1978) in which they omitted
the corner squares and obtained only 12 cm; and some simply counted the tick marks.
Similar approaches were applied to the triangle in question 3.

In question 4, the more complex L-shaped figure was too demanding and many
reverted to perimeter, sometimes accounting for the missing sides but often simply
adding the given lengths, as shown in Figure 1. In question 5, they drew shapes with a
perimeter of 24cm rather than an area of 24cn?. These students may be relying on what
Tierney, Boyd and Davis (1990) call signposts, or familiar ideas on which to focus
when they feel disoriented by strange mathematical settings, even if the signpost
(perimeter) isirrelevant to the task (finding area).
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Figure 1. Area—perimeter confusion.

Perpendicular-slant height confusion

Related to area—perimeter confusion was the students’ inclination to make decisions
about areas by comparing any height, regardless of whether it was at right-angles to the
adjacent side or not. For instance, some thought that the parallelogram in interview task
2 was larger than the rectangle because it had a longer side, but they contrasted the
perpendicular height of the rectangle with the slant height of the parallelogram. There
was also some confusion about the precise meaning of “height” and it seemed aflexible
notion for some because they focused solely on the edges of the shape.

Interviewer: Do they have the same height, those two shapes [the rectangle and
paralelogram]?

Student: When it's like that [slant height of parallelogram aligned with
perpendicular height of rectangle], it's a bit bigger. But when it's like
that [parallelogram recombined to form arectangl€], it does.

Interviewer: So what would you say, the rectangle and parallelogram, they do or
they don’t have the same height?

Student: The height, they do now, but they didn’t before.
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Responses to interview task 2 revealed that students did not appreciate the
importance of using perpendicular height to calculate areas of triangles and
parallelograms, and this made it difficult for them to understand how two shapes,
despite ostensibly having different dimensions, could still have the same area.

Student: That's difficult! Well, it's still 10 at the bottom and 8 [perpendicular]
at the sides, but it was 9 [slant] before. Somehow the area looked
bigger before, but now it's smaller. [Pause] | don’t know, that’s
difficult, | can’'t think of an answer for that. That piece that we took [a
right triangle cut from one end of the parallelogram and recombined to
form a rectangle], we made the height straight so that we could make
arectangle but | still don’t understand how it got back to 80, we lost
10. [The student then measured the perpendicular height of the
parallelogram] That's 8, so when | measured it there [slant height] it
was 9. So we've kind of cut off a centimetre and put it over there.

Interviewer: Soit's 9 on the edge and 8 in the middle. Can you explain that?

Student: It's just how the shapeis, | guess.

Interviewer: Canyou explain it?

Student: No.

The student is confounded by the “loss” of 1 centimetre as the parallelogram (of slant
height 9cm) is recombined to form a rectangle (of perpendicular height 8cm). This
perpendicular-slant height confusion is probably the reason why so many students could
not explain how the two shapes had the same area because it seemed to them that the
dimensions of the parallelogram were greater than the rectangle.

The students’ exclusive reliance on the slant height of the parallelogram for
calculating its area might also be interpreted as an over-generalisation of theA =1xw
formula. As Tierney et a. (1990) found, many students do not recognise the underlying
array structure of the formula and often apply it indiscriminately. For example, some
multiplied all of the lengths together to find an area—perhaps another feature of
area—perimeter confusion—while others found the area of the triangle by multiplying 3
by 4 by 5. In the interviews, some students claimed that it did not matter which sides of
the triangle were used to calculate its area, so long as any two lengths were multiplied
together and the result halved. It is worth noting that students who arbitrarily multiplied
the lengths of shapes like this tended to define area as “length times width” in the test.

Poor grasp of the rectangle—triangle relationship

Those who were prepared to multiply any two lengths of the triangle to find its area
may also have been exhibiting a limited understanding of the fact that the area of a
triangle is half that of the rectangle which shares its base and perpendicular height. The
following exchange took place after a student had correctly calculated the area of the
triangle in interview task 2.

Interviewer: Why do you halveit?[The product basex height for the areal
Student: | was taught that way.

Interviewer: Would it matter which lengths you multiply?

Student: I’m not sure.

Interviewer: Why did you choose those lengths?

Student: | don’t know.
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Students' inadequate appreciation of the rectangle-triangle relationship was further
demonstrated in test question 3 where, if they understood the relationship, the task of
calculating the area of the right-angled triangle would have been relatively
straightforward. However, many did not use the rectangle connection, choosing instead
to construct a grid and count squares. But, certain squares were incomplete so it was
difficult to recognise the precise fraction represented by each part-square, particularly as
some students did not draw their grids accurately. Thus most could not obtain the
correct answer. A few students went to great lengths when trying to calculate the total
number of grid squares that comprised the triangle, as Figure 2 shows.

3.
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Figure 2. Poor grasp of the rectangle-triangle relationship.

Conclusion and implications for teaching

The results of the present study confirm the fairly grim assessment of students' abilities
in area measurement reported in the literature. Many students made substantive errorsin
the test and interview tasks and, even when they were correct, most could not provide
an adequate explanation for the procedures they used.

It is clear that area teaching, which focuses too much on formulae at the expense of
conceptual understanding, is unlikely to be successful. Even Year 7 students need
substantial hands-on experience in partitioning regions and constructing grids. It is
important that students' attention is drawn to the structure of the grid during such
activities but this is more difficult when students do not have to construct the grids for
themselves (Reynolds & Wheatley, 1996). For instance, students in one school had grid
books and spent much time drawing shapes and counting squares to find areas using the
ready-made grid which probably accounts for their increased use of primitive counting
techniques in the post-test.

Practical activities like those used in the interviews could be profitably employed to
help students deal with likely misconceptions such as area—perimeter and
slant—perpendicular height confusion. In doing so, teachers should avoid telling students
what to think; rather, students must be encouraged to explain what they see in their own
words. In this way, their misunderstandings are more likely to be revealed and more
easily rectified.

© The Australian Association of Mathematics Teachers Inc.

142



Mathematics: Essential for Learning, Essential for Life

References

Battista, M. T. (2003). Understanding students' thinking about area and volume measurement. In D. H.
Clements & G. Bright (Eds), Learning and Teaching Measurement (pp. 122-142). Reston, VA:
National Council of Teachers of Mathematics.

Battista, M. T., Clements, D. H., Arnoff, J., Battista, K. & Borrow, C. V. A. (1998). Students’ spatial
structuring of 2D arrays of squares. Journal for Research in Mathematics Education, 29(5), 503-532.

Baturo, A. & Nason, R. (1996). Student teachers' subject matter knowledge within the domain of area
measurement. Educational Sudiesin Mathematics, 31, 235-268.

Carpenter, T. P., Coburn, T. G., Reys, R. E. & Wilson & J. W. (1975). Notes from the National
Assessment: Basic concepts of area and volume. Arithmetic Teacher, 22, 501-507.

Comiti, C. & MoreiraBaltar, P. (1997). Learning process for the concept of area of planar regionsin
12-13 year-olds. In E. Pehkonen (Ed.), Proceedings of the 21st PME Conference Vol. 3 (pp.
264-271). Lahti, Finland: Program Committee of the 21st PME Conference.

Dickson, L. (1989). The area of arectangle. In K. Hart, D. Johnson, M. Brown, L. Dickson & R. Clarkson
(Eds), Children’s Mathematical Frameworks 8-13: A Sudy of Classroom Teaching. London: NFER-
Nelson.

Hirstein, J. J,, Lamb, C. E. & Oshorne, A. (1978). Student misconceptions about area measure. Arithmetic
Teacher, 25(6), 10-16.

Kidman, G. C. (1999). Grade 4, 6 and 8 students’ strategiesin area measurement. In J. M. Truran & K.

M. Truran (Eds), Making the Difference (Proceedings of the 22nd annual conference of the
Mathematics Education Research Group of Australasia, pp. 298-305). Adelaide: MERGA.

Kordaki, M. & Potari, D. (2002). The effect of area measurement tools on student strategies: Therole of a
computer microworld. International Journal of Computers for Mathematical Learning, 7, 65—100.

Kouba, V. L., Brown, C. A., Carpenter, T. P., Lindquist, M. M., Silver, E. A. & Swafford, J. O. (1988).
Results of the Fourth NAEP Assessment of Mathematics: Measurement, geometry, datainterpretation,
attitudes and other topics. Arithmetic Teacher, 35(9), 10-16.

Outhred, L. N. & Mitchelmore, M. C. (2000). Y oung children’ sintuitive understanding of rectangular
area measurement. Journal for Research in Mathematics Education, 31(2), 144-167.

Reynolds, A. & Wheatley, G. H. (1996). Elementary students' construction and coordination of unitsin
an area setting. Journal for Research in Mathematics Education, 27(5), 564-581.

Schultz, J. E. (1991) Area models: Spanning the mathematics of grades 3-9. Arithmetic Teacher, 39(2),
42-46.

Tierney, C., Boyd, C. & Davis, G. (1990). Prospective primary teachers’ conceptions of area. In G.
Booker, P. Cobb & T. N. de Mendicutti (Eds), Proceedings of the 14th PME Conference Voal. 2 (pp.
307-314). Oaxtepec, Mexico: PME.

Woodward, E. & Byrd, F. (1983). Area: Included topic, neglected concept. School Science and
Mathematics, 83(4), 343-347.

© The Australian Association of Mathematics Teachers Inc.

143



Students constructing
Interactive learning objects for
conceptual development in mathematics

Paul Diete, Rodney Anderson, Peter Fas,
Darren McGregor, Avril Najman

Somerville House

The following paper provides an outline of an ASISTM project involving
Somerville House, Moreton Bay College, Brisbane State High School, Clayfield
College, Anglican Church Grammar School, Queensland University of Technology
and The University of Queensland. This project aims to enhance student
engagement in mathematics and technology through the creation of interactive
mathematics learning devices. Integral to the project is the students constructing
Interactive Learning Objects for conceptual development in mathematics. The
students are taking a topic in mathematics and developing an interactive Learning
Object to demonstrate and deepen or consolidate their understanding of this topic.
In taking on the role of the teacher, the students will create objects in order to
instruct and assist other students in the learning of specific mathematics content.
What the students create will also be used as an indication of their preferred
learning style. This will support teacher reflection upon their own pedagogy
leading to better connection between teaching and learning. Identification and
development of preferred mathematical learning styles underpin the project, as do
the principles of collaboration amongst peers in order to engage a more varied
pedagogy in the classroom.

