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Preface

In these proceedings of the twentieth biennial conference of The Australian Association
of Mathematics Teachers, Making Mathematics Vital, are many insights from people from
all over the country and also overseas who enjoy meeting the challenge of that endeavour
— making the learning and teaching of mathematics a vital enterprise. In these pages you
will read about successes and also of indications where more effort and imagination is
needed. You will read that the work continues and is unlikely to be any easier as we find
new challenges in our paths. You will also read of the rewards for both teachers and learn-
ers when connections are made and real learning occurs. 
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Review process

Submissions to the conference were called for in two formats, seminar papers and work-
shops, with the possibility of either being subjected to peer review. These papers were
reviewed blind by at least two reviewers. Papers were assessed as: 
1. suitable for presentation at the conference and for publication in the proceedings,

identified as ‘accepted by peer review’, 
2. suitable for presentation at the conference and for publication in the proceedings,

and 
3. not suitable for the conference. 
Papers that were designated as (1) have been identified with an asterisk (*).
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Challenging mathematics and 
its role in the learning process

Peter Taylor
Australian Mathematics Trust

Challenge is not only an important component of the learning process but also a
vital skill for life. People are confronted with challenging situations each day and
need to deal with them. Fortunately the processes in solving mathematics chal-
lenges (abstract or otherwise) involve certain types of reasoning which generalise
to solving challenges encountered in every day life. Mathematics has a vital role in
the classroom not only because of direct application of the syllabus material but
because of the reasoning processes the student can develop.
ICMI has commissioned a study to investigate the issues of challenge in the learn-
ing process. The speaker is one of the co-chairs of this study, which is scheduled
to have its Study Conference in 2006 and issue its findings as a Study Volume in
2008. In this talk Peter will describe some of the attempts to define the concept of
challenge itself and discuss various related issues which are being identified in the
context of challenge and the learning process.

Hanna Neumann

First I would like to briefly comment on the significance of Hanna Neumann. Many of us
here got to know B. H. Neumann well over the last thirty years and the pervasive positive
influence he had on mathematics in this country. Hanna died much earlier and less of us
who are here now knew her directly.

I did not know her personally but I was fortunate to have once attended an inspira-
tional talk by Hanna, in Adelaide in about October 1971, only two or three months before
she died. As usual, Bernhard sat proudly in the front row. My fortune to have been able
to attend that Seminar helped me to understand the unique role that Hanna had in the
inspiration of mathematicians and students in Australia. From the colleagues I know who
were fortunate to work or study with her there is no doubt about the significant love she
had for teaching and students and influence she had on the standards of teaching. It is a
great honour to present this lecture named after her.

ICMI and ICMI studies

As I assume is well-known to this audience, the International Commission on Mathematics
Instruction (ICMI) is the principal professional body for mathematics education and it
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conducts its activities in a number of ways. It publishes bulletins, holds an international
conference every four years known as ICME (the most recent one having been held in
July 2004 at Copenhagen), and is the umbrella body for five affiliated study groups (with
themes of history, psychology, women in mathematics, competitions and most recently
the group on applications and modelling).

ICMI also administers studies, which investigate particular issues with respect to math-
ematics education. Each study focuses on a particular topic in mathematics education,
attempts to identify issues and to address them. Each study is chaired by a single chair or
two co-chairs and an international group, known as the International Program
Committee (IPC) of about twelve people is appointed to control the study.

The IPC meets fairly early in the process and initiates a Study Discussion Document,
which identifies the issues and announces the program. Eventually a definitive confer-
ence for the Study is held. This Study is attended by invitees after the Study Volume has
published the Study Document. Usually 70 to 100 people attend, but this is by invitation
after people read the Discussion Document and show how they can contribute. It is not
possible to attend the Study Conference as a passenger. 

Finally a definitive Study Volume appears at the culmination of the Study. The whole
process is likely to take about six or seven years, but the final Study Volume becomes an
authoritative document, giving the state of the art after much input and discussion.

Past studies

At this stage fourteen studies have been completed. They started in the 1980s and the
completed studies essentially cover the topics of 
1. The Influence of Computers and Informatics on Mathematics and its Teaching
2. School Mathematics in the 1990s
3. Mathematics as a Service Subject
4. Mathematics and Cognition
5. The Popularisation of Mathematics
6. Assessment in Mathematics Education
7. Gender in Mathematics Education
8. What is Research in Mathematics Education and What are its Results?
9. Perspectives on the Teaching of Geometry for the 21st Century
10. The Role of the History of Mathematics in the Teaching and Learning of

Mathematics
11. The Teaching and Learning of Mathematics at University Level
12. The Future of the Teaching and Learning of Algebra
13. Mathematics Education in Different Cultural Traditions: A Comparative Study of

East Asia and the West
14. Applications and Modeling in Mathematics Education.

Present studies

There are three studies in progress. These are
15. Teacher Education and Development
16. Challenging Mathematics in and beyond the Classroom
17. Technology Revisited.
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International Program Committee (IPC)

This Study is being co-chaired by myself and Ed Barbeau, of the University of Toronto.
The Study Conference will be held in Trondheim during 2006 and the Chair of the Local
Organising Committee is Ingvill Stedøy. Other members of the International Program
Committee are Mariolina Bartolini Bussi (Italy), Albrecht Beutelspracher (Germany), Patricia
Fauring (Argentina), Derek Holton (New Zealand), Martine Janvier (France), Vladimir
Protasov (Russia), Ali Rejali (Iran), Mark Saul (USA), Kenji Ueni (Japan), and Bernard
Hodgson (Canada), who is Secretary-General of ICMI. In addition two members of the ICMI
Executive, Maria de Losada (Colombia) and Petar Kenderov (Bulgaria) have joined the IPC.

The members of the IPC have a broad range of activities. Some are involved in com-
petitions or related activities while others are noted for involvement in exhibitions and
school based projects which provide enrichment.

Timetable of the Study

The Study and the composition of the IPC were announced in early 2003 and the IPC met
formally in Modena, Italy in November 2003 in order to commence the writing of the
Discussion Document and plan the Study. Further work on the Discussion Document con-
tinued until its final text was agreed at a meeting of the IPC at ICME-10. The Document
outlines the remainder of the program. There will be a Study Conference in Trondheim
from 28 June to 2 July 2006. Applicants to attend this conference must apply to the co-
Chairs by 31 August 2005, showing how they can contribute to the Study. It will not be
possible to attend without contribution and it is expected that maybe up to 100 partici-
pants will be invited. Eventually by 2008 there will be a Study Volume published. This will
be the formal outcome of the Study. It might be the Proceedings of the Study Conference,
or it might be articles rewritten but inspired by papers at the conference.

Discussion document

This document occupies the central core of the Study. It is available to read at the Study
website at www.amt.edu.au/icmis16.html. It comprises five chapters as follows.
1. Introduction

This chapter basically describes what ICMI Studies do in general and the general
aims of this study.

2. Description
This chapter asks for the definition of ‘challenge’, asks how we are providing chal-
lenge, and where, with some brief examples.

3. Current context
This is the longest chapter and goes much deeper into the use of challenge, listing
a broad range of different types of use of challenge. 
These examples are classified and range from competitions (inclusive, exclusive,
team, etc.), exhibitions, problem solving in schools, research activities, etc.

4. Questions arising
This chapter lists many questions which arise from the previous discussion and
which are asked here, prompting specific paths for the study.

5. Call for papers
Finally the timetable and the method of participation are outlined.
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Material available and scope of the study

The World Federation of National Mathematics Competitions (WFNMC), one of the five
Affiliated Study Groups of ICMI, has published a policy document on similar matters to
those which might be explored by the Study. In this document, to be found on the
WFNMC website www.amt.edu.au/wfnmc.html.

This policy document defines the interests of WFNMC well beyond that of competi-
tions, including a number of areas such as enrichment course work, maths clubs, research
activities, publications, etc. In the last few years support for teachers has also become an
increasing theme.

There are four other ASGS, and each has been closely associated with an ICMI Study.
This Study is designed to go well beyond the areas beyond the WFNMC policy document
and identify all areas in which mathematics challenge applies. Many members of the IPC
are from quite non-competition backgrounds.

What is challenge?

There was considerable debate about this question and there will probably be no defini-
tive answer. However it will become in itself one of the central areas of discussion in the
Study.

Probably the most common definition will be based around the idea that challenge is
the experience of meeting a new, unforeseen situation and coming to grips with it. This
is a critical idea which I will pursue shortly. In the real world we continually have to face
new situations and deal with them. It can be argued that by learning to meet challenge in
a mathematical situation students will develop the powers of abstract reasoning that will
enable them eventually to be able to systematically face other situations without apparent
mathematical context.

Another proposal defined challenge as a non-traditional learning experience. Yet
another defined it as the process of lifting oneself from one knowledge state to a higher
one.

In and beyond

The Study has the words ‘in and beyond’. As such it will need to address issues in the class-
room, presumably normally within the syllabus, and those many programs outside the
classroom, and how each of these may affect the learning and teaching process. I will
touch on some aspects.

In the classroom

To take up the first definition of ‘challenge’ I have posed, some will argue that in order
to assist students in the learning process, the syllabus in various countries has become pro-
gressively defined to a higher level. As a result more specific outcomes are usually listed,
placing time pressures on room for challenging mathematics.

There is also a question as to whether the topics which are in the syllabus lend them-
selves to challenge. Topics such as arithmetic and algebraic techniques, calculus and
increasingly statistics, which dominate the syllabus, do lend themselves to challenge and
problem solving situations.
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How this is done, how it can be done better, and in fact answering the question of why
it should be done, will be taken up in the Study.

Beyond the classroom

I will spend more time discussing the less familiar cases of challenge beyond the class-
room. This ICMI Study acknowledges the growing demand to provide what we might call
enrichment, complementing the syllabus with challenging and stimulating material,
helping students to think mathematically, and from this experience develop a problem
solving ability which can be helpful for broader life skills (such a demand is met by many
‘suppliers’ with the approval of the teacher).

Being able to do these things in a mathematical context arguably provides the ability
to do so in other contexts.

This is an important aspect of mathematics. Too often in assessing potential syllabus
material we can look too closely for direct application of a particular idea or skill.

All too often there are very good techniques in mathematics available to help in
problem solving which are not in the syllabus, but which are nevertheless accessible to
many students and improve the student’s reasoning powers.. 

Internationally there are many examples of enrichment beyond the set syllabus, nor-
mally on a voluntary basis as some students seek to extend their knowledge and broaden
their base for further study. The following topics in mathematics are often introduced to
students in such enrichment situations and can lend themselves to student access quite
easily:

• counting methods;
• pigeonhole principle;
• other methods of proof, e.g., contradiction, induction, invariance;
• discrete optimisation;
• geometry.
I give a few examples of where such methods have been used in problems posed to stu-

dents. The problems below illustrate mathematical techniques which are used in
enrichment programs are drawn from questions either set in the Australian Mathematics
Competition for the Westpac Awards or the International Mathematics Tournament of
Towns.
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Problem 1 (geometry)
The latitude of Canberra is 35° 19' S. At its highest point in the sky when viewed from
Canberra the lowest star in the Southern Cross is 62° 20' above the southern horizon. It
can be assumed that rays of light from this star to any point on the earth are parallel. What
is the northern-most latitude from which the complete Southern Cross can be seen? 

Comments on solution 1
It is reasonably well-known that the Southern Cross can be seen in some northern lati-
tudes. It was also used for navigation by the French aviators pioneering air rotes across the
Sahara to South America.
The solution is quite accessible to secondary students familiar with line and circle geom-
etry and uses the following diagram. The proof requires a cyclic quadrilateral.

Problem 2 (counting)
In how many different ways can a careless office boy place four letters in four envelopes
so that no one gets the right letter?

Comments on solution 2
There are two ways of doing this. The intuitive way is to systematically list all of the cases.
Numbering the envelopes as 1, 2, 3 and 4 the letters can be placed in the following orders
giving an answer of 9.

2143, 2413, 2341, 3142, 3412, 3421, 4123, 4312, 4321

As with other counting methods this gives the teacher the opportunity to discuss general-
isations, and this generalises to the derangement formula as discussed in Niven (1965,
p. 80). This idea can be further generalised as follows.
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Problem 3 (counting)
In the school band, five children each own their own trumpet. In how many different ways
can exactly three of the five children take home the wrong trumpet, while the other two
take home the right trumpet?

Comments on Solution 3
It is not too difficult to count the cases here either on intuitive reasoning.
Suppose the students taking home the wrong trumpet are called A, B and C. 
These can take the wrong trumpets in two ways: e.g., A takes trumpet B, B takes trumpet
C and C takes trumpet A, or A takes trumpet C, B takes trumpet A and C takes trumpet B.
We need also to know how many ways A, B and C can be chosen from the five. This is the
same as the number of ways in which the two with the right trumpets can be chosen, this
being ten; e.g., if the students are called A, B, C, D and E these are 

A and B, A and C, A and D, A and E,
B and C, B and D, B and E,
C and D, C and E, and
D and E.

Thus the answer is 10 × 2 = 20.

Again this can be generalised to give a formula enabling the problem to be solved with
any number of students and any fixed number to have the wrong trumpet.
The formula is

For n = 5 the solutions can be tabulated as

with n being the number of students, r being the number of wrong trumpets.

There are many other counting scenarios which can similarly be invoked in real prob-
lems. These can lead to the inclusion exclusion principle, necklace counting method of
Polya, etc.

r D(r)

0 1 1 1
1 5 0 0
2 10 1 10
3 10 2 20
4 5 9 45
5 1 44 44
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Problem 4 (discrete optimisation)
A village is constructed in the form of a square, consisting of 9 blocks, each of side length l,
in a 3×3 formation. Each block is bounded by a bitumen road. If we commence at a corner
of the village, what is the smallest distance we must travel along bitumen roads, if we are
to pass along each section of bitumen road at least once and finish at the same corner?

Comments on solution 4
The diagram shows a closed tour of length 28 and we claim this to be a minimum.

Each of the four corners is incident with two roads and requires at least one visit. 
Each of the remaining twelve intersections is incident with three or four roads and
requires at least two visits. Hence the minimum is at least 4 + 12 × 2 = 28.

Problem 5 (proof contradiction)
There are 2000 apples, contained in several baskets. One can remove baskets and/or
remove apples from the baskets. Prove that it is possible to then have an equal number of
apples in each of the remaining baskets, with the total number of apples being not less
than 100.

Comments on solution 5
This problem looks very difficult but by assuming the result to be false we can more easily
find a contradiction as follows.
Assume the opposite: then the total number of baskets remaining is not more than 99
(otherwise we could leave 1 apple in each of 100 baskets and remove the rest).
Furthermore, the total number of baskets with at least two apples is not more than 49, the
total number of baskets with at least three apples is not more than 33, etc. 
So the total number of apples is not more than 99 + 49 + 33 + … This number is less than
2000. We thus have a contradiction.

Problem 6 (pigeonhole principle)
Ten friends send greeting cards to each other, each sending five cards to different people.
Prove that at least two of them sent cards to each other.

Comment on solution 6
Dirichlet is reported to have first articulated this method of proof, which also bears his name,
which is quite intuitive. If you have n pigeon holes and more than n pigeons to put them in,
one pigeonhole must contain at least two pigeons. This proof essentially goes as follows.
We are given that each friend sends a card to 5 different of the other 9 friends. This
means that there are 10 × 9 = 90 different routes. 
By symmetry, these consist of 45 pairs (friend i to friend j and friend j to friend i). 
However the number of cards sent is 10 × 5 = 50.
Since, each of these 50 cards is sent on a different route, by the pigeonhole principle at
least 50 – 45 = 5 cards must be sent in opposite directions along a repeated route, enough
to prove what is required.
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Problem 7 (invariance)
On the island of Camelot live thirteen grey, fifteen brown and seventeen crimson
chameleons. If two chameleons of different colours meet, they both simultaneously
change colour to the third colour (e.g., if a grey and brown chameleon meet each other
they both change to crimson). Is it possible that they will eventually all be the same
colour?

Comment on solution 7
Looking for an invariant is a standard method of proof. The easiest invariants to spot in
a real life situation are preservation of parity. This problem is a little more difficult to
solve but I have included it here because I like it so much. The situation in which two dull
coloured animals can both turn to crimson after touching is interesting. When you see
the solution it is not so difficult. I would strongly encourage the reader to solve this
without looking at the solution. However I do give it here.
In this case the numbers of chameleons of each colour at the start have remainders of 0,
1 and 2 when divided by 3. 
Each ‘meeting’’ maintains such a situation (not necessarily in any order) as two of these
remainders must either be reduced by 1 (or increased by two) while the other must be
increased by 2 (or reduced by 1). 
Thus at least two colours are present at any stage, guaranteeing the possibility of obtain-
ing all of the three colours in fact by future meetings.

Conclusions

The above problems do not necessarily connect to the Study document. I include them
to emphasise cases where some accessible techniques have been used with secondary stu-
dents to provide challenging situations. They are also a collection of problems which I
obviously like very much also.

The Study has wide scope and has significant implication. This interaction between
school syllabus and challenge has not been looked at on this scale before.

I encourage you to take an interest and read the web site at
http://www.amt.edu.au/icmis16.html, where the discussion document and further infor-
mation can be found.

References
Niven I. (1965). Mathematics of Choice: How to Count Without Counting. Mathematics Association of America.
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Improving statistical literacy:
The respective roles of schools and 

the National Statistical Offices

Dennis Trewin
Australian Bureau of Statistics

Statistical Literacy is of increasing importance in all walks of life. Australians,
whether as workers, citizens or social participants, are continually faced with sta-
tistical data and presentations that they should understand if they are to make
sensible Informed decisions. Yet most Australians have a very limited grasp of even
the simplest concepts for interpreting and using data in what is becoming an
increasingly data driven society.
The ABS has a leadership role for improving statistical literacy. It can do this by
being an active participant in the type of initiatives outlined above. It can also:
• provide educational programs and support materials for teachers, and
• provide relevant resources, information and events for students.
We have undertaken a number of initiatives and these will be described.
The presentation will place improvements in Statistical Literacy in the context of
what we are referring to as the Australian Statistics Education System (ASES) which
covers undergraduate and postgraduate training in statistics, as well as schools.
Specifically our efforts to develop a National Framework for teaching of statistics in
schools will be described. This work is taking place in partnership with the
Curriculum Corporation and the Statistical Society of Australia.

Introduction

Statistics is not a branch of mathematics but it is a mathematical science. Mathematics
teachers are probably best positioned to teach statistics at school; however, not all have
had adequate training in this area.

I am sure that all of you here are well aware that a major objective for the past few years
of educational bodies and Government departments alike, is to ensure that all Australians
attain sound foundations in the core skills of numeracy and literacy.

The importance of these core skills stand as self-evident, not only so that school leavers
can pursue further education or better position themselves to take advantage of career
opportunities, but just to be equipped with basic skills to allow them to conduct everyday
activities like reading newspapers, compose and submit substantial job applications and
to be able to calculate grocery bills and weekly household budgets. These skills are criti-
cal for students who are beginning life in all its roles such as worker or community leader. 

Another important skill for everyday life, and the skills that the Australian Bureau of
Statistics (ABS) is most concerned about, is statistical literacy. The ability to understand,
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interpret and evaluate statistical information is indispensable to help them understand
the world around them and in making sensible, informed decisions.

Statistical understanding is becoming more important to everyday life. Australians as
citizens, workers and social participants are continually faced with data that they must
understand if they are to make sensible decisions. The problem is most Australians have
a very limited grasp of the simplest concepts of interpreting and using data. Such limita-
tions are likely to have significant consequences for Australia’s competitiveness, and for
the quality of decisions made in people’s lives.

As mathematics teachers, you are all aware that mathematics subjects now incorporate
teaching statistics. Therefore making statistics vital, as well as statistical literacy, is also an
important issue.

Making mathematics vital in this sense, and from an ABS perspective, means furnish-
ing students with the vital statistical skills they will need when they take their places in the
workforce and community. We are not talking about turning all students into statisticians:
just to develop sufficient skills to make the information age more meaningful (although
hopefully some of those with a high aptitude for statistics will choose to become statisti-
cians as a career choice).

Why the ABS and its role

Why is this important to the ABS? The role of the ABS is to ‘assist and encourage
informed decision making, research and discussion, within government and community,
by providing a high quality, objective and responsive national statistical service’. To keep
achieving this mission, ABS needs a supply of statisticians to take up positions in the ABS.
ABS also want to help the Australian people understand and respond in better-informed
ways to the vagaries and uncertainties of the world they live in.

ABS is involved in education to: 
• ensure Australian school children acquire a sufficient understanding and apprecia-

tion of how data can be acquired and used to make informed judgments in their
daily lives, as children and then as adults; and

• instil in school students sufficient interest and enthusiasm for statistics that some
will seek to pursue tertiary studies in statistics.

There is a real need to encourage such interest in statistics. This need is national, as
seen by the number of organisations experiencing serious difficulties recruiting an ade-
quate supply of new statistics graduates, such as:

• universities;
• Federal and State/Territory departments and agencies;
• ABS;
• CSIRO;
• pharmaceutical companies; and
• the financial sector. 
We also have altruistic motives. As the national statistical agency, we think it is impor-

tant to support steps to improve statistical literacy.
Today’s school students are the future users of our statistics. There are long term

advantages for Australia if children know how to collect, display and use statistics.
Therefore, we have made it a priority to establish a section within the ABS responsible for
servicing the education sector; it is known as the National Education Services Unit
(NESU). It works closely with education departments and teachers’ associations. Its activ-
ities are described in the next section. We have found it particularly useful to have
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teachers on six-month–twelve-month secondments to help us develop various products
and services.

What the ABS is currently doing

The ABS, through NESU, is already involved with the school sector. It provides a variety
of resources free through the ABS website (www.abs.gov.au). The materials are produced
by teachers for teachers and are supported by the expertise of a diverse and highly qual-
ified staff made up of statisticians, economists, mathematicians, geographers and ICT
technicians. 

The ABS promotes statistical literacy through:
• the production of the Statpak catalogue highlighting ABS publications with a high

degree of relevance to school curricula;
• the production of special school publications such as Statistics — A Powerful Edge and

Measuring Australia's Economy. Other publications such as Measures of Australia’s
Progress and Australian Social Trends are also relevant to schools. Lesson plans are pre-
pared to help the learning process;

• responding to curriculum reviews highlighting the importance of statistical literacy
skills;

• continuing to develop STATSERCISE and exSTATic (and other mathematics
resources);

• preparing data sets, including bivariate data sets, to support the mathematics class-
room;

• implementing a new site map to make it easier for teachers to find relevant materi-
al on the NESU webpages;

• continuing to respond to the needs of teachers by including useful content on the
education pages of the ABS website;

• development of interactive games on statistical concepts, including A Tale of Two
Worlds;

• promoting ABS education materials at conferences and through education media;
• assisting text book publishers to include ABS data in their publications;
• developing a professional development resource to assist teachers to develop statis-

tical literacy;
• supporting other organisations using or promoting statistics in schools.
Other national statistical agencies are undertaking similar activities. We are keeping in

touch with them so that we can learn off each other's ideas. The International Statistical
Institute has a special education section which is now putting extra effort into improving
statistical literacy and exchanging knowhow between countries.

We believe that the best way to encourage students to take an interest in statistics is to
introduce statistical concepts in fun and engaging ways as early as possible. There should
be no attempt to teach statistical theory at schools.

The NESU is already providing census lesson plans for Prep to Year 10 and worksheets
like exSTATic and STATSERCISE, which are designed for and used in upper primary
classes. These resources introduce simple statistical concepts that build on the established
principles taught to them by their teachers. By entering primary schools with our
resources, we hope to attract the interests of students and for students to carry this inter-
est with them to secondary education and beyond. These resources have proven to be
highly popular with students and mathematics teachers.

To assist teachers and follow up the interest generated in primary school, the NESU
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has provided resources for secondary schools including: 
• lesson plans on the Australian economy, society, environment and progress; and
• mathematics-dedicated datasets, including bivariate datasets, both based on current

real data and ready to download to computer or calculator.
These resources are designed for students, are ready for classroom use and require very
little, if any, modification by teachers. Each resource comes with extensive explanations,
incorporating the latest techniques in teaching practices and are designed to support the
material in any text. Many of the resources and teaching tools facilitate integrated learn-
ing, recognising the importance of students learning mathematics and statistics in more
than just the mathematics classroom.

Census at school

The Census at school site will provide an on-line data collection project designed for upper
primary to middle secondary students, where students collect information about them-
selves using questions that reflect their own interests. Students will fill in their census
forms as part of a whole class activity. Data samples can then be used for teaching and
learning across a range of Key Learning Areas.

The program is based on a similar program developed by the Royal Statistical Society
of the United Kingdom, under the guidance of Neville Davies (which has property rights
to the brand). It has been extremely successful in improving statistical literacy and has
been extended to many other countries, including several in Africa. It is also being built
in collaboration with ‘early adaptors’ of the program in Australia, such as the Noel Baker
Centre for School Mathematics in South Australia and the Office of Education and
Statistical Research in Queensland.

The primary aim of Census at school is to encourage the development of statistical liter-
acy in students and a learning experience for teachers. Census at school will be conducted
in the lead up to the 2006 Census of Population and Housing in August. The census will
be topical and so of interest to students and teachers. It will be an engaging, educational-
ly focussed, on-line learning experience that assists both students and teachers in building
skills in creating, using and interpreting data and understanding statistical concepts. 

This initiative will have a direct impact on improving statistical literacy among
Australian school students and teachers by: 

• creating a better understanding of statistics and increasing their use in the class-
room;

• encouraging student interest in statistics by involving them in data about them-
selves;

• demonstrating practical use of statistics in everyday life through their application in
cross-curricula lesson plans;

• fostering a good understanding of statistical collections, particularly population
censuses;

• meeting a major ICT requirement for Key Learning Areas through the use of the
Internet for educational purposes.

The ABS intends to provide a range of high quality lesson plans aimed at supporting
classroom teachers across a range of subjects and Australia wide. These will be developed
with the support of teachers. In addition, the website will provide contextual support
materials of interest to students and teachers.
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A national framework for teaching statistics

Each State and Territory has elements of statistics and probability taught in its school cur-
riculum (the term chance and data is in common parlance) developed with varying
degrees of input from statistical scientists, however a coordinated national framework is
required if all students are to develop statistical literacy.

This section describes a development known as the Australian Statistics Education
System (ASES) being led by Dr Nick Fisher (development started when he was President
of the Statistical Society of Australia (SSAI) and myself (as head of the Australian Bureau
of Statistics, the largest employer of statistics). It covers primary, secondary and tertiary
levels. The Curriculum Corporation has been assisting with the schools component.

The commencement of this development was on 10 July 2002, when the ABS and the
SSAI hosted a meeting of the leaders of the statistical profession in Australia, including a
high proportion of professors of statistics, to discuss a serious emerging issue: the increas-
ing shortage of professional statisticians in Australia. Attendees also included the
President of the Australian Association of Mathematics Teachers, and the Science Advisor
to the Federal Minister for Education, Training and Science.

Stage Enabling process Outcomes

Schools
1. Develop familiarity with

basic concepts of statisti-
cal science

2. Stimulate some to take
more serious courses in
latter part of high school

• Educational (training)
programs & support
materials for teachers

• Resources, information
& events for students

• Awareness and support
for materials for careers
advisers

• Australians more statisti-
cally literate, better
skilled to deal with pres-
sures of data-driven
society

• Students interested in
pursuing further study
of statistics

Undergraduate
1. Service courses and sta-

tistics majors at
universities

2. Bachelor of Statistical
Science at selected uni-
versities

• Degree program frame-
work

• Resources, information
& events for students

• Training programs and
support for materials for
careers advisers

• Degree program accred-
itation

• Industry support
program

• Graduates bring more
statistical understanding
to their work

• Graduates able to
pursue statistics as a pro-
fession

Graduate programs
1. Dip.Stats. (Diploma of

Statistics)
2. M.Stats (Master of

Statistics)
3. D.Stats (Professional

doctorate)
4. PhD (Normal doctorate)

• Degree program frame-
work 

• Statistics research
centres

• Information & events for
students

• Industry support
program

• Graduates for jobs
requiring more
advanced statistics

• Research statisticians
working in industry,
business and govern-
ment

• Academic statisticians —
teaching and research at
universities

Table 1. A possible high-level framework covering all levels of education.
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The major employers of statisticians are experiencing serious difficulties recruiting an
adequate supply of new statistics graduates. The universities in particular are deeply con-
cerned: the demographic profile of their statistical staff is such that many will be retiring
over the next few years yet younger statisticians are simply not emerging from graduate
programs to replace them. This is creating problems for both teaching and research.

This is coming at a time when the demand for statisticians is increasing. Information is
becoming an increasingly important asset in many industries, where statisticians are essen-
tial for proper design, collection, analysis and interpretation of statistical information.

Objectives of the framework

There are a number of objectives that this framework attempts to fulfil:
1. to ensure that Australian school children acquire a sufficient understanding and

appreciation of how data can be acquired and used to make decisions and informed
judgements in their daily lives, as children and then as adults;

2. to instil in more statistically-able school students sufficient interest and enthusiasm
for statistics that they will seek to pursue tertiary studies in statistics with a view of
making a career in the area;

3. to support Australian science and scientific research, and business and industry
innovation through the availability of high quality and appropriately trained statis-
ticians and a statistically informed population.

Table 1 sets out a possible high level framework, covering all levels of education. This
is just a quick overview of a framework that begins with schools, moves through under-
graduate and postgraduate programs and ends with career advice and industry support.
For now, let us concentrate on schools.

Schools

Our objectives for the Schools component are:
(a) Help school children develop familiarity with the basic ideas of extracting informa-

tion from data as this relates to their lives
(b) Stimulate some of the more statistically able to undertake further studies in

Statistics

Two basic stages of implementation

Stage 1: Development of an appropriate framework for a K–12 statistics program that
addresses both objective (a) and (b) above. It will be essential to consult closely with
school education bodies, key professional organisations, schools and community
stakeholders.

Stage 2: Development of appropriate educational and ongoing programs for teachers,
and suitable supporting resources for teaching the subject.

The success of this proposal will be dependent on:
(i) National agreement about the curriculum basis for the study of statistics
(ii) A supply of excellent resource materials for teachers to use that develop in students

a "yearning for learning" about statistics
(iii) Appropriate professional development programs that provide teachers with:

• the skills and knowledge to use the resource material; and
• a suitable level of current knowledge and understanding about statistics and

a means of maintaining their knowledge according to their teaching needs.
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We have been working with the Curriculum Corporation to develop this. It has the
support of their Board and we are awaiting funding before taking it to the next stage.

Not everyone agrees that statistical concepts are best taught by mathematics teachers.
The Past President of the Royal Statistical Society, Adrian Smith, prepared a report
Making Mathematics Count for the UK government. In this report, he states:

Twenty-five percent of the timetable for GCSE is now statistics and data handling.
That wasn't there 20 years ago. We should take the statistics out of GCSE maths. The
addition of it has led to this loss of time for practice and fluency and absorption, so
mathematical core skills have gone down.

He says statistics should be taught generally through the curriculum, not just in maths.
But there is agreement that the focus should be on statistical concepts not theory and that
any emphasis on "theory" should be on mathematical concepts. These are a fundamental
underpinning for tertiary studies of statistical theory.

How does Australia compare with the rest of the world?

In the mid 1990s, the OECD countries decided to include direct measures of student
learning through what has become known as the Programme for International Student
Assessment (PISA). All thirty OECD countries participate and a growing number of
others are becoming involved: twenty-eight additional countries have signed on for PISA
2006.

PISA is aimed at fifteen year-olds and assesses their literacy, numeracy and science
skills. It is designed to be neutral to cultural influences. In the 2003 study, there was
special emphasis on assessing numeracy skills including one statistics component (proba-
bility).

The 2003 results will be available in December 2004 and will be presented to the
Conference. In past PISA studies, Australia has fared reasonably well. It will be interesting
to see if that performance is maintained. Another interesting aspect of the PISA study was
that, in Australia, the correlation between PISA scores and socio-economic status (the so-
called socio-economic gradient) was higher than in many other countries, such as the
Scandinavian countries.

Outcomes

At the end of the day what are the outcomes for the students? What should we be attempt-
ing to achieve for our young people? As has been suggested:

• today’s students need to develop an ability to make informed decisions and judge-
ments in regard to both their student lives now and for their adult lives in the future;

• statistically-able students who want to pursue a career in statistics are appropriately
supported, and have increased awareness of statistics as a career choice.

For those with good numerical skills, being a statistician can be a very rewarding
career. This is a strong view held by those who have pursued such a career. ‘Finding work
has not been difficult (there are not too many unemployed statisticians) and the pay is
good, although not too many statisticians make a fortune from their career. Nevertheless,
some of the pharmaceutical companies are offering six-figure salaries to good quality
recent statistics graduates…’
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As part of the national framework, highlighted above, processes would be put in place
to provide a coordinated careers advisory process, where links would be set-up between
secondary and tertiary educational bodies. This process should also link into industry
bodies and large private and public sector organisations. In this case, education would not
stop at the learning process, it would help students take those first steps after school, into
tertiary education and employment. A key element has to be to convince the students of
the importance and relevance of a statistics career. Many do not currently understand the
opportunities or the nature of work undertaken by statisticians. The same might also be
said for teachers. 

In today’s climate, careers are based less and less on remaining with one company,
moving through departments and positions to build a career. Today, careers are built
through moving from business to business and industry to industry, taking opportunity of
vacancies and building experience. Statistical skills that are very transferable between
industries and organisations. Having good qualifications in statistics means being able to
apply those skills to any area; in other words, to apply statistical techniques, you do not
have to be an expert in a particular field. 