Introduction and background

In understanding and accepting the simple premise that everybody is active sometimes,
and reflective sometimes, it follows that it may be in the best interest of students and
teachers of mathematics to seek to incorporate these values into learning, planning and
pedagogy. This ASISTM project aims to do so by asking students to be more active in
their learning of a mathematical concept and by being even more active in
demonstrating that knowledge. Subsequently, the teacher and the student are both
required to be reflective of the process and the resultant models, and be mindful of how
this may affect teaching and learning of mathematics into the future.

There is no doubt that individuals have the capacity to see and experience the world
in different ways. Howard Gardiner’s much talked about Multiple Intelligences is one
framework which may be used to understand that persons learn and act in differing
ways. Focusing on children in the middle years of schooling, some of these
intelligences seem to be more prominent than others. A quick survey of 106 11-13
year-old females at Somerville House showed that the Interpersonal, Musical and
Bodily Kinesthetic were the most used Intelligences, with Intrapersonal and
Mathematical/Logical being the least favoured. Contrasting to this would be the
generally accepted presumption that much mathematics teaching in Y ears 7-12 focuses
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on a style that predates even our own generations. one that is founded on didacticism
and rigor. The intention of this project is not to dismiss the traditional modes of
teaching and learning mathematics, but rather to investigate whether there are also
alternatives to cater to the immediate needs of the current generation. The concept of
learning styles, particularly mathematical learning styles, addresses this question as we
may gain valuable insight as to how our students think and how they would prefer to
learn. The idea that individuals learn differently is not new but can still be ignored in
many mathematical classrooms. The use of the very student-friendly Multiple
Intelligences framework allows students to understand that they have preferred ways of
thinking and expressing themselves. We can then open up to the students the possibility
that these learning styles are linked indelibly to their personalities. Once this is
achieved, we can encourage students to think about how they may use this knowledge
to help them understand mathematics or, indeed, any subject.

For the purposes of this project, Learning Objects can be described as any resource
that can be used in the teaching of concepts or content. These objects can be created, as
in the case of this project, by using technology and involve platforms such as Excel,
MovieMaker, Word, Dreamweaver, PowerPoint or Esiteach. However, they can be as
simple as an instructional poster, booklet or model. Learning Objects may provide a
way for students to express their own preferred learning styles. For example, use of
auditory material may suggest that the students have a preference for the Musical
intelligence while the use of numerous pictorials may indicate a strong visual learning
style. In this project, students will create Learning Objects for a particular mathematics
topic, with the focus on technology as the method, or pathway, of creation.

Assuming that any Learning Object created by students is a reflection of how they
understand particular mathematical concepts, it may be a logical step to also assume
that this may be useful to the teacher in determining their own pedagogy. Whilst we
have a class full of individuals, it is also safe to say that these individuals fit into certain
categories, from academic to social. Collection of data pertaining to how a certain group
of students best learn a mathematical concept may have benefits for the teacher when
next approaching a similar cohort with the same, or related, content matter. It isthe aim
of this project to determine how individuals and groups of students, in their own
estimation, best learn mathematics and, then, to adjust teaching styles accordingly in
order to become better, and more relevant, mathematics teachers.

An identified need in the teaching profession is the area of greater peer collaboration,
support, and sharing of information and resources. The ASISTM project aims to
develop ties between schools and universities, as well as creating links to the
professional world. The project relies heavily on the interaction between the cluster
schools and the sharing of teaching ideas and experience in order for any data to be
relevant beyond the bounds of each specific class. Thereis also a pressing need to make
mathematics more relevant to the changing world and the potential career opportunities
that exist. The creation of stronger links with tertiary education and the IT community
may assist in this area.

The teaching program

The project is ateam effort where all cluster schools take part in its complete life-cycle.
After the initial concept development, each school will trial, or is already trialing, the
program as outlined with a specified cohort (Year 7-10). The cluster schools will
submit the data and resultant student work for viewing by all partner schools. Feedback
and professional development will be shared across academic staff, both relative to the

© The Australian Association of Mathematics Teachers Inc.

145



Mathematics: Essential for Learning, Essential for Life

student work and, subsequently, as to how this will affect future pedagogy. The final
resource bank website will be able to be accessed and added to by each cluster school as
determined by their specific needs and work. Consideration of each participating school
now follows.

Somerville House

Somerville House is running the program across the entire Y ear 7 cohort. There are five
phases as follows:

1.

Teacher professional development including, learning styles, assessment of

mathematics and learning styles as well as the use of IT (Excel, Moviemaker,

Flash, Esiteach, PowerPoint) in the mathematics classroom. Professional

Development was undertaken as part of the cluster or within the Somerville

communities follows:

(@ Learning Styles— Shelley Dole (University of Queensland)

(b) Mathematics Assessments and Rubrics — Shelley Dole

(c) Useand creation of IT — Greg Egan (industry professional), Sally Mack
(IT/Science/Mathematics teacher and independent creator of Learning
Objectsusing IT — Somerville House)

Introduction of students to possible software that they may use in the creation of
their Learning Objects. Students will be provided with an overview of each
program so that they have the scope to choose the format of delivery that best
suits their needs. Each platform can be taught separately from mathematics
curriculum, or can incorporate the teaching of mathematical content.

Introduction of students to the concept of Multiple Intelligences. Students are
encouraged to identify their personality traits that may influence their learning at
school and to link these to Howard Gardiners 8 Multiple Intelligences
(Logical/Mathematical, Verbal/Linguistic, Bodily/Kinesthetic, Visual/Spatial,
Intrapersonal, Interpersonal, Musical, Natural). The students take an online test,
then observe and log how they may “use” their top three resultant Intelligences in
the learning, or understanding, of particular topics.

The students must create a Learning/Teaching Object focusing on such abstract
mathematical questions as: “Why do we flip and multiply?’, “What does the
equals sign mean?’, “What is a percentage?’. From recommendations of our
Senior School teachers, these notions were highlighted as areas that require more
depth of understanding, amongst our mathematics students, in later years.

The completed Learning Objects will be evaluated in two ways. For students the
Learning Objects will be assessed to measure the extent to which students have
consolidated, or gained, a deeper understanding of the mathematical content. For
teachers the Objects will be viewed with the intention of determining whether
there are possible “better” ways to teach this content, to other groups of students
in the future.
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Brisbane State High School

Ten classes in Year 10 at Brisbane State High School have undergone a seven week
project in their mathematics classes. The project aimed to produce a Learning Object in
amathematical area of their choice. Students were encouraged to select a topic that was
either being studied currently in Yr 8 or Yr 9, or an area of mathematics that they did
not fully understand, but which they wanted to know more about. Each class was given
examples of Learning Objects in both Vegas and PowerPoint application format. They
were then given an opportunity to build a ssmple Learning Object in each medium and
taught the basic ICT skills required with using this software.

Students were able to work individually or in groups of up to three people. Each
student completed a learning log which detailed their activity in each lesson. Students
also provided a concept map of how they intended to get across their message, before
they began making the Learning Object. Students were expected to have at least 3-5
minutes of footage if they chose to use the Vegas format. Students were given a four
week period in order to put together the Learning Object. The quality of the Learning
Object was judged predominantly on how effectively they conveyed the mathematics
and success of the project will be determined by the increased perceived level of
understanding within the mathematical area chosen.

Moreton Bay College

Moreton Bay College isimplementing the ASISTM project in one Year 10 Preparatory
Mathematics B class and one Y ear 9 Extension Mathematics class.

1. Aswith all schools involved in the project, Moreton Bay College took part in
professional development that included:
(@ IT (Word, Excel, PowerPoint, Easiteach, Flash, MovieM aker)
(b) learning styles
(c) interactive whiteboard and associated software (TeamBoard)
(d) assessment of mathematics.

2. Students are to be introduced to the various software that will be utilised in the
creation of Learning Objects. Students will be introduced to each piece of
software in their mathematics class or be introduced to it in other subjects,
particularly IT. Interactive Whiteboards will be extensively used in class. The
students will be able to choose which software will be used in the creation of their
Learning Object. The students, then, have a choice of whether to use the same
software, or use another piece of software, in developing another Learning Object.

3.  Students are to be introduced to the concept of Multiple Intelligences and how this
may affect their learning. They are to undertake an online quiz and use the results
of identifying their favoured learning styles, and choice of relevant software, to
develop Learning Objects.

4.  The students are to pick a mathematical concept that they are interested in and
develop a Learning Object based on this choice. The audience of the Learning
Object is their peers. However, students may also choose the alternative of
creating a Learning Device to teach the topic to a younger age group.
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5.  Themajor focus of the assessment of the Learning Object is whether the intended
audience obtained an understanding of the mathematical concepts that were
delivered in the Learning Object. In addition, do the developers of the Learning
Object also have a deeper understanding of the mathematical concepts? Finally,
would the teachers of the students who developed the Learning Objects change
their methodology with future classes of students?

Clayfield College

As part of their study in ITS (Information Technology Studies), Year 11 students
develop ICT products for identified clients and their needs. Such products are usually
developed using Macromedia Flash. Hence, in the interests of cross-curricula
cooperation, the ITS staff are directing and assisting their students to develop products
(Learning Objects) for Year 8 mathematics students (the clients). Thus, the needs for
two subject disciplines, and their respective stakeholders, are being met by means of the
one project.

Conclusion

Currently, the cluster schools are carrying out the project in the varied forms but are
continually meeting and sharing their experiences. Some of the key points of interest
thusfar are:

1. Thevarying degrees of student motivation according to their age and gender.

2. Convincing students, teachers, parents and administrators of the value of the
project and of the possible future benefits of not only improving mathematical
understanding but also of improving mathematical pedagogy, students' academic
self-awareness and collegial links.

3. Finding the timein the already crowded curriculum to deliver the project.

4.  Deciding how to best assess the success of the project on an individual student
basis as well as within an overall framework.

5.  Teachers understanding the required IT well enough to assist the students in the
creation of their modules.

Further dialogue between the cluster schools is essential for the success of this
project, but the value has already been seen in the intellectual sharing of ideas from the
five main participants. It is anticipated that this may be the cornerstone of a movement,
in at least one school (Somerville House), toward a school program that deals with
teaching our students how to think and learn more effectively, according to their
individual strengths and weaknesses.
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Chameleons in the classroom:
Middle years teachers of mathematics

Brian Doig
Deakin University

What are the practices of effective teachers of mathematics? and What are the
characteristics of effective mathematics teachers? are questions that have become
prominent in recent times, particularly with respect to the Middle Years. In this
paper some of the research that provides directions to possible answers to these
questions is described. It is intended that the paper provides educators with an
overview of the findings of research that have the potential to impact favourably on
student outcomes in the Middle Years of schooling. The paper also raises the issue
of how much change can be expected realistically: does the classroom chameleon
exist?