The national framework has real and important outcomes for students — for all stu-
dents, who will become more statistically literate and for statistically-able students who can
benefit from good career prospects. As soon as we get the green light to progress with the
framework, we will begin consultations with representatives of mathematics teachers’
associations.

Summary

In closing, let me say that one major factor for success, be it for a community, an economy,
an organisation or an individual, is how information is used, particularly today with the
amount, different sources and different formats, of this information. Australia needs a
society of individuals able to source, compile and analyse this information to make
informed judgements leading to sensible decision making. In today's information society,
information is becoming more readily available particularly through the Internet.

Many teachers are already teaching statistics in the classroom and the ABS, through
the NESU, has already begun to put in place systems, networks and resources to assist
teachers to help students develop essential statistical skills. These resources include: work-
sheets, lesson plans, datasets, webquests and other curriculum based activities at both
primary and secondary levels. In addition, the NESU is embarking on its most ambitious
initiative to date, the Census at school program, a program aimed at increasing the level of
understanding, interest and profile of statistics among both students and teachers.

These efforts are a start, however to take things further and fully develop statistical lit-
eracy in Australian students, more coordination is needed. The ABS has, in partnership
with SSAI and Curriculum Corporation, outlined a national plan for a coordinated
approach to teaching statistics in schools at the primary, secondary and tertiary levels and
a careers advisory service to facilitate progress through the educational stages. Vital to the
success of this approach in schools is the development of: 

• a statistics program for Years K–12; 
• appropriate education and ongoing programs for teachers; 
• suitable supporting resources for teaching the subject; and
• a career advisory process for the students.
Mathematics teachers will play a critical role in such a coordinated, national approach

to teaching statistics. The skills learned in the mathematics classroom are essential to
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understand and make sense of information. It is this link between the importance of sta-
tistics as an essential skill and the role that mathematics plays in the development of
statistical skills, that is another reason why mathematics is vital. Statistics is an essential
skill for our young people. It is vital for their future. 

We hope we are taking the right steps to support mathematics teachers, particularly in
their teaching of statistical concepts. We welcome any feedback.
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Keeping learning on track:
Formative assessment and 
the regulation of learning

Dylan Wiliam
Learning and Teaching Research Centre, Educational Testing Service

Introduction

‘I’d love to teach for deep understanding, but I have to raise my students’ test scores.’ I
have heard this sentiment from hundreds of teachers in many countries. Implicit in this
statement is the notion that raising test scores is not compatible with teaching for deep
understanding. As pressures for teachers to be accountable for the performance of their
students increase, does this mean that there is no room for teaching for deep understand-
ing? Or is there a way to achieve both? 

Over the course of a ten-year study, Paul Black and I sought to find out if using assess-
ment to support learning, rather than just to measure its results, can improve students’
achievement, even when such achievement is measured in the form of state-mandated
tests. In reviewing 250 studies from around the world, published between 1987 and 1998,
we found that a focus by teachers on assessment for learning, as opposed to assessment of
learning, produced a substantial increase in students’ achievement (Black & Wiliam,
1998a). Since the studies also revealed that day-to-day classroom assessment was relative-
ly rare, we felt that considerable improvements would result from supporting teachers in
developing this aspect of their practice (Black & Wiliam, 1998b). The studies did not
reveal, however, how this could be achieved and whether such gains would be sustained
over an extended period of time.

Since 1999, we have worked with many groups of teachers, from both primary and sec-
ondary schools, in the United Kingdom and in the United States. and these
collaborations have shown that our initial optimism was justified. In a variety of settings
teachers have found that by teaching for deep understanding has resulted in an increase
in student performance on externally-set tests and examinations (Wiliam et al., 2004). 

The details of how we put these ideas into practice can be found elsewhere (Black et
al., 2002; Black et al., 2003). In this paper, I want to describe the key ingredients of form-
ative assessment: effective questioning, feedback, ensuring learners understand the
criteria for success, and peer- and self-assessment, and then to show how they fit together
within the general idea of the ‘regulation of learning’. 

What makes a good question?

Two items used in the Third International Mathematics and Science Study (TIMSS) are
shown in Figure 1 below. Although apparently quite similar, the success rates on the two
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items were very different. For example, in Israel, 88% of the students answered the first
items correctly, while only 46% answered the second correctly, with 39% choosing
response (b). The reason for this is that many students, in learning about fractions,
develop the naive conception that the largest fraction is the one with the smallest denom-
inator, and the smallest fraction is the one with the largest denominator. This approach
leads to the correct answer for the first item, but leads to an incorrect response to the
second. Furthermore, if we note that 46% plus 39% is very close to 88%, this provides
strong evidence that many students who answered the first item correctly, did so with an
incorrect strategy. In this sense, the first item is a much weaker item than the second,
because many students can get it right for the wrong reasons.

This illustrates a very general principle in teachers’ classroom questioning. By asking
questions of students, teachers try to establish whether students have understood what
they are meant to be learning, and if students answer the questions correctly, it is tempt-
ing to assume that the students’ conceptions match those of the teacher. However, all that
has really been established is that the students’ conceptions fit, within the limitations of
the questions. Unless the questions used are very rich, there will be a number of students
who manage to give all the right responses, while having very different conceptions from
those intended.

Figure 1. Two items from the Third International Mathematics and Science Study.

A particularly stark example of this is the following pair of simultaneous equations:

3a = 24
a + b = 16

Many students find this difficult, saying that it cannot be done. The teacher might con-
clude that they need some more help with equations of this sort, but the most likely
reason for the difficulties with this item is not to with mathematical skills but with their
beliefs. If the students are encouraged to talk about their difficulty, they often say things
like, ‘I keep on getting b is 8, but it can’t be because a is.’ The reason that many students
have developed such a belief is, of course, that before they were introduced to solving
equations, they were will probably have been practising substitution of numbers into alge-
braic formulas, where each letter stood for a different number. Although the students will
not have been taught that each letter must stand for a different number, they have gen-
eralised implicit rules from their previous experience, just as because we always show
them triangles where the lowest side is horizontal, they talk of ‘upside-down triangles’
(Askew & Wiliam, 1995).

Item 1 (success rate 88%)
Which fraction is the smallest?

a) b) c) d)

Item 2 (success rate 46%)
Which fraction is the largest?

a) b) c) d)
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The important point here is that we would not have known about these unintended
conceptions if the second equation had been a + b = 17 instead of a + b = 16. Items that
reveal unintended conceptions — in other words that provide a ‘window into thinking’ —
are difficult to generate, but they are crucially important if we are to improve the quality
of students’ mathematical learning.

Some people have argued that these unintended conceptions are the result of poor
teaching. If only the teacher had phrased their explanation more carefully, had ensured
that no unintended features were learnt alongside the intended features, then these mis-
conceptions would not arise.

This argument fails to acknowledge two important points. The first is that this kind of
over-generalisation is a fundamental feature of human thinking. When young children
say things like ‘I spended all my money’, they are demonstrating a remarkable feat of gen-
eralisation. From the huge messiness of the language that they hear around them, they
have learnt that to create the past tense of a verb, one adds ‘d’ or ‘ed’. In the same way,
if one asks young children what causes the wind, the most common answer is ‘trees’. They
have not been taught this, but have observed that trees are swaying when the wind is
blowing and (like many politicians) have inferred a causation from a correlation.

The second point is that even if we wanted to, we are unable to control the student’s
environment to the extent necessary for unintended conceptions not to arise. For
example, it is well known that many students believe that the result of multiplying 2.3 by
10 is 2.30. It is highly unlikely that they have been taught this. Rather this belief arises as
a result of observing regularities in what they see around them. The result of multiplying
whole-numbers by 10 is just to add a zero, so why should not that work for all numbers?
The only way to prevent students from acquiring this ‘misconception’ would be to intro-
duce decimals before one introduces multiplying single-digit numbers by 10, which is
clearly absurd. The important point is that we must acknowledge that what students learn
is not necessarily what the teacher intended, and it is essential that teachers explore stu-
dents’ thinking before assuming that students have ‘understood’ something. In this sense
assessment is the bridge between teaching and learning.

Questions that give us this ‘window into thinking’ are hard to find, but within any
school there will be good selection of rich questions in use; the trouble is that each
teacher will have her or his stock of good questions, but these questions do not get shared
within the school, and are certainly not seen as central to good teaching.

In most Anglophone countries, teachers spend the majority of their lesson preparation
time in marking books, almost invariably doing so alone. In some other countries, the
majority of lesson preparation time is spent planning how new topics can be introduced,
which contexts and examples will be used, and so on. This is sometimes done individual-
ly or with groups of teachers working together. In Japan, however, teachers spend a
substantial proportion of their lesson preparation time working together to devise ques-
tions to use in order to find out whether their teaching has been successful, in particular
through the process known as ‘lesson study’ (Fernandez & Makoto, 2004).

Now in thinking up good questions, it is important not to allow the traditional con-
cerns of reliability and validity to determine what makes a good question. For example,
many teachers think that the following question, taken from the Chelsea Diagnostic Test for
algebra, is ‘unfair’:

Simplify (if possible): 2a + 5b

This item is felt to be unfair because students ‘know’ that in answering test questions, you
have to do some work, so it must be possible to simplify this expression, otherwise the
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teacher would not have asked the question. I would agree that to use this item in a test or
an examination where the goal is to determine a student’s achievement would probably
not be a good idea. However, for the purpose of finding out whether students understand
algebra, it is a very good item indeed. If, in the context of classroom work, rather than a
formal test or exam, a student can be tempted to ‘simplify’ 2a + 5b then I want to know
that, because it means that I have not managed to develop in the student a real sense of
what algebra is about.

Similar issues are raised by asking students which of the following two fractions is the
larger:

Now in some senses this is a ‘trick question’. There is no doubt that this is a very hard
item, with typically only around one fourteen-year old in six able to give the correct
answer (compared with around three-quarters of fourteen-year-olds being able to select
correctly the larger of two ‘ordinary’ fractions). It may not, therefore, be a very good item
to use in a test of students’ achievement; but as a teacher, I think it is very important for
me to know if my students think that three-elevenths is larger than three-sevenths. The
fact that this item is seen as a ‘trick question’ shows how deeply ingrained into our prac-
tice the summative function of assessment is.

A third example, that caused considerable disquiet among teachers when it was used
in a national test, is based on the following item, again taken from one of the Chelsea
Diagnostic Tests:

Which of the following statements is true:
1. AB is longer than CD
2. AB is shorter than CD
3. AB and CD are the same length

Again, viewed in terms of formal tests and examinations, this may be an unfair item, but
in terms of a teacher’s need to establish secure foundations for future learning, I would
argue that this is entirely appropriate.

Rich questions, of the kind described above, provide teachers not just with evidence
about what their students can do, but also what the teacher needs to do next, in order to
broaden or deepen understanding.

Classroom questioning

There is also a substantial body of evidence about the most effective ways to use classroom
questions. In many schools, teachers tend to use questions as a way of directing the atten-
tion of the class, and keeping students ‘on task’, by scattering questions all around the
classroom. This probably does keep the majority of students ‘on their toes’ but makes only
a limited contribution to supporting learning. What is far less frequent is to see a teacher,
in a whole-class lesson, have an extended exchange with a single student, involving a
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second, third, fourth or even fifth follow-up question to the student’s initial answer. With
such questions, the level of classroom dialogue can be built up to quite a sophisticated
level, with consequent positive effects on learning. Of course, changing one’s questioning
style is very difficult where students are used to a particular set of practices (and may even
regard asking supplementary questions as ‘unfair’). It may even be that other students see
extended exchanges between the teacher and another student as a chance to relax and
go ‘off task’, but as soon as students understand that the teacher may well be asking them
what they have learned from a particular exchange between another student and the
teacher, their concentration is likely to be quite high.

How much time a teacher allows a student to respond before evaluating the response
is also important. It is well known that teachers do not allow students much time to answer
questions, and, if they do not receive a response quickly, they will ‘help’ the student by
providing a clue or weakening the question in some way, or even moving on to another
student. However, what is not widely appreciated is that the amount of time between the
student providing an answer and the teacher’s evaluation of that answer is just as impor-
tant, if not more so. Of course, where the question is a simple matter of fact recollection,
then allowing a student time to reflect and expand upon the answer is unlikely to help
much. However, where the question requires thought, then increasing the time between
the end of the student’s answer and the teacher’s evaluation from the average ‘wait time’
of less than a second to three seconds, produces measurable increases in learning
(although increases beyond three seconds have little effect, and may cause lessons to lose
pace). 

In fact, questions need not always come from the teacher. There is substantial evidence
that students’ learning is enhanced by getting them to generate their own questions (Foos
et al., 1994). If instead of writing an end-of-topic test herself, the teacher asks the students
to write a test that tests the work the class has been doing, the teacher can gather useful
evidence about what the students think they have been learning, which is often very dif-
ferent from what the teacher thinks the class has been learning. This can be a particularly
effective strategy with disaffected older students, who often feel threatened by tests.
Asking them to write a test for the topic they have completed, and making clear that the
teacher is going to mark the question rather than the answers, can be a hugely liberating
experience for many students.

Some researchers have gone even further, and shown that questions can limit class-
room discourse, since they tend to demand a simple answer. There is a substantial body
of evidence the classroom learning is enhanced considerably by shifting from asking ques-
tions to making statements (Dillon, 1988). For example, instead of asking, ‘Are all squares
rectangles?’, which seems to require a ‘simple’ yes/no answer, the level of classroom dis-
course (and student learning) is improved considerably by framing the same question as
a statement — ‘All squares are rectangles,’ — and asking students to discuss this in small
groups before presenting a reasoned conclusion to the class.

The quality of feedback

Ruth Butler (1998) investigated the effectiveness of different kinds of feedback on 132
Year 7 students in twelve classes in four Israeli schools. For the first lesson, the students in
each class were given a booklet containing a range of divergent thinking tasks. At the end
of the lesson, their work was collected in. This work was then marked by independent
markers. At the beginning of the next lesson, two days later, the students were given feed-
back on the work they had done in the first lesson. In four of the classes students were
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given marks (which were scaled so as to range from 40 to 99) while in another four of the
classes, students were given comments, such as, ‘You thought of quite a few interesting
ideas; maybe you could think of more ideas.’ In the other four classes, the students were
given both marks and comments.

Then, the students were asked to attempt some similar tasks, and told that they would
get the same sort of feedback as they had received for the first lesson’s work. Again, the
work was collected in and marked.

Those given only marks made no gain from the first lesson to the second. Those who
had received high marks in the tests were interested in the work, but those who had
received low marks were not. The students given only comments scored, on average, 30%
more on the work done in the second lesson than on the first, and the interest of all the
students in the work was high. However, those given both marks and comments made no
gain from the first lesson to the second, and those who had received high marks showed
high interest while those who received low marks did not.

In other words, far from producing the best effects of both kinds of feedback, giving
marks alongside the comments completely washed out the beneficial effects of the com-
ments. The use of both marks and comments is probably the most widespread form of
feedback used in the Anglophone world, and yet this study (and others like it — see
below) show that it is no more effective than marks alone. In other words, if you write
careful diagnostic comments on a student’s work, and then put a score or grade on it, you
are wasting your time. The students who get the high scores do not need to read the com-
ments and the students who get the low scores do not want to. You would be better off
just giving a score. The students will not learn anything from this but you will save your-
self a great deal of time.

A clear indication of the role that ego plays in learning is given by another study by
Ruth Butler (1987). In this study, two hundred Year 6 and 7 students spent a lesson
working on a variety of divergent thinking tasks. Again, the work was collected in and the
students were given one of four kinds of feedback on this work at the beginning of the
second lesson (again two days later):

• a quarter of the students were given comments;
• a quarter were given grades;
• a quarter were given written praise; and
• a quarter were given no feedback at all.
The quality of the work done in the second lesson was compared to that done in the

first. The quality of work of those given comments had improved substantially compared
to the first lesson, but those given grades and praise had made no more progress than
those given absolutely no feedback throughout their learning of this topic.

At the end of the second lesson, the students were given a questionnaire about what
factors influenced their work. In particular the questionnaire sought to establish whether
the students attributed successes and failures to themselves (called ego-involvement) or
to the work they were doing (task-involvement). Examples of ego- and task-involving attri-
butions are shown in Table 1.

Those students given comments during their work on the topic had high levels of task-
involvement, but their levels of ego-involvement were the same as those given no
feedback. However, those given praise and those given grades had comparable levels of
task-involvement to the control group, but their levels of ego-involvement were substan-
tially higher. The only effect of the grades and the praise, therefore, was to increase the
sense of ego-involvement without increasing achievement.

This should not surprise us. In pastoral work, we have known for many years that one
should criticise the behaviour, not the child, thus focussing on task-involving rather than
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ego-involving feedback. These findings are also consistent with the research on praise
carried out in the 1970s which showed clearly that praise was not necessarily ‘a good
thing’ — in fact the best teachers appear to praise slightly less than average (Good &
Grouws, 1975). It is the quality, rather than the quantity of praise that is important and in
particular, teacher praise is far more effective if it is infrequent, credible, contingent, spe-
cific and genuine (Brophy, 1981). It is also essential that praise is related to factors within
an individual’s control, so that praising a gifted student just for being gifted is likely to
lead to negative consequences in the long term.

The timing of feedback is also crucial. If it is given too early, before students have had
a chance to work on a problem, then they will learn less. Most of this research has been
done in the United States, where it goes under the name of ‘peekability research’,
because the important question is whether students are able to ‘peek’ at the answers
before they have tried to answer the question. However, a British study, undertaken by
Simmonds and Cope (1993) found similar results. Pairs of students aged between 9 and
11 worked on angle and rotation problems. Some of these worked on the problems using
Logo and some worked on the problems using pencil and paper. The students working in
Logo were able to use a ‘trial and improvement’ strategy that enabled them to get a solu-
tion with little mental effort. However, for those working with pencil and paper, working
out the effect of a single rotation was much more time consuming, and thus the students
had an incentive to think carefully, and this greater ‘mindfulness’ led to more learning.

The effects of feedback highlighted above might suggest that the more feedback, the
better, but this is not necessarily the case. Day and Cordon (1993) looked at the learning
of a group of sixty-four Year 4 students on reasoning tasks. Half of the students were given
a ‘scaffolded’ response when they got stuck — in other words, they were given only as
much help as they needed to make progress, while the other half were given a complete
solution as soon as they got stuck, and then given a new problem to work on. Those given
the ‘scaffolded’ response learnt more, and retained their learning longer than those
given full solutions.

In a sense, this is hardly surprising, since those given the complete solutions had the
opportunity for learning taken away from them. As well as saving time, therefore, devel-
oping skills of ‘minimal intervention’ promote better learning.

Sometimes, the help need not even be related to the subject matter. Often, when a
student is given a new task, the student asks for help immediately. When the teacher asks,
‘What can’t you do?’ it is common to hear the reply, ‘I can’t do any of it’. In such circum-
stances, the student’s reaction may be caused by anxiety about the unfamiliar nature of
the task, and it is frequently possible to support the student by saying something like,
‘Copy out that table, and I’ll be back in five minutes to help you fill it in’. This is often all
the support the student needs. Copying out the table forces the student to look in detail
at how the table is laid out, and this ‘busy work’ can provide time for students to make
sense of the task themselves.

Attribution of Ego Task
Effort To do better than others Interest

To avoid doing worse than others To improve performance
Success Ability Interest

Performance of others Effort
Experience of previous learning

Table 1: Ego- and task-related attributions.



MAKING MATHEMATICS VITAL: PROCEEDINGS OF THE TWENTIETH BIENNIAL CONFERENCE OF THE AUSTRALIAN ASSOCIATION OF MATHEMATICS TEACHERS

[ WILIAM ]
27

The consistency of these messages from research on the effects of feedback extends
well beyond school and other educational settings. A review of 131 well-designed studies
in educational and workplace settings found that, on average, feedback did improve per-
formance, but this average effect disguised substantial differences between studies.
Perhaps most surprisingly, in 40% of the studies, giving feedback had a negative impact
on performance. In other words, in two out of every five carefully-controlled scientific
studies, giving people feedback on their performance made their performance worse
than if they were given no feedback on their performance at all! On further investigation,
the researchers found that feedback makes performance worse when it is focussed on the
self-esteem or self-image (as is the case with grades and praise). The use of praise can
increase motivation, but then it becomes necessary to use praise all the time to maintain
the motivation. In this situation, it is very difficult to maintain praise as genuine and
sincere. In contrast, the use of feedback improves performance when it is focussed on
what needs to be done to improve, and particularly when it gives specific details about
how to improve.

This suggests that feedback is not the same as formative assessment. Feedback is a nec-
essary first step, but feedback is formative only if the information fed back to the learner
is used by the learner in improving performance. If the information fed back to the
learner is intended to be helpful, but cannot be used by the learner in improving her own
performance it is not formative. It is rather like telling an unsuccessful comedian to ‘be
funnier’.

As noted above, the quality of feedback is a powerful influence on the way that learn-
ers attribute their successes and failures. A series of research studies, carried out by Carol
Dweck over twenty years (see Dweck, 2000 for a summary), has shown that different stu-
dents differ in the whether they regard their success and failures as:

• being due to ‘internal’ factors (such as one’s own performance) or ‘external’
factors (such as getting a lenient or a severe marker);

• being due to ‘stable’ factors (such as one’s ability) or ‘unstable’ factors (such as
effort or luck); and 

• applying globally to everything one undertakes, or related only to the specific activ-
ity on which one succeeded or failed.

Table 2 gives some examples of attributions of success and failure.

Table 2. Dimensions of attributions of success and failure.

Attribution Success Failure

locus internal: ‘I got a good mark because it
was a good piece of work’

external: ‘I got a good mark because
the teacher likes me’

internal: ‘I got a low mark because it
wasn’t a very good piece of work’

external: ‘I got a low mark because the
teacher doesn’t like me’

stability stable: ‘I got a good exam-mark
because I’m good at that subject’

unstable: ‘I got a good exam-mark
because I was lucky in the ques-
tions that came up’

stable: ‘I got a bad exam-mark because
I’m no good at that subject’ 

unstable: ‘I got a bad exam-mark
because I hadn’t done any revision’

specificity specific: ‘I’m good at that but that’s the
only thing I’m good at’

global: ‘I’m good at that means I’ll be
good at everything’

specific: ‘I’m no good at that but I’m
good at everything else’

global: ‘I’m useless at everything’
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Dweck and others have found that boys are more likely to attribute their successes to
stable causes (such as ability), and their failures to unstable causes (such as lack of effort
and bad luck). This would certainly explain the high degree of confidence with which
boys approach tests or examinations for which they are completely unprepared. More
controversially, the same research suggests that girls attribute their successes to unstable
causes (such as effort) and their failures to stable causes (such as lack of ability), leading
to what has been termed ‘learned helplessness’.

More recent work in this area suggests that what matters more, in terms of motivation,
is whether students see ability as fixed or incremental. Students who believe that ability is
fixed will see any piece of work that they are given as a chance either to re-affirm their
ability, or to be ‘shown-up’. If they are confident in their ability to achieve what is asked
of them, then they will attempt the task. However, if their confidence in their ability to
carry out their task is low, then, unless the task is so hard that no-one is expected to
succeed, they will avoid the challenge, and this can be seen in mathematics classrooms all
over the world every day. Taking all things into account, a large number of students
decide that they would rather be thought lazy than stupid, and refuse to engage with the
task, and this is a direct consequence of the belief that ability is fixed. In contrast, those
who see ability as incremental see all challenges as chances to learn — to become more
clever — and will therefore try harder in the face of failure. What is perhaps most impor-
tant here is that these views of ability are generally not global: the same students often
believe that ability in schoolwork is fixed, while at the same time believe that ability in ath-
letics is incremental, in that the more one trains, the more one’s ability increases. What
we therefore need to do is to ensure that the feedback we give students supports a view of
ability as incremental rather than fixed.

Perhaps surprisingly for educational research, the research on feedback paints a
remarkably coherent picture. Feedback to learners should focus on what they need to do
to improve, rather than on how well they have done, and should avoid comparison with
others. Students who are used to having every piece of work scored or graded will resist
this, wanting to know whether a particular piece of work is good or not, and in some cases,
depending on the situation, the teacher may need to go along with this. In the long term,
however, we should aim to reduce the amount of ego-involving feedback we give to learn-
ers (and with new entrants to the school, not begin the process at all), and focus on the
student’s learning needs. Furthermore, feedback should not just tell students to work
harder or be ‘more systematic’, the feedback should contain a recipe for future action,
otherwise it is not formative. Finally, feedback should be designed so as to lead all stu-
dents to believe that ability — even in mathematics — is incremental; in other words, the
more we ‘train’ at mathematics, the more clever we become.

Although there is a clear set of priorities for the development of feedback, there is no
‘one right way’ to do this. The feedback routines in each class will need to be thorough-
ly integrated into the daily work of the class, and so it will look slightly different in every
classroom. This means that no-one can tell teachers how this should be done: it will be a
matter for each teacher to work out a way of incorporating some of these ideas into her
or his own practice.

Sharing criteria with learners

Frederiksen and White (1997) undertook a study of three teachers, each of whom taught
four parallel Year 8 classes in two US schools. The average size of the classes was 31. In
order to assess the representativeness of the sample, all the students in the study were
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given a basic skills test, and their scores were close to the national average. All twelve
classes followed a novel curriculum (called ThinkerTools) for a term. The curriculum had
been designed to promote thinking in the science classroom through a focus on a series
of seven scientific investigations (approximately two weeks each). Each investigation
incorporated a series of evaluation activities. In two of each teacher’s four classes these
evaluation episodes took the form of a discussion about what they liked and disliked
about the topic. For the other two classes they engaged in a process of ‘reflective assess-
ment’. Through a series of small-group and individual activities, the students were
introduced to the nine assessment criteria (each of which was assessed on a 5-point scale)
that the teacher would use in evaluating their work. At the end of each episode within an
investigation, the students were asked to assess their performance against two of the cri-
teria, and at the end of the investigation, students had to assess their performance against
all nine. Whenever they assessed themselves, they had to write a brief statement showing
which aspects of their work formed the basis for their rating. At the end of each investi-
gation, students presented their work to the class, and the students used the criteria to
give each other feedback.

As well as the students’ self-evaluations, the teachers also assessed each investigation,
scoring both the quality of the presentation and the quality of the written report, each
being scored on a 1 to 5 scale. The possible score on each of the seven investigations
therefore ranged from 2 to 10. 

The mean project scores achieved by the students in the two groups over the seven
investigations are summarised in Table 3, classified according to their score on the basic
skills test.

Table 3. Mean project scores for students.

Score on basic skills test
Group Low Intermediate High
Likes and dislikes 4.6 5.9 6.6
Reflective assessment 6.7 7.2 7.4

Note: the 95% confidence interval for each of these means 
is approximately 0.5 either side of the mean

Two features are immediately apparent in these data. The first is that the mean scores
are higher for the students doing ‘reflective assessment’, when compared with the control
group; in other words, all students improved their scores when they thought about what
it was that was to count as good work. However, much more significantly, the difference
between the ‘likes and dislikes’ group and the ‘assessment’ group was much greater for
students with weak basic skills. This suggests that, at least in part, low achievement in
schools is exacerbated by students’ not understanding what it is they are meant to be
doing — an interpretation borne out by the work of Eddie Gray and David Tall (1994),
who have shown that ‘low-attainers’ often struggle because what they are trying to do is
actually much harder than what the ‘high-attainers’ are doing. This study, and others like
it, shows how important it is to ensure that students understand the criteria against which
their work will be assessed. Otherwise we are in danger of producing students who do not
understand what is important and what is not. As the old joke about project work has it:
‘four weeks on the cover and two on the contents’.

Now although it is clear that students need to understand the standards against which
their work will be assessed, the study by Frederiksen and White shows that the criteria
themselves are only the starting point. At the beginning, the words do not have the
meaning for the student that they have for the teacher. Just giving ‘quality criteria’ or
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‘success criteria’ to students will not work, unless students have a chance to see what this
might mean in the context of their own work.

Since we understand the meanings of the criteria that we work with, it is tempting to
think of them as definitions of quality, but in truth, they are more like labels we use to talk
about ideas in our heads. For example, ‘being systematic’ in an investigation is not some-
thing we can define explicitly, but we can help students develop what Guy Claxton calls a
‘nose for quality’. 

One of the easiest ways of doing this is to do what Frederiksen and White did: marking
schemes are shared with students, but they are given time to think through, in discussion
with others, what this might mean in practice, applied to their own work. We should not
assume that the students will understand these right away, but the criteria will provide a
focus for negotiating with students about what counts as quality in the mathematics class-
room.

Another way of helping students understand the criteria for success is, before asking
the students to embark on (say) an investigation, to get them to look at the work of other
students (suitably anonymised) on similar (although not, of course the same) investiga-
tions. In small groups, they can then be asked to decide which of pieces of students’ work
are good investigations, and why. It is not necessary, or even desirable, for the students to
come to firm conclusions and a definition of quality; what is crucial is that they have an
opportunity to explore notions of ‘quality’ for themselves. Spending time looking at other
students’ work, rather than producing their own work, may seem like ‘time off-task’, but
the evidence is that it is a considerable benefit, particularly for ‘low-attainers’.

Student peer- and self-assessment

Whether students can really assess their own performance objectively is a matter of heated
debate, but very often the debate takes place at cross-purposes. Opponents of self-assess-
ment say that students cannot possibly assess their own performance objectively, but this
is an argument about summative self-assessment; no-one is seriously suggesting that stu-
dents ought to be able to write their own school-leaving certificates. What really matters
is whether self-assessment can enhance learning, and in this regard, accuracy is a second-
ary concern.

The power of student self-assessment is shown very clearly in an experiment by
Fontana and Fernandez (1994). A group of twenty-five Portuguese primary school teach-
ers met for two hours each week over a twenty-week period during which they were
trained in the use of a structured approach to student self-assessment. The approach to
self-assessment involved an exploratory component and a prescriptive component. In the
exploratory component, each day, at a set time, students organised and carried out indi-
vidual plans of work, choosing tasks from a range offered to them by the teacher, and had
to evaluate their performance against their plans once each week. The progression within
the exploratory component had two strands: over the twenty weeks, the tasks and areas in
which the students worked were to take on the student’s own ideas more and more, and
secondly, the criteria that the students used to assess themselves were to become more
objective and precise.

The prescriptive component took the form of a series of activities, organised hierarchi-
cally, with the choice of activity made by the teacher on the basis of diagnostic assessments
of the students. During the first two weeks, children chose from a set of carefully struc-
tured tasks, and were then asked to assess themselves. For the next four weeks, students
constructed their own mathematical problems following the patterns of those used in
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weeks 1 and 2, and evaluated them as before, but were required to identify any problems
they had, and whether they had sought appropriate help from the teacher.

Over the next four weeks, students were given further sets of learning objectives by the
teacher, and again had to devise problems, but now, they were not given examples by the
teacher. Finally, in the last ten weeks, students were allowed to set their own learning
objectives, to construct relevant mathematical problems, to select appropriate apparatus,
and to identify suitable self-assessments.

Another twenty teachers, matched in terms of age, qualifications, experience, using
the same curriculum scheme, for the same amount of time, and doing the same amount
of inservice training, acted as a control group. The 354 students being taught by the
twenty-five teachers using self-assessment, and the 313 students being taught by the twenty
teachers acting as a control group were each given the same mathematics test at the
beginning of the project, and again at the end of the project. Over the course of the
experiment, the marks of the students taught by the control-group teachers improved by
7.8 marks. The marks of the students taught by the teachers developing self-assessment
improved by 15 marks — almost twice as big an improvement.

Now the details of the particular approach to self-assessment are not given in the paper,
and are in any case not that important — Portuguese primary schools are, after all, very
different from those in other countries. However this is just one of a huge range of studies,
in different countries, and looking at students of different ages, that have found a similar
pattern. Involving students in assessing their own learning improves that learning.

The regulation of learning

Although at first sight quite different, the four elements of effective formative assessment
outlined above form a coherent set of strategies for raising achievement. The coherence
of these ideas can be seen more clearly by considering three crucial processes in learning:

• where the learners are in their learning;
• where they are going;
• how to get there;

and the role of the learner, her or his peers, and the teacher in these processes. The result
of crossing these two dimensions is shown in Table 4.

Table 4. Aspects of formative assessment.

Where the learner is Where they are going How to get there
Teacher Evoking information Establishing goals Feedback
Peer Peer-assessment Sharing success criteria Peer-tutoring
Student Self-assessment Sharing success criteria Self-directed learning

Rich questioning and effective feedback focus on the teacher’s role: first being clear
about where we want students to get to (curricular goals), asking appropriate questions
to find out where they are, and feeding back to students in ways that the students can use
in improving their own performance. Sharing criteria with learners and student self-
assessment focus on the learner’s role: first being clear about where they want to get to,
and then monitoring their own progress towards that goal.

The elements in Table 4 can be integrated within a more general theoretical frame-
work of the regulation of learning processes as suggested Perrenoud (1991; 1998). Within
such a framework, the actions of the teacher, the learners, and the context of the class-
room are all evaluated with respect to the extent to which they contribute to guiding the
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learning towards the intended goal.
From this perspective, the task of the teacher is not necessarily to teach, but to create

situations in which students learn. This focus emphasises what it is that students learn,
rather than what teachers do. Most teachers appear to be quite skilled at regulating or
controlling the activities in which students engage, but have only a hazy idea of the learn-
ing that results. This is especially evident in interviews before lessons where teachers focus
much more on the planned activities than on the resulting learning (e.g., ‘I’m going to
have them do X’). In a way, this is inevitable, since only the activities can be manipulated
directly. Nevertheless, it is clear that in teachers who have developed their formative
assessment practices, there is a strong shift in emphasis away from regulating the activities
in which students engage, and towards the learning that results (Black et al., 2003).
Indeed, from such a perspective, even to describe the task of the teacher as teaching is
misleading, since it is rather to ‘engineer’ situations in which student learn.