Studies of effective teachers of mathematics

Several studies have identified characteristics that are linked with being effective as a
teacher of mathematics, as well as other subjects. As part of the AAMT professional
development strategy, a paper focussing on these characteristics was commissioned
(Doig, 2005), in part, to assist teachers explore their own practice. In asimilar vein, the
Improving Middle Years Mathematics and Science (IMYMYS) project (an ARC linkage
project with the Victorian Department of Education and Training as a partner) was
developed out of the School Innovation in Science (SIS) initiative (Department of
Education and Training Victoria, 2004) (see, Tytler, 2004, for details of these projects).
IMYMS is extending the SIS strategy to mathematics, and includes an explicit
framework of effective teaching and learning, based on an extensive review of the
literature on effective teachers of mathematics (Doig, 2003). While these strategies are
both within Australia, interest in the effective teacher is not confined to this country,
and the following section provides a brief overview of the international research in this
area.

Practice issues

A seminal study of effective mathematics teachers, the Effective Teachers of Numeracy
Study (Askew, Brown, Rhodes, Johnson & Wiliam, 1997) found that the effective
mathematics teachers had a “ particular set of coherent beliefs and understandings which
underpinned their teaching of numeracy. Their beliefs related to (a) what it means to be
numerate, (b) the relationship between teaching and pupil's learning of numeracy, (c)
presentation and intervention strategies’ (p. 1).

Teachers in the Askew et al. study were interviewed about their educational
orientations to teaching, mathematics and styles of interaction with students. The results
of these interviews led to the defining of three models of orientation that explained how
teachers approached the teaching of mathematics. These orientations were
Connectionist, Transmission, and Discovery. All but one of the highly effective teachers
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were classified as connectionist, while teachers holding other orientations were all
classified as being only moderately effective.

Connectionist teachers were those who had beliefs and practices based on valuing
students’ methods, using students’ understandings, and placing emphasis on making
connections within mathematics. These highly effective teachers believe that pupils
develop mathematically by being challenged to think, through explaining, listening, and
problem solving.

In relation to teaching, the effective, connectionist teachers believed that discussion
of concepts and images is important in exemplifying the teacher's network of
knowledge and skills, and in revealing pupils' thinking, and that it is the teacher's
responsibility to intervene to assist the pupil to become more efficient in the use of
calculating strategies. The highly effective teachers in this study believed that being
numerate requires a rich network of connections between different mathematical ideas
and an ability to select and use strategies that are both efficient and effective. They aso
believed that: amost all pupils are able to become numerate, and that pupils develop
mathematically by being challenged to think, through explaining, listening, and problem
solving.

The study also found that teachers' beliefs and understandings of the mathematical
and pedagogical purposes of classroom practices were more important than the actual
practices themselves, and that having an A-level or a degree in mathematics was not
associated with being highly effective. The study confirmed other UK and US research
that suggested neither mathematical qualifications nor initial training are factors
strongly correlated to highly effective teachers of mathematics and this also was
confirmed later by the Leverhulme Numeracy Research Programme (Brown, 2000) in
the UK.

Background issues

The Third International Mathematics and Science Study (TIMSS) conducted in
1995-1996 collected both achievement data from students, and background information
from school principals, teachers, and students. These data were linked so that the
influences on the high-achieving students could be isolated. One group of students in
the TIMSS was those in the middle years: that is, those who were 14-years-old. Martin
and his colleagues (2000) reported comprehensively on the findings of this investigation
and, in summary, their findings were that home background factors (for example,
parents levels of education, student aspirations to attend university) were the most
significant distinguishing difference between high- and low-achieving students.
However, factors that relate directly to the student’ s school experience were also strong
indicators of the student’s likely success on the TIMSS items. In Australia,
Hollingsworth and her colleagues (2003) reported that a lack of emphasis on complex
content matter in the syllabus was hampering student higher achievement.

Classroom issues

Research indicates that there exists a small set of classroom factors that appear to
provide effective learning and work consistently across countries. The most striking of
these factors would appear to be that “ Schools [sic] where eighth-grade students were
expected to spend time on homework in a range of subjects had higher average
achievement in science and mathematics’ (Cogan & Schmidt, 2003, p. 11). In their
recommendations for reform of United States middle schools, based on the TIMSS
results, Cogan and Schmidt (2003) make these five points:
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That the curriculum should be coherent across the grades for al topics,

Fewer topics should be taught in the middle school;

Topics for study should be taught at an appropriate grade level;

Teachers should have clear and coherent standards of achievement to which to
teach; and

5. Review and repetition in lessons should be reduced.

El SN o

Policy issues

Several studies confirm that improving teacher quality is the most effective option for
policy seeking to improve student learning outcomes (e.g. Darling-Hammond & Ball,
1998). Wenglinsky (2002) used NAEP data to examine factors affecting student
learning in eighth-grade mathematics. He found that the factors included student
background, teacher quality (e.g. a maor in mathematics, professional development,
classroom practices) and class size. Unlike Martin et al. (2000), Wenglinsky concluded
that the impact of teaching can be said to equal SES, and even possibly somewhat
greater.

Wenglinsky’'s research indicates that there is more return from investments that
improve teacher quality and capacity than in reducing class size, such as attracting well-
qualified mathematics teachers, preparing them well in methods for teaching
mathematics and providing high-quality continuing professional learning. In Australia,
Monk (1994) used the LSAY database to look at the effects of subject matter
preparation of secondary mathematics and science teachers on student performance
gains. Teacher content preparation was positively related to student learning gains. The
effects of content knowledge were strengthened when accompanied by course work in
pedagogy, leading Monk to state that “it would appear that a good grasp of one’'s
subject area is a necessary but not sufficient condition for effective teaching” (p. 142).
The implications of this research are clear, yet there have been indications that some
states and some Australian universities have, in fact, been reducing subject matter
preparation requirements in their teacher education courses over recent years.

A related message from international research on system factors is that the greatest
return, in terms of impact on student learning outcomes, comes when policy makers
give priority to investments that directly influence teacher quality and professional
development.

Darling-Hammond (2000) found that variation in mathematics achievement on
NAEP tests across the 50 US states was attributable more to variations in policies
affecting teacher quality, than factors such as student demographic characteristics, class
size, overall spending levels, or teacher salaries. The major policy variations affecting
teacher quality were state requirements for teachers to be licensed and to have a major
or minor in mathematics from university. She claimed that:

the effects of well-prepared teachers on student achievement can be stronger than
the influences of student background factors, such as poverty, language
background, and minority status. And, while smaller class sizes appear to
contribute to student learning ... the gains are most likely to be realised when they
are accompanied by the hiring of well-qualified teachers. (p. 39)

Further, after a major review of research on factors affecting student learning
outcomes, the highly influential report of the National Commission on Teaching and
America’s Future, What Matters Most (1996), had come to the conclusion that the most
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important influence on what students learn is what their teachers do. Its central

recommendations for systemic reform called for:

1. the development of a new infrastructure for professional learning organised
around standards for teaching;

2. new career paths that reward teachers for evidence of professional development;
and

3. afocuson creating school conditions that enable teachers to teach well.

The characteristics

From the short overview above it is clear that, despite minor differences in emphases,
there is agreement internationally about what are the characteristics of effective schools,
teachers, and classrooms. Theissueis, of course, that is it possible for any one teacher,
or school, to have all the identified characteristics? To demonstrate the enormity of the
answer to this question, the following lists contain the key, common, characteristics of
effective teachers, grouped by who or what is being asked to change.

Teachers

The characteristics common to effective teachers are that they:

have sound content knowledge;

view assessment as a key facet of their teaching and learning programs,
model enthusiasm and interest in their subject by example;

value students' methods, and use students' understandings,

provide choice, share control; and

exhibit a caring attitude to students.

Sk whE

Teacher actions

The points below are the actions that effective teachers take more often than other, less
effective, teachers. Effective teachers:

explain the rationale for tasks and assignments;

use avariety of teaching strategies;

engage students in making sense of what they are learning;

use both cognitive and affective teaching methods;

use advance organisers, and provide opportunities for practice;

create and implement sequences of lessons rather than single one-off activities,
place emphasis on making connections within and across learning areas;
continually audit their students' needs;

interrelate different modes of assessment with decisions about curriculum and
instruction; and

10. include values, beliefs and social structures as part of their teaching.

CoOoNOUR~WDNE

Classroom environment

As outlined earlier, classroom environments affect student outcomes, and the effective
classroom has identifiable qualities. That is to say, classrooms of effective teachers are
places where students:

1. havefocussed, sustained, and in-depth opportunitiesto learn;

2 are challenged to think through explaining, listening, and problem solving;

3. areencouraged to be autonomous and self-regulatory;

4 have varied structure, form, and context of their learning experiences,
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5.  areprovided with appropriate feedback;
6. areengaged in their own learning; and
7.  theclassroomislinked to the broader community.

Other issues

Not all aspects of effectiveness are the sole responsibility of the classroom teacher:
some responsibility rests within the school environment in which teachers work. The
two major aspects that research suggests are the most important are leadership and the
school’s professional community. The characteristics of effective leadership and
professional community are expanded bellow.

Leadership

Effective teachers are supported by their school leadership, and the characteristics of
school leadership that encourages effective teaching are where it:
istransformational;

provides vision and facilitation;

provides a positive working environment for teachers;

facilitates organised collective learning;

employs awhole-school approach to school policies and practices;
communicates school policies and practices to the wider community;
informs and involves parents and the wider community;

provides a coherent program from primary through to secondary school;
encourages staff professional development; and

0. providestime for staff to plan.

RoOoo~Noah~wdE

Professional community

Those teachers who are deemed effective have at least some of the following
characteristics in their daily practice with colleagues. They endeavour to:

support their colleagues;

collaborate with colleagues;

share their norms and values,

engage in reflective dialogue;

share clear and coherent standards of achievement; and

engage in professional development activities.

SUubrwhE

Conclusion

While not exhaustive, the lists of characteristics of effective teachers, and their practice,
given above, are certainly exhausting! Who among us could claim all the “good”
features? What would such a pedagogical paragon be like? Can we be expected to
become classroom chameleons, and change readily?