However, in this context, it is important to note that the ‘engineering of learning envi-
ronments’ does not guarantee that the learning is proceeds in fruitful ways. Many visual
arts classroom are productive, in that they do lead to significant learning on the part of
students, but what any given student might learn is impossible to predict. An emphasis on
the regulation of learning processes entails ensuring that the learning that is taking place
is as intended.

When the learning environment is well-regulated, much of the regulation is pro-active,
through the setting up of didactical situations. The regulation can be unmediated within
such didactical situations, when, for example, a teacher ‘does not intervene in person, but
puts in place a “metacognitive culture”, mutual forms of teaching and the organisation of
regulation of learning processes run by technologies or incorporated into classroom
organisation and management’ (Perrenoud, 1998, p. 100). For example, a teacher’s deci-
sion to use realistic contexts in the mathematics classroom can provide a source of
proactive regulation, because then students can determine the reasonableness of their
answers. If students calculate that the average cost per slice of pizza (say) is $200, provid-
ed they are genuinely engaged in the activity, they will know that this solution is
unreasonable, and so the use of realistic settings provides a ‘self-checking’ mechanism.

On the other hand, the didactical situation may be set up so that the regulation is
achieved through the mediation of the teacher, when the teacher, in planning the lesson,
creates questions, prompts or activities that evoke responses from the students that the
teacher can use to determine the progress of the learning, and if necessary, to make
adjustments. Examples of such questions are, ‘Is calculus exact or approximate?’ or
‘Would your mass be the same on the moon?’. (In this context it is worth noting that each
of these questions is ‘closed’ in that there is only one correct response; their value is that
although they are closed, each question is focused on a specific misconception.)

The ‘upstream’ planning therefore creates, ‘downstream’, the possibility that the
learning activities may change course in the light of the students’ responses. These
‘moments of contingency’ — points in the instructional sequence when the instruction
can proceed in different directions according to the responses of the student — are at the
heart of the regulation of learning.

These moments arise continuously in whole-class teaching, where teachers are con-
stantly having to make sense of students’ responses, interpreting them in terms of
learning needs, and making appropriate responses. However, they also arise when the
teacher circulates around the classroom, looking at individual students’ work, observing
the extent to which the students are ‘on track’. In most teaching of mathematics, the reg-
ulation of learning will be relatively tight, so that the teacher will attempt to ‘bring into
line’ all learners who are not heading towards the particular goal sought by the teacher;
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in these subjects, the goal of learning is generally both highly specific and common to all
the students in a class. In contrast, when the class is doing an investigation, the regulation
will be much looser. Rather than a single goal, there is likely to be a broad horizon of
appropriate goals, all of which are acceptable, and the teacher will intervene to bring the
learners ‘into line’ only when the trajectory of the learner is radically different from that
intended by the teacher. In this context, it is worth noting that there are significant cul-
tural differences in how to use this information. In the United States or the United
Kingdom, the teacher will typically intervene with individual students where they appear
not to be ‘on track’ whereas in Japan, the teacher is far more likely to observe all the stu-
dents carefully, while walking round the class, and then will select some major issues for
discussion with the whole class.

One of the features that makes a lesson ‘formative’, then, is that the lesson can change
course in the light of evidence about the progress of learning. This is in stark contrast to
the ‘traditional’ pattern of classroom interaction, exemplified by the following extract:

‘Yesterday we talked about triangles, and we had a special name for triangles with three
sides the same. Anyone remember what it was? … Begins with E… Equi…’

In terms of formative assessment, there are two salient points about such an exchange.
First, little is contingent on the responses of the students, except how long it takes to get
on to the next part of the teacher’s ‘script’, so there is little scope for ‘downstream’ regu-
lation. The teacher is interested only in getting to the word ‘equilateral’ in order that she
can move on, and so all incorrect answers are treated as equivalent. The only information
that the teacher extracts from the students’ responses is whether they can recall the word
‘equilateral’ or not.

The second point is that the situation that the teacher set up in the first place — the
question she chose to ask — has little potential for providing the teacher with useful infor-
mation about the students’ thinking, except, possibly, whether the students can recall the
word ‘equilateral’. This is typical in situations where the questions that the teacher uses
in whole-class interaction have not been prepared in advance (in other words, when there
is little or no pro-active or ‘upstream’ regulation).

Similar considerations apply when the teacher collects in the students’ notebooks and
attempts to give helpful feedback to the students in the form of comments on how to
improve rather than grades or percentage scores. If sufficient attention has not been
given ‘upstream’ to the design of the tasks given to the students, then the teacher may
find that she has nothing useful to say to the students. Ideally, from examining the stu-
dents’ responses to the task, the teacher would be able to judge how to (a) help the
learners learn better and (b) what she might do to improve the teaching of this topic. In
this way, the assessment could be formative for the students, through the feedback she
provides, and formative for the teacher herself, in that appropriate analysis of the stu-
dents responses might suggest how the lesson could be improved.

Summary

In this paper, I have outlined some of the research that suggests that focusing on the use
of day-to-day formative assessment is one of the most powerful ways of improving learn-
ing in the mathematics classroom. In other words, even if teachers do not care about deep
understanding, and instead wish only to increase their students’ test scores, then atten-
tion to formative assessment appears to be one of, if not the, most powerful way to do this.

To be effective, these strategies must be embedded into the day-to-day life of the class-
room, and must be integrated into whatever curriculum scheme is being used. That is why
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there can be no recipe that will work for everyone. Each teacher will have to find a way of
incorporating these ideas into their own practice, and effective formative assessment will
look very different in different classrooms. It will, however, have some distinguishing fea-
tures. Students will be thinking more often than they are trying to remember something,
they will believe that by working hard, they get cleverer, they will understand what they
are working towards, and will know how they are progressing.

In some ways, this is an old-fashioned message; indeed, none of the strategies that
teachers have used to put these principles into practice in their classrooms is new. What
is new is that we now have hard empirical evidence that quality learning does lead to
higher achievement, even when performance is measured through externally-mandated
tests. What is also new is the broad theoretical framework of the regulation of learning,
which may help teachers to understand how these ideas can be implemented effectively,
so that teachers and students can, together, keep the learning of mathematics ‘on track’.
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Oversights and insights:
Mathematics teaching and learning

Sue Willis 
Monash University

To suggest that children often have different interpretations of mathematical expe-
riences than those intended by their teachers almost goes without saying —
almost, but not quite. During the extensive research and development phase of the
West Australian First Steps in Mathematics (K–7) program, we continued to be sur-
prised by children’s responses to tasks and, more to the point, to be surprised at
how often the problem lay, not with them, but with us. In this paper, I draw on the
insights produced through this program to hypothesise about some oversights in
our pedagogy — the things we do not notice and we forget to say — and the impli-
cations for teaching and learning mathematics.

Almost a decade ago, colleagues and I began work on a research and development project
funded by the Education Department of Western Australia (EDWA) intended to ‘improve
the mathematics outcomes of primary school students, particularly students at risk of not
achieving their educational potential, by improving primary teachers’ understanding of
teaching and learning in mathematics within a developmental framework.’ 

After considerable consultation, it seemed to us that three things were needed:
• broad explanatory frameworks to assist teachers to interpret children’s responses to

mathematical tasks;
• an articulation of key understandings that underpin children’s learning;
• questions/activities which teachers can use to get children to tell them what they

(the children) are thinking and what they do and do not know. 
We started work on measurement. We were provoked to begin there by the experience

of collecting student work and visiting classrooms across Australia when developing the
National Mathematics Profiles. That work suggested that teachers’ views about what students
did and did not understand about measurement varied widely. There also appeared to be
surprisingly little development of underlying ideas about measurement even when prac-
tical measurement activities occurred. We had teachers of young primary children
insisting that their students could use units to measure, but teachers of older students
insisting they could not. They insisted children understood how to use a balance beam to
decide which had the greater mass (or at least which was heavier), whereas teachers of
older children said they did not. Unless we were prepared to accept that the children’s
understanding actually did deteriorate during the primary years, they could not all be
correct!
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Is counting units measuring?

Our observations of children in classrooms persuaded us that indeed children in the pre-
school and early primary years were counting ‘units’ to match physical quantities; they
counted the number of cupfuls of rice it took to fill the jug, the number of rods that fit
across the table and some even counted the blocks needed to make the balance ‘balance’.
They were, of course, a little inaccurate: they spilt some rice, had gaps between the rods
and overlapped them somewhat, and they got distracted when balancing the beam.
However, these inaccuracies may have simply been in their execution, their dexterity,
their concentration. The question is: what was going on in their heads? We knew that they
were counting; what we did not know was whether they were measuring.

We trawled the research literature for work on young children’s understanding of
measurement ideas and, to our considerable surprise, came up with very little that
addressed our questions. So we turned to the mathematics itself: if early primary teachers
think children are measuring and later primary and secondary teachers think they are
not, does the difference lie with what they (the teachers) mean by ‘measuring’? What
does it mean to measure something? What is its purpose? 

Although it may seem obvious, it took us a while to state to ourselves in simple —
rather than technical or abstract — terms that the essential purpose of measurement is
‘to compare’ indirectly; a measurement is always a comparison of one thing with another.
We assign numbers to an attribute of things and then we compare the numbers to decide
which is bigger/greater without directly matching or comparing.

Only then were we able to develop the kinds of questions that helped us to work out
what young children understood themselves to be doing when they ‘measured’. Only
then were we in a position to find ways to ask children what they did and did not ‘know’.

We started with length. Children aged between five and eight years old were (individ-
ually) given rods and asked, ‘We want to know how wide (long) the table is. Can you use
these rods to see how wide it is?’. If children were unable to begin, we prompted: ‘Can
you use the rods to measure the table?’; ‘Can you use the rods to see how many fit across
the table?’. The majority were able to do a reasonable job of this although their rods were
not always, or even often, laid out with great precision. They were, nevertheless, general-
ly quite confident of their ‘measurement’. We then told the children that we would like
to move the table into the next room, but we were not sure if it would fit through the
doorway. It was heavy, so: ‘Could we work out whether the table would fit through the
doorway without having to try it first?’

Children in Years 1 and 2, and even in Year 3, did not use the information from the
rods at all. Some were unwilling even to accept the agenda. They tried, if possible, to pull
the table over to the doorway. ‘You can’t tell,’ said one, ‘the table’s too heavy.’ Many resis-
ted all prompting, even when we resorted to pointing to the rods and suggesting their
use. One older child who did try to use the rods placed them vertically up and around the
door frame. 

When we changed direction and offered a piece of string and asked whether they
could use the string to decide if the table would go through the doorway, one child tied
the string to the table and tried to pull it to the doorway. Another, simply threw the string
across and over the table. It did occur to us that the problem may have been that the chil-
dren had to measure the empty space between the vertical frames of the doorway. When
we asked children to decide whether a cupboard would fit on a wall, however, the situa-
tion did not improve. 

We ask children ‘to measure’ and they come to know what it is that we expect them to
do in response to requests such as: ‘Use the rods to measure how wide the table is’. We
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see children laying tiles along a line or curve, filling containers, balancing beams, cover-
ing shapes. What do they think they are doing? We also see them directly comparing
things. Do they see any connection between directly comparing things and using a unit?
When do they see the connection?

Based on a range of tasks involving length, mass and capacity, we concluded that young
children can indeed ‘count units’ and call it ‘measuring’ but they may not realise the sig-
nificance of the count as an indication of the size of the object and so not think to use
unit information to answer such questions as, ‘Which frog is heavier?’ or ‘Will the table
slide through the door?’. 

When later we worked on Number, we learned that many young children who are very
good ‘counters’ of collections may nevertheless not understand the significance of the
count as an indicator of quantity (Nunes and Bryant 1996). Thus children who can count
when they are asked to find ‘how many’ or if the word ‘count’ is mentioned may not trust
the count to help them decide if there are enough drinks for the children (Willis, 2002).
They may hand out the drinks or put a name to each drink or guess. Is it any wonder that
they do not see the significance of counting units for deciding whether a table will go
through the doorway, which is a much more complex task? If they do not see this, in what
sense are they ‘measuring’? 

Among the children we interviewed, we found that it was not until about Year 3 that
the idea of what you are doing when you measure began to emerge. Young children may
correctly respond to a request to, for example, ‘count how many pens fit across the table’
and may have learned to call this ‘measuring’ but for them the task is one of counting to
see ‘how many fit’ in much the same way as we might ask how many people fit in the car
or how many times did you turn before the music finished. Due to the fact that they see
the task literally as counting, children may be casual in their use of instruments and not
really understand why it matters if they, for example, spill part of their spoonfuls. It is not
surprising then that, even prompted, they do not use the information they have collect-
ed to decide if the table will slide through the door.

At about seven or eight years old, children when prompted begin to use a unit to
decide which of two things is bigger. Nevertheless, they are often still tricked by conflict-
ing information, for example, believing that the size can change when a different unit is
used; and even at eight or nine years old, the social meaning of fit dominates. They obey
the exhortation to cover a region without gaps or overlaps but they do not really see the
significance of ‘filling’. This is hardly surprising. For many practical purposes, ‘fitting’ is
much more relevant and is only partly related to overall size; consider, for example, how
many people ‘fit’ in the elevator or around the table. In many situations, dimensions are
more important than, say, area or volume: a pipe could have a volume of a cubic metre
and not a single decimetre cube fit in it!

However, if children are to understand measurement, they have to see measuring as a
process of using units as a replacement for direct comparison, they have to trust the unit
count and see its significance as a substitute for direct comparison. And this is one of the
things that we often forget ‘to say’ or to get children ‘to say’. That is, the two ideas of com-
paring the size of things and of deciding ‘how many fit’ must become connected in
children’s minds so that they understand unit information as giving an indication of size
and enabling two things to be compared without directly matching them.

Many children, possibly most children, do come to understand this and because many
do, we assume that we have ‘taught it’. Too many, however, take too long to reach this
point so that activities which are ostensibly extending their understanding of measure-
ment are actually just extending their practice of counting. For some, this connection is
never really made; which brings me to a second thing we sometimes forget to say.
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What is the problem with gaps and overlaps?

At around 8 or 9 years of age, many children have begun to understand why it matters to
be careful in their use of units. They will repeat uniform units of length and capacity rea-
sonably carefully although they may not understand what this has to do with, for example,
lining up the zero on a ruler. This is not surprising, since it is not altogether easy. If you
do think it is easy, let me challenge you with the following question. 

When we start to teach children about area, we tell them to cover the surface ‘without
gaps or overlaps’. Why? What happens if there are gaps? What happens if there are over-
laps? One produces an overestimate and one produces an underestimate. Do we
remember to draw this out or to point this out? Do we leave it unsaid and possibly — prob-
ably — unthought? Which is which?

Think about using a rule. We urge children to match the zero point rather than the
edge of the rule to the starting point of the ‘length’ to be measured? Why? Is it the equiv-
alent of a gap or an overlap? Does it give an overestimate or an underestimate? Do we
overestimate or underestimate when we use a tape measure that has stretched over time?
Is it analogous to a gap or an overlap? 

When using spoons to measure the capacity of a container, is over heaping the spoons
analogous a gap or an overlap? What if we spill some?

How often do we ‘teach’ length and capacity and mass and area as though they were
unconnected to each other, each to be understood differently, each with their own ‘rules’
of procedure. How often do we forget to help students sense, see and say the connections
between the careful use of units in each of these contexts or even to articulate that if we
are to use a measurement to make a comparison then we must be able to rely on the
count being the same each time? This is the reason why we squeeze as many units in as
we possibly can, but no more. 

When we directly measure things, we repeat units either directly or using a calibrated
scale, to make as close a match as possible with the thing being measured. Of course,
making a close match is easier for some attributes than others. The idea of repeating a
unit to match a region or object may be conceptually and practically more difficult than
repeating a unit to match a line segment or balance a brick. Why do we have calibrated
scales to help us measure length and mass and capacity, but not area? This leads me to a
third thing we sometimes forget to say.

What is a unit — and an instrument?

Most of us understand that a degree celsius is a unit and a thermometer is an instrument,
a centimetre is a unit and a tape measure an instrument, a minute is a unit and a clock an
instrument. We need to learn, first, to choose appropriate units and, secondly, to choose
appropriate instruments and use them appropriately. The first is probably the more
abstract and the second the more practical but both are important and both can be con-
ceptually challenging. Nevertheless, the distinction between units and instruments as used
in the context of measurement, while perhaps not always articulated, is clear — is it not? 

The very fact that this question occurred to us at all, spoke to the unease of our team,
and we resorted to my dictionary where, reassuringly, we found that an instrument is ‘a
device’ (The Concise Macquarie Dictionary, 1986, p. 643) whereas a unit is a ‘magnitude’ or
‘a specified amount’ (p. 1418), consistent with the distinctions made above. So what was
the origin of our unease? 

Around the middle primary years, comparing directly and ‘how many units fit…?’ gen-
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erally have come together in children’s minds and they have an understanding of what it
means ‘to measure’. Unprompted, they will use a measurement to decide whether one
thing is bigger or smaller than another, understand why it helps to use the same size unit
repeatedly to measure a thing and why it is necessary to use the same unit for each quan-
tity when comparisons are to be made. The conscientious among them will use uniform
units consistently and carefully to measure quantities that are uni-dimensional, such as
length, capacity and mass, as well as angle and time. They also use uniform units of area
although they may struggle with what to do along the edges when covering regions. 

However, children can use uni-dimensional units before they can use multi-dimension-
al units such as for area. This will be no surprise to anyone. When children use a unit to
measure length, generally they can match and find that six units ‘fit’ but seven do not,
and so can see and say that ‘it is between six and seven units long’. It is a different matter
for area: when children use a tile and find that six tiles ‘fit’ within a region but seven do
not, what are they to conclude? Giving a more extreme example, the following region has
an area of between six and seven square centimetres but no ‘centimetre squares’ fit in.

Many primary and secondary teachers know only too well that students, asked to find
things with an area of more than a square metre, will expect to be able to fit a square with
sides of a metre into the region. 

What does this say about their understanding of units? Is it that they understand what
a unit is, but have difficulty in applying this understanding in the practically more diffi-
cult case of area, or is it that they do not really understand units? Our tentative conclusion
is the latter: that many students persist even into the secondary years with a practical
notion of measuring as finding out ‘how many fit’ or ‘match’. This will usually give the
right answer for uni-dimensional measures. It is a practical, sensible everyday use of math-
ematics. It makes sense in context. Unfortunately, students who persist with only the
practical notion of fit will struggle when they try to deal with area. They will be the stu-
dents who misunderstand what a ‘square metre’ is. 

In this same regard we might ask why capacity seems easy compared with volume, even
though mathematically speaking they are (more or less) the same. Again our tentative
hypothesis is a simple one. In practical everyday contexts, ‘units’ of capacity are fluid and
so they naturally flow and spill to fill, and this is typically not the case with the volume.
This is obviously only part of the story but it is an important part, in our opinion. 

So what is the critical thing here? What have we forgotten to say? A unit is not an
object, rather a unit is an amount. Indeed, not only do we forget to say this, we may actu-
ally and explicitly teach just the opposite. How often have we said to the students in our
classrooms (and as teacher educators to the student teachers in our classrooms) that they
should choose a unit that tiles without gaps or overlaps? Is it surprising that they think of
the unit as an object that has shape, when units are really sizes?

Of course, units do not tile, instruments do! The rod that we lay along the table and the
small square that we carefully fit within a border are each instruments. The length of the
rod and the area of the square are the units — a subtle distinction, yes, but an important
subtle distinction. This distinction is needed to see that when we fill a container with sand
to find its capacity, the materials used to represent the unit flow and spill, but the unit does
not change. It is needed in order to understand that the object used to represent our unit
can be transformed in any way to improve the fit or match, so long as the unit quantity does
not change. It is needed in order to understand why the rectangle above has an area of
more than six square centimetres when no centimetre squares ‘fit in’.

One of our tasks for the First Steps program was to identify key understandings that
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underpin children’s use of units and direct measurement. In early versions we included
the following:

• units should relate well to the attribute to be measured and be easy to repeat in
order to match the objects to be measured;

• to measure consistently we need to use our unit in a way that ensures a good match
with the object to be measured.

Our final version includes the following three key understandings, which are more
complex but we think more correct and closer to what needs to be understood:

• the instrument we choose to represent our unit should relate well to the attribute
to be measured and be easy to repeat to match the thing to be measured;

• to measure consistently we need to use our instrument in a way that ensures a good
match of the unit with the object to be measured;

• units are quantities and so we can use different representations of the same unit so
long as we do not change the quantity (Willis et al., in press).

In short, and to return to the Macquarie Dictionary, a unit is a ‘magnitude’ or ‘a specified
amount’ and an instrument (whether a calibrated scale or a floor tile) which is ‘a device’
for representing the unit in a suitable form to enable measurement.

Conclusion

When I talk about some of these insights into children’s thinking about measurement,
there tend to be three kinds of reaction: the first is, ‘Well of course,’ the second is dis-
agreement, ‘No that isn’t right,’ and the third is, ‘Oh dear, now I feel dreadfully insecure
about my teaching. I do not know enough.’

With respect to the first, I agree. There is an ‘of course’-ness about each of the under-
standings referred to above, but I do wonder if it is precisely because these ideas seem so
obvious that we may forget to articulate them and to ensure that our students have ‘got
the point’. With respect to the second, some suggest that the point (for example, that the
reason we measure the table is so that we can answer questions like ‘will it go through the
door’) is, in fact, obvious to children or is well articulated in our curricula and teaching.
To this I can only say that our work has suggested that too many points are not at all
obvious to children and that when we find the right questions to ask of them, their
answers are often disconcerting and distressing to teachers and teacher educators alike.
When this happens, we often get the third reaction. To this I have two responses: first, we
never know enough, but it is never too late to learn — our students are forgiving, and we
can try again, so long as we are open to finding out what it is they are thinking. Secondly,
we almost certainly all do know all of the mathematics above implicitly; the difficulty is
that we may have not have made it sufficiently explicit even to ourselves to systematically
attend to it in our teaching. We need to get into the habit of reminding ourselves: I know
what I am doing and what the point is of that task, but what do they think they are doing
and what do they think is the point?
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Addendum

One of the aims of the First Step Program was to develop broad explanatory frameworks
to assist teachers to interpret children’s responses to mathematical tasks. As a result of
analyses such as that above, based on both the research literature available and our own
observations, we identified a number of broad phases through which students’ thinking
develops. 

During the emergent phase, students initially attend to overall appearance of size, recog-
nising one thing as perceptually bigger than another and using comparative language in
a fairly undifferentiated and absolute way (big/small) rather than as describing compar-
ative size (bigger/smaller). Over time, they note that their communities distinguish
between different forms of ‘bigness’ (or size) and make relative judgments of size. As a
result, they begin to understand and use the everyday language of attributes and compar-
ison used within their home and school environment, differentiating between attributes
that are obviously perceptually different.

During the matching and comparing phase, students match in a conscious way in order
to decide which is bigger by familiar readily-perceived and distinguished attributes such
as length, mass, capacity and time. They also repeat copies of objects, amounts and
actions to decide ‘how many fit (balance or match) a provided object or event’. As a
result, they learn to directly compare things to decide which is longer, fatter, heavier,
holds more or took longer. They also learn what people expect them to do in response to
questions such as, ‘How long (tall, wide or heavy) is it?’ or when explicitly asked to
measure something.

During the quantifying phase, students connect the two ideas of directly comparing the
size of things and of deciding ‘how many fit’ and so come to understand that the count
of actual or imagined repetitions of units gives an indication of size and enables two
things to be compared without directly matching them. As a result, they trust information
about repetitions of units as an indicator of size and are prepared use this in making com-
parisons of objects. 

During the measuring phase, students come to understand the unit as an amount
(rather than an object or a mark on a scale) and to see the process of matching a unit
with an object as equivalent to subdividing the object into bits of the same size as the unit
and counting the bits. As a result, they see that part units can be combined to form whole
units and they understand and trust the measurement as a property or description of the
object being measured which does not change as a result of the choice or placement of
units.

During the relating phase, students come to trust measurement information, including
things they cannot see or handle, and to understand measurement relationships, both
those between attributes and those between units. As a result, they work with measure-
ment information itself and can use measurements to compare things, including those
they have not directly experienced and to indirectly measure things.
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Students’ conceptual understanding 
and critical thinking? 

A case for concept maps and vee diagrams 
in mathematics problem solving*

Karoline Afamasaga-Fuata’i
University of New England

Assessing students’ conceptual understanding and critical thinking is a real
problem for student teachers. The paper presents applications of Novak-type
concept maps and Gowin’s vee diagrams as means of depicting students’ under-
standing of the knowledge structure of mathematics topics and problems and
promoting critical thinking whilst solving problems. Although completed concept
maps and vee diagrams illustrate connections between concepts and procedures,
their construction is dependent on the extent of reflective and critical thinking stu-
dents invest in the process. The tools may be used to support students’ reasoning
while and thinking and working mathematically in primary and secondary mathe-
matics classrooms. 

Introduction

Student teachers’ usual feedback after teaching practicum revolves around issues of what
to teach, and how to teach it. While the former emphasises knowledge and skills to be
developed, the latter is a pedagogical issue of teaching strategies and student activities. Of
equal importance are assessment questions which typically follow such class discussions
such as, ‘How do you assess what you teach?’ and, ‘How would you know students are
really getting it?’ often asked with an air of perplexity especially when describing class-
room experiences in which previous lessons were perceived to be ‘reasonably well-taught’.
Later they find, much to their disbelief, that some students are still not ‘getting it’.
Subsequent discussions eventually converge onto another equally relevant question about
lesson objectives. For example, if one of the objectives is developing students’ under-
standing of concepts, how do you assess this conceptual understanding? Certainly, there
are well-established ways that experienced teachers have refined over the years (Ollerton,
2003; Zevenbergen, Dole & Wright, 2004). One example is through appropriately
designed problems and investigative activities that challenge students’ knowledge of the
conceptual ideas (conceptual understanding) as well as test their ability to critically
analyse and apply ideas in the context of problems (critical thinking). 

Traditionally, to assess students’ understanding of concepts (language), students
express the meanings in their own words perhaps with some illustrative examples or ini-
tiate a class discussion around the concepts. Relevant terminology for topics are usually
lists in syllabus documents such as those in the New South Wales Board of Studies syllabus

* This paper has been accepted by peer review.
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(2002). In this paper, I present an argument for the potential use of two meta-cognitive
tools, concept maps and vee diagrams, as viable means of assessing students’ conceptual
understanding, fluency with the language of mathematics and critical thinking in
problem solving. While students’ understanding of the topic’s mathematical language
may be illustrated on a concept map in which nodes are concept names with linking
words describing interconnections, student’s higher-order problem solving skills such as
critical thinking may be assessed using vee diagrams. Supplementary to established
methods (Ollerton, 2003; Zevenbergen, Dole & Wright, 2004), I propose that vee dia-
grams provide a systematic guide to scaffold students’ reasoning and conjecturing as they
contemplate ways of solving a problem. However, before presenting examples from
research conducted with mathematics students and teachers, I will describe the two meta-
cognitive tools.

Concept maps and vee diagrams

The literature refers to different types and uses of concept maps (Liyanage & Thomas,
2002; Williams, 1998; Ruiz-Primo & Shavelson, 1996), however this paper focusses on the
Novak-type concept maps in which concepts are arranged in a hierarchical order of gen-
erality with respect to the main topic and including linking words (Novak, 1998; 2002;
2004; Novak & Gowin, 1984; Minztes, Wandersee & Novak, 1998; 2000). Novak defines a
proposition as a statement formed by a (node – linking words – node) triad or strings of
triads. By joining selected nodes, and describing links, students demonstrate their knowl-
edge and understanding of concepts embedded hierarchically within the network of
interconnecting concepts. This constructive activity provides the teacher with an idea of
the state and level of students’ understanding of the mathematics involved.

A vee diagram, on the other hand, is a heuristic for analysing the knowledge structure
of a problem (adapted from Gowin’s epistemological vee (Novak & Gowin, 1984); Novak,
2002, 1998) in terms of its conceptual framework (left-hand side LHS) and methodolog-
ical information (right-hand side RHS). Figure 1 shows the vee diagram structure with its
telling questions to guide the reasoning and thinking process as students analyse a math-
ematics problem (Afamasaga-Fuata’i, 1998; 2004). The curved arrow indicates the
constant interplay between the two sides as students reflect upon given information and
critically analyse the knowledge structure of the problem and relevant mathematics whilst
simultaneously searching for suitable mathematical principles that suggest methods of
transforming given information to generate potential solutions. If, instead, students have
already obtained a solution then the challenge is to think in the reverse direction, in iden-
tifying principles underpinning their methods. Specifically, students should be
encouraged to provide conceptual justifications for their solution’s main steps to overtly
make connections between procedures and concepts. This is similar to asking students to
explain ‘why’ a problem is solved a particular way as ‘[l]earning to ask why is discovering
that there are reasons not just facts, that statements can be justified, not just asserted
loudly and slowly in order to persuade through intimidation’ (Mason, 2001, p. 8). For
that reason, establishing classroom practices of students justifying solution steps in terms
of mathematical principles and displaying the conceptual and methodological informa-
tion side by side on a vee diagram overtly focus students’ attention on the dynamic
interplay between concepts and procedures. Mason (2002) further argues that, ‘[b]y sup-
porting learners in developing and refining their powers to think mathematically it is
possible to go some way to, if not guarantee, at least make more likely that learners will
construe through doing, know through construing, and know to act (to do) through
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knowing to use their developing powers to think mathematically (p. 6).’ If sustained over
time, students can begin to raise their awareness of their own powers to reason, make con-
nections, and think analytically and mathematically (Mason, 2002). Spending sufficient
time on a problem to ensure that students are not only learning about methods of solving
problems but are routinely providing justifications, posing and solving challenging prob-
lems, have been identified as significant features of Japanese mathematics classrooms
(Hollingsworth, 2003; Stigler & Hiebert, 1999, as cited in Anderson, 2003). 

Figure 1. Problem solving vee diagram of mathematics problems (Afamasaga-Fuatai, 2004, 1998).

In the following sections, examples of concept maps and vee diagrams are presented
to illustrate their potential as tools to assess, monitor, teach and develop students’ concep-
tual understanding, fluency with the language of mathematics and scaffold their critical
thinking and reasoning in problem solving.

Concept map examples

Dora, a mathematics teacher who participated in the study, was asked to construct a
concept map to illustrate functions. The recommended procedure is compiling an initial
list of 8 to 10 relevant concepts, ranking concepts from most general to most specific and
then arranging them in a meaningful hierarchy. After ranking and positioning her con-
cepts hierarchically, interconnecting nodes and describing links, Dora produced her first
concept map as redrawn in Figure 2. Choosing to place the main concept ‘Functions or
Mappings’ at Level 1, the rest were strategically placed to facilitate valid interconnections
distributed over five more levels. Reading vertically from top to bottom, it is possible to
identify about 22 meaningful, complete propositions as listed in Table 1. The first column
(Table 1) indicates level connections. For example, Proposition 7 is formed from relevant
nodes at Levels 1, 3, 4, and 5 whilst Proposition 22 is a crosslink from Level 6 back to
Level 1. By inspection, Table 1 indicates that the propositions are typical statements stu-
dents make when articulating their understanding of functions. 

Pedagogically, a concept map such as in Figure 2 can be used as a focus for a discus-
sion or a means of implementing the working mathematically process strand particularly the
processes of questioning, applying strategies, communicating, reasoning and reflecting
(NSW, 2002). If propositions are mathematically incorrect or vague then it provides an
opportunity for the teacher and student to negotiate for an acceptable re-statement of
linking words and/or possible re-organisation of the hierarchy. This teacher-student

Theor(ies)
What are the relevant theories?

Principles
What are the relevant principles

to solve given problem?

Concepts
What are the main concepts?

Relevant concepts?

Knowledge Claims

What is the answer to the focus

question?

Transformations
How can we make use of the principles,
concepts and records in determining a
method(s) of solving the problem?

Records
What is the ‘given’ information?

Object/Event
What is the problem statement?

Conceptual Side Methodological SideFocus Question
What is the problem

asking for/about?

Interplay between

the
two sides
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Figure 2. Dora’s first concept map.

Table 1. Proposition list from the first concept map.