It is my belief that if we examine ourselves, and our practice, many of these
“effective features’ are already present; but some are not, and some are not possible for
us to change. However, as professionals, we need to be ever working towards more
effective practice. So, what is the solution? Perhaps we need to push for policy
initiatives, such as those outlined earlier, which would help us become more effective?
And, perhaps, we can use the notion of Merrily Malin (1998), who suggested that the
most effective teachers are those who know their students well.
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The games we play: Assessing algebraic thinking
through arithmetic activities

Judith Falle
University of New England

Sudents in the later years of primary school, or early years of secondary school
often have fragile understandings of number facts, inefficient fact recall and
computational strategies, and a limited understanding of number relationships or
the meaning of equals. Hence, they are unprepared for the transition to algebra,
which marks, or mars, the early years of secondary schooling. This paper
describes four activities that develop deep arithmetic understandings that are
essential for students' engagement in formal algebra. The activities also provide a
context for mathematical discussions and rich assessment potential.

Introduction

Although algebra is introduced in the first years of secondary schooling, preparation
takes place from the first years of schooling, (e.g. Curriculum documents from America
(NCTM, 2000), Britain (DEEQCA, 1999) and Australia (BOSNSW, 2002) include a
section on Patterns and Algebra). Difficulties experienced by students in algebra can be
shown to be difficulties in arithmetic understanding (Booth, 1984) often arising from
their mathematical experiences, rather than as a result of students' cognitive capacities
(MacGregor & Stacey, 1997). Algebraic thinking begins with the arithmetic experiences
that children encounter from the earliest years of their schooling. These experiences are
those that encourage a “ conceptual orientation” rather than a* calculational orientation”
(Lubinski & Otto, 2002), and develop the rich understanding of arithmetic (Tall &
Thomas, 2002) that helps to bridge the conceptual gap (Linchevski & Herscovics, 1994)
between arithmetic and formal algebra.

Algebraic thinking — about numbers, their relationships, the relationships between
the operations on numbers and the structure of the number system — begins with the
exploration of particular numbers in order that patterns may be discerned, abstracted
and generalised. When arithmetic is learnt purely as a set of computational skills —
where unique answers can be obtained through the correct application of particular
procedures — students come ill-prepared for their introduction to formal algebra
(Maara & ladorosa, n.d.). To move from the realm of computational arithmetic to the
realm of “reasoning about unknown or variable quantities and recognising the
difference between specific and general situations’ (van Ameron, 2003), requires a
conceptual change across many aspects of arithmetic (Matz, 1982; Linchevski &
Herscovics, 1994).

This conceptual change can be bridged if students’ arithmetic experiences have been
enriched by their meeting situations such as: where “open” expressions (e.g., 3 +5) are
acceptable answers and representative of a number as well as a procedure; where they
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learn that the equal sign signifies equivalence; where the arithmetic operators (plus,
minus, times, divide, etc.), and the equal sign, are used as relational symbols as well as,
depending on context, instructions to carry out a computational procedure to obtain a
result. These experiences also assist students to develop efficient ways to recall, and
use, simple number facts and procedures. They can then use these to build skills in
executing more complex computations, and to identify and elaborate further arithmetic
relationships.

Although the knowledge and skills of “basic arithmetic” are introduced in the
primary years, together with the fostering of students’ facility in their use, many
students reach secondary schooling with a limited ability to recall facts efficiently and
where they rely on inefficient computational strategies, such as counting on by ones.
The problem for teachers of students in the first years of secondary schooling is thus
one of establishing sound pre-algebra knowledge (Linchevski & Herscovics, 1994)
before beginning, on a more formalised and abstract-theoretic approach, to pattern
recognition and generalisation in mathematically useful ways.

The cultivation of these understandings requires that students be exposed to a variety
of representations of numbers, and oft-repeated activities, that encourage the use of
flexible number representations throughout their schooling. These activities should
enable students to revisit the “basic’ mathematic facts and skills, as well as encourage
and foster the efficiency of recall and application of these facts to an ever-widening
range of examples. Thisis not acall for the reinstatement, or continuance, of the rote
learning of tables of number facts, devel oped without any meaning for the students, and
recited en masse each day as the school day begins. Teaching suggestions as to waysin
which students' facility can be enhanced need to be varied, engaging for students on a
number of levels, and provide ways of assessing students' mathematical understanding
that goes beyond a rapid, correct response to an essentially trivial question (e.g., Burnett
& Tickle, 2003).

This paper describes four activities that have been used successfully with studentsin
the first years of secondary school (and later years) to assess, and develop, their number
fact recall and computational skills, their understanding of number relationships, and
provide areason why they should spend their time “learning their tables.” The activities
not only provide “drill and practice” but also a context where students can pose
conjectures, provide explanations, and justifications, for answers or solution methods,
and can be assessed in powerful, albeit informal, ways. Their thinking is “made visible’
(Burnett & Tickle, 2003). Thus, these activities also provide opportunities for teachers
to make judgements about students' mathematical skills and the quality of their
mathematical knowing.

Making judgements “on the run” about students' understanding is something that
teachers do — using cues from their students. These cues include “body language,”
vocabulary use, linguistic modality and complexity, time spent on calculations, a
willingness to participate in a conversation, and the overt and covert reliance on peers.
Assessment of this kind is able to consider, not only on how much mathematics a
student can “get through,” nor how fast a student can answer or complete a task, but
also the quality — the breadth and depth — of the mathematics and the insights that
students offer.

The following sections describe each activity, and identify the mathematical content
potential of each, as well as the working mathematically aspects, and points where
assessments might occur.
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The games we play: Activities 1 and 2

Activity 1
Hereisanumber. It can be written in many ways. List as many as you can.

Students work in groups, probably no more than 4 to a group. Groups can be arranged
by ability, mixes of ability, or socially. Different groupings promote different learning
experiences that teachers can control, according to the values and relationships, as well
as the educational, outcomes they wish to achieve. The same number can be given to
each group — or different numbers. Time limits may be imposed explicitly, or left to
the teacher’ s assessment of the situation as the progress of each group is monitored.

Students do not use calculators, in the initial stages. It may then be suggested that
calculators be used in order that students discover more inventive representations.

This activity has been tried with first year pre-service teachers, as well as with
students in upper primary, and junior high school. Often the first responses are to list a
series of addition pairs, and then a series of subtraction pairs. Suggestions to individual
groups ,as to other possible representations, are often needed to move students beyond
mechanical repeating the same of arithmetic operations. In many cases this then
prompts far more original thinking.

In the form described, this activity poses an “open question,” much like Sullivan’s
suggestion of taking an answer and asking for the possible question that could result in
that answer (Sullivan & Lilburn, 1997). Often, such open questions may have either too
broad a scope, or serve only to accommodate too narrow arange of different responses
for students to perceive the mathematical connections intended by the teacher (Watson,
2005). Putting conditions on the question by suggesting that students develop
expressions using two, three, or al four basic arithmetic operations, encourages further
exploration. Many students then ask if they may use sguare roots, powers, fractions,
brackets, demonstrating a wide repertoire of mathematical operations. Here is where a
calculator may prove useful, even if not “broken”®.

Students then share their responses. If the responses are written on large sheets of
paper they can be displayed around the classroom and added to over a period of time.
Students, of course, need to check the work of their peers; no-one is allowed to get
away with an error! This then encourages debates as requests for justifications occur.

Activity 2: Five ways (adapted from Kirkby, 1994)

Given five digits (selected from digits 1-9 inclusive) arrange some, or al, in an
expression to obtain a given number (usually two-digit). No digit can be used more than
once in any particular expression. Thisis amore constrained version of the first activity.
Similar classroom organisation can be used and similar mathematical ideas are needed
by the students, and can be assessed by the teacher.

Discussion of Activity 1 and Activity 2

These two activities involve the students on three levels, each level being indicative of
the quality of mathematical understanding.

The first level is the knowing and recalling of number facts, and the appropriate use
of mathematical operations. Here, the teacher can discern whether students are using

8 There are many versions of this; e.g., Duncan Keith’s interactive site:

http://www.woodlands-junior.kent.sch.uk/maths/broken-cal cul ator
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efficient strategies for mental computations — or the inefficient pen-tapping, finger-
counting-by-ones strategies, that often go undetected.

The second level involves the demonstration or the development of number sense —
the fact that numbers can be represented in different, unclosed ways — and the
equivalence meaning of the equal sign. These activities may be the first time students
have encountered the idea that an open expression is a way of writing a number, and
even, that numbers can be written in many different ways.

The third level is the extension of students' knowledge to the use of a wider variety
of mathematical operations (e.g., squaring, square roots, even factorials), different
number patterns and the relationships between numbers, and the subtleties of
mathematical syntax (e.g. the surface rearrangement of expressionssuchas3+5-8 +1
=1-8+5+3butnotl1+3-5+8).

All of these understandings are necessary before students can access more formal
algebra, which relies, in part, on the manipulation of expressions to obtain new
mathematical insights. Students at this third level, or who begin to work at this level,
once being introduced to it through these activities, can demonstrate their mathematical
creativity, and begin to explore the number system in imaginative ways. Here is when
conjecturing, explaining and justifying ideas begins in earnest. For the teacher listening
to students articulating their ideas reveals the quality — the depth and breadth — of
their understanding.

The games we play: Activities 3 and 4

The next two activities described are more “game-like” in that they involve an explicit
element of competition. The focus is particularly on addition, subtraction, place value
and estimation. Computational techniques employed, strategies for estimating the larger
or smaller of two numbers and, often most significantly, what students do when adding
or subtracting decimals can be observed, and hence assessed, “on the run.”

Activity 3: Multi-digit (Goddard, Marr & Martin, 1994)

This activity requires a little more elaborate preparation than the first two activities.
Each student needs a photocopied sheet (Figure 1), and the teacher needs aten-sided die
(or equivalent random-number generator). The aim of the game is to obtain the largest
possible total, by recording the results of each throw of the die in each column of each
row, in successive rows. Once one row is complete, the numbers are recorded in the
next row. Each column represents the usual units, tens, hundreds, thousands, etc. As
shown in Figure 1, there is a small version and a large version. After the totals have
been added, students are asked for the largest obtained. Near totals, especially those
from the large version, are written on the board for discussion and decision-making.
These big numbers offer afurther challenge in their naming.
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Multi-digit game board

ROW 1

ROW 2

oW 3 ROW 1
ROW 2

ROW 4
ROW 3

TOTAL
ROW 4
ROW 5
ROW 6
ROW 7
TOTAL

Figure 1: Multi-digit (Goddard, Marr & Martin, 1991 p. EN11).

Activity 4: Dicing with decimals (Marr, Anderson & Tout, 1994)

There are several variations of this activity. Only the simplest is described here.
Students need a photocopied “game sheet” (Figure 2), and the teacher a six-sided die. In
seven throws of the die, students record the result of each throw in either the left-hand
column (units) or the right-hand column (tenths). Only one digit is to be recorded in
each row. The aim isto obtain atotal as near as possible to 9.9. As the game sheet has
four grids, students play the game four times. Each time, they not only total their scores,
but calculate the difference between their score and 9.9. After four turns, the differences
aretotalled, and the student with the smallest difference “wins.”
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Dicing with Decimals
7 throws

Target : 9.9 Target : 9.9

Target: 9.9 Target : 9.9

Figure 2. (after Marr, Anderson & Tout, 1994, p.16).

Discussion of Activity 2 and Activity 3

As well as the mathematics of addition, subtraction, place-value and estimation,
addressed in these two activities, the concepts of chance and absolute value are alluded
to and efficient mental computation strategies can be developed. Activity 3 also
provides an introduction to very large numbers, and their various names and
representations. By discussing their computation strategies, by “arguing” over who's
total was largest, students learn to articulate, and thus clarify their ideas; and the teacher
has the opportunity to listen to the students' thinking, and to make judgements about the
quality of their mathematical understanding, particularly about place value and
decimals.

Conclusion

Of far greater significance than the “drill and practice” provided by these activities is
the fostering of mathematical thinking and the consequent rich assessment data afforded
the teacher, through careful observation and listening to students. Listening to students,
as they debate amongst themselves, or as a class, or ask questions, reveals
misconceptions and language use that can be valuable to learning and teaching
mathematics.

Observing students closely you can watch them add, or subtract, for instance, using
inefficient strategies, such as counting on by ones, or reciting entire tables of number
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facts, instead of their being able to recall instantly one specific fact. These are usually
the students who are slow to complete their totals, who rely on others to help, or who
really miss their calculator. Discussing mental strategies, and ways to remember and
recall number facts, helps these students improve these skills, over time. Their
development may become apparent during repeated sessions of the activity. Students
are often willing to ask how others arrived at their total quickly. This gives students the
opportunity to articulate their own understandings, evaluate those of others, and so
provide a context for mathematical debate.

Although each of the activities is competitive to some extent, students appear very
willing to help each other out. This is particularly true of activities 3 and 4, where,
because of the chance element, there is no guarantee that the same student will win each
time: a student who “aways gets the right answer” can make a bad decision about
placing a number (particularly in the larger format of Activity 3) and not get the highest
total! There is also opportunity with these activities for students to participate by
becoming the die-thrower — time-out from the mental effort, but still being part of the
class. The teacher can also become a participant and, of course, need not win — much
to the delight of the students!

With all of the activities, debates ensue about results of calculations — whether or
not a particular result is possible. Calculators are best avoided, but do help resolve some
arguments, particularly when the teacher leaves most of the adjudicating to the class, or
as a way of having the less confident students enter the debate. One knows that the
activities appeal to students when they want to complete a game — even after the recess
bell has sounded!
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Preservice teachers’ perceptions of their
mentoring in primary mathematics teaching

Peter Hudson Sue Hudson
Queensland University of Technology Queensland University of Technology

A literature-based instrument gathered 147 final-year preservice teachers'
perceptions of their mentors' practices related to primary mathematics teaching.
The five factors that characterise effective mentoring practices in primary
mathematics teaching had acceptable Cronbach alphas, that is, Personal
Attributes (mean scale score=3.97, SD [standard deviation]=0.81), System
Requirements (mean scale score=2.98, SD=0.96), Pedagogical Knowledge (mean
scale score=3.61, SD=0.89), Modelling (mean scale score=4.03, SD=0.73), and
Feedback (mean scale score=3.80, SD=0.86) were .91, .74, .94, .89, and .86
respectively. This survey instrument may have applications for mentoring in
secondary mathematics and can be re-designed to investigate mentoring practices
in other key learning areas.

Mentoring is prominent in education systems throughout the world (Hawkey, 1997;
Power, Clarke & Hine, 2002; Starr-Glass, 2005) and mentors (i.e., supervising teachers
or cooperating teachers) in professional experience settings (i.e., practicum, field
experiences, internships) are well positioned to assist preservice teachers in developing
their practices (Crowther & Cannon, 1998). Mentors' responsibilities for developing
preservice teachers' practices are increasing as mentoring continues to amplify its
profile in education (Sinclair, 1997). Primary (elementary) teachers in Australia
generally work across all key learning areas (KLAS) and hence, in their roles as
mentors, are expected to facilitate quality mentoring to preservice teachers across these
KLAs. However, primary teachers will not be experts in all KLAS as research shows
some areas receive considerably less attention than others (e.g., science [Goodrum,
Hackling & Rennie, 2001] and art [Eisner, 2001]). As the curriculum is so diverse for
primary teachers, they may need assistance in their roles as mentors with particular
mentoring practices focused on subject-specific areas (Hodge, 1997; Hudson, 20044, b,
2005; Jarvis, McKeon, Coates & Vause, 2001), which also appears to be the case for
mentoring in mathematics education (Jarworski & Watson, 1994; Peterson & Williams,
1998).

Similar to teaching practices, professional development in mentoring practices may
enhance the mentor’ s knowledge and skills. Also, similar to teaching practices, mentors
operate in their own environment, where they may or may not receive further ideas for
developing their practices. Y et, mentoring cannot be left to chance (Ganser, 1996) and
needs to be purposeful in order to be more effective with explicit practices (Gaston &
Jackson, 1998; Giebelhaus & Bowman, 2002; Jarworski & Watson, 1994; Jonson,
2002). Guidelines for subject-specific mentoring can aid the mentor’s development by
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increasing confidence for raising issues, and providing topics for discussion and
observation of specific teaching practices (e.g., see Jarvis et al., 2001; Hudson &
McRobbie, 2003). Although there are various models for mentoring (Allsop & Benson,
1996; Colley, 2003; Jarworski & Watson, 1994; Jonson, 2002; Herman & Mandell,
2004), there is little literature on subject-specific mentoring in mathematics education
for preservice teachers.

A five-factor model for mentoring has previously been identified, namely, Personal
Attributes, System Requirements, Pedagogical Knowledge, Modelling, and Feedback
(Hudson & Skamp, 2003), and items associated with each factor have also been
identified and justified with the literature (see Hudson, Skamp & Brooks, 2005). The
five factors, and the development of the MEPST instrument, are well articulated in the
literature (see Hudson et al., 2005) for which this survey (Appendix 1) provides a direct
link.

This study explores and describes 147 Australian preservice teachers' perceptions of
their mentors' practices in primary mathematics education within the abovementioned
five factors linked to a literature-based instrument (Appendix 1). This study aims to
determine the transferability of the science mentoring instrument (Hudson et al., 2005)
to the development of an instrument for mentoring preservice teachers in primary
mathematics teaching. It also aims to articulate existing mentoring practices linked to
thisinstrument on preservice teachers' mentoring of primary mathematics teaching.

Data collection method and analysis

The “Mentoring for Effective Mathematics Teaching” (MEMT) survey instrument
(Appendix 1) in this study evolved through a series of preliminary investigations on
Mentoring for Effective Primary Science Teaching (MEPST; Hudson, 2003; Hudson &
Skamp, 2003; Hudson, 2004a, b; Hudson et al., 2005), which aso identified the link
between the literature and the items on the survey instrument. The MEPST survey
instrument, which focused on the five factors (i.e., Personal Attributes, System
Requirements, Pedagogical Knowledge, Modelling, and Feedback), was altered to
reflect mentoring in primary mathematics. That is, the word “science” was replaced by
the word “mathematics’. A pilot study was conducted on 29 final-year preservice
teachers by administering the MEMT survey instrument at the conclusion of their
professional experiences (Hudson & Peard, 2005). Analysis of this pilot test indicated
the possibility of a relationship between the MEPST instrument and the MEMT
instrument; however further investigation was needed to verify results. For this study,
147 preservice teachers perceptions of their mentoring were obtained from the five-part
Likert scale (i.e., strongly disagree=1, disagree=2, uncertain=3, agree=4, strongly
agree=5) MEMT instrument. The data provided descriptive statistics for each variable,
which also provided an indication of the statistical relationship between variables and
within each of the factors.

The preservice teachers' completed responses (n=147) represented 64% of the total
cohort within a mathematics course at a Queensland university. Cronbach alpha scores
(acceptable if >.70; see Kline, 1998), mean scale scores (i.e., mean scores of each item
associated with each factor and then computed with a factor mean score; see SPSS13),
and eigenvalues using SPSS factor reduction, which indicated the number of possible
components (factors; i.e., eigenvalues >1; see Kline, 1998) and percentage of variation
for each eigenvalue, aided in determining reliability and the potential transferability of
the MEPST instrument to the MEMT instrument.
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Results and discussion

These preservice teacher responses (109 female; 38 male) provided descriptors of the
participants (mentors and mentees) and data on each of the five factors and associated
attributes and practices. Responses were gathered at the conclusion of their final
professional experience (i.e., practicum, field experience).

Backgrounds of participants

Twenty-five percent of these mentees (n=147) entered teacher education straight from
high school, with 93% completing mathematics units in their final two years of high
school (i.e., Years 11 & 12). Seventy-seven percent of mentees had completed two or
more mathematics methodology units at university, and 86% had completed three or
more block professional experiences (practicums) with 54% completing four
professional experiences. There were no professional experiences under three-weeks.
Ninety percent of mentees taught at least four mathematics lessons during their last
practicum with 81% indicating they had taught 6 or more lessons. Most of the
classrooms for the mentoring in mathematics were in the city or city suburbs (69%)
with 31% in regional citiesand in rural towns or isolated areas.

Mentees estimated that most mentors (male=22, female=125) were over 40 years of age
(55%) with 28% between 30 to 39 years of age, and 16% under 30. Mentees also noted
that 86% of mentors modelled one or more mathematics lessons during their mentees
professional experiences, with 59% modelling five or more lessons during that period.
Finally, 41% of mentees perceived that mathematics was their mentors’ strongest
subject in the primary school setting.

Five factors for effective mentoring in mathematics

Each of the five factors had acceptable Cronbach alpha scores greater than .70 (Kline,
1998), that is, Personal Attributes (mean scale score=3.96, SD [standard
deviation]=0.91), System Requirements (mean scale score=3.31, SD=0.90), Pedagogical
Knowledge (mean scale score=3.58, SD=0.94), Modelling (mean scale score=4.01,
SD=0.78), and Feedback (mean scale score=3.76, SD=0.88) were .91, .77, .95, .90, and
.86 respectively (Table 1). Data from items associated with each factor were entered in
SPSS13 factor reduction, which extracted one component only for each factor.
Associated eignevalues accounted for 59-69 percentage of variance on each of these
scales.