Level# → Level# Propositions from Dora’s concept map 1
1 → 2 1 Functions or mappings are relations.
1 → 3 2 Functions or mappings are determined by a rule of correspondence.
1 → 3 3 Functions or mappings have various representations.
3 → 4 4 Representations which can be diagrams and algebraic representations.
1 → 2 → 3 5 Functions or mappings are relations which use variables.
1 → 2 → 3 → 3 6 Functions or mappings are relations which use variables to represent set of ordered

pairs.
1 → 3 → 4 → 5 7 Functions or mappings have various representations which can be diagrams such as

arrow diagrams, mapping diagrams, graphs.
3→4→5→6→1 8 Representations which can be diagrams such as graphs if cut once by the vertical line

test determines functions or mappings.
3 → 4 → 5 9 Representations which can be algebraic representations such as equations, notations.
3 → 4 → 5 → 6 10 Representations which can be algebraic representations such as notations; for

example, set builder notation, image notation, mapping notation.
3 → 5 11 Variables can form equations.
3 → 5 → 6 12 Variables are letters such as x, y.
3 → 4 → 4 13 Set of ordered pairs can be used to determine domain and range.
4 → 5 14 Domain represents the set of first elements.
4 → 5 15 Range represents the set of second elements.
5 → 6 16 Set of first elements is represented by x.
5 → 6 17 Set of second elements is represented by y.
1 → 3 → 4 18 Functions or mappings are determined by a rule of correspondence such as 1:1, m:1.
1 → 3 → 4 → 6 19 Functions or mappings are determined by a rule of correspondence such as 1:1; for

example, arrow diagram example 1.
1 → 3 → 4 → 6 20 Functions or mappings are determined by a rule of correspondence such as m:1; for

example, arrow diagram example 2.
4 → 4 → 3 21 Domain and range use variables.
6 → 1 22 Vertical line test determines functions or mappings.
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interaction can also take place between students themselves if working in pairs or collab-
oratively in small groups. Alternatively, the teacher can design more effective tasks that
specifically redress the misconceptions. Thirdly, if propositions are all correct, the teacher
can re-assign it as an enrichment task to be extended as new concepts are learnt over sub-
sequent lessons. A variation would be for the teacher to delete links and linking words
and ask students to construct individualised concept maps (or work in pairs or small
groups). An exploratory option is to give students the opportunity to examine their own
conceptual understandings in-depth at the completion of a topic, then construct individ-
ual concept maps using their own lists (or if preferred, one given by the teacher such as
those in syllabus documents). Since student-constructed concept maps indicate their level
of conceptual understanding and fluency with the topic’s mathematical language, they
can be presented in class to initiate mathematical dialogues, communications and discus-
sions amongst the students as they learn collaboratively from each others’ work and share
ideas.

Whereas Figure 2 visually depicts Dora’s perception of the integrated, hierarchical,
network of interconnecting nodes, these extra dimensions are not easily discernible in
the linear list of Table 1. I propose in this paper that the multi-dimensional aspects of the
diagrammatic concept map ‘offer a wider scope for multiplicity of interpretation’
(Mason, 2001), and organization particularly as the task of concept mapping demands
much cognitive processing of information and reflective critical thinking whilst arranging
the same concepts in a meaningful hierarchy, linking and describing interconnections. In
practice, constructing a hierarchical concept map explicitly pushes students to a higher
level of thinking and reflection, which are desirable skills to cultivate and develop for
effective problem solving and an essential part of working and thinking mathematically.
In contrast, solving a problem by simply executing a procedure or applying a formulas
such as finding the derivative using the power rule without fully comprehending the
meanings of underlying concepts is to miss out on an aesthetic appreciation of calculus
and indicative of a procedural, limited view of derivatives.

After presenting her first attempt in class (consisting of myself and her peers), Dora
continued to revise her concept map for the second and third time by adding nodes,
revising some labels and including illustrative examples. Her peers also took turns in pre-
senting their concept maps for critique. Subsequent discussions and social interactions
(student-student and teacher-student) focussed on critiquing whether or not displayed
interconnections and linking words were mathematically sound and correct. As an exten-
sion, all of them were asked to expand their first maps to include more relevant nodes
and illustrative examples. Dora’s fourth attempt is redrawn in Figure 3 with a proposition
list in Table 2. A comparison of Figures 2 and 3, and Tables 1 and 2 shows an increase in
meaningful propositions (from 22 to 30) with the inclusion of more nodes (from 28 to
39) and links (from 34 to 51), an extra hierarchical level (from 6 to 7) and 5 more illus-
trative examples and 3 graphs. The final concept map had evidently expanded, becoming
more complex with more integration and differentiation between concepts resulting in
more meaningful propositions. Dora had also reversed the ranking of concepts
‘Functions’ and ‘Relations’ and included concept ‘First elements appear only once.’
Given her background as a teacher, her final concept map attempted to capture the
typical ‘functions’ terminology at early secondary level.
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Figure 3. Dora’s final concept map.

Table 2. Proposition list from the final concept map.

Level# → Level# Propositions from Dora’s concept map 1
1 → 2 1 Relations are functions. 
1 → 1 2 Vertical line test may be used on relations.
2 → 2 → 3 3 Functions or mappings are determined by a rule of correspondence.
2 → 3 → 3 4 Functions use variables to represent a set of ordered pairs. 
2 → 3 5 Functions have various representations.
3→ 4 → 4 6 Representations which can be diagrams and algebraic representations
2 → 3 → 4→ 5 7 Functions have various representations which can be diagrams such as arrow

diagrams, mapping diagrams, graphs. 
2 → 3 → 4→ 5 → 6 8 Functions have various representations which can be diagrams such as graphs;

for example, linear graph1, parabola graph 2, cubic graph 3.
2 → 3 → 4→ 5 → 7 9 Functions have various representations which can be diagrams such as arrow

diagrams; for example, arrow diagram example1 , arrow diagram example 2.
2 → 3 → 4→ 5 10 Functions have various representations which can be algebraic representations

such as notations, equations.
5 → 6 11 Notations; for example, set builder notation, image notation, mapping notation. 
5 → 6 12 Equations are used in set builder notation, image notation, mapping notation.
6 → 7 13 Set builder notation; for example, S = {(x, y): y = x + 1}.
6 → 7 14 Image notation, for example, f(x) = x + 1.
6 → 7 15 Mapping notation; for example, f(x) → x + 1.
3 → 5 → 6 16 Variables are letters such as x, y.
3 → 5 17 Variables can form equations.
3 → 5 18 Variables use notations.
3 → 4 19 Set of ordered pairs can be used to determine domain and range.
3 → 4 20 Set of ordered pairs for example {(1,2), (2, 3), … (x, y)}.
4 → 5 21 Domain represents the set of first elements.
4 → 5 22 Range represents the set of second elements.
5 → 6 23 Set of first elements is represented by x.
5 → 6 24 Set of first elements for example {1, 3, … x}.
5 → 6 25 Set of second elements is represented by y.
5 → 6 26 Set of second elements for example {2, 4, … y}.
3 → 5 → 6 27 Rule of correspondence in which first elements appear only once such as 1:1, m:1.
5 → 6 → 7 28 First elements appear only once such as 1:1; for example, arrow diagram example 1.
5 → 6 → 7 29 First elements appear only once such as m:1; for example, arrow diagram example 2.
6 → 1 30 Linear graph 1, parabola graph 2, cubic graph 3 supported by the vertical line test.
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Vee diagram examples

To introduce vee diagrams in problem solving to a Year 10 class, I used the following
problem: 

Find the equation(s) of the line(s) which pass through (3,-3) and forms with the coor-
dinate axes a triangle of area 6 square units. Find equation(s) of the line(s) in general
form.

Guided by the telling questions in Figure 1, I explained how the problem statement can
be used to complete the sections: Object/Event, Focus Question, Records and Concepts
by asking questions such as, ‘What are the mathematical concepts used in stating the
problem?’, ‘What are you asked to find?’, ‘What is the given information?’ which is also
consistent with Polya’s first principle for problem solving namely ‘understanding the
problem’. The other three principles are: (2) devising a plan; (3) carrying out the plan;
and (4) looking back (Polya, 1973). Polya’s four principles provide an overview of the
process of completing a vee diagram with more specific-section questions in Figure 1. Of

FOCUS QUESTION

What are the equations
of the lines passing

through
(3, -3)

in general
form? TRANSFORMATIONS

Area of triangle:  =   base x height
    =  ab = 6 sq. units;

b
a

=
12

……….…(i)

Using Principle 2; equation of the line is
x

a

y

b
+ = 1…………..(ii)

   gives:           
x

a

ay
+ =
12

1………...(iii).

   But lines pass through (3, -3), therefore
substituting for the values of x and y in (iii)
should give

3 3

12
1

a

a
=   ……..…(iv).

Rearranging and simplifying (iv) gives a  = -6 and
a  = 2.  Substituting the values of a  in (i) and (ii)
gives the equations of the lines:

x + 3y + 6 = 0  and   3x + y - 6 = 0.

THEORIES
Set Theory

- relations & functions
               - coordinate geometry

KNOWLEDGE CLAIMS
Lines passing through point (3, -3) and
making triangles of area 6square units
with the coordinate axes have equations:
  x + 3y + 6 = 0      &  3x + y -  6 = 0.

RECORDSCONCEPTS

Equation, coordinate axes, lines, point,
area,  triangle, base, height, square units

PRINCIPLES

1. The general form of equations of a
straight line is:

Ax + By + C = 0.

2. The intercept form of equations of
straight lines is:

x

a

y

b
+ = 1 ,

       where
    a = x-intercept, and

                     b = y- intercept.

3.  Area of triangle is:  1
2

(base x height).

EVENT/OBJECT

Find the equation(s) of the line(s) which pass through (3,-3) and forms
with the coordinate axes a triangle of area 6 square units.  Find
equation(s) of the line(s).

a

Area = 6 square
               units

b

    (3,-3)

CONCEPTUAL SIDE METHODOLOGICAL SIDE

Figure 4. Vee map of problem (method 1).
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Figure 5. Vee map of problem (method 2)

fundamental importance is the enculturation of students to the ‘thinking part of the
problem solving process (which) is typically suppressed’ in textbooks by ‘embedding con-
ceptualization directly in the flow of the problem solving process’ (McAllister, 1994).
Accordingly, the teacher should initiate a brainstorming session in which students are
asked to make suggestions, conjectures and pose questions to ‘crack the code,’ interpret
and analyse the problem statement for the intended meaning, relevant concepts and
principles as they explore potential solutions whilst simultaneously slotting emerging
information into the relevant sections of the vee diagram. By overtly drawing students’
attention to the different sections, connections between displayed conceptual and
methodological information are reinforced and consolidated. Shown in Figures 4 and 5
are vee diagrams illustrating two methods of solution. Subsequent discussions can focus
on clarifying, confirming and articulating connections between sections. Extension work
may include explorations for more methods and relevant underlying principles with stu-
dents using vee diagrams to record findings and in subsequent class presentations,
effectively communicate their ideas. Alternatively, students may be asked to identify other
relevant principles missing from the ‘Principles’ lists of Figures 4 and 5. Another option
will be to ask students to pose their own problems and then construct vee diagrams to
display relevant conceptual and methodological information.

TRANSFORMATIONS
       From the diagram, a and b are the intercepts,

        giving the points (a, 0) & (0, b) where
x1 = a,  y1 = 0, x2 = 0, y2 = b

equation of line is:
( )

( )

( )

( )

y

x a

b

a
=

0 0

0

y

(x a)
=

b

a
     ……(i)

    Using Principle 3,    b =
12

a
,

Substituting b  in (i)  gives:  y

x a a( )
=

12
2

 ….(ii)

THEORIES

Set theory, Number theory
  ---relations & functions
  ---coordinate geometry

KNOWLEDGE CLAIM
The same answers as in Method 1

RECORDSCONCEPTS

equations, coordinate axes, point, area,
triangle, base, height, square units,

PRINCIPLES

1.   The general form of equations of a straight
line is:       Ax + By + C = 0.

2. The point-point form equations of straight
lines is:    ( )

( )

( )

( )

y y

x x

y y

x x
=

1

1

2 1

2 1

    where

( , )x y1 1
and  ( , )x y2 2

are points on the line.

3.  Area of triangle is: 1
2

(base x height).

EVENT/OBJECT

Find the equation(s) of the line(s) which pass through (3,-3) and forms
with the coordinate axes a triangle of area 6 square units.  Find
equation(s) of the line(s).

FOCUS QUESTION

What are the
equations of the

lines passing
through (3,-3)

in general
form?

Substituting the values of x and y from point
(3, -3) in (ii) will give the same values of a as in
Method 1 above and consequently the same
answers.

METHODOLOGICAL SIDECONCEPTUAL SIDE

a

Area = 6 square
               units

b

    (3,-3)
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Earlier on, I presented two examples of concept maps to illustrate the knowledge struc-
ture of some concepts on ‘functions.’ Another use of concept maps in association with
problems is to display the conceptual framework on the LHS of vee diagrams to effective-
ly communicate the connections between concepts, mathematical language, and
procedures as shown in Figure 6. This problem concept map can be extended further to
incorporate students’ findings from their own investigative and exploratory activities as
suggested above. Resulting concept maps will reveal connections between concepts and
procedures that cross multiple topics.
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Figure 6: Concept Map of the Problem

Summary

With the current focus in mathematics education on the importance of developing stu-
dents’ conceptual understanding, fluency with the language of mathematics, critical
thinking, and working mathematically, teachers are constantly expected to design chal-
lenging and investigative tasks that can engage and motivate students in their learning of
mathematics. An integral part of creating exemplary and conducive learning environ-
ments in mathematics classrooms is for teachers to be innovative and creative in the ways
they teach and assess students. In this paper I have demonstrated how the Novak-type
concept maps and Gowin’s vee diagrams can be used in mathematics classrooms as learn-
ing, teaching and assessment tools as they have been found to be quite effective in many
international classrooms across many disciplinary areas as evident by the number of pre-
sentations (approximately 150 papers and posters) accepted for the First International
Conference on Concept Mapping held on 14–17 September 2004 in Spain, see
http://www.cmc.ihmc.us.
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Working mathematically in NSW classrooms:
An opportunity to implement 
quality teaching and learning*

Judy Anderson
The University of Sydney

In the new mathematics syllabuses in New South Wales [NSW], Working
Mathematically is described as encompassing the five interrelated processes of
Questioning, Applying Strategies, Communicating, Reasoning, and Reflecting.
These processes support the development of mathematical concepts across all of
the content strands. A document released by the Department of Education and
Training, Quality Teaching in NSW Public Schools, describes elements of quality
teaching that support quality learning. These documents provide similar advice to
teachers in relation to selecting appropriate teaching and learning experiences that
engage and challenge student thinking.

Introduction

Beginning in 2000, a review of existing mathematics syllabuses from Kindergarten to Year
10 was undertaken by the Board of Studies (BOS) in New South Wales. This review iden-
tified critical elements that required consideration for the development of the new
syllabuses. One recommendation was to develop a continuum of learning that reflected
the development of mathematical concepts across the compulsory years of schooling.
Another recommendation was to embed problem solving and the processes of working
wathematically into the content so that teachers could plan learning experiences that sup-
ported regular student engagement with these processes. In previous syllabuses, problem
solving and Working Mathematically had been written as separate strands, with some edu-
cators suggesting that they became an added extra rather than as central to the purpose
for learning mathematics (e.g., Pegg, 1997).

The writing team began work on the new syllabuses in 2001, with regular input from
researchers, consultants and teachers. This process was also informed by a review of rele-
vant literature (Owens & Perry, 2001), and a series of papers presented at a symposium
(BOSNSW, 2001). A K–10 Scope and Continuum of Key Ideas was developed and incor-
porated into the two syllabuses that were released to schools at the end of 2002
(BOSNSW, 2002a; BOSNSW, 2002b). In each of these syllabuses, Working Mathematically
is described on every page in each of the content strands of Number, Patterns and
Algebra, Data, Measurement, and Space and Geometry.

In 2003, the Department of Education and Training (NSW DET) released a discussion
paper about quality teaching (NSWDET, 2003a) and an annotated bibliography

* This paper has been accepted by peer review.
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(NSWDET, 2003b). The proposed framework for quality teaching containing three
dimensions and eighteen elements was informed by the research project based on
Productive Pedagogies from Queensland (Queensland School Reform Longitudinal
Study, 2001). Considerable funds were released to schools in 2003 and 2004 to support
the implementation of quality teaching in NSW classrooms. Some schools developed proj-
ects that incorporated the introduction of the new mathematics syllabuses with the
implementation of quality teaching. There are similarities, between the recommenda-
tions about working mathematically in the new syllabuses and the elements described in
Quality Teaching in NSW Public Schools. This common advice reinforces the characteristics
required to engage students in meaningful learning experiences that challenge student
thinking. This paper describes some of the writing team deliberations for developing a
working mathematically strand in the new syllabuses in NSW and considers the similari-
ties in the advice between the new syllabuses and the quality teaching documents. Further
advice for teachers is provided including promoting deep learning and the development
of problem-solving processes.

Working mathematically in the NSW syllabuses

The writing team was confronted with the task of determining the relevant processes for
the working mathematically strand. Closely aligned with this was the need to develop a
rationale for mathematics in the curriculum. A section of the final rationale states:

Mathematics is a reasoning and creative activity employing abstraction and generali-
sation to identify, describe and apply patterns and relationships. It is a significant part
of our cultural heritage of many diverse societies. The symbolic nature of mathemat-
ics provides a powerful, precise and concise means of communication. Mathematics
incorporates the processes of questioning, reflecting, reasoning and proof. It is a pow-
erful tool for solving familiar and unfamiliar problems both within and beyond
mathematics (BOSNSW, 2002a, p. 7).

This statement suggests the need for students to be actively engaged in investigating
mathematical ideas in order to develop deep learning and to be able to solve problems.
So if developing problem-solving competence is one aim of the curriculum, students need
to experience a variety of problem contexts that will allow them to develop a range of
problem-solving strategies. The problem-solving process involves many processes includ-
ing identifying information, describing what needs to be found, planning a way forward,
applying strategies, refining and reviewing the approach, justifying the procedures and
solutions, and communicating the solutions. From this, a set of verbs can be constructed
that embraces such an active approach to learning (see Table 1). This list is not exhaus-
tive and could be readily extended to include a vast array of experiences that are all
important within the context of learning mathematics.

Table 1. Processes for active engagement in mathematics learning.

reasoning creating abstracting generalising identifying

describing applying questioning reflecting proving

planning justifying investigating representing observing

thinking solving engaging appreciating communicating
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In writing the new syllabuses and developing the working mathematically strand, the
writing team looked at the content and outcomes of other States and Territories in
Australia as well as several curriculum documents from overseas. For example, in Western
Australia, there is a working mathematically strand with four processes: contextualise math-
ematics, mathematical strategies, reason mathematically, and apply and verify. In Victoria, there
is a reasoning and strategies strand with two processes: mathematical reasoning and strategies for
investigation. In Queensland, there is no process strand. However, five outcomes in the
introductory pages refer to processes and suggest that these should be achieved by the
end of the compulsory years of schooling. In England, there is a solving problems strand
with outcomes grouped into five sections for Grades 1–3 and six sections for Grades 4–6. 

Documents that provide advice for curriculum development in Australia and the USA
were also consulted. The National Statement (Australian Education Council (AEC), 1991)
outlines the three process strands of attitudes and appreciations, mathematical inquiry, and
choosing and using mathematics. The National Profile (AEC, 1994) includes a working math-
ematically strand with six processes: investigating, conjecturing, using problem-solving
strategies, applying and verifying, using mathematical language, and working in context. In the
United States of America, the Principles and Standards (National Council of Teachers of
Mathematics (NCTM), 2000) describes five process strands for pre-kindergarten to Grade
12: problem solving, reasoning and proof, communication, connections, and representations. 

There is considerable overlap between the processes used in these documents, which
is not surprising given the extensive advice in the literature (e.g., Hiebert & Wearne,
2003). The final set of processes of questioning, applying strategies, communicating, reasoning
and reflecting was determined on the basis of this advice as well as teachers’ familiarity with
some of these processes in the previous Outcomes and Indicators document (BOSNSW,
1998). While these processes can each be described separately, it is clear that they are
interrelated and that many rich learning experiences will incorporate more than one
process. If teachers provide such opportunities for students, not only will they be engag-
ing them in working mathematically, but they will also be implementing some of the
elements of quality teaching.

Quality teaching and working mathematically: 
Considering the similarities

The recently released document Quality Teaching in NSW Public Schools (NSWDET, 2003a)
describes the dimensions and elements of quality teaching. Table 2 lists the three dimen-
sions of the model with the six elements contained in each.

Table 2. Dimensions and elements from Quality Teaching in NSW Public Schools (NSWDET, 2003a).

Intellectual quality
Quality learning 

environment
Significance

Deep knowledge Explicit quality criteria Background knowledge
Deep understanding Engagement Cultural knowledge

Problematic knowledge High expectations Knowledge integration
Higher-order thinking Social support Inclusivity

Metalanguage Students’ self-regulation Connectedness
Substantive communication Student direction Narrative
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There is not enough space in this paper to describe each of these in detail. However,
a careful examination of each of the eighteen elements suggests that the working mathe-
matically processes incorporate many of these ideas if implemented as intended. To
illustrate with one example, one of the intellectual quality elements, substantive communica-
tion, refers to the extent to which ‘students are regularly engaged in sustained
conversations about the concepts and ideas they are encountering’ (NSWDET, 2003a, p.
11). The working mathematically processes of questioning and communicating each require
student discussions in order for students to question mathematical ideas and interpreta-
tions, describe their understanding, challenge solution methods, and much more. Table
3 is an attempt to match each of the processes of working mathematically to the elements
of quality teaching.

Table 3. Matching the processes of working mathematically with the elements of quality teaching

This matching suggests that there is a particular emphasis on the dimension of intellec-
tual quality in the working mathematically processes. However, elements from each of the
other dimensions are also evident. White and Mitchelmore (2004) indicate that the par-
ticular elements of background knowledge and connectedness help to demonstrate to students
the point of doing mathematics at school. 

Working mathematically
process

Description of the process
(BOSNSW, 2002a, p. 19)

Elements of 
quality teaching

(NSWDET, 2003)
Questioning Students ask questions in

relation to mathematical sit-
uations and their
mathematical experiences

Problematic knowledge
Substantive communication
Engagement
Student direction

Applying strategies Students develop, select and
use a range of strategies,
including the selection and
use of appropriate technolo-
gy, to explore and solve
problems

Deep understanding
Higher-order thinking
Social support

Communicating Students develop and use
appropriate language and
representations to formu-
late and express
mathematical ideas

Deep knowledge
Metalanguage
Substantive communication

Reasoning Students develop and use
processes for exploring rela-
tionships, checking
solutions and giving reasons
to support their conclusions

Deep understanding
Higher-order thinking
Explicit quality criteria
High expectations

Reflecting Students reflect on their
experiences and critical
understanding to make con-
nections with, and
generalisations about, exist-
ing knowledge and
understanding

Deep understanding
Higher-order thinking
Background knowledge
Knowledge integration
Connectedness
Narrative
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Since the syllabuses and the quality teaching documents provide advice that encour-
ages teachers to plan learning experiences that engage students through problematic
learning experiences, some schools have seized the opportunity to design projects that
support the implementation of both. By reflecting on practice and working in collabora-
tive teams, teachers have been able to design units of work that incorporate the working
mathematically processes and other aspects of the new syllabuses, as well as elements of
quality teaching (see descriptions of some of the projects at
www.qtp.nsw.edu.au/crosspriority/ProjectResources.cfm?r=43).

Quality teaching and learning: Some advice for teachers

Implementing Working Mathematically in classrooms so that quality teaching and learn-
ing can occur requires considerable effort. Frequently this effort begins with reflection on
your current practice and a desire to achieve better outcomes for students. It also requires
meeting a series of challenges. These include providing more problem-solving opportu-
nities for students even though they may actively resist this approach, finding the best
tasks for the full range of student needs and interests, and providing the time for students
to struggle with the tasks and underlying mathematical ideas.

In the NSW syllabuses, when students are engaging with working mathematically, they
will ‘develop knowledge, skills and understanding through inquiry, application of
problem-solving strategies including the selection and use of appropriate technology,
communication, reasoning and reflection’ (BOSNSW, 2002b, p. 12). This suggests
regular problem-solving experiences. Indeed, the processes attempt to describe what it is
to do mathematics as a mathematician would. 

When mathematicians become interested in a problem they:
• play with the problem to collect and organise data about it
• discuss and record notes and diagrams
• seek and see patterns or connections in the organised data
• make and test hypotheses based on the patterns or connections
• look in their strategy toolbox for problem solving strategies which could help
• look in their skill toolbox for mathematical skills which could help
• check their answer and think about what else they can learn from it
• publish their results. 
(Williams, 2002, p. 304).

Engaging students in problem-solving experiences can be one of the challenges for
teachers. While young children have a natural curiosity and more readily engage in such
experiences (Mannigel, 1992), older students can be quite resistant to doing questions
that require thinking about challenging ideas (e.g., Tobin & Imwold, 1993). These stu-
dents frequently view mathematics as unrelated facts to be memorised, and procedures to
be practised, with questions having only one correct answer. This usually reflects the expe-
riences they have had in learning mathematics at school, particularly if the main activity
of most lessons is to complete repetitive sets of drill and practice questions that require
little thinking, reasoning or reflecting on knowledge and understanding. Unfortunately,
some teachers hold similar views, or believe that implementing problem solving is too dif-
ficult because of a range of perceived constraints (Anderson, Sullivan & White, 2004). It
is through the incorporation of working mathematically into syllabus documents, as well
as professional development support that such views can be challenged.
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Another challenge for teachers is to design tasks that include aspects of the syllabus
content and at the same time, engage students in worthwhile mathematical activity, pro-
viding opportunities for students to question, apply strategies, communicate, reason and
reflect. There are many sources of such tasks and so the issue can often be one of finding
the time to look at a range of resources to find the right tasks for a particular group of
students. To assist teachers, recommendations for working mathematically have been
included on all of the content pages of the syllabuses. One example for Stage 2 data
(BOSNSW, 2002a, p. 87) suggests that students learn to:

• pose suitable questions to be answered using a survey (questioning);
• interpret graphs found on the Internet or in the media (applying strategies, com-

municating);
• discuss the advantages and disadvantages of different representations of the same

data (communicating, reflecting).
Another example from Stage 4 patterns and algebra (BOSNSW, 2002b, p. 96) suggests

that students learn to
• compare and describe similarities and differences between sets of linear relation-

ships (communicating, reasoning)
• recognise that not all number patterns form a linear relationship (applying strate-

gies, reasoning).
One of the most difficult challenges for teachers is to provide time for students to

struggle with problematic situations and not to step in too quickly (Hiebert & Wearne,
2003). This goes against what many of us believe is good teaching. We believe that we are
there to support and assist students. Of course this is true, but if we do all of the thinking
behind questions, when do the students learn to unpack questions and determine which
strategies are the best to use?

The new syllabuses in NSW support quality teaching and learning in several ways since
they acknowledge working mathematically as central to learning about, and doing math-
ematics, and they integrate working mathematically into the content. In addition, they
recognise quality teaching and the practices of good teachers. Quality learning involves
having a deep understanding of mathematical ideas and being able to use this flexibly
and creatively. Quality teaching requires teachers to provide opportunities for students to
be able to develop deep understanding, flexibility and creativity in using mathematical
ideas. I suggest that we go a long way towards achieving this aim if we incorporate working
mathematically into our teaching on a regular basis. 
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The teacher’s role in collaborative learning*

Mary Barnes
University of Melbourne

After devising a suitable task and organising students into groups that will work har-
moniously together, what then? How can teachers best promote effective
interaction within groups? What can be done to avoid groups becoming frustrated
and stuck, or bored and off-task? Drawing on observations made during recent
research on collaborative learning, this paper discusses some of the strategies
teachers can use while groups are at work: what to look for when observing from a
distance; when and how to interact with a group; asking ‘good’ questions; and what
to say if they ask if they are on the right track, or claim to have finished.

Introduction

It is last period in the afternoon, and Ms James’ Year 10 class are working in groups on an inves-
tigative activity. During the final part of the lesson, students from different groups report on the
conclusions they have reached, and the whole class becomes engaged in discussing a number of key
points. One point generates disagreement, and the discussion becomes more heated, with many differ-
ent students eager to have a say. The bell rings, and Ms James says, ‘I think we might take that up
tomorrow,’ but some people want to continue the discussion then and there. While some students pack
up their books and go home, a group gathers round the board. For more than five minutes they con-
tinue to talk, write, and draw graphs and diagrams as they attempt to explain and justify their ideas
and convince their classmates. Focussed on the topic, they seem unaware of time passing.

During a recently-completed research project (Barnes, 2003) I was privileged to be
present as an observer in the classrooms of experienced teachers who used collaborative
methods in teaching mathematics. I saw numerous occasions when, as in the incident
described above, students became deeply engaged in the mathematics they were doing—
not just looking for answers, but trying to understand, and to explain and justify their
thinking. As they worked, many showed signs of excitement, delight, or quiet satisfaction.
What I saw fits with the descriptions of excellent teaching of mathematics given in the
Standards of Excellence in Teaching Mathematics in Australian Schools (AAMT, 2002). Students
in the classes I observed were clearly being ‘empowered to become independent learners
… motivated to improve their understanding of mathematics and develop enthusiasm for,
enjoyment of, and interest in mathematics’. The approach adopted by the teachers in the
study fostered communication skills, encouraged collaboration, and valued active engage-

* This paper has been accepted by peer review.
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ment with mathematics (Standard 3.1). Thus one way of implementing the AAMT
Standards would be to adopt an approach similar to that of the teachers I observed —
using a combination of small group collaboration and whole-class discussion, where stu-
dents are not practising previously-taught procedures, but developing new mathematical
concepts or using recently-acquired concepts in new ways.

Planning for collaborative work

Introducing this form of learning may not be easy, however, as Nothdurft (2003) report-
ed. Her students at first resisted changes that placed responsibility on them to make sense
of mathematical ideas for themselves. They made it clear that they did not value collabo-
ration with their peers, preferring instead to remain dependent on the teacher to give
them rules and procedures that they could memorise and practise. These students’ con-
cerns echo those of a group I interviewed some years ago (Barnes, 1995) who asked, ‘Why
can’t they just tell us the formula and let us get on with doing the maths?’. The key ques-
tion then is: how can teachers best plan for and implement collaborative learning in their
classrooms?

In the planning phase (AAMT, Standard 3.2) teachers must organise students into
groups that are likely to collaborate well, select suitable activities, and train students to
work together. Groups need to be well-balanced, containing students with differing per-
sonalities and strengths who will nevertheless be able to collaborate effectively. Ideally,
each group should have one responsible student who will be sensitive to others, try to
keep them on task, and ensure that everyone’s voice is heard. A suitable task should be
challenging but accessible. It will be most effective if there are several possible entry
points, so that students with different thinking styles and levels of expertise can all make
a start, but it should not be so easy that any individual could complete it more efficiently
alone. Tasks need to be intrinsically interesting and rewarding, and also open-ended,
allowing groups the possibility of extending or generalising the initial problem. Training
involves negotiating with the class a code of behaviour for group work. Everyone should
understand why the teacher is introducing collaborative learning, and agree to a set of
social/mathematical norms. These should include treating others with respect, encourag-
ing everyone to contribute, listening courteously and attentively to what they have to say,
valuing constructive criticism, and justifying any assertions. And everyone should be
helped to understand that expressing disagreement without giving supporting argument
is unacceptable. Aspects of planning for collaborative work are discussed in more detail
in Barnes (in press), along with practical strategies that were seen to be effective in classes
I observed.

Implementing collaborative activities

Once groups have been formed, tasks selected, and efforts made to establish a culture of
collaboration, what then? According to the AAMT Standards, ‘Excellent teachers of math-
ematics… challenge students’ thinking and engage them actively in learning… initiate
purposeful mathematical dialogue with and among students… Their teaching promotes,
expects and supports creative thinking and mathematical risk-taking… and involves
strategic intervention and provision of appropriate assistance.’ (Standard 3.3)

While the students are working in groups, how can the teacher best facilitate within-
group collaboration? What form should strategic intervention and assistance take and
when are they appropriate? It is tempting for teachers, while the class is working in
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groups, to spend all their time circulating the classroom, interacting with each group in
turn. However, from my observation, it seemed helpful if teachers paused first and
observed the whole class, noting how well different groups were collaborating, and iden-
tifying where problems were likely to arise. They then took further time to listen to the
discussion within a group before joining it and talking with the students. In this section I
discuss first what to look for when observing a group at work, and then how best to engage
them in discussion to promote purposeful dialogue, creative thinking and risk-taking,
while avoiding adding to the frustration that many students experience when confronted
with challenge.

Positioning during group work

Positioning theory (Davies & Harré, 1990; Harré & van Langenhove, 1999) provides a the-
oretical framework which can be used to study the interactions among students engaged
in collaborative learning activities. Harré and his colleagues argue that during conversa-
tional interactions, people can be thought of as presenting themselves and others as
actors in a drama, with different parts or ‘positions’ assigned to the various participants.
Positions are not fixed, but fluid, and may change from one moment to another during
an interaction. This distinguishes positions from fixed roles, such as ‘recorder’ or
‘reporter’ sometimes assigned to students. Participants in a discussion may actively seek a
position, or may have it assigned to them by others. If a position is assigned, they may
accept or contest it.

In my study, I identified a range of ways in which students positioned themselves, or
were positioned by others, during small-group discussions. I made a list of these and
described the associated behaviours. The list was derived by careful and repeated analysis
of forty-five videotaped lessons from three contrasting schools. In the final stages of analy-
sis, no new positions were identified, suggesting that the list is relatively complete. The
main positions found are as follows:

Manager: Initiates work, invites ideas, interprets instructions, gives orders or
makes suggestions about who should do what, or how they should tackle
the task.

Facilitator: Acts to keep the group functioning smoothly, gives social support,
ensures that nobody is ignored, tries to avoid or resolve conflict.

Expert: Either makes authoritative mathematical statements, and decides what
is correct, or is asked for help by others who accept what they say as
authoritative.

Spokesperson: Speaks to the teacher on behalf of the group, for example explaining
what they have done, clarifying what is wanted, or asking questions.

Critic: Seeks explanations, looks for alternative methods, disputes assertions
made by other students. Points out flaws in reasoning or inaccuracies in
calculations.

Collaborator: Engages actively in the discussion, working closely with others. Often
uses collaborative forms of talk such as speaking in chorus or complet-
ing another’s sentences.

Helper: Carries out routine tasks on behalf of another, usually a Manager. Acts
as a subordinate, under the other person’s direction.

In need of help: Either claims not to understand, and explicitly or implicitly asks for
help, or accepts an offer of help from another and pays attention to the
explanation given.
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Entertainer: Initiates and sustains off-task activity — talk, gossip, banter, or play,
causing a significant distraction from the group’s work.

Networker: Monitors events in other parts of the room, or listens to the talk in other
groups. Joins with other groups in mathematical or off-task activity.

Outsider: Either tries to join in the discussion, but is interrupted or ignored; or
says nothing for a long time, and gives no sign of seeking to participate.

What would we like to see?

In thinking about how teachers might use this list, it helps first to reflect on which posi-
tions are desirable and which undesirable. Only three — Entertainer, Networker, and
Outsider — are clearly inimical to effective collaboration. When students take up a posi-
tion as Entertainer, they distract themselves from the mathematics and disrupt the work
of others in the group. Similarly, when students take up a position as Networker, they fail
to participate fully in their own group, and distract members of other groups from their
work. Finally, being positioned as Outsider means that a student is unable to participate
fully in group discussions. This decreases their opportunity to learn, and others’ oppor-
tunity to learn from them.

No other position is unequivocally problematic, but some can be undesirable for stu-
dents to occupy very frequently or for extended periods. For example, while it is desirable
for any student to be able to take up the position of Expert at times, it is less satisfactory
if one individual is accepted as the resident Expert in a group to the exclusion of others,
because that decreases the others’ opportunities to contribute. It is also undesirable if the
same student is always positioned as Spokesperson for a group, because this denies other
students opportunities to articulate their thinking. Equally, while everyone should be
encouraged to feel comfortable about occasionally being In Need of Help, if one student
takes up this position too frequently, they may be becoming too reliant on other people,
and failing to make an effort to think for themselves.

The most desirable positioning for effective collaborative work appears to be a pattern
of maximum fluidity and flexibility, with no student occupying a position to the exclusion
of others. Thus we might hope to see all members of a group sharing in managing and
facilitating the group’s activities and all members regularly taking positions both as
Collaborator and as Critic. The positions of Expert, Spokesperson, Helper and In Need
of Help should be open to many different individuals, and efforts made to avoid anyone
taking up, or being assigned, positions as Entertainer, Networker, or Outsider.

Watching and listening

The list of positions and their descriptions can be a useful guide, suggesting what to look
and listen for when observing groups at work. For example: Are any students taking up
positions as Entertainer or Networker? Is one individual dominating by assuming the posi-
tion of Expert most of the time? Is any student continually positioning him/herself as In
Need of Help? Is any student being ignored or interrupted by other group members? A
positive answer to any of these questions indicates a need for early intervention.

Are group members using collaborative forms of talk, or giving other indications of
shared thinking and close engagement with one another and the task? Are some people
taking a stance as Critic, and encouraging others to justify their claims, or think of alter-
native ways to tackle a problem? If these questions can be answered in the affirmative, it
may be a good idea to praise the group’s good collaboration, but leave them to continue
working independently for a little longer.
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Joining the group

When the teacher joins a group, it is important not to allow one individual to become the
sole Spokesperson, especially if they have also frequently taken a position as Expert. If this
seems to be happening, questions can be directed explicitly to other people. Others can
be asked, in turn, to explain their understanding of what the group has done. I noticed
that teachers in my study sometimes moved around the group, and physically took up a
position beside students who had been less involved, in order to engage them in the dis-
cussion. They also made a point of crouching with their heads at student level, to avoid
towering over them.

If one student is positioned too often as Expert, it is important to find ways of recognis-
ing the expertise of others. Teachers in my study used a variety of strategies for this. One
looked carefully at the written working of a student who had been finding it hard to get
others in her group to pay attention to her suggestions. She looked at, and praised, what
the girl had written, and asked her to explain it to the rest of the group. Another teacher
showed a new graphic calculator technique to a quieter and less confident student. This
student was then responsible for teaching it to other members, and became the resident
expert within her group on this technique. Problems set in practical contexts can some-
times let students bring to the mathematics classroom expertise from other areas of life, or
other school subjects. An example arose in a task dealing with a spill from an oil tanker.
The groups had to produce media reports that included the mathematical results (about
the rate the oil was spreading), but could also contain other relevant material. Students in
different groups had different interests and expertise, and the final reports varied greatly.
Some mentioned the risk to the environment, and steps being taken to rescue seabirds and
marine life. Others talked about the effects of the spill on oil prices and the stock market,
while another group used their knowledge of chemistry to discuss how the slick might be
broken up and dispersed. ‘Real world’ problems like these can create opportunities for
people who would not usually achieve expert status in mathematics to receive recognition
from their peers, and a consequent boost to their self-esteem.

What can a teacher say in response to comments like, ‘We’re stuck’? It does not seem
very productive to say, ‘Here’s a hint,’ and give explicit suggestions on solving the
problem. This closes off alternative approaches that the group might have adopted, and
the next time they encounter a difficulty, they are even more likely to rely on receiving a
hint. More helpful is to respond with questions: ‘What have you tried?’, ‘Have you identi-
fied what you need to do to answer the question?’, ‘Can you express the problem in a
different way?’, ‘What possible methods might you use?’.

Other questions that groups often ask are, ‘Is this correct?’ or, ‘Are we on the right
track?’. Again, the teachers I observed tended to turn these questions aside, and respond
with further questions. Some of the following may be appropriate, depending on the task:
‘Does your answer seem reasonable?’, ‘How could you check your solution?’, ‘Is there
another way you could work it out?’, ‘Are you all satisfied that the reasoning is correct?’,
‘Could you draw a diagram or graph and use that to make an estimate?’. 

Sometimes a group decides that they have completed the assigned task. Often this is a
cue for someone to position him/herself as Entertainer. If a teacher notices that the
group is off-task, they make excuses, saying, ‘We’ve finished.’ The teachers in my study
responded to this in two ways. First, they asked the group to make sure that every member
could explain how they had obtained their solution, and could justify the methods used.
Then they challenged the group to extend or generalise the task or the result in some
way. It was thus rare to find a group sitting around with nothing to do, waiting for others
to finish.
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There is no need to wait until all groups have completed a task before having a report-
ing session. Indeed, whenever some groups are stuck, or uncertain what to do, the best
strategy may be to ask all groups to give brief progress reports. This can result in cross-fer-
tilisation of ideas, and reinvigorate the group discussions. In these circumstances, groups
should be asked to report on just one thing: a useful fact they have discovered; a graph
or diagram they have drawn; or even something they have identified that they need to
know, but don’t know yet. While groups are given a few minutes to select and brief a
reporter, the teacher can make a quick check on each group’s progress, and decide on
the most useful order for reporting, so that those that have made least progress go first.
Groups that follow can be asked to avoid repetition. Unless they disagree with the previ-
ous group, they should talk only about what has not already been reported. This keeps
the reports interesting to everyone. 

Conclusion

Collaborative learning can be a way of making mathematics vital for students. Adopting
some of the steps suggested here may assist teachers to plan and implement collaborative
activities in their classrooms. Being aware of the ways students position themselves, and
are positioned by others, during discussions; observing groups before interacting with
them and making effective use of questioning and whole-class discussions—all of these
may help to promote more effective collaboration, so that students may be as excited by
their mathematics and as deeply absorbed in thinking about it as those in the incident
described at the beginning.
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The empty number line:
Making children’s thinking visible*

Janette Bobis 
University of Sydney

Emily Bobis
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This paper explores the use of the empty number line as an aid to recording chil-
dren’s thinking strategies for mental computation. An instructional sequence will be
proposed for introducing and developing a more sophisticated use of the empty
number line with two-digit addition and subtraction. The learners’ perspective will
be considered by nine year-old Emily, as she reflects on the benefits of using the
empty number line and recalls some instructional experiences that were detrimen-
tal to her understanding of mental computation. 

The implementation of a reshaped Mathematics K–6 Syllabus (Board of Studies, New South
Wales, 2002) formalised the introduction of not only new mathematical content into
primary mathematics, but also some new instructional ‘tools’. One such tool is the empty
number line (or blank number line). In so doing, NSW, along with an increasing number
of other states and countries (e.g., England and New Zealand) has followed an interna-
tional trend initiated by the Netherlands (Treffers, 1991). 

While already proven to be a powerful tool for supporting the development of chil-
dren’s mental strategies in addition and subtraction (Beishuizen, 2001), effective use of
the empty number line by teachers is often hampered by a lack of knowledge surround-
ing its strengths and weaknesses. Actual syllabi have limited scope to provide extensive
background knowledge, yet such professional knowledge is essential for instruction util-
ising such tools to be most effective. According to the Standards for Excellence in Teaching
Mathematics in Australian Schools (Australian Association of Teachers of Mathematics
[AAMT], 2002), excellent teachers of mathematics, ‘understand how mathematics is rep-
resented and communicated, and why mathematics is taught’ (Standard 1.2). They have:

…a rich knowledge of how students learn mathematics… of current theories relevant
to mathematics… appropriate representations, models and language. They are aware
of a range of effective strategies and techniques for: teaching and learning mathemat-
ics… (Standard 1.3)

Additionally, the professional practice of excellent teachers is described by the
Standards as being characterised by ‘a variety of appropriate teaching strategies’
(Standard 3.2) and the promotion of ‘mathematical risk-taking in finding and explaining
solutions’ (Standard 3.3). 

* This paper has been accepted by peer review.
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The main aim of this paper is to develop teachers’ professional knowledge surround-
ing the use of the empty number line through an explanation of its origins, rationale for
its development and adoption into curricula around the world. By itself, such an increase
in knowledge will not necessarily ensure excellence in teaching, but it will allow teachers
to understand why they are teaching it and how to use it more effectively. To assist with
classroom implementation, strategies for introducing and developing more sophisticated
use of the empty number line, will be presented and 9 year old Emily will reflect on some
of the instructional pitfalls she found detrimental to her understanding of the empty
number line. While the mathematical content focus in this paper will be on the develop-
ment of mental computation for addition and subtraction to one hundred, the empty
number line can also be used to assist development of multiplication and division knowl-
edge (see Bobis, Mulligan & Lowrie, 2004). 

What is an empty number line?

The ‘empty number line’ is a visual representation for recording and sharing students’
thinking strategies during mental computation (NSW Department of Education and
Training [DET], 2002). Starting with an empty number line (a number line with no
numbers or markers), students only mark the numbers they need for their calculation. It
has been used most commonly as a tool for recording mental strategies for two-digit addi-
tion and subtraction computations. For example, Figures 1(a), 1(b) and 1(c) show three
ways to record various solution strategies for 48 + 26 on an empty number line.

Figure 1(a). Using two jumps of 10 and six single jumps.

Figure 1(b). Using two jumps of 10, a jump of 2 and 4.

Figure 1(c). Using one jump of 20, a jump of 2 and 4.



MAKING MATHEMATICS VITAL: PROCEEDINGS OF THE TWENTIETH BIENNIAL CONFERENCE OF THE AUSTRALIAN ASSOCIATION OF MATHEMATICS TEACHERS

[ BOBIS & BOBIS ]
68

Origins and rationale for the empty number line

The empty number line has its first recorded use in the Netherlands as far back as the
1970s (Gravemeijer, 1994). Early experiments with the empty number line were not suc-
cessful, possibly due to it being introduced via a measurement situation and the analogy
of a rigid ruler made students uncomfortable approximating the position of numbers on
a line with no given calibrations. However, successful experiments were conducted by
Treffers (1991). He found individual students were easily able to learn how to use an
empty number line to record and make sense of a variety of solution strategies for two-
digit addition and subtraction. 

The empty number line was developed out of a need for a ‘new’ tool to help overcome
problems experienced by children with two-digit arithmetic. Such problems included the
common ‘procedure-only’ use of base 10 materials when modelling the computational
procedures and when utilising the standard written algorithms — particularly for subtrac-
tion when regrouping was involved. For example, a common error made when solving
53 – 26 using either base 10 materials or a standard algorithm, is for a child to calculate
6 – 3. Children learn from an early age that they must take the smaller number from the
larger one.

Gravemeijer (1994) presents three benefits of using the empty number line. First, he
argues the need for a linear representation of number. Base 10 materials, such as Dienes
Blocks, clearly reflect situations dealing with quantities, but those dealing with distance or
measurement are better suited to a linear representation such as the empty number line.
Second, he makes the point that the empty number line reflects more closely intuitive
mental strategies used by young children. For instance, children naturally tend to focus
first on counting strategies to solve number problems up to 100 — counting-on or count-
ing down. More proficient mental calculators use a combination of counting strategies
(usually in chunks of 10) with partitioning strategies. Partitioning involves children
‘taking apart’ numbers in flexible ways to make them more convenient to calculate men-
tally. These strategies normally approximate the jumps on a number line. Figure 2
illustrates the jumps involved to solve 53 – 26. Note that a combination of counting-back
in chunks of 10 was made before the ‘6’ was partitioned into two lots of ‘3’ to bridge the
decade more easily.

Figure 2. Recording of jumps to solve 53 – 26.

A third reason for adopting the empty number line, is its potential to ‘foster the devel-
opment of more sophisticated strategies’ (Gravemeijer, 1994, p. 461). Gravemeijer argues
that as children record their thinking strategies, the line functions as a scaffold for learn-
ing because it shows what parts of the calculation have been completed and what parts
remain. In this way, students’ thinking becomes visible to teachers and other students.
Hence, we are able to ‘see’ what mental strategies are being used and where errors might
be occurring. From this information, instructional decisions can be made to assist the
development of more efficient strategies.

Another advantage of utilising the empty number line, not explicitly mentioned by
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Gravemeijer but a natural progression of his thinking, is the way it can provide a stimulus
for classroom discussion and sharing of mental strategies. Students can actually explain
their strategies by showing others. This makes the empty number line a very powerful tool
to enhance communication in the classroom. 

When introduced effectively, the benefits of using the empty number line are obvious
even to students. Emily, currently in Year 4, was introduced to the empty number line
when in Year 3. She considers it to be ‘easier to learn and remember than the pencil and
paper method’ and ‘if you make a mistake, it’s easier to find it’. She also recommends that
teachers ‘get them (students) to use it at an early age so that they can answer harder ques-
tions in higher grades’. From Emily’s perspective, the empty number line is ‘easier’ to use
because she can understand how it works and because it keeps a record of each step in
her thinking, allowing her to track errors and think of what to do next. 

A sequence for instruction

Introducing the empty number line for the first time, assumes that children are already
familiar with a linear representation of number (a number line with numbers). Buys
(2001) recommends that the empty number line be introduced via a string of structured
beads that alternate in colour every 10 beads. Figure 3 illustrates how a string of beads
modelling counting in tens (off the decade) can be used to introduce the same jumps on
an empty number line. 

Figure 3. Modelling counting in tens using a bead string and an empty number line.

Before using the empty number line to record more complex mental strategies
involved in 2-digit addition and subtraction, there are some prerequisite counting skills
and knowledge that should be introduced to children. Two essential strategies that chil-
dren must understand and use effectively before a more sophisticated use of the empty
number line is possible include: 

• counting in tens (on and off the decade); and 
• jumping across tens (or bridging tens).
Within the Mathematics K–6 Syllabus (BOSNSW, 2002), both these counting strategies

are included in the Stage 1 Number strand under outcomes NS1.1 and NS1.2 where the
empty number line is suggested as a possible tool for explaining and recording their use.

Counting in tens on and off the decade (as already modelled in Figure 3) allows a
student to start with any number and count forwards or backwards in multiples of 10.
When first introduced to this skill, children can use manipulatives, such as the bead string
or bundles of ten popsticks, to model the counting process and record their counting on
either a hundreds chart or as jumps on an empty number line. Figure 4 demonstrates how
the hundreds chart can be used to record the jumps involved in 56 + 30. 
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Figure 4. Jumps of tens recorded on a hundreds chart.

Bridging tens requires that children are able to flexibly partition numbers. For
example, to solve 8 + 5, the first number remains as a whole and the 5 is partitioned and
added in parts. It makes it easier, if a part of the 5 is added to the 8 to ‘make 10’ before
the final part is added. Hence, 8 + 2 = 10; 10 + 3 = 13. This same strategy can then be
applied when bridging 10s in higher decades (e.g., 38 + 5 = 43; 38 + 2 = 40; 40 + 3 = 43). 

Based on the strategies for counting in tens and bridging tens, students can be intro-
duced to the jump strategy (or sequential strategy) for two-digit addition and subtraction.
The fundamental characteristic of this strategy is that one number is treated as a whole,
and a second number is added or subtracted in manageable chunks of tens and ones. For
example, Figure 1(a), (b) and (c) demonstrates how 48 + 26 can be solved in increasing-
ly more sophisticated ways. For calculations such as 57 – 29, it is often more efficient to
apply a compensation strategy such as subtracting 30 and adding 1 (see Figure 5). 

Figure 5. Applying a compensation strategy to solve 57 – 29.

Note that for instructional purposes, only the numbers needed are recorded on the
empty number line and that the number of jumps decreases with increased sophistication
of strategy use. Emily recalls some confusing experiences with the empty number line in
Year 3 when a teacher provided pre-drawn number lines starting at zero and with all the
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10s marked (see Figure 6). Confusion resulted, with Emily thinking the teacher wanted
her to start at the first number marked on the line: zero. Once again, in Year 4, a textbook
exercise caused confusion and resulted in the execution of a less sophisticated strategy
(counting in ones) because too many unnecessary numbers were provided (see Figure 7).

Figure 6. Pre-drawn number line containing unnecessary numbers may cause confusion.

Figure 7. Too many numbers may result in the use of a less efficient strategy

Conclusion

While the empty number line is introduced to support the development of mental strate-
gies, it eventually should be replaced by ‘number language’. For example, the various
solutions for 48 + 26 represented in Figure 1(a), (b) and (c), should eventually be
replaced by a numerical-only recording such as: 

48 + 26 
48 + 20 = 68
68 + 2 = 70 
70 + 4 = 74

With each level of use, it is important to emphasise verbalisation of the various strategies
modelled on the empty number line. Such communication will assist the sharing of
abbreviated strategies and nurture the application of mental strategies without the
support of an empty number line. Teachers need to be aware that children will be ready
to abbreviate their strategies at different ages and grades. Generally, the time it would
take for an ‘average’ child to become proficient with the more sophisticated strategies
outlined in this paper, would take about two years with ‘good’ instruction. As adults, who
already understand the mathematics and are merely using the empty number line to
model our thinking, we can not expect children (who may not understand the mathemat-
ics) to see the representation the same way we do. Hence, care must be taken not to
introduce more sophisticated strategies before children have a good understanding of
prerequisite knowledge. At the same time, teachers have to cater for students’ whose
thinking needs to be challenged by gradually introducing higher-order solution strate-
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gies. Finally, children will vary their strategy use according to the numbers involved. The
rigid application of just one tool or one procedure will severely limit children’s ability to
apply mental strategies in flexible and fluent ways. A variety of strategies and representa-
tional tools are needed.
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Working mathematically to revitalise assessment*

Rosemary Callingham
University of New England

The dominance of outcomes-based approaches to education has put more pres-
sure on teachers than ever before to ensure that students meet expected or
mandated outcomes. Teachers must be able to identify their students’ current
mathematical knowledge and understanding, and know how to intervene in order
to ensure their students’ development towards the outcomes. Typically, however,
mathematics outcomes defined by curriculum statements provide few indications
of students’ partial understanding, and this is especially true of working mathemat-
ically outcomes. One approach to this difficulty is to design assessment tasks
against an identified developmental continuum, and to assess students’ progress
using a scoring rubric to link the underlying continuum with the task. Such an
approach has the potential to integrate assessment, teaching and learning in such
a way that teachers can make dependable and defensible judgments about their
students and plan appropriate further intervention.

Introduction

Mathematics curriculum documents from all states and territories in Australia currently
describe outcomes that students are expected to meet. Some of these outcomes are framed
in terms of mathematical content such as those within strands such as Number, Space and
Measurement. Others are part of a set of process outcomes, often called Working
Mathematically, in which students are expected to be assessed on their competence to do
mathematics and communicate mathematically. Outcomes may be established though
research, experience, and tradition and are provided to teachers in the expectation that they
will ensure that their students reach the appropriate level or stage at the anticipated point in
schooling. Progress is determined by assigning students to particular levels or stages based,
often, on teachers’ classroom decisions. In such an approach, teachers are implicitly expect-
ed to be able to make judgments about their students’ current mathematical knowledge,
understanding, and competence and to plan programs that will ensure that students can
progress to the next outcome. Outcomes, however, are usually identified for two-year stages
in learning, and few details are provided to teachers about the interim stepping stones that
define students’ progress. Alternatively, teachers are provided with a plethora of indicators,
which often leads to a ‘checklist’ approach in which teachers ‘tick off’ behaviours, and
assume that an outcome has been met when sufficient boxes have been checked.

* This paper has been accepted by peer review.
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Linking teaching and assessment

In recent years, there have been many calls to link classroom assessment more explicitly
with teaching (e.g., Shepard, 2000). Formative assessment that provides feedback to
teachers and students has been shown to improve students’ outcomes when it provides
meaningful feedback and changes teaching and learning (Black & Wiliam, 1998). Such
assessment needs to be close to the classroom, and informed by teachers’ own judgments
about their students. Teachers, however, make judgments about their students based on
their beliefs and interpretation of classroom experiences (Morgan & Watson, 2002), and
may inadvertently miss significant working mathematically behaviour, especially when this
behaviour is related to students’ partial understanding. Assessment processes, therefore,
need to assist teachers’ judgments and provide meaningful information about worthwhile
mathematical behaviour without swamping teachers with excessive detail. The issue is
how this might be accomplished in practice. Can we design assessment that is rigorous
and defensible, and that also gives teachers sufficient information to allow them to
provide appropriately targeted intervention? One approach is to consider the assessment
processes used in vocational education, which focus on competency. 

Competency-based assessment

Competence is underpinned not only by skill, but also by knowledge and understanding,
and involves both the ability to perform in a given context and the capacity to transfer
knowledge and skills to new tasks and situations (Mayer, 1992). It leads to a focus on out-
comes in such a way that information is obtained about current performance, but also
predicts how that performance can translate into a ‘real world’ situation. Competence
assessment generally requires three components: a task within which there are clearly
described expected standards of performance; clear connections to the curriculum; and
opportunities to consider wider application of the particular skill or knowledge (Griffin,
1997). The assessment process is thus embedded in a learning sequence that can lead to
higher levels of competence. 

When considering working mathematically outcomes, however, the progression is not
always clearly defined. There is only a sketchy ‘road map’ for teachers. One way round
this difficulty is to use a generic developmental continuum of competency that can be
realised in different mathematical situations. An empirically identified continuum that
has been shown to work in a variety of mathematical situations (Callingham & Griffin,
2000) is shown in Table 1. 

To use this continuum, a scoring rubric, a guide or rule for making judgments, must
be developed that links different levels of the continuum to a task or sub-tasks within a
teaching sequence. In this way, the assessment process is an integral component of teach-
ing, informing teachers about their students’ mathematical behaviour as they teach. In
addition, the behaviours typical at each level of the continuum suggest ways in which
teachers can modify their immediate teaching, and where students need to go next, pro-
viding the feedback suggested by Black and Wiliam (1998).
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Assessment through teaching

How might such an embedded approach to assessment work in practice? To illustrate the
process, let us take a task that is available from an existing commercial source and develop
assessment that could inform teachers about their students’ development at key stages
during the lesson.

The lesson is Garden Beds (Maths 300, n.d.), which addresses aspects of pattern and
algebra, and area and perimeter. A story shell about a gardener who wishes to surround
his shrubs with a border of tiles provides interest and relevance for students, who see
similar situations in garden makeover programs on television. The lesson starts with an
arbitrary number of ‘plants’ around which tiles are placed. Students are asked to work out
how many tiles are needed. This process is repeated several times until all students recog-
nise how the tiles need to be placed to surround the plants. At this point students are set
a challenge:

Imagine you are working in the shop that sells tiles. Customers come in to buy tiles.
When they come into the shop they often tell us how many plants they have. Some
customers might have lots of plants - some might even have as many as 100 plants to
protect. How can you find out how many tiles each customer will need?

Students are provided with appropriate concrete materials, asked to keep a record of
their findings, and to explain how they arrived at their solution. Each of these activities
addresses some aspect of working mathematically, and provides an assessment opportuni-
ty for teachers, without having to set up a special assessment event. 

Students can address the Garden Beds problem in many different ways. They may count

Table 1. Generalised continuum of competence.

Description Student behaviour
J Making conjectures Suggests extensions of the original problem, or

changes the task parameters to create new situa-
tions.

H Generalisation or relationship use Expresses the generalisation of the problem
solution in symbolic form, and applies it to new
situations.

G Generalisation or relationship recognition Recognises a generalisation of the solution strat-
egy and expresses this generalisation in words.

F Rule or process use Applies a personal rule to extensions of the
initial task.

E Rule or process recognition Recognises a rule underpinning the structure of
the task.

D Pattern or structure use Applies repeating elements in the task structure
to solve problems. 

C Pattern or structure recognition Recognises repeating elements in the task struc-
ture.

B Element use Recognises classes of task elements.

A Element identification Recognises similarities in different elements.

0 No apparent understanding No recognition of the elements of the underly-
ing task structure.
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tiles, find patterns, develop rules linking the number of plants with the number of tiles,
and express these rules as generalisations. Each of these approaches is valid, and indicates
different development against the underlying continuum. By anticipating these possible
outcomes, teachers can develop a rule or guide for scoring, a scoring rubric, which
describes these mathematical behaviours and maps them onto the underlying continu-
um. One such rubric is shown in Table 2, together with suggested intervention strategies
derived from typical student behaviours.

Student response Continuum
Level

Interpretation Intervention

Detailed explanation
of answer and
arrangement includes
symbols or equations
that relate the tile
arrangement to the
symbolic expression
for the arrangement
shown 
(e.g., T = 2P + 2 + 4).

H
Generalisation
or relationship
use

The student can express the
generalisation of the problem
solution in symbolic form,
and apply it to new situations,
justifying this by reference to
the generalisation. The
student has mastered the
particular problem type and is
ready to learn how to change
the problem type to explore
new ideas.

Intervention should
focus on encouraging
students to change
the problem type by
asking ‘What would
happen if… ‘ and
changing the
conditions of the
problem to create a
new situation.

Explanation of answer
and arrangement
relies on relationship
appropriate for the
table arrangement
(e.g., the number of
tiles is double the
number of plants plus
two for the ends and 4
for the corners).

F
Rule or
process use

The student’s own rule is
applied to extensions of the
initial task. The student can
extend the solution obtained
to a limited range of other
tasks having a similar
structure to the initial task,
and is ready to learn how to
form a generalisation that
could be transferred to other
settings.

Intervention should
focus on providing
students with
opportunities to
develop a general rule
or process that can be
applied to other
settings with similar
contexts.

Explanation of answer
uses patterns to find
appropriate numbers
(e.g., it goes up by 2
each time).

D
Pattern or
structure use

The student recognises the
underlying principles in the
structure of the task, and can
apply these in a familiar
setting, such as a
straightforward extension of
the initial task. The student is
ready to learn how to identify
a rule that links the repeating
elements together.

Intervention should
focus on encouraging
students to formulate
rules or describe the
processes used in
concrete situations,
and to record and
express these rules in
their own ways.

Students model
garden beds using
concrete materials
and count tiles to find
out appropriate
numbers.

B
Element use

The student recognises classes
of task elements and is ready
to learn how to combine
these into a pattern or
structure. Problem attempts
are presented as single
drawings or phrases that
relate to one element only of
the task.

Intervention should
focus on providing
opportunities for
students to extend
and record patterns,
and identify structures
and talk about these
to peers and teachers.

Table 2. Scoring rubric for first task in Garden Beds.
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Note that comparative language, such as ‘achieves some aspects of the task’ or ‘partial-
ly solves the problem’, is not used in the rubric; nor are quantitative aspects included,
such as ‘gives two different rules’. Rather, there is a focus on describing significant math-
ematical behaviour that may be demonstrated by students as they work on the task. This
language is important because it reduces the emphasis on quantity, inherent in expecta-
tions of multiple rules for example. The rubric also recognises that all the described
behaviours are important steps along the way to full understanding, and removes a sense
that a solution that does not provide a generalisation is wrong. Such solutions instead are
seen as demonstrating students’ partial understanding of the underlying mathematics.

The next task in the Garden Beds lesson could be to focus on how the information that
students generated was recorded. Was it unsystematic or organised? Did the recording
support identification of the underlying relationship? Developing a recording process
that clearly identifies that the number of tiles is dependent on the number of plants is
another stepping stone towards identifying and using algebraic relationships. Students
could be challenged to present their information in different ways. Again, by anticipating
the quality of different responses, teachers can develop a scoring guide to help them
make judgments about the performances of their students. One rubric for assessing this
aspect is shown in Table 3.

Note again that this rubric avoids comparisons or subjective language, but instead
focuses on the underlying mathematical behaviour. The target in this rubric is recording
processes, rather than the communication of the findings, but is expressed in similar ways
to the rubric shown in Table 2, and again links directly to the underlying continuum. The
highest levels of the rubric also reward important mathematical behaviour, including sym-
bolic expression, rather than irrelevant factors such as presentation or length of
explanation. A concise mathematical record showing control of the underlying mathe-
matical ideas is recognised as a high level of response. At the same time, however,
approaches that indicate more limited understanding, such as those relying on drawing
diagrams only, are also recognised as partial understanding. In this way a wide range of
performance is expressly catered for and acknowledged. 

Not every level of the continuum is addressed in either of these rubrics. In undertak-
ing the Garden Beds task teachers could identify other aspects of their students’ work that
mapped onto other levels of the continuum. The assessment can be modified to take
account of these judgments by developing further rubrics that relate to the other levels
identified. In this way the process becomes a flexible tool for describing on-going learn-
ing, rather than simply a means of summarising students’ performances.

Further extensions of the original task could be assessed in the same way. These might
include different kinds of linear relationships, or non-linear relationships, extensions into
different social contexts, or other learning areas such as science. 

Conclusion

Embedding assessment in classroom practice is essential if aspects of working mathemat-
ically are to be addressed. Using a competency based approach underpinned by a
generalised continuum of competence can provide teachers, and students, with a basis for
making judgments about performances. By using descriptors of typical behaviours at dif-
ferent levels of the continuum of competence, teachers obtain feedback about their
students’ mathematical behaviour that allows for appropriate, targeted intervention, and
gives clear direction for future development. Teachers can defend their judgments by
referring to the underlying behaviours, and showing students what their performance
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Student response Level Interpretation Intervention

Systematic and correct
methods that include
the relationship
expressed in a
different way 
(e.g., formula, graph).

H
Generalisation
or relationship
use

At this level the student can
express the generalisation of
the problem solution in
different symbolic forms, and
apply it to new situations,
justifying this by reference to
the generalisation. The
student has mastered the
particular problem type and is
ready to learn how to change
the problem type to explore
new ideas.

Intervention should
focus on encouraging
students to change
the problem type by
asking ‘What would
happen if…’ and
changing the
conditions of the
problem to create a
new situation.

Systematic correct
methods that include
the underlying rule
(e.g., table of values
that includes a rule
statement).

E
Rule or
process
recognition

At this level the student
recognises a rule
underpinning the structure of
the task and is ready to learn
how to apply that rule
consistently and extend the
use of the rule. The rule is
likely to be expressed in
words or diagrams, using non-
technical language that
summarises the student’s own
approach to the problem.

Intervention should
focus on providing
extensions to the
original task and
encouraging students
to apply their rules
consistently to these
extensions.

Systematic correct
methods that rely on
patterns (e.g., table of
values expressed
numerically only, with
no rule stated).

C
Pattern or
structure
recognition

At this level the student
recognises the repeating
elements in the structure of
the problem, and is ready to
learn how to recognise the
underlying principles.

Intervention should
focus on providing
opportunities for
students to discuss the
patterns and
structures that they
identify, and to record
these patterns in
systematic ways.

Systematic correct
methods that do not
clearly indicate the
underlying
relationship 
(e.g., list; diagram).

A
Element
identification

At this level the student
recognises similarities among
different elements and is
ready to regroup these
according to personal ideas.

Students should be
encouraged to explain
and record their own
element
classifications, and to
describe those
classifications that
might help to solve
the problem posed.

Recording incorrect
or not systematic

0
No apparent
understanding

At this level there is not
enough information to
describe the student’s work. If
the task was attempted, it is
likely that the student did not
recognise the elements of the
underlying structure of the
task.

If the task was
attempted,
intervention should
focus on helping the
student to record
systematically the
essential elements
that underpin the
task.

Table 3. Scoring rubric for organisation of information in Garden Beds task.
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indicates and what they need to do next. The generalised approach can be linked to dif-
ferent curriculum frameworks, including those addressing essential learnings, and to
different mathematical contexts.

The approach to assessment described here is coherent with the AAMT Standards
(AAMT, 2002) in several domains. Use of a range of assessment processes are explicitly
recognised as an important aspect of teachers’ professional practice. By focussing on
Working Mathematically, teachers can develop and extend their professional knowledge of
their students through recognising and acknowledging the mathematics their students
know and use. Teachers’ knowledge about their students’ mathematical learning may also
be enriched, particularly through using a learning sequence that addresses Working
Mathematically in different mathematical contexts. 