Table 1. Confirmatory Factor Analysis for Each of the Five Factors (n=147)

Percentage Mean scale Cronbach
Factor Eigenvalue* of variance score D apha
Personal Attributes 4.13 69 3.96 0.81 91
System Requirements 2.05 68 3.31 0.90 7
Pedagogical Knowledge 7.19 65 3.58 0.94 .95
Modelling 4.70 59 4.01 0.78 90
Feedback 3.64 61 3.76 0.88 .86

* Only one component extracted for each factor with an eigenvalue >1.

The following provides further insight into specific data on the attributes and
practices associated with each factor.
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Personal attributes

When analysing the mentees' responses on their mentors' “personal attributes,” a
majority of mentors (89%) were supportive towards their mentees primary
mathematics teaching. In addition, 86% of mentors appeared comfortable in talking
about mathematics teaching (Table 2).

Table 2. “ Personal Attributes’ for Mentoring Primary Mathematics Teaching (n=147)

Mentoring Practices %* M D

Supportive 89 4.35 0.85
Comfortablein talking 86 4.25 0.88
Assisted in reflecting 73 3.87 1.01
Instilled positive attitudes 69 3.92 0.88
Listened attentively 67 3.67 1.07
Instilled confidence 64 3.75 1.08

* 9%=Percentage of mentees who either “agreed” or “strongly agreed” their mentor provided that
specific mentoring practice.

However, less than one quarter of mentees believed that the mentor aided the
mentee’s reflection on teaching practices (73% agreed or strongly agreed to this
practice), instilled positive attitudes (69%), and listened attentively to their mentees
(67%) and instilled confidence (64%) for teaching primary mathematics. Table 2
provides mean item scores (range: 3.67 to 4.35; D range: 0.85 to 1.08) and percentages
on mentees perceptions of their mentors’ Persona Attributesin rank order.

System requirements

Items displayed under the factor “ System Requirements’ presented a different picture
from the previous factor. The percentages of mentees perceptions of their primary
mathematics mentoring practices associated with System Requirements were all below
50%, that is, 44% of mentors discussed the aims of mathematics teaching, 41% of
mentors discussed the school’s mathematics policies with the mentee, and only 29%
outlined mathematics curriculum documents (Table 3). Implementing departmental
directives and primary mathematics education reform needs to also occur at the
professional experience level, yet the data indicated (mean item scores range: 2.71 to
3.15; SD range: 1.14 to 1.24, Table 3) that many preservice teachers may not be
provided these mentoring practices on System Requirements within the school setting.

Table 3. “ System Requirements’ for Mentoring Primary Mathematics Teaching

Mentoring Practices %* M D

Discussed aims 44 3.15 1.14
Discussed policies 41 3.06 1.18
Outlined curriculum 29 2.71 1.24

%=Percentage of mentees who either “agreed” or “strongly agreed” their mentor provided that
specific mentoring practice.
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Pedagogical knowledge

Mean item scores (3.31 to 3.84; SD range: 1.08 to 1.24, Table 4) indicated that the
majority of mentees “agreed” or “strongly agreed” their mentor displayed “ Pedagogical
Knowledge” for primary mathematics teaching. However, in this study, more than 20%
of mentors may not have mentored pedagogical knowledge practices (see Table 4 for
rank order percentages). For example, in the planning stages before teaching, 64% of
mentors assisted in planning and 67% discussed the timetabling of the mentee’'s
teaching and assisted with mathematics teaching preparation (71%, Table 4).

Table 4. “ Pedagogical Knowledge” for Mentoring Primary Mathematics Teaching

Mentoring Practices % M D

Discussed implementation 77 3.84 1.08
Assisted with classroom management 73 3.77 1.08
Guided preparation 71 3.69 1.14
Assisted with teaching strategies 68 3.73 1.16
Assisted with timetabling 67 3.74 1.16
Assisted in planning 64 3.61 1.04
Provided viewpoints 61 3.51 1.17
Discussed problem solving 57 3.51 1.08
Discussed questioning techniques 57 3.45 111
Discussed content knowledge 52 3.31 1.24
Discussed assessment 52 3.50 1.19

* 9%=Percentage of mentees who either “agreed” or “strongly agreed” their mentor provided that
specific mentoring practice.

Teaching strategies need to be associated with the assessment of students' prior
knowledge, yet nearly half the mentors were perceived not to discuss assessment or
guestioning techniques for teaching mathematics (52%). Many mentors also appeared
not to consider content knowledge and problem-solving strategies for teaching
mathematics (57%) and providing viewpoints on teaching mathematics was not
considered a high priority (61%, Table 4). Thisimplies that many final-year preservice
teachers may not be provided with adequate Pedagogical Knowledge in the primary
school setting to develop successful mathematics teaching practices.

Modelling

Modelling teaching provides mentees with visual and aural demonstrations of how to
teach and, indeed, mean item scores (3.81 to 4.30; SD range: 0.83 to 1.19, Table 5)
indicated that the majority of mentors were perceived to model mathematics teaching
practices. Even though more than 75% mentees perceived they received modelled
practices for teaching mathematics including modelling a rapport with their students
(85%), modelling the teaching of primary mathematics (79%), displaying enthusiasm
for teaching mathematics (78%), and using language from the mathematics syllabus
(78%), more than a quarter of mentees indicated their mentors had not modelled awell-
designed lesson or effective mathematics teaching (Table 5).
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Table 5. “ Modelling” Primary Mathematics Teaching.

Mentoring Practices % M D

Modelled rapport with students 85 4.30 0.83
Modelled classroom management 82 411 0.97
Demonstrated hands-on 81 4.03 1.04
Modelled mathematics teaching 79 4.14 0.90
Displayed enthusiasm 78 4.02 1.00
Used syllabus language 78 3.97 0.89
Modelled awell-designed lesson 73 3.81 0.99
Modelled effective mathematics teaching 71 3.83 1.19

* 9%=Percentage of mentees who either “agreed” or “strongly agreed” their mentor provided that
specific mentoring practice.

Feedback

Mean item scores (3.31 to 4.18; SD range: 0.97 to 1.38, Table 6) indicated that the
majority of mentees “agreed” or “strongly agreed” their mentors provided “ Feedback”
as part of their mentoring practices in primary mathematics teaching. Y et, surprisingly,
mentees perceived that 82% of mentors observed their mathematics teaching with only
63% articulating their expectations for the mentees’ teaching of mathematics. More
surprising is that 4% of mentors provided oral feedback without observation. Fifty-nine
percent were perceived to provide written feedback and only 55% of mentors reviewed
lesson plans, which is necessary to provide feedback before teaching commences for
enhancing instructional outcomes (Table 6).

Table 6. Providing “ Feedback” on primary mathematics teaching

Mentoring Practices % M D

Provided oral feedback 86 4.18 0.97
Observed teaching for feedback 82 4.08 1.00
Provided evaluation on teaching 8l 3.97 1.08
Articulated expectations 63 3.55 1.16
Provided written feedback 59 3.48 1.38
Reviewed lesson plans 55 3.31 1.25

* 9%=Percentage of mentees who either “agreed” or “strongly agreed” their mentor provided that
specific mentoring practice.

Further discussion and conclusions

There appeared to be transferability of the MEPST survey instrument (Hudson et al.,
2005) to the MEMT instrument, which was supported by acceptable Cronbach alpha
scores and descriptive statistics (Table 1). Ninety-three percent of these preservice
teachers had completed at least three professional experiences (practicums) and nearly
four years of atertiary education degree in teaching before responding to this survey on
their final-year Mentoring for Effective Mathematics Teaching (MEMT). The MEMT
instrument appeared to provide a way to collect data for articulating mentees
perceptions of their mentors' practices in primary mathematics teaching occurring in
various Queensland schools. Even though the Likert scale differentiated the degree of
mentoring (e.g., strongly disagree to strongly agree), the quality of these mentoring
practices needs to be investigated further. Anecdotal evidence suggests mentors vary
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their mentoring practices considerably, and as there are national standards for teaching
and assessing mathematics (e.g., NCTM, 1989, 1991, 1992, 1995), a set of standards for
mentoring practices for mathematics appears a logical sequence.

The growing literature is more clearly defining mentoring practices (e.g., Colley,
2003; Christensen, 1991; Jarworski & Watson, 1994; Jarvis et al., 2001; Jonson, 2002;
Herman & Mandell, 2004; Wilkin, 1992), with mentees claiming that the in-school
context is pivotal to their development as teachers (Gaffey, Woodward & Lowe, 1995;
Jasman, 2002). “Generalist” primary teachers will not be experts in all subjects in
primary school, and some may not have adequate knowledge, skills, or confidence for
teaching primary mathematics. Mathematics education is considered a priority by
Australian education departments (e.g., Education Queensland; NSW Department of
Education and Training [DET]); yet there are primary teaching mentors who may either
not have the skills for effective mathematics teaching to mentor effectively or lack
knowledge of effective mentoring strategies. There should be more emphasis on the
mentoring of mathematics particularly as considerable importance is placed on this key
learning area.

For mentees to receive equitable mentoring in primary mathematics teaching requires
the provision of a set of specific mentoring attributes and practices for mentors. Such a
set of “standards” may aid mentors to focus more specifically on their mentoring and
may aid mentees in determining what to expect from their mentors. It may further
promote the specific development of mentor-mentee relationships. However, mentors
and mentees must work together and negotiate their roles and responsibilities (Jonson,
2002; Nolder, Smith & Melrose, 1994), and such standards would need to be flexible in
order to cater for the diversity of practices and needs. Just as teachers can always
improve their methods of teaching, so too can mentors improve their methods of
mentoring (Boss, 2001; NSW DET, 2003), and those who receive professional
development on mentoring have a greater impact on their mentees (Giebelhaus &
Bowman, 2002). If preservice teachers are to receive quality mentoring in primary
mathematics teaching then many teachers, in their roles as mentors, will require further
professional development. The form this education takes will require rethinking, as
experienced primary teachers can be reluctant to be educated on their mentoring
practices (e.g., Hulshof & Verloop, 1994).