Teaching and learning mathematics through exploration that encourages initiative,
creativity and confidence in students will only become widespread if it is supported by
similar assessment processes. It is time to work mathematically to revitalise assessment.
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Working mathematically:
The role of graphics calculators*

Michael Cavanagh
Macquarie University

The newly revised NSW Mathematics 7–10 Syllabus emphasises the importance of
students becoming more actively engaged in their learning. The Working
Mathematically strand of the syllabus encompasses five interrelated processes
(questioning, applying strategies, communicating, reasoning, reflecting) designed
as a framework for classroom activities. This paper discusses some factors asso-
ciated with the use of graphics calculators as tools for working mathematically.
Issues discussed are teacher and student roles, collaborative practices, cognitive
conflict, and teachers’ knowledge and beliefs. 

Introduction

The National Statement on Mathematics for Australian Schools (Australian Education Council,
1991) identified three areas of mathematical thinking or ‘ways of knowing’ (p.26):
Attitudes and Appreciations, Mathematical Inquiry and Choosing and Using Mathematics. These
three strands are separated from the content strands of the document and broadly
describe how mathematical knowledge is developed, applied and communicated. They
include processes such as observing and generalising patterns, problem solving and math-
ematical modelling, conveying mathematical ideas, and explaining and justifying
conclusions.

Although the language and terminology may vary from place to place, the mathemat-
ics curricula for all Australian states and territories now include outcomes that are
consistent with the philosophy of the National Statement (Callingham & Falle, 2003). In
New South Wales, the recently revised Mathematics Years 7–10 Syllabus (Board of Studies,
2003) incorporates a Working Mathematically strand that encompasses the processes of
questioning, applying strategies, communicating, reasoning and reflecting. The working
mathematically outcomes are seen as integral to learning mathematics, both in applying
existing knowledge and in developing new concepts and skills.

The use of technology in the classroom is another important curriculum issue. One of
the goals identified in the National Statement on Mathematics for Australian Schools
(Australian Education Council, 1991) is for the use of technology ‘to be regarded as a
normal part of doing mathematics’ (p. 23). The statement also notes that computers and
calculators provide students with opportunities to investigate mathematical ideas and
achieve a richer understanding. Particular reference to graphics calculator technology is

* This paper has been accepted by peer review.
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made in Graphics Calculators and School Mathematics: A Communiqué to the Education
Community (Australian Association of Mathematics Teachers, 2000). The document
describes how informed use of graphics calculators can become a catalyst for pedagogical
change leading to learning characterised by investigation, collaboration and an under-
standing of mathematics as richly connected concepts.

The aim of this paper is to consider some of the factors associated with the use of
graphics calculators in supporting the ideas of Working Mathematically.

Teacher and student roles

The introduction of graphics calculators does not automatically guarantee a more ques-
tioning and reflective classroom environment. However, there is a good deal of evidence
to support the view that the use of this technology can lead to significant changes in class-
room dynamics (e.g., Farrell, 1996; Goos, Galbraith, Renshaw & Geiger, 2000; Harskamp,
Suhre & Van Struen, 2000; Simonsen & Dick, 1997).

The graphics calculator is a powerful tool for exploring mathematical concepts.
Students can enter a symbolic expression and immediately display the corresponding
table of values and graph. Split screens allow for even more explicit links among the dif-
ferent representations of functions to be made. Visual representations are particularly
helpful in enabling students to access complex and realistic algebraic models that may lie
well beyond their symbolic manipulation capabilities. Use of the graphics calculator
allows students to progress from simple algorithms to more sophisticated tasks in which
realistic data is translated into graphical models, analysed and interpreted. 

Graphics calculators can generate graphs and tables of values quickly and reliably, pro-
viding immediate feedback to students. It often requires only a small number of
keystrokes to effect quite dramatic changes in graphical and numerical data representa-
tions, facilitating the exploration of open-ended questions. Numerous graphs can be
generated in a short time frame affording students greater opportunities to recognise pat-
terns and establish relationships among the different forms of a concept. 

The power of the technology can therefore promote a shift in focus from a more
teacher-centred approach to one of inquiry and self-discovery by students. Farrell (1996)
analysed videotapes of thirty-six mathematics lessons in which graphics calculators or
computers were sometimes used. She found that students’ activities changed when they
were using the technology. Students investigated more and employed problem-solving
strategies such as planning, implementing strategies, and checking or verifying solutions.
In other words, the graphics calculator became a vehicle for working mathematically. 

The traditional instructional paradigm of teacher exposition, worked examples and
student practice can be transformed by the use of graphics calculators. Farrell (1996) also
reported that traditional, expository teaching styles were often replaced by investigation
activities undertaken by students acting independently of their teacher. Discovery learn-
ing characterised by organisation and classification of data, investigation and
generalisation, and student reflection leading to the formulation of new mathematical
concepts became the norm. The working mathematically processes of questioning, apply-
ing strategies, reasoning and reflecting are clearly evident in such an approach. 

Simonson and Dick (1997) studied teachers’ own perceptions of their teaching prac-
tices as they used graphics calculators in the classroom. The teachers reported that when
graphics calculators were used, their lessons were more likely to be student-centred and
they asked many more ‘What if…?’ questions of their students. The calculator provided a
shared reference that promoted a more cooperative approach to learning in which the
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teacher facilitated student inquiry rather than directed it. Minor trends to emerge from
the study included an increased student discussion of mathematical ideas and increased
involvement and enthusiasm on the part of students.

The teacher’s role can change significantly to accommodate the technology. The
teacher need no longer be the central focus of classroom interaction and can become a
technical assistant, collaborator, facilitator and catalyst (Heid, Sheets & Matras, 1990).
The teacher is then responsible for choosing appropriate calculator activities and promot-
ing their mathematical content. The teacher becomes an opportunist, constantly seeking
to draw attention to connections among the various representations of mathematical con-
cepts provided by the calculator, and shaping the relationship between the calculator
display and mathematical knowledge (Guin & Trouche, 1999).

Collaborative practices

Collaborative group work is a critical component of Working Mathematically because it
encourages communication and student reflection as differing points of view are
expressed, considered and evaluated. The graphics calculator has an important role to
play in group activities as a kind of conversation piece for sharing mathematical ideas and
making their thought processes publicly available in the classroom. The technology facil-
itates social interaction in the classroom because it acts as a common point of reference
for students they discuss their ideas and results.

Farrell (1997) found that students worked together more often when they used tech-
nology than when it was not used. This working together was sometimes planned (at the
direction of the teacher, for example) but was more often spontaneous (such as when stu-
dents leaned over to examine the display of a peer’s calculator and discussed how it was
obtained). Students used the calculator screen to share their discoveries, justify their rea-
soning to one another and negotiate meaning for the mathematical concepts they were
examining. The calculator screen became the means by which the ideas were shared and
explained among students and with the teacher.

Graphics calculators were designed primarily as personal tools and Doerr and Zangor
(2000) caution that the tendency for some students to use their calculators as more
private devices may inhibit group work. Interactions among group members may break
down because it is relatively easy for individual students to explore their own conjectures
without the need to consult their peers. If students continually transform their calculator
display in light of newly made discoveries without communicating the results to others
then it can become increasingly difficult for the group to continue functioning effectively. 

However, the graphics calculator overhead projector panel can act as a shared device
to counterbalance the situation just described and foster communication (Forster &
Taylor, 2003; Goos et al., 2000). Guin and Trouche (1999) describe the role of a ‘sherpa
student’ (p. 209) who uses the overhead panel to project his or her calculator display so
that everyone can observe it. The teacher can then ask the student to interpret the panel
display and explain how the calculator was used to obtain it. Other students are also able
to question this student and make their own comments or suggestions (Forster, Taylor &
Davis, 2002). Guin and Trouche (1999) note that the use of the overhead panel favoured
classroom debates and reinforced the social aspects of knowledge construction thus invig-
orating the reflection phase of the lesson. 

Groups can also use the overhead panel to present their findings and explain their rea-
soning to the teacher and their peers. Partial solutions can be shared and completed with
whole-class input while shortcomings in the presenters’ work can be identified and cor-
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rected (Goos et al., 2000). Members of the class can suggest alternative solutions, both in
terms of mathematical and calculator approaches, to enrich the classroom discussion. In
addition, the teacher is able to observe students’ thought processes and assess their level
of understanding. Reflective discussions also afford the teacher an opportunity to rein-
force correct thinking and emphasise key mathematical concepts.

Cognitive conflict 

The technical limitations of graphics calculators can sometimes produce unexpected
results that provide a unique opportunity to develop students’ analytical skills.
Contradictions often arise between results obtained by hand and those displayed on the
calculator due to the rectangular shape of the viewing window and the relatively small
number of pixels that comprise the screen (see Mitchelmore & Cavanagh, 2000). Rather
than avoid situations that confront some of these characteristics of the technology, teach-
ers could include examples where the calculator results conflict with what students expect
and then encourage the students to resolve the inconsistencies (Guin & Trouche, 1999).

Examples of unexpected results include partial views (where the initial viewing window
does not display all of the important features of a graph) and rounded trace coordinates
(that do not permit irrational values to be shown exactly). There are also unequally scaled
axes (where, for instance, perpendicular lines do not appear at right-angles) and issues
related to the resolution of the screen (where, for example, parabolas may appear flat
near the vertex or asymptotes on graphs of rational functions may be distorted).
Negotiating the differences between mathematical concepts and their corresponding cal-
culator displays can lead to lively class discussion that is consistent with the principles of
working mathematically.

The identification, interpretation and resolution of inconsistencies between the pen
and paper environment and the graphics calculator screen allows students to sharpen
their mathematical thinking skills and improve their understanding of the technology. In
the identification phase, students first need to explain carefully the mathematical result they
expect to see and then examine the calculator display, noting the precise nature of any
discrepancies. It is important here for students to justify their initial hypotheses, even in
light of apparently contradictory evidence from the calculator. 

In the interpretation phase, teachers can help students to understand the unexpected calcu-
lator results by considering some of the important internal processes of the technology and
its limitations. These might include some discussion of how the calculator produces a graph
and the difficulties inherent in representing the graph of a continuous function using dis-
crete pixels. In considering the shortcomings of the machine, students are more likely to
develop a healthy scepticism of the calculator’s output and recognise the dangers in making
conclusions based on an ill-considered acceptance of the calculator’s initial display.

In the resolution phase, students need time to explain the calculator’s output and con-
sider how the situation might be resolved. Armed with a more sophisticated
understanding of how the calculator operates, students will be better placed to suggest
alternative approaches that could produce a more appropriate display. For example, this
may mean zooming out to show a more complete graph or simply ignoring the jagged for-
mation of a curve due to the screen resolution. Another possible strategy is for students
to decide that the best way forward is to put the calculator aside and continue working by
hand. The ability to discern whether or not to use the calculator is an important skill that
can only be developed if students encounter situations where both the limitations and
potential of the calculator are evident. 
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Caution is required, however, and tasks need to be carefully designed and introduced
gradually lest the conflict engendered by these examples imposes too great a cognitive
load on students and becomes a barrier to future learning. There is a strong case for
avoiding difficulties in the early stages and then structuring exercises to draw explicit
attention to the limitations of the technology in an incremental way. However, cognitive
conflict can act as a powerful stimulus for learning when teachers encourage students to
make predictions about what they expect to see on the calculator screen, contrast their
forecasts with what is actually displayed, and resolve the inconsistencies. By questioning
the calculator’s output and reflecting on the constraints of the technology, students’ not
only learn to interpret the calculator’s output in a more discerning way but their mathe-
matical reasoning is enhanced as well. 

Teachers’ knowledge and beliefs

A number of studies report that a teacher’s philosophy of mathematics and mathematics
education largely determine the way in which they use technology in the classroom (e.g.,
Simmt, 1997; Tharp, Fitzsimmons & Ayers, 1997). The results of these studies suggest a
strong correlation between a teacher’s views of what it means to do mathematics and his
or her views on the use of calculators. For example, Tharp, Fitzsimmons and Ayers (1997)
found that teachers who hold a rule-based view of mathematics are less likely to regard
calculators as enhancing instruction and may even see the technology as a hindrance to
effective teaching. 

Doerr and Zangor (2000) found that teachers’ confidence in their own knowledge and
skills was another important factor in shifting the locus of control in the classroom and
allowing students freedom to use their calculators in exploring concepts and working
mathematically. Teachers who could operate the calculator successfully and had experi-
enced success in using the technology were more likely to incorporate graphics
calculators in their teaching. They were also more comfortable in allowing students to
explore concepts on their own and discover new ways of operating the machine. 

Simmt (1997) observed six high school teachers using graphics calculators to teach a
unit on quadratic functions. Using videotapes of lessons (with and without graphics cal-
culator usage) and subsequent interviews with the teachers, she investigated the teachers’
rationale for using graphics calculators and the relationship between the teachers’ philos-
ophy of mathematics and their use of the technology. She found that the teachers’ most
common reasons for using graphics calculators were that they saved time and helped to
motivate students. 

Simmt (1997) also noted that the graphics calculator became an extension of the
methodology normally used by the teachers. No new methods or approaches were evident
and the teachers reported that they did essentially the same kinds of activities whether
using the calculators or not. The teachers’ choices about the kinds of activities they used,
the style of questions they asked and their interactions with students all reflected their
personal views of mathematics education. Their strong preference for algebraic solutions
meant that the teachers favoured a more traditional pedagogy and did not encourage
graphical solution strategies. 

Simmt (1997) concluded that merely providing the tool had little impact on instruc-
tion because teachers were not challenged to consider how they might adapt their
classroom practices to take full advantage of the technology. She suggested that assisting
teachers to reconsider their beliefs about teaching and learning mathematics is also nec-
essary when introducing the graphics calculator as a teaching tool. 
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Professional development that only focuses on instruction in the operation of the cal-
culator will be of little benefit in encouraging teachers either to take up graphics
calculators or change their classroom practices (Waits & Demana, 2000). Familiarity with
the technology is a valid starting point, but attention also needs to be given to the
inevitable pedagogical challenges that the technology brings (Goos et al., 2000). In other
words, professional development must not only show teachers how graphics calculators
can assist the processes of working mathematically in the classroom, it must also inform
teachers about the kinds of instructional practices that are best suited to using the tech-
nology in this way. 

Attempting to implement both a new technology and a new pedagogy simultaneously
is a challenging and long-term process (Huffman, Goldberg & Michlin, 2003). Lasting
change takes time and teachers will require more on-going opportunities to reflect on
their instructional practice with graphics calculators if they are to incorporate the tech-
nology in ways that are consistent with the principles of working mathematically (Tharp,
Fitzsimmons & Ayers, 1997). A supportive environment that encourages teachers to share
their own insights and classroom experiences and gives them some say in the design of
curriculum materials will better equip teachers to take full advantage of the opportunities
presented by the introduction of graphics calculators. 

Teachers’ knowledge of the limitations of the graphics calculator is also important
(Cavanagh & Mitchelmore, 2003). One of the great advantages of the technology is that
it allows students to explore concepts freely in whatever ways they choose without the
direction of the teacher. Many teachers are uncomfortable with such an approach
because they fear that in such an unpredictable environment students may stumble across
unexpected calculator results that the teachers themselves do not fully understand. Not
wanting to run the risk of appearing foolish in front of their students, some teachers may
try to wrest back control of the calculator activities and the students’ freedom to investi-
gate and work mathematically is thus diminished.

Improved understanding of how the calculator operates (how it produces a graph, for
instance) can increase teachers’ confidence, leading to a more flexible approach in the
classroom (Doerr & Zangor, 2000). Teachers who feel more comfortable in dealing with
unexpected calculator displays are more likely to encourage students to question their
calculator-based results. Promoting a critical attitude to the calculator’s output does not
guarantee that students will develop a similar outlook, but it does have the potential to
unlock the calculator’s power as a tool for improving students’ understanding of mathe-
matical concepts.

Conclusion

The graphics calculator is a powerful tool for improving classroom instruction and pro-
moting spontaneous, self-directed learning. The introduction of the technology can foster
new roles for teachers and students and encourage collaborative learning experiences that
enable students to build a richer understanding of many mathematical concepts. In using
the graphics calculator, students can also gain an enhanced appreciation of the tool itself
and its limitations. However, care must be taken and it is clear that teachers will need
ongoing support through carefully designed professional development programs if the
benefits of the technology are to be maximised. These programs should consider peda-
gogy that complements the use of the technology and allow teachers time to reflect on
their own practice. Teachers will then discover that graphics calculators can become a pow-
erful means of supporting the principles of working mathematically in the classroom.
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Assessing highly accomplished 
teachers of mathematics*

Barbara Clarke
Monash University

This paper provides information on the development by The Australian Association
of Teachers of Mathematics in collaboration with Monash University and state math-
ematical associations of a set of standards for teachers of mathematics and an
associated assessment process. Following a discussion on the motivation for
developing such standards, examples of the experiences and insights of other
organisations in Australia and elsewhere in developing their own standards are pre-
sented. The complexity of describing excellent teaching is acknowledged, as are
the concerns that some writers express about the process and possible pitfalls.
Early evidence is provided that teachers can use such standards to make consis-
tent judgments on documentation developed by teachers, using the standards
criteria.

Introduction

It is argued that standards for the teaching profession will increase public esteem of the
profession. Public, credible standards — and the assessment of individuals against these
— are fundamental to the high esteem in which other professions are held by the public.
The way in which other professions practise self-regulation enhances their professional-
ism, and adapting this model has the potential to produce the same positive outcomes for
mathematics teachers (Bishop, Clarke & Bennett, 2000). 

Some significant claims have been made about the power of standards and their assess-
ment; for example, in the USA:

The National Board for Professional Teaching Standards is leading the way in making
teaching a profession dedicated to student learning and to upholding high standards
for professional performance. We have raised the standards for teachers, strength-
ened their educational preparation through standards, and created
performance-based assessments that demonstrate accomplished application of the
standards. (NBPTS, 2004)

The Australian Association of Mathematics Teachers (AAMT) has been discussing the
development of professional teaching standards for many years and collaborated with
Monash University in a federally-funded research study from 1999 to 2001. Morony

* This paper has been accepted by peer review.
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(1999) defined ‘professional standards’ as they apply to this study and provided reasons
for developing them:

In the current context in education in this country, professional standards are a state-
ment of what teachers need to know and be able to do in order to do their work at
an acceptable level. They go beyond mere statement of required initial qualifications,
although these may be important. They can be standards for entry into the profes-
sion. Or they can be about accomplished or expert performance of the work of the
profession, linked to monetary rewards. The reasons for having professional stan-
dards can range from building community confidence in teachers’ work and thereby
improving the status of teachers and teaching to supervision of individual staff
members by principals. Ensuring that students have appropriately skilled teachers is
essential — public statements of standards can help in this. (p. 42)

There were two aspects that motivated the AAMT involvement in the process of devel-
oping standards for teachers of mathematics and an associated assessment process. The
first was that it would develop the profession through:

• improving the status of teachers;
• increasing knowledge of the work teachers do;
• articulating what it means to be an excellent teacher of mathematics;
• building a professional language to support reflection and discussion; and
• providing a ‘benchmark’ for which to aspire.
The second argument relates to the individual perspective. Ingvarson (1998) claimed

that in identifying standards of excellence, teachers would be able to design their own
professional development to attain them. Morony (1999) regarded this kind of arrange-
ment of professional development to be an essential characteristic of true ‘professional
practice’, quite distinct from approaches focusing on ‘implementation of new policies’.
Professional standards can help develop individual professionals through:

• providing a ‘road map’ to identify and plan personal/team professional develop-
ment needs;

• amplifying the importance of teachers’ professional knowledge;
• providing a framework to evaluate practice; and
• endorsing and valuing the work of accomplished teachers of mathematics.

Development of standards for excellent teachers of mathematics: 
The experiences of others

Several countries have developed standards for professional excellence or accomplish-
ment. The United Kingdom model comprises six standards. This model assesses
excellence in 
1. student achievement; 
2. subject knowledge; 
3. planning; 
4. teaching, managing pupils and maintaining discipline; 
5. assessment; and 
6. advising and supporting other teachers. 
Teachers are assessed through a portfolio, classroom observation, an interview, consulta-
tion with the teacher’s principal, and references from colleagues (Department for
Education and Employment, UK).
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Canada also has a system for recognising advanced teachers. In 1999, the Ontario
College of Teachers produced a model for assessing excellence in teaching that compris-
es five standards. These are: commitment to students and student learning; professional
knowledge; teaching practice; leadership and community, and ongoing professional
development. The standards were produced in consultation with the teaching profession
and the public (The Professional Affairs Department, 1999).

In the USA, the National Board for Professional Teaching Standards (NBPTS) has
offered a wide variety of certificates for excellent teachers since the early 1990s. All of the
NBPTS standards emphasise that accomplished teachers are aware of what they are doing
as they teach and why they are doing it. They are conscious of where they want student
learning to go and how they want to help students get there. Furthermore, they monitor
progress towards these goals continuously and adjust their strategies and plans in light of
this constant and complex feedback. Accomplished teachers set high and appropriate
goals for student learning, connect worthwhile learning experiences to those goals, and
articulate the connections between the goals and the experiences. They can analyse class-
room interactions, student work products, and their own actions and plans in order to
reflect on their practice and continually renew and reconstruct their goals and strategies.
Excellent teachers are assessed through a portfolio and a one-day attendance at an assess-
ment centre (NBPTS, 2000). 

In Western Australia, advanced teachers, called Level 3 Teachers, are assessed on five
competencies. First, they are expected to utilise innovative and/or exemplary teaching
strategies that promote high levels of student participation and involvement. Second, they
should employ consistent exemplary practice in developing and implementing student
assessment and reporting processes. Third, excellent teachers should engage in self-devel-
opment activities to critically reflect on their own teaching practice and on teacher
leadership. Fourth, they should enhance other teachers’ professional knowledge and
skills through professional development sessions, mentoring, and supporting colleagues.
Fifth, excellent teachers are expected to provide high-level leadership in the school com-
munity. Teachers are assessed through a portfolio and attendance at a one-day assessment
interview (Martin, 2001).

The development of the AAMT Standards 

AAMT and Monash University began to establish a set of standards for excellence in
teaching mathematics in Australia in 1999. AAMT took a leading role in the development
of the mathematics standards. Its affiliated organisations identified a group of approxi-
mately fifteen experienced mathematics teachers in New South Wales, South Australia,
Tasmania and Victoria. These teachers were selected by the teachers’ associations in each
state through expressions of interest or identification by the affiliated associations. They
formed a nucleus of expertise that was regularly consulted over the three years of the
project. The teachers formed focus groups that met at least twice-yearly over the three
years to develop the standards and to design and trial the assessment strategies. The
researchers from Monash University recorded the teachers’ opinions and judgements
and produced the standards based on this information. The standards are thus based in
real teaching practice, produced and affirmed by the profession. 

An important benefit of professional standards for excellence in teaching is that they
may also provide an alternative career path for excellent teachers. At the current time,
Australian mathematics teachers who wish to advance in their careers must generally
move through the administrative stream, abandoning classroom teaching. An alternative
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pathway, established through accreditation in accomplished teaching, would provide an
opportunity that is not available to many teachers. Some mathematics teachers would
welcome the opportunity to progress to more senior positions while remaining in teach-
ing, and a professional standards framework would facilitate such an objective. 

Assessing complex performances

As previously stated, the description of the accomplished teacher of mathematics repre-
sents only part of the use of standards. The use of standards for the evaluation of teachers
is a key aspect. However, teaching is a complex performance and there are many chal-
lenges in assessing accomplishment (Delandshire & Petrosky, 1998).

During the final phases of the AAMT project, teachers explored the assessment based
on the standards and number of tensions were discussed including the following:

• comparability versus creativity — Can I exercise creativity in presenting evidence of my
accomplishments to a group of assessors who need to show consistency in their
judgments?

• meaningful versus manageable — How can I give evidence of my accomplishment in
ways that do justice to my achievements and yet avoid excessive amounts of time in
assembling and presenting evidence? How much evidence do my assessors really
need? What do I need to tell them to ensure that they fully understand the nature
of my achievements?

• accomplishment versus ongoing critical inquiry — To what extent can I use my portfolio
as a means of engaging in genuinely critical inquiry into my own teaching, and not
simply to demonstrate my accomplishments? 

• personal goals versus school policy — Is it possible to demonstrate personally meaning-
ful accomplishments beyond the professional development goals required by my
school or those required by government policy? 

Since the publication of the standards, there have been a number of initiatives includ-
ing the establishment by AAMT of the National Professional Standards Committee –
Mathematics which is chaired by Professor John Mack and consists mostly of practising
teachers. The model which they are working on is based on clear principles, namely that
the assessment process will be:

• rigorous and valid;
• adaptable to and applicable in all teaching contexts;
• fair to all candidates no matter what their teaching situation;
• equally accessible to teachers across the country;
• controlled by the candidate insofar as this is possible; and
• oriented towards contributing to professional growth of the candidate.
In 2003, the Commonwealth Department of Education and Training (DEST) funded

AAMT to trial and evaluate the model. The Teaching Standards Assessment Evaluation Project
(TSAEP) model required the candidates to:

• respond to unseen questions that simulate teaching decisions through an assess-
ment centre;

• submit a portfolio of their work and achievements as a teacher consisting of a pro-
fessional journey (reflective essay), a case study of one of two students’ learning, an
example of current teaching and learning practices, validation (report of a class-
room observation or video of their teaching) and documentation (awards,
references, testimonials etc,); and

• take part in an interview.
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The model involves a moderation or ‘team consensus approach’ to assessment where
individual assessors accumulate evidence to make holistic judgments based on the stan-
dards, and then meet to reach consensus. 

Critiquing the process

There have been a number of critiques of the NBPTS process (Delandshire & Petrovsky,
1998). Researchers have argued that teachers involved in developing professional stan-
dards (i.e., those ‘insiders’ who have been members of the small groups charged with the
responsibility of formulating standards on behalf of the profession) relate to the stan-
dards in a fundamentally different way from teachers who receive them (i.e., those
‘outsiders’ whose performance must henceforth be judged by standards that have been
formulated by others; cf. Petrosky, 1998). Another body of research argues that such doc-
uments, when they are lifted out of the context of the discussions that produced them,
inevitably read like a set of bureaucratic requirements which teachers perceive as being
fundamentally alien to their authentic professional commitments (Clandinin & Connelly,
2000). Other researchers have noted the way professional standards have been interpret-
ed as culturally-loaded statements formulated by middle class educators in middle class
schools, with almost no relevance to teachers working with minority groups (Petrosky,
1998).

In response to some of these concerns, Monash University is currently involved in a
follow-up project funded through an Australian Research Council (ARC) Linkage grant
that aims to examine critically key assumptions relating to professional standards and the
evaluation of teachers’ professional practice by portfolio assessment in Mathematics and
English. The preparation of portfolios as a means of demonstrating accomplishment of
professional standards is becoming an increasingly common practice, as is demonstrated
by the NBPTS, but such processes still require scrutiny if they are to be successfully imple-
mented.

Australia currently provides a unique opportunity to gain insights into the value of
subject-specific professional standards and portfolio preparation for teachers, as profes-
sional standards have been developed independently by Mathematics, English and
Science teacher associations, in comparison with the United States where the NBPTS took
carriage of the process. Although documentation exists about the professional growth
experienced by US teachers when preparing portfolios for certification, this tends to take
the form of stories told by teachers who have achieved certification. For teachers who
receive NBPTS certification, the standards have validity precisely because these teachers
have been deemed to have accomplished them (Buss, 2000; Ingvarson, 1998). They have
accepted the formal protocols for certification developed by the NBPTS, involving certain
assumptions about standards and their measurement. Otherwise they could not access
the professional rewards that the NBPTS makes available to them. 

An especially innovative aspect of the current Monash project relates to the way that it
explores the views of ‘outsider’ and ‘insider’ teachers with respect to the Standards and
assessment of portfolio items. The ‘outsider’ teachers will construct accounts of their pro-
fessional practice in the form of portfolio items to be read by ‘insider’ assessors. The
research will record how the ‘outsider’ teachers and ‘insider’ assessors evaluate any par-
ticular portfolio items as representative of their nominated domains of accomplishment.
The research will thereby provide valuable data on professional standards, the ways in
which teachers might demonstrate their achievement of those standards, or if indeed the
nominated domains have validity as areas of teacher accomplishment, and the processes
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in which assessors engage when making judgements about evidence of accomplishment
and its measurement. 

Some early results

While it is early stages in relation to the analysis and publication of results, one of the
important findings of both projects is that teachers can make consistent judgements on
the evidence provided using the standards as the criteria. Of course more rich data will
emerge from each of these projects particularly in relation to the perspectives of differ-
ent participants, but at this stage at least it is clear that the process provides opportunities
for both candidates and teacher assessors to reflect on their own teaching. 

Concluding comments

In this paper, I have outlined some of the directions that are being taken in the Australian
context in relation to the development of a standards-based process for the assessment of
highly accomplished teachers of mathematics. There are many complexities in this
process. As well as the complexities of evaluating teaching, there are the multiple agendas
of those involved. Resolving or just managing the professional, the political and the sys-
temic contexts is difficult. There are many unanswered questions and on-going
challenges. Having said that, it is a journey that has been and continues to be ‘worth
taking’. Having the opportunity to engage with teachers in extended discussion in rela-
tion to excellence has been a privilege. Importantly, in the way standards development
and implementation has been conceptualised by AAMT, the profession – the teachers of
mathematics – are in the forefront. The voice of the teacher has been the loudest.

References
Bishop, A. J., Clarke, B. & Bennett, S. (2000, July). A Research and Development Project on National Professional

Standards for Excellence in Teaching Mathematics. Paper presented to working group 7: The professional
pre- and in-service education of mathematics teachers. Ninth International Congress on Mathematical
Education, Tokyo, Japan.

Buss, M. (2000). Certified teachers: A powerful, collective voice for school reform. Unicorn, 26(1), 36–42. 

Clandinin, J. D. & Connelly, M. F. (2000). Narrative Inquiry: Experience and Story in Qualitative Research. San
Francisco: Jossey-Bass.

Delandshere, G. & Petrosky, A. (1998). Assessment of complex performances: Limitations of key
measurement assumptions. Educational Researcher, 27(2), 14–24.

Department for Education and Employment (DfEE), UK (n.d.). Advanced Skills Teachers, Information
Supplement 2. 

Ingvarson, L. (1998). Professional development as the pursuit of professional standards: The standards-
based professional development system. Teaching and Teacher Education, 14 (1), 127–140.

Martin, G. (2001). Competency Framework for Teachers. Perth: Education Department of Western Australia. 

Morony, W. (1999). Excellence in the teaching of mathematics: Professional standards project. The
Australian Mathematics Teacher, 55(3), 42–44.

National Board for Professional Teaching Standards (2004). About NBPTS. Retrieved 1 September 2004
from http://www.nbpts.org/about/index.cfm.

Petrosky, A. (1998). Insiders and outsiders: Teaching standards, national certification assessment, and
professional development. English in Australia 122, 45–56.

The Professional Affairs Department (1999). Standards of Practice for the Teaching Profession. Ontario, Canada:
Ontario College of Teachers.



MAKING MATHEMATICS VITAL: PROCEEDINGS OF THE TWENTIETH BIENNIAL CONFERENCE OF THE AUSTRALIAN ASSOCIATION OF MATHEMATICS TEACHERS

[ CLARKE ]
93

Written algorithms in the primary years:
Undoing the ‘good work’?*

Doug M. Clarke
Australian Catholic University

The teaching of conventional written algorithms in primary schools dominates the
curriculum with concerning effects on both student understanding and self-confi-
dence. In this paper, I summarise research findings and the opinions of key writers,
with particular emphasis on the potential dangers of introducing conventional algo-
rithms too early, and share research data from a follow-up study to the Victorian
Early Numeracy Research Project. I make the argument that there is far more
important work to be done in these years in developing concepts and strategies for
mental computation, and offer some practical suggestions. 

Advantages and disadvantages of teaching algorithms 
in the early years of primary school

Given that the teaching and regular practice of written algorithms is widespread in
primary classrooms, there must be a number of reasons for their prominent role in every-
day mathematics activity. Plunkett (1979), Thompson (1997), Usiskin (1998) and other
writers offered several reasons for this. These included:

• algorithms have been traditional primary mathematics content around the world
for many years;

• algorithms are powerful in solving classes of problems, particularly where the com-
putation involves many numbers, where memory may be overloaded;

• algorithms are contracted, summarising several lines of equations involving distrib-
utivity and associativity;

• algorithms are automatic, being able to be taught to, and carried out by, someone
without having to analyse the underlying basis of the algorithm;

• algorithms are fast, with a direct route to the answer;
• algorithms provide a written record of computation, enabling teachers and stu-

dents to locate any errors in the algorithm;
• algorithms can be instructive;
• for the teacher, algorithms are easy to manage and assess.
These, at first glance, appear to be a powerful list of reasons why the teaching of con-

ventional written algorithms has been traditional and should continue in the primary
years. However, a number of writers have identified potential dangers to teaching conven-
tional written algorithms to primary children (Kamii & Dominick, 1998; McIntosh, 1998;

* This paper has been accepted by peer review.
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Northcote & McIntosh, 1999; Thompson, 1997; Usiskin, 1998). These can be summarised
as follows.

• They do not correspond to the ways in which people tend to think about numbers;
for example, in the context of use of most conventional algorithms, the ‘4’ in the
number 547 is treated as ‘4’ and not ‘40’. 