The mentoring indicated in this study only focused on the mentors’ practices and
attributes, therefore, further research would be needed on mentees’ involvement in the
mentoring processes. Nevertheless, the inadequate mentoring outlined in this study may
be initially addressed through specific mentoring interventions that focus on effective
mentoring (i.e., attributes and practices associated with the five factors: Personal
Attributes, System Requirements, Pedagogical Knowledge, Modelling, and Feedback;
e.g., science mentoring intervention [Hudson & McRobbie, 2003]). As each item
associated with the MEMT instrument (Appendix 1) is linked to the literature, a
mentoring intervention can be based around these items. A well-constructed mentoring
intervention may provide professional development for mentors to enhance not only
their own mentoring practices but also their teaching practices. A mentoring
intervention may aid induction processes for early career mathematics teachers,
particularly for those who do not receive adequate mentoring support for their teaching
of mathematics (e.g., Luft & Cox, 2001). Additionally, the MEMT instrument can be
used (by tertiary institutions or departments of education) to gauge the degree of
mentoring in primary mathematics and, as a result of diagnostic analysis, plan and
implement mentoring programs that aim to address the specific needs of mentors in
order to enhance the mentoring process. Although the MEMT instrument was
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administered to preservice primary mathematics teachers, it has the potential to gather
data about mentoring practices for preservice secondary mathematics teachers.

Utilising the mentor’s time efficiently is crucial for developing the mentee’'s
practices for effective primary mathematics teaching, and this is further justification for
educating mentors. The mentor’s involvement in facilitating the mentee's learning for
more effective primary mathematics teaching cannot be a random process; instead it
must be predetermined and sequentially organised so that the mentor’s objectives are
focused, specific, and obtainable. This means educating mentors on such practices
whether for a preservice teacher level or a beginning teacher induction level. This study
outlines that in broad terms, effective mentoring requires mentors to: display personal
attributes, provide guidance on system requirements, model effective mentoring (which
also requires modelling effective teaching practices), and provide pedagogical
knowledge and feedback towards enhancing teaching practices. Educating mentors aims
at ultimately targeting the development of preservice teachers practices, and hence a
way to enhance primary students’ learning experiences and opportunities towards
developing higher standards of mathematics education.
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Appendix 1. Mentoring for effective mathematics teaching

The following statements are concerned with your mentoring experiences in mathematics teaching during
your last field experience (practicum). Please indicate the degree to which you disagree or agree with
each statement below by circling only one response to the right of each statement.

Key
SD = Strongly Disagree
D = Disagree

U = Uncertain

A =Agree

SA = Strongly Agree

During my last field experience (i.e., practicum) in mathematics teaching my mentor:

1. was supportive of me for teaching mathematics. SD DUA SA
2. used mathematics language from the current mathematics syllabus. SD DUA SA
3. guided me with mathematics lesson preparation. SD DUA SA
4. discussed with me the school policies used for mathematics teaching. SD DUA SA
5. modelled mathematics teaching. SD DUA SA
6. assisted me with classroom management strategies for mathematics teaching. SD D UA SA
7. had a good rapport with the students learning mathematics. SOD D UA SA
8. assisted me towards implementing mathematics teaching strategies. SO D UA SA
9. displayed enthusiasm when teaching mathematics. SO D UA SA
10. assisted me with timetabling my mathematics lessons. SD D UA SA
11. outlined state mathematics curriculum documents to me. SO DUA SA
12. modelled effective classroom management when teaching mathematics. SO DUA SA
13. discussed evaluation of my mathematics teaching. SO D UA SA
14. developed my strategies for teaching mathematics. SD D UA SA
15. was effective in teaching mathematics. SD D UA SA
16. provided oral feedback on my mathematics teaching. SD D UA SA
17. seemed comfortable in talking with me about mathematics teaching. SD D UA SA
18. discussed with me questioning skills for effective mathematics teaching. SO DUA SA
During my last field experience (i.e., practicum) in mathematics teaching my mentor:

19. used hands-on materials for teaching mathematics. SD DUA SA
20. provided me with written feedback on my mathematics teaching. SD DUA SA
21. discussed with me the knowledge | needed for teaching mathematics. SD DUA SA
22. ingtilled positive attitudes in me towards teaching mathematics. SD D UA SA
23. assisted me to reflect on improving my mathematics teaching practices. SD DUA SA
24. gave me clear guidance for planning to teach mathematics. SD DUA SA
25. discussed with me the aims of mathematics teaching. SOD D UA SA
26. made me feel more confident as a mathematics teacher. SOD DUA SA
27. provided strategies for me to solve my mathematics teaching problems. SD D UA SA
28. reviewed my mathematics lesson plans before teaching mathematics. SO D UA SA
29. had well-designed mathematics activities for the students. SD D UA SA
30. gave me new viewpoints on teaching mathematics. SO D UA SA
31. listened to me attentively on mathematics teaching matters. SD DUA SA
32. showed me how to assess the students’ learning of mathematics. SD DUA SA
33 clearly articulated what | needed to do to improve my mathematics teaching. SD D UA SA
34. observed me teach mathematics before providing feedback? SD D UA SA
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Is our mathematics program working?
How do we know?

Ken Lountain
Department of Education and Children’s Services, SA

Programs designed to improve mathematics learning are sometimes hindered by a
lack of evidence about their effectiveness. Too often, evaluation is “ tacked on” in
the latter stages of projects or after their completion. Maths for Learning Inclusion
is a South Australian program aimed at improving mathematics curriculum. The
program operates in eight clusters of schools, supported by specialist teachersin
primary mathematics. Maths for Learning Inclusion features a mixed-method
evaluation which is investigating not just “whether” but “how” and “in what
contexts’ the program is effective. This seminar will examine the development and
implementation of the program evaluation plan and explain why various
components; teacher questionnaires, focus groups, interviews, student learning
outcomes; were included and how they contribute to a picture of the program’'s
impact on mathematics teaching and learning in the primary years.

Introduction

Programs designed to improve mathematics learning are sometimes hindered by a lack
of evidence about their effectiveness. Too often, evaluation is “tacked on” in the latter
stages of projects or after their completion.

Maths for Learning Inclusion is a South Australian program aimed at improving
mathematics curriculum. The program operates in 8 clusters of schools, supported by
specialist teachers in primary mathematics. Maths for Learning Inclusion features a
mixed-method evaluation which is investigating not just “whether” but “how” and “in
what contexts’ the program is effective. The Program was developed and is coordinated
by the Learning Inclusion Team within Curriculum Services in the South Australian
Department of Education and Children’s Services (DECS).

A rigorous ongoing evaluation of the Program has been in place from the beginning
and has provided the program management team, the cluster coordinators, school
leaders and teachers, and school communities with valuable ongoing information that
has hel ped shape the direction of the Program.

The evaluation component of Maths for Learning Inclusion is an intrinsic element of
the Program design which is contributing to a culture of critical reflection and
responsive action across the Learning Inclusion Team, the eight clusters, and 44 schools
of over 200 teachers and nearly 4000 students.

Evaluation of the program is being supported by an Evaluation Consultant, Gill
Westhorpe who specialises in a form of evaluation called realist evaluation. In basic
terms, Realist Evaluation processes enable evaluators to focus on the question: Which
elements of the program are having which effects in which circumstances?
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How does the program work?

The Maths for Learning Inclusion Program is aiming to systematically improve the
engagement and learning outcomes of learners from low socio-economic backgrounds,
and Aboriginal learners, through enhancing the capacity of primary teachers in the
effective and inclusive teaching of mathematics.

The project also sought to test a specific program model — the provision of a full
time Cluster Coordinator to a cluster of relatively disadvantaged schools — and to use
the opportunity to learn as much as possible about how that model worked to create
change.

In program logic terms, the structure of Maths for Learning Inclusion suggests that:

» employing a Coordinator to work with a cluster of schools, and

» supporting the Coordinator and the staff with centrally-provided professional
development programs will

» leadtoaloca plan being developed, which will

e underpin arange of program activities within the cluster, and that those activities
will

» lead to changes in teachers attitudes, confidence and skills (these are program
mechanisms at the teacher level), which will

* underpin changes in teachers teaching behaviours (which are both short term
teacher-level outcomes and mechanisms for change in student learning
behaviours), which will

» lead to improved student engagement (which is a primary mechanism at the
student level), which will

» underpin improved student learning outcomes.

The program was initially funded for 18 months, commencing in mid 2005 and
concluding at the end of 2006. It has since been extended for a further 12 months.

Why are we evaluating the program?

Program model and objectives

The central point of the evaluation is to find out whether the logic upon which the
program is based is supported by what actually happens; i.e., is progess being made
towards the stated objectives of the program? Is the appointment of eight specialist
teachers in mathematics, to work across clusters of disadvantaged schools and
supported by a professional learning program, resulting in positive change for teachers
and improved experiences and outcomes for students?

Within this central evaluation concern, there are several subsets:

Accountability for resources

The program is funded using Commonwealth resources that are intended to improve
learning outcomes for learners from low socio-economic backgrounds. Decisions about
how to use such funding are taken very seriously. The program is funded using
significant resources — almost $2.1m over 2.5 years — and it is important that we try
to gauge the effectiveness of the Program’s various components and are able to report to
all stakeholders about the Program’ s effects.
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Enabling responsiveness

Programs that engage in evaluation only after a program is completed or in the final
stages are unable to change what they are doing to respond to the data they collect. The
ongoing Maths for Learning Inclusion evaluation has been designed to enable decisions
about central elements of the program — how the cluster coordinators are working in
schools, the content of professional learning for cluster coordinators and teachers, the
allocation of resources to various priorities, the hiring of cluster coordinators, the use of
assessment mechanisms — to be made on a dynamic and responsive basis.

Learning more about addressing educational disadvantage

In learning about which aspects of Maths for Learning Inclusion are having which
effects, for whom, and in which contexts, we can increase the education community’s
knowledge about the interventions that are likely to have positive effects on, for
example;
» teachers attitudes towards, and expectations of, learners from low socio-
economic backgrounds and Aboriginal learners;

» teachers confidencein their ability to make adifference;

» teachers ability to work effectively with a curriculum framework for planning,
programming and assessment;

» teacher pedagogies that engage, and improve outcomes for, learners from low
socio-economic backgrounds,

» teachers and students' attitudes towards mathematics learning

 the learning outcomes of students from low socio-economic backgrounds and
Aboriginal students

This is a rare opportunity for the information from one program to benefit policy-
makers, district and school leaders, teachers and students across our public system.

Applying what we learn to future initiatives

Too often, there is arisk that what we learn is not applied to what we do in the future.
While Realist Evaluation emphasises the importance of context and — in this
evaluation we are being cautious about making causal links — we are beginning to
learn about which elements of the program are having which effects in which
circumstances.

This is knowledge that can be applied to the design of other programs, intended to
bring about curriculum change and the improvement of learning outcomes for students
from low socio-economic backgrounds and Aboriginal students. The Learning Inclusion
Team is working with the Curriculum Superintendent, Primary Years and other
stakeholders in Curriculum Services, on planning how to use evaluation data from
Maths for Learning Inclusion in systematic ways to inform other curriculum initiatives,
especialy those directed to improving the equity as well as the quality of teaching and
learning in DECS schools.

How does the evaluation work?

The evaluation design is a mixed methods case study drawing on two evaluation
approaches: realist evaluation (what works, for whom, in what contexts, and how) and
program logic (specifying alogical sequence of steps in program implementation and
the ways that these are expected to result in desired program outcomes). The evaluation
also uses the notion of “program contrasts’ (elements of program context, design or
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service delivery which vary between clusters and which are hypothesised to make a
difference to program outcomes).
Data sources for thefirst full year of the evaluation include:

PATM aths tests administered to studentsin Grades 3,4 and 5in Terms 1 and 4;

a Pre- and Post-Program Questionnaire for teachers, addressing aspects of teacher
knowledge, skill and attitude, their perceptions of leadership participation and
support, Cluster Coordinators expertise, and access to professional development
and peer support, again administered in Terms 1 and 4;

a shorter term-by-term questionnaire for teachers, collecting data about their
participation in project activities,;
a term-by-term questionnaire for Cluster Coordinators, providing information

about their activities, the adequacy of resources available to them, their approach
to their role, and their perceptions of |eadership participation and support;

a Leadership questionnaire, seeking their perspectives in relation to their own
participation in the project, the extent of leadership support for the project across
the cluster, the adequacy of resources for the project, and relationships across the
project;

afocus group with leadership representatives from the eight clusters,

afocus group with the eight Cluster Coordinators;

“Most Significant Change” stories written by teachersin some clusters.

What are we finding out?

So far, the analysis of evaluation data has yielded clear evidence to support most steps
of the project logic chain, including evidence to support:

the viability of using Cluster Coordinators with groups of schools;

the quality and variety of professional development programs provided through
the Project;

the value of a mentoring model at cluster level,;

variability of activity at local level, suggesting responsiveness to local needs and
resources;

increased confidence on the part of at least some teachers and more positive
attitudes to teaching mathematics;

changed pedagogies on the part of at least some teachers, using more activity-
based and group-based learning strategies supported by concrete materials. There
is also evidence of increased frequency of understanding students (their learning
interests and styles, their emotional responses to learning tasks, and the contexts
of their daily lives), increased use assessment for planning and for monitoring
progress, and involving individual students and classes in planning and
negotiating learning strategies;

increased engagement of students in mathematics,

improved performance on PATMaths tests for the vast mgjority of students by the
end of the academic year.

Among the “lessons learned” so far are the following:

Security of funding provision over a longer time period than was originally
envisaged for this project is likely to increase staffing stability, increase the
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“reach” of the project (as new staff move into participating schools) and allow for
changes to be embedded within schools and within teachers’ practice.

» The quality of professional development, provision of training at local levels,
planning for a variety of professional development approaches to meet different
teachers' learning needs, and planning for follow-up of professional development
at local level within a few days, all contribute to the acceptability and/or
effectiveness of professional development activities.

» Funding release time for teachers supports their participation in project activities,
which, in turn, contributes to project outcomes.

» Providing arange of strategies and supports at least enhances teacher confidence
and appears to enhance teacher skills, in some cases.

» |t is possible to change teacher pedagogies. Observing others using effective
strategies, supported by a variety of ideas from a variety of sources, builds
motivation to try changed practice. Experiences of success then reinforce changed
practice.

» Changes in attitude, skill and confidence follow from, rather than precede,
changed practice.

» Activity based learning, group based learning, use of concrete materials, and a
focus on the process of problem-solving, help build student engagement.

There is also some evidence to support particular hypotheses that were incorporated
within the overall logic model, including the value of mentoring, the importance of the
credibility of mentors, the value of supportive leadership, and the value of positive
relationships at a variety of levels within the project.

How evaluation data is shaping program directions:

The collection of evaluation data from the very outset of the program has enabled
responsive and collaborative decision-making that has modified, re-emphasised and re-
orientated key features of the program as work has progressed.

The initial Program timeline of 18 months was related to funding and structural
issues within DECS. The resolution of these issues, and the data drawn from the first
year of the program, enabled the important decision to extend the Program for 2007, in
recognition of both the progress already made and of the time that it takes to build real
curriculum change.

Evaluation data has also guided the professional learning program: both the
2005-2006 focus on mathematics planning and programming because of the needs
teachers identified in this area, and the 2007 emphases of inclusive curriculum practice
and assessment.

Issues of central/local ownership and responsibility, identified in evaluation data,
have been able to be addressed when personnel changes, among the cluster coordinator
group, have created opportunities for local capacity-building and shifting key
responsibilities from central to local level. Responses to such issues as the role of
principals in the program, the initiation of cluster-based professional learning and the
development of teacher networks in and across clusters have also been guided by the
analysis of evaluation data.

The development of key program frameworks — the Key Goals and Learning
Inclusion Indicators — was due to evaluation data that emphasised the need for
resources that would help clusters sharpen their focus on learning inclusion in 2007.
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Evaluation directions in 2007

The MLI Project is now well into its second calendar year of operation. Some
evaluation strategies are being maintained in the second year, notably the Teacher Pre-
Post Questionnaire and the student PATMaths tests. Efforts will be made in the second
year to link student PATMaths data to particular teachers, with a view to exploring
correlations between teacher practice and student learning outcomes in more detail. A
revised Leadership Questionnaire, focusing on different areas, will again be
administered.

The Term-by-Term questionnaires will not be used again, partly in an effort to
reduce “respondent burden” and partly because the data obtained was not as useful in
identifying “program contrasts’ as had been hoped.

There will be a much greater emphasis on qualitative data collection in the second
year of the project. Cluster Coordinators will be invited to take part in individual
interviews in order to gain more detailed understanding of their strategies at Cluster
level. Focus groups will also be held with groups of teachers, structured around the
differences in outcomes identified in quantitative data collection in the first year (by
gender, years of experience, “effective teacher” status, and so on). These groups will
seek to explore both the reasons for differences in outcomes and perhaps, more
importantly, the strategies that particular groups found most effective in supporting their
guests to enhance their practice in teaching mathematics and supporting learning
inclusion.
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Professional Learning Using the Mathematics Standards (PLUMS) aimed to
demonstrate the utility of the AAMT standards as a basis for developing
professional learning plans for teachers and schools. Teams of teachers from eight
schools, four primary and four high schools, planned and implemented a program
of professional learning based on their own school’s needs. The teachers were
supported by a team of Academic Partners. From the perspective of the Academic
Partner, this role can be problematic. Some of the difficulties are discussed and
some ways of working productively within this framework are considered.

The purpose of the PLUMS project was to explore the use of the AAMT Standards for
Excellence in Teaching Mathematics in Australian Schools (AAMT, 2002) as a
framework for professional learning. These standards resulted from a research study
that aimed to identify what teachers across Australia believed defined excellence in
teaching mathematics. Funding for PLUMS was provided by the National Institute of
Quality Teaching and School Leadership (now called Teaching Australia) to explore
ways in which the AAMT Standards could provide a useful background for teacher
professional development that met schools' requirements as well as individual teachers
needs.

The National Centre of Science, Information and Communication Technology and
Mathematics Education for Rural and Regional Australia (SMERR) at the University
of New England coordinated the project, and Academic Partners (the authors) came
from the UNE School of Education. An independent evaluation of PLUMS was
undertaken by Monash University (Bishop, Clarke & Morony, 2006).

Schools were chosen according to several criteria:

 likely willingness to participate based on the Academic Partners’ prior knowledge

of local schools;

* the nature of the school in order to provide arange of school contexts; and

» proximity to UNE to ensure reasonabl e contact.

Schools were contacted by one of the Academic Partners and invited to participate.
Several schoolsinitially contacted were interested in the project but felt unable to take
part because of prior commitments. Eventually eight schools agreed to become
involved, including schools from public, independent and Catholic sectors.
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PLUMS activities

The PLUMS project commenced with an initial conference held at UNE, and attended
by participants from seven of the eight schools. The final school, a small two teacher
school, could not obtain a casual teacher and could not, therefore, attend. Both
Academic Partners, the AAMT project manager and the independent evaluator were
present.

At theinitial gathering, participants were introduced to the Standards using a process
previously developed by the AAMT Professional Officer. In particular the focus was on
the domains of “Professional Knowledge” and “Professional Practice” as providing the
most suitable framework for whole school planning. Teachers used a self-assessment
form to identify areas that appeared under-developed. These self-assessments provided
a basis for collaborating with other teachers to identify an approach that would be used
within their schools.

The second part of the day gave school based teams opportunities to begin planning
their projects. No limitations were placed on the nature of schools' activities, other than
that they had to involve the Sandards in some way, although practical limitations were
inevitably present.

Following this initial planning day, school teams returned to their schools to
complete their own school plans. The schools' identified priorities provided the basis
for each school’s focus, and the self assessment approach from the Standards
conference provided a framework in which the focus could be addressed. The primary
schools generally addressed a particular strand of mathematics, such as measurement,
identified as needing attention from statewide testing. Two high schools focussed on the
use of technology in the classroom, particularly graphing calculators. Another wanted to
consider awider range of assessment processes with a focus on assessment for learning.
Despite the diversity, it was possible to relate the plans to the Standards in ways that
provided coherence.

Each school implemented its own project in a different way. Some schools called on
the Academic Partners extensively to provide support and direction. This was greatly
helped by one partner (the first author) being seconded to UNE for the year which
added credibility to the support offered. Others requested some support to provide
initial impetus to their project, while others worked independently. During the project
all schools received visits from an Academic Partner and the AAMT Professional
Officer. The extent and focus of these visits varied from school to school. The project
culminated in a final conference in December, aso held at UNE at which teachers
presented the outcomes of their work to the rest of the group.

Outcomes from PLUMS

Seven of the eight schools reported successful outcomes. The eighth school, a small two
teacher school, was unable to complete the intended project successfully, largely
because of the lack of casual staff and the pressure of day to day work in avery small,
isolated school.

School plans

Many schools used the self assessment process that had been used in the workshop. All
appropriate teachers completed this activity and identified aspects of their work that
they felt needed attention. Teachers collaboratively decided what direction their
learning would take within the context of the schools' needs.
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The school project plans varied in both emphasis and detail. Assessment was a focus
in four of the eight schools, possibly reflecting publication of assessment documentsin
NSW, or a “trickle down” effect of recent changes to HSC assessment that raised
awareness of its importance thro