• They encourage children to give up their own thinking, leading to a loss of ‘owner-
ship of ideas’. The original purpose of algorithms in previous centuries was for
clerks to be able to carry out a large number of calculations in a short period of
time. Thinking was not the focus, but rather quick and reliable answers. Technology
changes the relative importance of algorithms — some become more important,
some less important. Most clerks today, given a large number of calculations, would
use either a calculator or pre-prepared spreadsheet to carry out these calculations.

• The traditionally-taught algorithms may no longer be the most efficient and easily
learned. There is evidence (e.g., Groves & Stacey, 1998; Shuard, 1990) that children
in classrooms where the regular use of calculators for conceptual development is
encouraged may develop an algorithm for subtraction that blends place value
understanding and negative numbers (e.g., for 354 – 278, a child might use an algo-
rithm that involves the following steps: 300 – 200 = 100; 50 take 70 is -20; 4 take 8 is
-4; so the answer is 100 take 20 take 4, giving 76).

• They tend to lead to blind acceptance of results and over-zealous applications.
Given the focus on procedures that require little thinking, children often use an
algorithm when it is not at all necessary. Hope’s (1986) example of finding
$100 – $99.95 using the conventional algorithm is a classic case of this. 

There is also the issue of relevance. Adults use formal written computation for only a
small proportion of their calculations. Northcote and McIntosh (1999) found, in a survey
conducted with two hundred adults over a twenty-four-hour period, that only 11.1% of all
calculations involved a written component. It has become increasingly unusual for stan-
dard written algorithms to be used anywhere except in the mathematics classroom. Most
calculations required only an estimate. They also found that for 60% of all calculations,
only an estimate of the correct answer was needed. The ways in which conventional algo-
rithms are traditionally taught discourage the application of number sense by estimating
first or assessing the reasonableness of the answer afterwards.

An example from research of the possible detrimental effect 
of teaching written algorithms in the early years 
on children’s mental strategies and number sense

Narode, Board and Davenport (1993) conducted a year-long study of nineteen first,
second and third-grade students, involving videotaped interviews. All students were asked
to solve two-digit addition and subtraction computations embedded in simple story prob-
lems and in familiar contexts, such as stones or marbles. The students were asked to solve
each problem, first using base 10 blocks and then mentally or with paper and pencil as
they chose. The students were also asked whether they knew of any alternative ways to
solve the problem.

Interestingly, almost all children interviewed before instruction in addition and sub-
traction algorithms used invented strategies which used traditional, front-end approaches
(not the usual right-to-left order).

The researchers discussed the case of Jamie (a second grade girl), who was interviewed
on several occasions during the school year. It is important to note that Jamie had not met
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conventional algorithms prior to second grade, but was introduced to them during
second grade.

Early in the school year, Jamie successfully added 19 and 26 mentally: ‘I know I have
30 because I have a group of ten and two more tens. Then if I take 1 from the 6 and
give it to the 9, I’ll have another group of 10. That leaves five left, so the answer is 45.’
After five months of school and work with conventional algorithms, Jamie attempted
to add 34 and 99 by beginning to group the 9 tens and 3 tens, then stopped and said,
‘Oh, I have to add the ones first.’ She then grouped the units, and traded for a ten to
solve the problem.
In the last month of the school year, asked about the possibility of solving the
problem by adding the tens first, Jamie emphatically stated, ‘No, you never add the
tens first.’ She was invited to suggest another way that the problem could be solved.
Jamie suggested that another way to solve the problem might be to know the answer
from memory. Finally, she was confronted with her own invented strategy, from
earlier in the year, as a strategy ‘someone used’ to add 49 + 19 (‘I think of 50 + 19 and
then subtract one to get 68’). When asked if she thought this method might work, she
replied ‘If you know that way, it’s okay, but it’s much, much better to just add the ones
first.’ (p. 259)

This one example is a powerful demonstration of the way in which a child can move
from trusting their understanding of numbers and flexible strategies to following a single
procedure without much hesitation. Narode, Board and Davenport (1993) summarised
their findings:

We believe that by encouraging students to use only one method (algorithmic) to
solve problems, they lose some of their capacity for flexible and creative thought.
They become less willing to attempt problems in alternative ways, and they become
afraid to take risks. Furthermore, there is a high probability that the students will lose
conceptual knowledge in the process of gaining procedural knowledge (p. 260).

The Early Numeracy Research Project (ENRP) was established in 1999 by the (then)
Victorian Department of Education, with a Prep to Grade 2 mathematics focus. 

The ENRP became a collaborative venture between Australian Catholic University,
Monash University, the Victorian Department of Employment, Education and Training,
the Catholic Education Office (Melbourne), and the Association of Independent Schools
Victoria. The project was funded to early 2002 in thirty-five project (‘trial’) schools and
thirty-five control (‘reference’) schools. 

There were two main features of the ENRP that made it different in important ways
from previous projects: the ENRP growth points and task-based interview. The framework
of growth points provides a means for understanding young students’ mathematical think-
ing in general, and the interview provides a tool for assessing this thinking for particular
individuals and groups. The main project concluded in early 2002 (for further informa-
tion, see Clarke, 2001), but the focus here is on a small follow-up project and the data
which emerged from it.

It was agreed that in November 2002, a sample of Grade 3 students would be inter-
viewed by the research team at Australian Catholic University, to be followed by another
interview period in November 2003, with Grade 4 students. These students would be
chosen from those who had participated in six previous interviews, at the beginning and
end of the Prep, Grade 1, and Grade 2 years. Six hundred and thirty Grade 3 children
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were interviewed in 2002, and five hundred and seventy-two of the same children (now at
the end of Grade 4) were interviewed in 2003. 

The mathematical domain of addition and subtraction strategies provided data that was of
some concern, in relation to the traditional emphasis on teaching written algorithms in
Grades 3 and 4. 

The six growth points for the domain of addition and subtraction strategies are: 

1. Count-all (two collections)
Counts all to find the total of two collections.

2. Count-on
Counts on from one number to find the total of two collections.

3. Count-back/count-down-to/count-up-from
Given a subtraction situation, chooses appropriately from strategies including count-back,
count-down-to and count-up-from.

4. Basic strategies (doubles, commutativity, adding 10, tens facts, other known facts)
Given an addition or subtraction problem, strategies such as doubles, commutativity, adding
10, tens facts, and other known facts are evident.

5. Derived strategies (near doubles, adding 9, build to next ten, fact families, intuitive
strategies)
Given an addition or subtraction problem, strategies such as near doubles, adding 9, build to
next ten, fact families and intuitive strategies are evident.

6. Extending and applying addition and subtraction using basic, derived and intuitive
strategies
Given a range of tasks (including multi-digit numbers), can solve them mentally, using the
appropriate strategies and a clear understanding of key concepts.

The data for the relevant growth points for Grade 4 students at the end of the school
year are given in Table 1.

Table 1. Percentage of Grade 4 students achieving each ENRP growth point 
for domain of addition & subtraction strategies (November 2003).

Growth points Reference schools % Trial schools %
n = 174 n = 398

0
1 0.6 1.0
2 12.6 8.0
3 7.5 4.8
4 20.1 25.4
5 46.6 41.2
6 12.6 19.6

If the increasingly-common argument that students should not be taught convention-
al written algorithms until they are able to add and subtract two-digit numbers in their
head (which underpins the latest UK mathematics curriculum is accepted, then this
means that around 40% of trial school and reference school students were not ready for
this content by the end of Grade 4. These are the students who have not yet grasped both
basic and derived strategies, with many counting by ones for all such problems. This is not
necessarily a criticism of the teaching or the students, but may say something about readi-
ness for these ideas. 
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It is also worth noting the statement in the most recent New South Wales Mathematics
syllabus (Board of Studies New South Wales, 2002) that ‘formal written algorithms are
introduced after students have gained a firm understanding of basic concepts including
place value, and have developed mental strategies for computing with two-digit and three-
digit numbers’ (p. 9). I strongly agree with this position.

Of course, students can be increasingly encouraged to record the various steps in their
calculations, in ways that make sense to them. The danger is not so much with the written
form, but the imposition of the teacher’s method for recording, which, as was shown earlier,
can have unfortunate consequences. In this way, students are developing and gradually
refining their own invented algorithms, in conversations with their peers and the teacher.

Are any student-invented algorithms okay?

It is a natural process for children to record their thinking on paper, as the numbers
become too large for everything to be retained in their head. As students start to develop
their own algorithms, a question arises: are any student-invented algorithms acceptable?
How should children’s invented algorithms be treated in the classroom?

Early in school, given that the algorithm leads to a correct answer, the answer is prob-
ably, ‘Yes: they are okay’; but over time, we want to encourage children to consider
whether the procedures are:

• efficient enough to be used regularly without considerable loss of time;
• mathematically valid;
• generalisable (can the algorithm be applied to the full range of problems of the

type being solved?) (Campbell, Rowan & Suarez, 1998).
Occasionally, teachers claim that, ‘only the brighter children can create their own algo-

rithms’. Those involved in projects that encourage children to create their own
algorithms dispute this, but even if it were true, the encouragement for children to do so
will likely yield a range of algorithms. These can be shared publicly and discussed, and
children who are unable to create a written method of their own will at least have a range
of options from which to choose for their own use.

When should conventional algorithms be presented to students?

I believe that there is no place for formally introducing conventional algorithms to chil-
dren in the first five years of school. If they arise during classroom problem solving (and
they almost certainly will, given the input of parents and siblings into the process), they
can be considered and discussed.

By giving arithmetic a problem solving focus, and by providing a whole range of prob-
lems for children to solve (preferably in story contexts of interest to children), we
redefine the role of students, in the words of Lampert (1989), from the task of ‘remem-
bering what to do and in what order to do it, to a problem of figuring out why arithmetic
rules make sense in the first place’ (p. 34). 

The cognitively guided instruction (CGI) problem types (e.g., Fennema, Carpenter,
Franke, Levi, Jacobs & Empson, 1996) provide one basis for creating such story problems.
My suggestion would be to use a variety of such problem types, with increasingly large
numbers, challenging children to solve them, by any method that makes sense to them.
Through sharing their methods, children can make a start on the process of evaluating
various methods for their mathematical validity, their efficiency, and their generalisabili-
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ty, though not in these terms! In time, when they meet conventional algorithms (in upper
primary, if at all), they will be in a strong position to compare the various possibilities on
a fair basis, without feeling pressured to discard all that they have learned.

Concluding thought (from 1830)

The learner should never be told directly how to perform any operation in arith-
metic… Nothing gives scholars so much confidence in their own powers and
stimulates them so much to use their own efforts as to allow them to pursue their own
methods and to encourage them in them (Colburn, 1912, p. 463).

References
Board of Studies New South Wales (2002). Mathematics K–6 Syllabus. Sydney: Author.

Campbell, P. F., Rowan, T. E. & Suarez, A. (1998). What criteria for student-invented algorithms? In L. J.
Morrow & M. J. Kenney (Eds), The Teaching and Learning of Algorithms in School Mathematics (Yearbook of
the National Council of Teachers of Mathematics, pp. 49–55). Reston, VA: NCTM.

Clarke, D. M. (2001). Understanding, assessing and developing young children’s mathematical thinking:
Research as a powerful tool for professional growth. In J. Bobis, B. Perry & M. Mitchelmore (Eds),
Numeracy and Beyond (Proceedings of the 24th Annual Conference of the Mathematics Education
Research Group of Australasia Vol. 1, pp. 9–26). Sydney: Mathematics Education Research Group of
Australasia.

Colburn, W. (1970). Teaching of arithmetic. Elementary School Journal, 12, 463–480.

Fennema, E., Carpenter, T. P., Franke, M. L., Levi, L., Jacobs, V. R. & Empson, S. B. (1996). A longitudinal
study of learning to use children’s thinking in mathematics instruction. Journal for Research in
Mathematics Education, 27(4), 403–434.

Groves, S. & Stacey, K. (1998). Calculators in primary mathematics: Exploring number before teaching
algorithms. In L. J. Morrow & M. J. Kenney (Eds), The Teaching and Learning of Algorithms in School Mathematics
(Yearbook of the National Council of Teachers of Mathematics, pp. 120–129). Reston, VA: NCTM.

Hope, J. A. (1986). Mental calculation: Anachronism or basic skill? In H. Schoen & M. J. Zweng (Eds),
Estimation and Mental Computation (Yearbook of the National Council of Teachers of Mathematics, pp.
45–54). Reston, VA: NCTM.

Kamii, C. & Dominick, A. (1998). The harmful effects of algorithms in grades 1–4. In L. J. Morrow & M. J.
Kenney (Eds), The Teaching and Learning of Algorithms in School Mathematics (Yearbook of the National
Council of Teachers of Mathematics, pp. 130–140). Reston, VA: NCTM.

Lampert, M. (1989). Arithmetic as problem solving (Research into practice series). Arithmetic Teacher, 36(7), 34–36.

McIntosh, A. (1998). Teaching mental algorithms constructively. In L. J. Morrow & M. J. Kenney (Eds), The
Teaching and Learning of Algorithms in School Mathematics (Yearbook of the National Council of Teachers
of Mathematics, pp. 44–48). Reston, VA: NCTM.

Narode, R., Board, J. & Davenport, L. (1993). Algorithms supplant understanding: Case studies of primary
students’ strategies for double-digit addition and subtraction. In J. R. Becker & B. J. Preece (Eds),
Proceedings of the Fifteenth Annual Meeting of the North American Chapter of the International Group for the
Psychology of Mathematics Education (Vol. 1, pp. 254–260). San Jose, CA: Center for Mathematics and
Computer Science Education, San Jose State University.

Northcote, M. & McIntosh, M. (1999). What mathematics do adults really do in everyday life? Australian
Primary Mathematics Classroom, 4(1), 19–21.

Plunkett, S. (1979). Decomposition and all that rot. Mathematics in School, 8, 2-5.

Shuard, H. (1990). Developing a Calculator-Aware Number Curriculum in Britain. Unpublished manuscript,
Homerton College, Cambridge, England.

Thompson, I. (1997). Mental and written algorithms: Can the gap be bridged? In I. Thompson (Ed.),
Teaching and Learning Early Number (pp. 97–109). Buckingham, UK: Open University Press.

Usiskin, Z. (1998). Paper-and-pencil algorithms in a calculator and computer age. In L. J. Morrow & M. J.
Kenney (Eds), The Teaching and Learning of Algorithms in School Mathematics (Yearbook of the National
Council of Teachers of Mathematics, pp. 7–20). Reston, VA: NCTM.



MAKING MATHEMATICS VITAL: PROCEEDINGS OF THE TWENTIETH BIENNIAL CONFERENCE OF THE AUSTRALIAN ASSOCIATION OF MATHEMATICS TEACHERS

[ CORBYN ]
99

Supporting the Standards for Excellence in
Teaching Mathematics in Australian Schools
through the Specialist Schools Network in

England and iNET, International Networking for
Educational Transformation

Graham Corbyn
Mathematics and Computing Specialist Schools Trust, UK

The Specialist Schools Trust consists of a network of over 2300 secondary schools
in England, the majority of which have mathematics as a specialist subject and
support the drive to promote innovation in mathematics education not only within
individual schools but across local and wider communities as well. 
The international developments in mathematics recently have been highlighted by
a number of exciting initiatives in New York, Bulgaria, South Africa and
Copenhagen. As a result of iNet and the Transformation through Global Networking
Conference in Melbourne during July 2004, many opportunities to embark on new
ventures leading towards innovation in mathematics with Australian schools
became apparent and through this paper I hope to be able to create a new part-
nership with Australian teachers to share ideas across the globe which will support
mathematics education internationally.
This paper describes briefly the strategies adopted in specialist schools to promote
mathematics with an overview on teaching and learning; effective use of ICT; the
relevance of mathematics and its role in the work place as well as in local and wider
communities. I finish with the issue in England regarding the role of statistics in
mathematics and propose this area as a focal point to begin our discussions in light
of our new partnership with the Australian Bureau of Statistics (ABS). It is intended
that much of this paper will relate closely to the notions within the Standards for
Excellence in Teaching Mathematics in Australian Schools as published by the
AAMT in January 2002 and through the partnerships that have been established
through iNET in Australia, the ABS and the AAMT, I hope this paper will promote
discussions that will lead towards a collaborative strategy taking global transforma-
tion in mathematics education one stage further.

Specialist schools and iNET 

The Specialist Schools Trust is the lead body for the Government’s specialist schools pro-
gramme. Our mission is to build a world-class network of innovative, high performing
secondary schools in partnership with business and the wider community.

The Trust is at the head of a network of over 2000 affiliated secondary schools, includ-
ing the majority of the 1955 specialist schools which we believe is now the largest affiliated
network of schools in the world. Our task is, to use the power of that network to make
those schools increasingly effective and successful. Our strength lies not only in our activ-
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ity at the centre but in the power of the network itself and its ability to connect school
with school to drive forward a common ethos and focus on a program of continuous
improvement and leadership. Our two key words are ‘excellence and diversity’. We would
like each of our schools to flourish in its particular community. 

To become a specialist school, schools need to go through a demanding application
process. Schools can apply for any of ten specialisms or if they wish a combination of any
two specialisms. If successful, schools are given extra funding from the government to
develop their chosen specialism with the aim of raising whole school achievement. As well
as an annual grant, there is also a one-off capital grant generally used to re-furbish and/or
build new classrooms. The application involves presenting a four year action plan specif-
ically stating targets which are to be met through a number of objectives linked to the
specialist subjects and ‘themes’ including a focus on teaching and learning and develop-
ing the community dimension. These targets are reviewed at the end of each four-year
phase when a similar application is written so that schools can be considered for re-desig-
nation for a further four years. The vision and ethos presented by the school has to be of
the highest order and work towards individual schools or even federations of schools
becoming a recognised centre for excellence in any given region, providing a wide range
of opportunities geared for all in their school and in their communities.

From a mathematics point of view, the specialist school movement has proved to be sig-
nificant in terms of specialist schools being at the ‘cutting edge’ in mathematics. Table (1)
shows the number of schools and their specialism over the last few years.

Table 1. The number of schools with specific specialisms.

Specialism September 2002 September 2003 September 2004
Arts 173 230 305
Business and Enterprise 18 81 146
Engineering 4 14 35
Humanities – – 18
Languages 157 189 203
Mathematics & Computing 12 77 152
Music – – 5
Science 24 121 225
Sports 161 229 283
Technology 443 503 545
Combined – 10 38
Total 992 1454 1955

Mathematics is obviously a key focus subject in all mathematics and computing schools
and the fact that since its introduction in 2002, this particular specialism has seen the
largest percentage increase of all the specialisms, reinforces the view that mathematics is
seen as a significant subject area. Arts, languages, sports and technology colleges started
before 2002, which is why numbers are higher in these specialisms.

Furthermore, it is essential to understand that there are typically two or more focus
subjects in each specialism. With this in mind, mathematics is a focus subject in business
and enterprise, engineering, mathematics and computing, music, science, technology
and most combined specialism schools. Therefore from September 2004, over 1000
schools will have set challenging targets to develop the teaching and learning of mathe-
matics in their school and across their communities. This is almost one third of all
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secondary schools in England and the first subject to have reached this milestone. Its
inclusion in such a large number of schools and specialisms supports the notion that
mathematics underpins many areas and is such an integral part of any individual’s educa-
tion.

Mathematics and computing specialist schools (MCSSs) are expected to raise stan-
dards and develop further interest in mathematics across the whole ability range, which
will lead to whole school improvement. This includes a clear focus on developing innova-
tive approaches in the teaching and learning of mathematics as well as sharing good
practice across the curriculum particularly through considered and effective use of ICT.
In a general sense, all schools should have similar aims, and good practice is evident in
mathematics departments of other specialisms, but the MCSSs are at the forefront of
development and will promote new ideas and strategies for all those schools in the spe-
cialist schools network by presenting and sharing ideas through a range of conferences,
network meetings and seminars arranged by the Specialist Schools Trust. The notion of
all specialist schools having a key role within mathematics has been endorsed fully by the
Specialist Schools Trust and the success of the first mathematics conference in April 2004
and the presence of the Secretary of State for Education recognised this fact.

Schools, without doubt, respond to achieving specialist status with pride and are
thrilled to be involved and have opportunities to network nationally across a wide range
of themes. Of course, it is impossible as Subject Leader for mathematics and computing,
to be able to offer support to every single school or individual mathematics teacher and
working with key strategic partners including the mathematics associations, societies and
government is a main factor in the success of the mathematics and computing specialism.
Maintaining the links with these partners is through our introduction of the Mathematics
Expert Panel, Head Teacher Steering Group for Mathematics and Computing Schools as well as our
Lead Practitioner Network for Mathematics as briefly described later in this paper. To be able
to expand this network internationally would be fantastic. For example, the Young Leaders
in Mathematics in Australia working with lead practitioners in England could prove to be a
very powerful collaborative experience!

To complete this overview, the Specialist Schools Trust is committed to working collab-
oratively globally. Typically this is carried out through iNET whose mission is ‘to create
powerful and innovative networks of schools that have achieved or have committed them-
selves to achieving systematic, significant and sustained change that ensures outstanding
outcomes for all students in all settings’.

iNet (Australia), as it develops (as part of this global network), is committed to
strengthening the capacity of school leaders to work across sectoral boundaries and
further details on iNET Australia can be found at: 
www.sst-inet.net/countries/australia/default.aspx

Standards for Excellence in Teaching Mathematics in Australian Schools
(as adopted by the AAMT Council Meeting in January 2002)

The document as referred to above, covers three domains:
• professional knowledge;
• professional attributes;
• professional practice.

With reference to the statement, it is clear that much of what is expected of teachers in
Australia is similar to what is expected in England. To possess a strong knowledge base
and to be able to draw upon a range of teaching and learning strategies is paramount.
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Planning is also essential so that teachers can ensure that each individual is making
progress and developing an understanding of mathematics. For this reason understand-
ing how mathematics is learned is vital.

The teaching and learning of mathematics in specialist schools is a top priority and
indeed it is what happens in the classroom that will raise standards in mathematics. A
range of strategies has been adopted in England in recent times to ensure that effective
teaching and learning is taking place. Examples include the adoption of three part lesson
plans based around mental starters, a core objective and a plenary. Each lesson encour-
ages an interactive approach through the use of a variety of resources and ensures that
students have ownership of what they have learned and are involved. 

There has been a big focus on question and answering so that teachers can effectively
assess student understanding and continue the lesson in response to individual or class
needs. There has been a move away from use of textbooks in mathematics simply to
encourage students to collaborate and share their ideas through group discussions. In
essence, this has been extended into cognitive acceleration programs such as Cognitive
Acceleration in Mathematics Education (CAME), published by Kings College, London which
encourages students to think about specific problems and begin to build bridges between
similar problems to improve their understanding. Of course, intervention strategies play
a part in this but it is a skill for the teacher to manage such groups so that students gen-
erate the findings for themselves and then have the confidence to share with others.

Professional development of teachers has to be continuous rather than one-off courses
and teachers given time to review and evaluate. It is felt in England, that mathematics is
special and teachers of mathematics require more specific training courses that will
provide them with extended opportunities to try new strategies and provide them with
the chance to try new resources in the classroom, especially in the use of the latest tech-
nologies. It is also clear that teachers need time to practise new ideas and also be given
opportunities to share with others what worked well or what did not work well. The British
Government is committed to setting up a national infrastructure for professional devel-
opment of teachers of mathematics in the form of a National Centre for Excellence for
the Teaching of Mathematics (NCETM), which will oversee a number of Regional
Mathematics Centres (RMCs). 

The Specialist Schools Trust’s mathematics networks are heavily involved in profession-
al development of teachers of mathematics and indeed currently run training courses for
mathematics teachers run by mathematics teachers in schools that have been awarded
regional training status. In essence, teachers have designed a number of ‘toolkits’ consist-
ing of mathematics resources that are shared and discussed during specific training days.
Once a school has received the ‘toolkit’ training then it is able to use the ‘toolkit’ to
support the teaching and learning of mathematics across their communities as necessary.

The community dimension (as referred to in 2.3 of the Standards) is a major part of
any specialist school plan. Typically about one third of the specialist school funding has
to be linked to the community plan. The responsibility of specialist schools is to work with
both the local community and wider communities, including developing international
links if appropriate. The community plan is equally as important as the school plan in any
specialist school. Therefore, MCSSs are fully committed in becoming active partners in a
learning society with their local schools and communities. The community dimension is
divided into working with a number of local partner primary schools and at least one
partner secondary school as well as actively engaging and working with universities, busi-
ness and industry to promote the use of mathematics and computing outside of school.
The wider community dimension includes international developments and examples
have included mathematics teachers attending conferences in Copenhagen as well as
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video-conferencing to schools in South Africa.
The community dimension also includes working with adult communities. Examples

include schools working with single mothers, Muslim women, the prison service, unem-
ployed, small businesses and so on. In many of these cases, mathematics is delivered to
support specific mathematical needs, so for example, some communities require support
in understanding personal finance and calculating annual percentage rates whereas
other communities require low level numeracy skills.

The new technologies that are now available have without doubt revolutionised the
teaching and learning of mathematics. To be responsive to these new technologies forms
part of domain 3, professional practice, within the Standards statement. Specialist schools
are fortunate that they are able to use some of their funding to buy new technologies
although they have to justify why and how it is to be used and have to build in a training
programme for teachers to ensure that the new technologies are successfully implement-
ed. Over the last couple of years, there has been a move towards effective use of
information and communication technology (ICT) to support the teaching and learning
of mathematics. It is usual to see a number of interactive whiteboards in mathematics
departments in specialist schools but there is a question of whether it is being used effec-
tively. It should not just be a projection screen or an expensive board to write on, but a
tool which can be used to promote mathematics as an exciting and fun subject, yet
encourage students to interact with the board to generate discussions and gain a more
profound understanding of mathematics. The advent of PC tablets has given students the
opportunity to interact at their own desks as opposed to walking to the board at the front
of the room. This has been successful due to the improvement of wireless connectivity
and has also set the scene for small group work and further collaborative strategies at
student level.

Graphics calculators are another example. These are no longer just number crunch-
ing machines that can draw graphs. Graphics calculators can now be linked to peripheral
devices such as rangers, which will plot movement onto a distance-time graph, viewed on
an interactive whiteboard. This gives students the opportunity to ‘feel’ what is happening
when they move in certain directions at certain speeds and therefore provides a real
understanding for what is happening. Some applications such as reflection symmetry, co-
ordinate programmes, can be downloaded directly onto calculators from the Internet,
providing more opportunities for small group work and discussion.

In July 2004, Leanne Dale (Lead Practitioner in Mathematics) and I had the privilege
of visiting the Australian Bureau of Statistics (ABS) in Melbourne and identified possible
ways forward in raising the profile of statistics in Australia. It seems that there is plenty of
scope for collaboration in developing Internet based resources and expanding the cen-
susatschool project, which has proved successful in Australian schools. The reaction of
two Australian students to Leanne’s use of a PC tablet when she showed them how we
teach statistics suggested that we have much to share regarding effective use of technolo-
gy and pedagogy. However, although we seem to do some things well, we do have issues,
and the following section of this paper therefore relates specifically to the role of statis-
tics in England and highlights the issues we face. I would be particularly interested in
teachers’ reactions in Australia as to what is being proposed.
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The role of statistics within the mathematics curriculum 
and its impact on other curriculum areas

Statistics and indeed any topic related to handling data has always been part of the nation-
al curriculum for mathematics. In February 2004, a report looking at issues within
mathematics education, Making Mathematics Count, recommended that statistics should be
embedded across the curriculum and hinted at the removal of statistics from the mathe-
matics curriculum altogether. This paper highlights some of the issues that schools in
England are facing as a result of this recommendation. 

One key issue is the role of statistics and the interpretation of recommendation 4.4
from Professor Adrian Smith’s Inquiry:

The Inquiry recommends that there should be an immediate review by the QCA and
its regulatory partners of the future role and positioning of Statistics and Data
Handling within the overall 14–19 curriculum. This should be informed by: (i) a
recognition of the need to restore more time to the mathematics curriculum for the
reinforcement of core skills, such as fluency in algebra and reasoning about geomet-
rical properties and (ii) a recognition of the key importance of Statistics and Data
Handling as a topic in its own right and the desirability of its integration with other
subject areas.

The National Curriculum for Mathematics is divided into four attainment targets, one of
which is referred to as data handling. The notion of having these separate attainment
targets, in my opinion, has encouraged mathematics education to see statistics and han-
dling data topics as an isolated area and therefore not fully integrated into other areas of
mathematics. The introduction and recent popularity of GCSE Statistics, a qualification
based on statistical methods mostly delivered through the mathematics curriculum sup-
ports the move to provide statistics as a subject in its own right. 

There are a number of issues regarding the GCSE Statistics course based around: 
• the different examination structures between GCSE Mathematics and GCSE

Statistics;
• the different assessment criteria used in coursework for GCSE Statistics in compar-

ison with GCSE Mathematics.
Briefly, GCSE Statistics enables all students to have the opportunity of reaching the stan-
dard grade C mark whereas this is not true for GCSE Mathematics. It can be argued that
GCSE Statistics is popular simply due to the structure of the assessment and course and
little thought into what the subject can offer. The idea that GCSE Statistics supports the
GCSE Mathematics handling data coursework if they are run parallel to each other is seen
as another benefit. However, in terms of extending mathematics through statistics, this is
a different issue and one that is frowned upon by many!

Many students see handling data topics as one of the most enjoyable aspects of math-
ematics. This is simply because they have opportunities to experiment, research and test
particular hypotheses. The practical side of mathematics is one which many feel needs to
be developed so that the enjoyment factor can be enhanced. This is why the suggestion
to remove statistics from the curriculum has been met with surprise. Although time to
deliver the curriculum is an issue, the removal of this aspect could prove to be serious in
terms of raising the profile and enjoyment of mathematics at a time when it needs to be
seen as an exciting subject relative to everyday life. Although enjoyment is a key issue, it
has also been suggested that more algebra and geometrical reasoning be added to the
curriculum to help provide students with the skills needed to move on into universities to
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study mathematics related courses. In some minds, the removal of statistics and replacing
it with algebra is just too much to bear!

However, it is widely recognised that statistics, in particular, does have a broader role
and elements of statistical analysis are required in many other subject areas. Although, the
advantages of delivering statistics to relevant curriculum areas can be seen, the issue in
the UK is who will be expected to deliver the statistics elements relevant to each curricu-
lum area? The shortage of mathematics teachers in the UK is common knowledge, so is
it realistic to expect more mathematics teachers to be involved in supporting the teach-
ing and learning of statistics across the curriculum?

One thing is clear: statistics does have a role within the mathematics curriculum and
across the curriculum. The issue is how it can be integrated effectively and how each
aspect can be delivered and assessed. A new infrastructure will need to be put in place to
accommodate the changes and only when the proposed National Centre for Excellence
in the Teaching of Mathematics (NCETM) (Recommendation 6.12) is in place, will we be
given some idea of the future direction of mathematics education in England.
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Teaching trend and regression 
with computer technologies*

Craig Davis
St Hilda’s Anglican School for Girls

Pat Forster
Edith Cowan University

This paper describes the use of technology for teaching and learning trend and
regression. We discuss findings in the research literature and report the introduc-
tion of the regression principle using two Java applets, in one of Craig Davis’
Year 12 classes. As well, we describe the use of graphics calculators for work on
regression in the class. 

Introduction

Computer technologies, including hand-held graphics and CAS calculators and the inter-
net, are used increasingly in classrooms, and the benefits for teaching and learning
algebra and calculus are well documented (e.g., Davis & Forster, 2003). This paper
addresses the benefits for teaching and learning statistics, which are less well recognised.
In particular, we discuss instructional approaches to trend and regression. Findings in the
research literature and from a recent research inquiry in one of Craig Davis’ (first author)
classes are discussed. 

We focus on graphical approaches and consider four aspects of them: the real-life con-
texts of the data, the geometric structures in graphed data, the symbols for statistics
constructs on the graph, and whether graphs can be manipulated directly on the screen.
The four aspects of graphical work are discussed under separate headings in the review,
but in practice they are inter-related and influence learning in combination. 

The social context of technology-use also strongly influences students’ progress.
Important social considerations are whether the pedagogy is student inquiry or demon-
stration by the teacher; and whether open or closed questions are used to guide students’
thinking. The social aspects of technology-use are beyond the scope of this paper but
detailed accounts are provided in Ben-Zvi and Arcavi (2001), McClain and Cobb (2001),
and Davis and Forster (2003). 

Literature on teaching and learning trend and regression

Real-life contexts 

Ainley (2000) reports that, prior to any instruction on trend, eight-year-old students

* This paper has been accepted by peer review.
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recognised trend relationships on a scatter plot of (age, height) data that they produced
on spreadsheets. Explanations for why they perceived trend easily were: the heights of
points above the horizontal axis indicated the height measurements, so literal interpreta-
tion of the graph was valid; and students were familiar with age and height changing
continuously, so inferring the existence of points between the points shown on the scatter
graph (for a continuous trend relationship) made sense. 

Ben-Zvi and Arcavi (2001) report that a class of mixed ability thirteen-year-old students
were slow to perceive the trend in Olympic times for the men’s one hundred metre sprint.
The students were provided with the fastest times for the sprint in each Olympics in the
twentieth century. They graphed the data on spreadsheets but a lot of guidance was
needed before the perceived trend was relevant. The problems were that the data were
discrete, so a continuous trend was counterintuitive, and sprint times for successive
Olympics tended to decrease but did not always decrease (i.e., they showed local irregu-
larity).

Doerr (1999) found that Grade 10 and 12 students rejected trend was relevant for
analysing data that were clearly random. They generated the data by turning out M&Ms
in a cup, counting the number of Ms showing, and adding this number of M&Ms plus the
original ones to the cup, and repeating the exercise. The students were asked to plot the
results of the trials on their graphics calculators and predict the results of future trials.
Students did not accept that the regression models that they fitted were valid for predic-
tion because they knew the results of each trial were random within a range. So, the
students were reluctant to accept as valid the models which they utilised routinely when
randomness in data was not so obvious. 

Chu (1996) reports a study where undergraduate students developed regression
models for pricing diamond rings. Prices of forty-eight rings, and weight in carats of the
diamonds in them, were provided. Typically, students fitted a linear model to the data and
were uncritical of its limitations. They did not explain the negative intercept, which sug-
gested that the price for a ring without a diamond was negative. Discussion led to
establishing that an exponential model was a better fit. 

In summary, the contexts of data determine whether data: 
(a) are discrete or continuous; 
(b) consistently increase or decrease, or show local irregularity; 
(c) are clearly random or are not obviously random; and 
(d) display linear or other mathematical patterns. 
These characteristics of data, which depend on context, influence the ways in which stu-
dents understand trend and perceive its relevance. Further, height data support early
understanding of trend because of the close physical resemblance between the context
and the graph. In all the above studies, the contexts of data were familiar to students, and
this familiarity underpinned students’ analysis. A theme in the research literature is that
using data from familiar contexts is essential for meaningful learning. 

Geometric structures in graphed data

Figure 1a below illustrates the geometric structure of the data used by students in Ainley’s
(2000) study. Each value of the independent variable (age) was paired with a single value
of the dependent variable (height) and covariation between adjacent points on the graph
was consistently positive. The simple structure meant positive trend was easy to discern.
Figure 1b illustrates local irregularity in data, similar to that for data used in Ben-Zvi and
Arcavi’s (2001) study. The rising path of the points in some parts of the graph hindered
students from recognising the decreasing, linear trend. Focussing on specific parts of the
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graph prevented them from perceiving the global property. However, removal of an
outlier and rescaling the vertical axis resulted in students moving forward in their analy-
sis. Both actions made the graph smoother (see Figure 1c), and the scale-change focussed
students’ attention on the graph as a whole because the points shifted as a group.

Figure 1. Data with (a) consistently positive covariation, (b) local irregularity and (c) after removal of an outlier and a scale change.

In a study by Cobb, McClain and Gravemeijer (2003), Grade 8 students were asked to
analyse data for carbon dioxide concentration in air measured several times each year
over twenty-two years, at a given location. Points on the graph were scattered as shown in
Figure 2a. Most students identified an increasing, linear trend and could explain that it
meant carbon dioxide levels had increased over time. They paid little attention to data
above and below their conjectured trend lines. However, in another task with stacked
data, which drew the eye in a vertical direction (see Figure 2b), students described trend
and variation from the trend, and recognised the practical significance of both.

Figure 2. Data showing a positive tend and distribution about the trend.

In Chu’s (1996) study, the diamond ring data were stacked as in Figure 2c. Generally,
students analysed the data in terms of trend and variation from the trend.

In summary, data with a simple geometric structure — where points are close to being
collinear — suits early work on trend. Stacked data can support recognition of trend and
variation from the trend. Both ways of perceiving data are fundamental to statistical rea-
soning (Cobb et al., 2003). 

Symbolisation of constructs 

In Ainley’s (2000) study, students superimposed lines on their spreadsheet graphs using
the drawing tool, and/or utilised the ‘line graph’ capability, so that points on the graph
were connected with segments. The lines and segments pointed to a linear trend, stu-
dents referred to them when describing trend, and they used the segments for prediction.
Hence, the symbols influenced the students’ understanding of trend. In Ben-Zvi and
Arcavi’s (2001) study, students objected to connecting points on the graph of Olympic
data because they knew predictions between available points were inappropriate (their
reasoning was that the Olympics occur only every four years). In any case, utilising seg-
ments between points could encourage flawed understanding because they relate to
particular points, whereas trend applies to data as a whole. 
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Specialised software was used in the Cobb et al. (2003) study and several tools were
available for manipulating the graphs. For instance, students could partition data into ver-
tical slices, and bars appeared at the extreme and median values for data in each slice (as
in Figure 3). The intention was that students would perceive the data were distributed
about the median values. However, students used the superimposed structures in visualis-
ing trend lines and did not focus on distribution. Using the same tool on stacked data
resulted in the intended outcome: students recognised distribution as well as trend. 

Figure 3. Data within vertical slices partitioned into equal sized groups.

The examples highlight that superimposed segments, lines through data, and lines
that partition data can assist students perceive trend relationships. Using the symbols
involves manipulating the graphs on the interface of the technologies, and it is widely
accepted that the manipulation, as well as observation of the graphical display, con-
tributes to learning (e.g., Ainley, 2000; Cobb et al., 2003). 

Teaching linear regression

The comments below are based on systematic research in Craig Davis’ 2003 Year 12
Applicable Mathematics class. Lessons were video-recorded; audio-recordings were made
of students’ one-to-one conversations; work samples and students’ assessment scripts were
photocopied. The claims in this paper are based on analysis of the video and audio data. 

We note that the Year 12 Applicable Mathematics course in Western Australia specifies
that students should understand the least squares principle qualitatively, and should study
linear and exponential models, and residual analysis (Curriculum Council, 2003). Non-
symbolic graphics calculators are required for the course. 

Linear regression with Java applets 

A three-phased approach, using Java applets and a hand-drawn graph on the whiteboard,
was used to introduce the regression principle. Students were familiar with drawing
scatter plots on graph paper and fitting lines by eye, but had not previously been taught
the mathematics of regression. 

The first phase involved whole-class discussion in relation to the Scatterplot applet pro-
duced by MATTI Associates (2003). The applet was accessed live on the Web using a
laptop and the display was projected onto the whiteboard with a data projector. The
display resembled Figure 4a, and summary statistics including the co-ordinates of the
mean point were shown at the side. Points could be added to the graph by clicking
on it, and the line and statistics were automatically updated. 

After adding several points, Craig asked, ‘How do you calculate the line?’. The students
responded that the line should be drawn through the mean point and its gradient calcu-
lated in such a way that the distances were minimised; however, they were unable to
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explain how they would calculate the gradient, or which distances were involved. 
In the second phase, Craig drew a sketch on the whiteboard showing that vertical dis-

tances were used (see Figure 4b) and he asked again how to calculate the line. Students
suggested using the absolute values of the distances to the line and the squares of the dis-
tances, and to sum these. 

The third phase involved demonstrating the squared distances using the ‘least squares’
applet from the National Council of Teachers of Mathematics’ website (NCTM, 2000).
The display was similar to Figure 4c, and the numerical expression for the sum of the
squares was given under the graph. The effect of adding points to the graph and dragging
the line was demonstrated. When asked how to obtain the best line, students said to
‘lessen’ and ‘minimise’ the sum and gave suggestions on how to achieve this (increase the
gradient of the line, etc.).

Figure 4. Graphs used for illustrating the least squares regression principle. 

In summary, the three-phased approach attracted widespread interest and gave stu-
dents the opportunity to infer the least squares principle themselves. We suggest the first
phase was important because it started students thinking about how to calculate the line,
and they were confronted with not being able to come up with a method. The second
phase was important for defining the convention that vertical distances are used: students
cannot be expected to spontaneously know conventions. The third phase served to illus-
trate the least squares principle, and gave students the opportunity to consider what
minimising the squares involves. Using the NCTM applet only would have been quicker,
but would not have allowed students as many opportunities to think through the regres-
sion calculation, so we suggest would not have been as conducive to understanding. 

Aspects of the approach that supported visual learning were: 
• the residuals on the hand-drawn graph (Figure 4b) and squares on the third graph

(Figure 4c) pointed to the regression principle; 
• the applet graphs could be manipulated; and 
• changes in summary statistics and the sum of the squares could be seen. 

A limitation of the approach was that students did not interact with the applets directly:
learning through manipulating the graphs themselves and through their own inquiry was
not open to them. The single computer and single Internet port in the room favoured
the pedagogy of demonstration. Another limitation was that data were treated merely as
points in space and were decontextualised. The applets encouraged a decontextualised
approach because data entry was via the graphs, and scales were not visible (Figure 4a) or
were preset on the second (Figure 4c). 



MAKING MATHEMATICS VITAL: PROCEEDINGS OF THE TWENTIETH BIENNIAL CONFERENCE OF THE AUSTRALIAN ASSOCIATION OF MATHEMATICS TEACHERS

[ DAVIS & FORSTER ]
111

Linear regression with graphics calculators

Graphics calculators were used for: 
(a) graphing data in order to view any pattern in them; 
(b) fitting appropriate regression models and predicting off the models; and 
(c) calculating and graphing residuals. 
Procedures on the calculators were introduced with data that the class created, then, stu-
dents used the technology to work application questions. The calculators were not used
for introducing the regression or residual concepts, and seem to us to offer little that is
useful for introductory work: they do not have inbuilt capabilities for showing the vertical
lines for residuals or squares on the residuals, and the graphs cannot be manipulated
directly. 

All students progressed to being able to produce adequate graphs on their calculators,
and to fit curves and predict from them. However, developing students’ competence
involved considerable class time. One difficulty was the chain of actions to produce a
scatter graph on the Hewlett Packard calculators students were using was long, which
meant that the production of graphs was initially error prone. Added difficulties were that
students could not always decode the error messages, and axes were not generally visible
on the graph. The lack of axes made interpretation difficult, particularly judging if points
were outliers. Difficulty with determining outliers applied to scatter plots and residual
plots. 

Operating on column variables to calculate residuals was also introduced. The method
is efficient for calculating residuals for multiple data. However, at least initially, some stu-
dents had difficulty in following the commands for the calculation. Hence, the
sophisticated use of the calculator, which was readily taken up by some, may have con-
fused others. In summary, while graphics calculators facilitated graphing and calculation,
multiple difficulties were encountered which impacted on students’ progress in the statis-
tics topic.

Conclusion

In review, we have focussed on graphical approaches for teaching trend, and described
four aspects which impact on students’ understanding: 

• the real-life contexts of data; 
• the geometric structures in graphed data; 
• symbols used to indicate trend and distribution about a trend line; and 
• ability to manipulate the graph. 

Ideally, technology-based instruction takes into account all four aspects. 
The MATTI and NCTM Java applets allowed direct manipulation of the graphs, and

the NCTM applet displayed the squares that symbolised the least squares’ regression. The
applets did not favour the use of ‘real-life’ data. The graphics calculators suited the use of
‘real-life data’ but direct manipulation of the graph was not possible, and symbols for
regression were not available. These properties of the technologies determined that the
applets and not the graphics calculators were used for introducing regression; and the
single Internet port and computer in the classroom determined that the introduction was
by demonstration. 

Hence, technologies enable and constrain instruction and critical awareness of their
affordances for learning is warranted. 
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Take ’em out of the equation:
Student understandings of ‘cancelling’*

Judith Falle
O’Connor Catholic College, Armidale, NSW

Questioning during interviews with students about their responses to a set of
algebra test items revealed a range of understandings of the concept of cancelling.
Although most students could apply a ‘cancelling’ procedure, their explanations
revealed a very limited understanding of when to cancel, often coupled with a false
use of the concept to include negation of one term by another. This paper discuss-
es some examples that illustrate how students understand the procedure of
cancelling and the meanings they ascribe to it. 

During interviews conducted as part of a study of students’ early algebraic understand-
ings, some students, unprompted, used the term ‘cancelling’ in two mathematically
different contexts. Further questioning revealed a range of understandings, and misun-
derstandings, of the concept of cancelling and its applicability. Although most of the
students could apply a ‘cancelling’ procedure, either wholly or in part, their explanations
revealed a very limited understanding of when to cancel, often coupled with a false use of
the concept to include negation of one term by another. This paper discusses some exam-
ples that illustrate how students understand the procedure of cancelling and the
meanings they ascribe to it. The implications of these student understandings are dis-
cussed and some teaching strategies to assist students to understand the concepts behind
mathematical terminology are suggested.

Background

Working mathematically includes learning to use the appropriate language of mathemat-
ical discussion, that is, to develop a particular ‘register’ (Pimm, 1987) in which students
communicate mathematical ideas. Bills (2002) found that students who have greater
mathematical success tend to emulate the speech patterns and use the vocabulary of their
teachers as they gain greater understanding. However, as this study shows, the use of the
correct vocabulary does not necessarily indicate a deep understanding of the mathemat-
ical concept signified by the words. Asking students to explain further what they meant by
the terminology used, revealed the existence of underlying concepts that may well hinder
their mathematical progress.

Students’ algebraic conceptualisations have provided a rich field for research

* This paper has been accepted by peer review.
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(Bednarz, Kieran & Lee, 1996; Kieran, 1992; Kuchemann, 1981). Much of this research
has focussed on how students solve equations and the development of their understand-
ing about algebra. To a lesser extent, the research has also considered the difficulties
students encounter when learning to deal with algebraic expressions and equations
(Kieran, 1992; Matz, 1982). Classroom experience would suggest that students find the
concept of algebraic manipulation without a closed end-point a far more difficult idea to
grasp than that of solving equations (Hall, 2003). 

Hall (2003) examined students’ reasoning for the final simplification of an algebraic
fraction involving two quadratic expressions. The major concept with which they had dif-
ficulty was ‘cancelling’. The research described in this paper suggests that this concept
presents further difficulties in understanding by students and that these difficulties may
be partly attributed to the ways in which the idea of cancelling and related concepts are
conveyed by the language used in the classroom.

Understanding of one’s natural language structures facilitates algebraic understanding
(MacGregor & Stacey, 1994) as students learn to appreciate the syntactical and semantic
structure of expressions and equations. Natural language in the classroom acts as a medi-
ator between mental processes and the symbolic systems of mathematics and as a
mediator between experience and mathematical concepts (Boero, Douek & Ferrari,
2002). It is through an increasing command and understanding of their everyday lan-
guage that students are able to comprehend and articulate mathematical ideas and
develop a mathematical register. Teachers provide a model of mathematical behaviour,
including the use of appropriate vocabulary and linguistic structure that accurately
conveys mathematical concepts.

Even the best-planned and clearly-explained lessons do not guarantee that students
have learned what the teacher intends. The ideas of teachers are filtered by the students’
own experiences, beliefs and behaviours. Therefore teachers need to have an understand-
ing of ways in which their students might conceptualise mathematics in order that they
may adjust their teaching so that students may better learn (Even & Tirosh, 2002). One
way in which this understanding can develop is to examine the errors that students make
by asking students to explain their thinking and by probing the understandings behind
the language used. The following excerpts demonstrate how this technique revealed
student conceptions of the process of cancelling. 

Methodology

The audiotaped interviews, from which these excerpts are taken, were part of a larger
study which focussed on the language used by secondary students in Years 8, 9 and 10
describing their responses to a range of algebra items. The items were adapted from
selected syllabus examples in the NSW Mathematics Years 7–10 Syllabus (BOSNSW, 2001).
Some items used by Kuchemann (1981) were also included. Thirty-three students from
three different secondary schools in a NSW country town sat a pen-and paper test com-
posed of forty of these items, and administered by their class teachers. From the results of
the test, students who were variously successful, and who were willing to be interviewed,
were selected. The interview protocol consisted of a set of standard questions based on
test items, and these questions were supplemented by the interviewer as needed, depend-
ing on the responses of the students. Sixteen of the students interviewed spontaneously
used the term ‘cancelling’ to describe the process they used in four questions which
required students to transform expressions. The questions, identified by the numbers
assigned them on the test were:
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Question 7: (a – b) + b
(During the interview, students were also asked to respond to other
transformations of that expression, namely: 
a – b + b; b + a - b; -b + a + b; b – b + a; -b + b + a.)

Question 8: 

Question 12: 

Question 16: 

The responses from the interviews typify the following conceptions of ‘cancelling’: 
• cancelling is a physical process; 
• terms have to be the same letter or number in order to be cancelled; 
• a negative number cancels a positive number of the same value; 
• terms cancelled are seen as unnecessary; 
• zero and one are confounded. 

Each of these is discussed in the following sections. Students have been identified by a
number, S1, S2 and so on. The interviewer is identified as I.

Discussion of examples of student explanations of ‘cancelling’

Cancelling is a physical process 

The student operates on the appearance of the expression to make it look simpler.

I: What does cancelling mean?
S1: Taking it out, to make it simpler.
I: What do you mean ‘taking it out’?
S1: Oh… um, I don’t know why, I’ve just been taught like. If you have, if you have 100

divided by 10, you can like, 100 over 10. You can cross out one of those zeros on the
top. It’s simplifying it. 

I: Why can you just cross things out?
S1: I don’t know. It’s a maths thing. I’ve just been taught whatever you do to the top you

can do to the bottom. 

This student [S1] conceptualises the process as one that involves the mere physical
removal of mathematical symbols. There is no connection to any mathematical ideas, but
the following of a rule that is partly remembered and applied whenever an algebraic frac-
tion is encountered. This appeal to authority occurred frequently, and is illustrated
further in the responses of students S2, S6 and S11.

The following extract, from the responses of student S3, on the other hand, does asso-
ciate the physical removal of terms with division, but only metaphorically. The use of the
expression ‘like division’ indicates that the student does not fully understand that can-
celling is, in fact, the mathematical process of division. 

I: You mentioned something about cancelling in Question 8, [ ]. What do you
mean?
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S3: It means there’s one b there and one b there, so you can scratch them both out. It’s
like dividing them, and there’s two fours so you can scratch both them out because
they’re the same, and there’s no a. So you are just left with a.

Terms have to be the same letter or number in order to be cancelled

Student S3 recognised that in order to be ‘cancelled’ the symbols have to be ‘the same’.
If the symbols are different, then no cancelling can occur. This comment was articulated
many times as the following three examples illustrate.

S4: You can get rid of something because you don’t need it, to make the expression, the
answer easier… if there are two similar things you can cancel them both out, but if
they are different you can’t cancel them but if they are the same you can.

Student S2 explained why, in Question 8, [ ], b and 4 could be removed.

S2: Well, by cancelling them out because they cancel each other out.
I: What does it mean though?
S2: Because you have something that’s on the top and something that’s on the bottom

that are the same. You can cut them out of the equation.
I: Why are you cutting them out? That doesn’t sound very mathematical.
S2: I don’t know. I have no idea. I kind of just remember what I’m told and use that.

Student S5 could deal with Question 8, but the presence of no identical terms in Question
16 presented a problem.

S5: Six times, oh 6 over ab [ ]. I just times the top and put it over the bottom. 

The same with number 16, [ ]. I do 10 divided by 4a squared… yep.

I: Could I do any cancelling in 16?
S5: No, there aren’t any like terms, because like a squared. Oh, you could, you could

put 10 over 4a, can you? I think, I dunno.

Student S5 saw, with prompting, that the terms with a could be cancelled, but stopped
short of factorising the 4 and 10, or recognising that there was a common factor which
could be divided into both 4 and 10. Student S6 on the other hand saw a and a2 as differ-
ent terms, unable to be ‘crossed off’. This may not be without a certain logic, as students
have been taught that a and a2 are different terms in the context of addition and subtrac-
tion. 

S6: And 16? Wouldn’t have a clue. You have to divide the 2 and a squared somehow and
5a in 4.

I: How is Question 16 different from Question 12?
S6: Maybe you could do 2 times 5a is 10a and a squared times 4 is 4a squared, so 10a

over 4a squared. 

The concept of cancelling as ‘crossing off’ identical symbols results in students extend-
ing their ‘rule’ to the elimination of positive and negative terms of the same value. For
example, Question 7, [(a – b) + b] on the test paper and the set of related expressions pre-



MAKING MATHEMATICS VITAL: PROCEEDINGS OF THE TWENTIETH BIENNIAL CONFERENCE OF THE AUSTRALIAN ASSOCIATION OF MATHEMATICS TEACHERS

[ FALLE ]
117

sented during the interviews, as described above, produced the following types of
responses.

A negative number cancels a positive number

The students S8 and S5 had decided that all of the expressions presented as transforma-
tions of Question 7 [(a – b) + b] could be simplified to a:

S8: Because you’ve got a plus b and so when you a minus b, it’s minus b plus is just,
there’s no b, so like that cancels out.

S5: Except for that one [-b + b – a], because the bs are cancelling each other out.
I: What do you mean cancelling each other out?
S5: Because of this one, it goes a minus b and then plus b, so, if you take it away and

then put it back again, it, it doesn’t do much.
I: Doesn’t do much?
S5: No.

This last remark of student S5 that a particular term, if able to be ‘cancelled’, was
unnecessary, was also made by students S4 (see above), S11 (see below), S10 and S9.

Terms cancelled are seen as unnecessary

This would indicate that the students understand expressions as instructions to do some-
thing rather than as statements of relationships between numbers. They have what Kieran
(1992) calls an operational understanding of expressions. 

S10: Well, the ones that have a minus b plus b, the bs like cancel. Like there’s no point in
minusing if you are just going to plus it again. And, yeah, like the same b plus a and
then minus b again. There’s no point in putting it there in the first place, you might
as well just cancel it out.

S9: For the second one, the answer would just be a, because plus b and minus b sort of
cancel each other out.

I: Cancel each other out?
S9: If you have minus b plus one [b] makes zero.
I: Is zero the same as cancelling?
S9: Zero is, it doesn’t really count as anything.
I: Zero doesn’t count as anything?
S9: Well, you write it… you don’t. You don’t write it. It doesn’t count for anything.

For student S9, there is a perception that zero is ‘nothing’ rather than ‘no number’
and so doesn’t matter. That is, zero has no mathematical significance. Associated with this
dismissal of zero are the statements made be Students S3 (above) and S11 and S12
(below).
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Zero and one are confounded

S11: I’d cancel. For those, say 8 [Question 8], you’d cancel the bs and cancel the 4s
because they immediately cancel each other out being in the division: b divided by
b equals zero and 4 divided by 4 equals zero. Well, technically it equals one, but you
don’t need to write that.

I: What is the difference between one and zero?
S11: Oh, I don’t know. It’s in my head. I know it. I know the technical terms and stuff

but...
I: If b goes into b once, if 4 goes into 4 once, how do I get zero out of that?
S11: I don’t know. It’s just the way I’ve been taught, the way that I know it. It’s stored in

the back of my head that you don’t need that any more. Those cancel each other
out and you end up with a.

Further confusion of division with subtraction, felt by student S12, may be because of
partly remembered index laws:

S12: These ones? The bs cancel each other out?
I: What do you mean by cancel out?
S12: [Be]cause it’s division and b minus b is just nothing, and so it’s 4a over 4 which… I

think you can cancel out the fours to a.

The examples chosen represent responses that indicate important misconceptions or
muddled conceptions by students. They need not be statistically representative. Other stu-
dents interviewed demonstrated similar understandings, but did not express their ideas
so explicitly. It was the use of the technical term ‘cancelling’ that drew the writer’s atten-
tion to these instances.

Conclusion

Some of the issues raised in these examples are, in no particular order: a student’s appeal
to authority as justification for the application of a poorly understood procedure; a per-
sistent and pervasive operational concept of the manipulation of algebraic expressions;
the tendency of students to abbreviate rules to phrases such as ‘do the same to the top
and bottom’ where the subtleties, clarity and accuracy of meaning are lost; the implica-
tions of the use of natural language expressions such as ‘get rid of’ which implies a
physical process to remove something which is unnecessary; and the lack of connections
made between mathematical skills, in this case the lack of connected understanding of
factorising, division within terms and the significant distinctions to be made between zero
and one. 

Teachers become complicit in the continuation of some of these misapprehensions by
using natural language, interpreting the students’ own, often casual lay language and
even going along with it. This is not to advocate a pedantic use of strictly formal mathe-
matical language, but rather that teachers develop a greater consciousness of the
structure of their own language and the terminology they use or accept from students.
Perhaps the use of the troublesome words such as ‘cancelling’ should be avoided. The
word might be replaced with the conceptually more useful phrase, ‘divide the same factor
into the top and bottom of the expression’. This could avoid the students having to deal
with ‘like and unlike’ terms such as a and a2. It would also consolidate their understand-
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ing of factorisation and its power in enabling algebraic transformations.
Discussions in the classroom can help reveal student conceptions, but only if teachers

listen carefully and avoid the temptation to dismiss (as merely colloquial or vernacular
laziness) statements such as ‘[be]cause it’s division and b minus b is just nothing’ or ‘you
can take it out of the equation’. Behind these words lie constructs that may well inhibit
students’ mathematical progress. If teachers have an understanding of how language
works, they may pay greater attention to the way students phrase explanations and what
this may reveal about their understanding. They may also take care to model an appropri-
ate mathematical register that ‘provide[s] students with appropriate linguistic expression
to fit their thinking process’ (Boero, Douek & Ferrari, 2002, p. 263) to encourage the
development of clear, logical, and accurate mathematical ideas.
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SAFEly does it with CAS:
Where have we been, where are we going?

Sue Garner
Ballarat Grammar, Vic.

The ‘SAFE team’ of Sue Garner, Allason McNamara and Frank Moya has used dif-
ferent types of computer algebra systems (CAS), integrated into the senior
mathematics classroom in the new subject: Mathematical Methods CAS Units 1–4,
as part of the Victorian Curriculum and Assessment Authority (VCAA) CAS Pilot
Study. Each of the classes involved has undergone a clearly observable change in
the way teaching and learning takes place. This paper focusses on the history, up
to the current time, of the use of CAS in the Victorian mathematics classroom, and
also looks to the future. The current experience of the author, as teacher, will be
shared, with examples of the types of tasks and problems that are suited to a math-
ematics course where students have unrestricted access to CAS. Approaches to
solving these tasks, using hand-held and computer-based CAS, are discussed.
The use of computer algebra systems in the teaching, learning and assessment of
senior mathematics, as part of the VCAA CAS Pilot Study, has resulted in a strong
link between the classroom use of CAS and the high stakes assessment at the end
of the VCE. It has been observed that the students using CAS are more confident
in exploring previously unseen functions and move more easily between the repre-
sentations of graphic, numeric and symbolic solutions. 

Introduction

The author of this paper maintains that the integration of computer algebra systems
(CAS) into senior mathematics, as part of the Victorian Curriculum and Assessment
Authority (VCAA) CAS Pilot Study, has resulted in clearly observable changes to the way
that teaching, learning and assessment takes place in the final two years of secondary
school mathematics in Victoria. A teacher’s response is, ‘I don’t any more teach the big
introductory lesson with the notes and heading on top. That’s gone. All changed in a
year,’ (Garner & Leigh-Lancaster, 2003, p. 376).

As CAS can perform algebraic manipulations, such as solving and differentiating a
function, one of the most common questions asked by the educational community is
whether students will lose ‘by-hand’ algebraic skills. This is discussed in Flynn, Berenson
and Stacey (2002).

Extensive research has already been undertaken during the 1980s about the expected
loss or gaining of skills with the free use of calculators in the classroom (AAMT, 1987).
The current research extends this question to the use of scientific, graphic and now CAS
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technology in the classroom (see Asp & McCrae, 2000). The introduction of the scientif-
ic and subsequently the graphic calculator in Victoria
(www.vcaa.vic.edu.au/vce/studies/MATHS/caspilot.htm), also resulted in changes to
teaching and learning styles, but it is our belief that the symbolic capability of CAS ‘allows
students and teachers alike to explore algebraic functions in ways that were previously
unattainable at secondary school level, and allows teachers to introduce mathematics in
different ways’ (Garner, 2004a, p. 28).

The concept of the congruence (see Leigh-Lancaster, 2000) between teaching, learn-
ing and assessment illustrates how CAS has been accepted into the classroom with CAS
not only being used in internal assessment tasks, but also being assumed in ‘high stakes’
assessment examinations at the end of the VCE in Victoria. 

The VCAA CAS Pilot Study

Mathematical Methods CAS Units 1–4 were accredited in February 2001 as a new VCE
subject, with pilot implementation beginning in three initial schools covering co-educa-
tional and single sex, city and regional, government, Catholic and independent.
Seventy-eight students sat the first Units 3 and 4 (Year 12) examinations in this new
subject, at the end of 2002. There has been an increasing student enrolment from 2003
to 2005. At 2006 the new VCE Study Design will take over, with an expectation of about a
10–15% uptake across Victoria of the new subject Mathematical Methods CAS. The
impact of this will be felt over all three Year 12 mathematics subjects, as those students
using CAS in Maths Methods will also be allowed to use them in the technology assumed
sections of the exams in the other two subjects; the easier Further Mathematics and more
difficult Specialist Mathematics. 

The initial stage of the pilot proceeded under the auspices of the CAS-CAT project
2000–2002, with the Department of Science and Mathematics Education (DSME) at the
University of Melbourne (see www.edfac.unimelb.edu.au/DSME/CAS-CAT) and VCAA,
with the support of three calculator companies: Casio, Hewlett-Packard and Texas
Instruments. The expanded VCAA Mathematical Methods (CAS) Units Pilot Study
2001–2005 (www.vcaa.vic.edu.au/vce/studies/MATHS/caspilot.htm) integrates the use
of CAS in the curriculum, assessment and pedagogy of a senior secondary mathematics
VCE subject. This paper shares some reflections on the change in the approach to teach-
ing and learning that has been experienced in the classrooms of Ballarat Grammar,
Methodist Ladies’ College and Frankston High School in Victoria as a result of the early
journey of using CAS in the classroom. There is now a steady flow of publications about
the impact of CAS on the student, the teacher, and on assessment (see Evans, Norton &
Leigh-Lancaster, 2003; 2004; Flynn & Asp, 2002; Garner, 2002, 2003, 2004b; Garner &
Leigh-Lancaster, 2003; Garner, McNamara & Moya, 2003; Pierce & Stacey, 2002; Pierce,
Herbert & Giri, 2004). 

Observation of the expanded VCAA Pilot has led to a decision made at the VCAA
Board meeting (October 2003) stating that:

…the current VCE Mathematics study structure and relationship between VCE math-
ematics studies continue for the next accreditation period, with the inclusion of
Mathematical Methods (CAS) as a parallel and alternative study to Mathematical
Methods, available for all schools from 2006. Thus, from 2006, Mathematical
Methods (CAS) Units 1–4 can be implemented by all schools at a time suitable to
them. (VCAA, 2004, p.1)
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The new Study Design for the VCE to commence in 2006 includes the option of using
CAS in all three Units 3 and 4 subjects: Further Mathematics, Mathematical Methods and
Specialist Mathematics. A consultation process is currently ongoing about the introduc-
tion of a technology free one-hour examination for the latter two subjects (VCAA, 2003). 

Where have we been?

It appears that any change in education is twinned with its critics and supporters. There
will be teachers at either end of the spectrum: those who absorb change easily, and those
who wait until research proves the efficacy of the change, or when curriculum developers
make the final decision. Being part of the pilot study has provided an intense journey of
learning and changing, both mathematically and technologically. Scientific and graphic
calculators have been introduced into the mathematics classroom within the one genera-
tion of teachers. CAS now provides either a challenging incentive to change classroom
practice yet again, or another reason to stick strictly to a transmission teaching style,
passing the knowledge in one direction only from teacher to student. In the authors’
experience this ‘traditional’ style of teaching does not gel with a power balance that is
increasingly changing in favour of the student. The viewscreen, not the teacher, becomes
the central focus of the class. The students are quick to learn the techniques of using CAS.
It could be tempting to teach the calculator techniques as just another knowledge base to
be learned. Galbraith (cited in Geiger, Galbraith, Goos & Renshaw, 2002) writes that we,
as educators, should be careful of the tendency to merely replace maths with technology,
thereby adopting the tyranny of the screen to replace the tyranny of the textbook.
Teaching students the ‘whiz bang’ approach of all the processes that a calculator contains
puts the procedural load on the student ahead, and at the expense of, the conceptual
load (see Geiger, Galbraith, Goos & Renshaw, 2002).

Issues

The positive aspects for the student of using technology can include concentrating on
conceptual aspects, using different representations simultaneously, and allowing realistic
modelling. Negative consequences can include a more demanding curriculum, a dimin-
ished role for teachers and the loss of by-hand skills (Oldknow & Flower, 1996, pp.
43–46). It can be said that CAS is just another technology tool that follows the same
journey of scientific and then graphic calculators, however we consider that this change
has more far-reaching consequences:

Considering the scientific calculator using numerical representation, the graphics
calculator extending to graphical representation, and the CAS calculator including
symbolic representation as well, it could be said that this transition to CAS calculators
will likely be more influential. This is because the transition is not just another part
of a continuum, but that CAS incorporates all three representations and completes
the continuum. (Garner, McNamara & Moya, 2003, p. 255)

Context of three schools

Students in Year 12 at Ballarat Grammar had access to the Casio FX 2.0+ calculator for
over two years and sat their final examinations in November 2002 in the new subject
Mathematical Methods CAS. Frankston High School and Methodist Ladies’ College are



MAKING MATHEMATICS VITAL: PROCEEDINGS OF THE TWENTIETH BIENNIAL CONFERENCE OF THE AUSTRALIAN ASSOCIATION OF MATHEMATICS TEACHERS

[ GARNER ]
123

part of the expanded pilot with their students sitting their final Year 12 examinations
using CAS respectively in 2003 and 2004. Frankston High students use the TI92/Voyager
and the PC-based Derive, while MLC students are using the PC-based Mathematica. It has
been found, in the three schools, that there is a wide variety in methods of learning that
occurs in the CAS classroom, and the teachers have also experienced a changed culture
in the senior mathematics classroom when students are using the CAS in all aspects of
learning and assessment (see Garner, 2003a). Students, as part of the VCAA Pilot Study,
learn the use of the Casio FX 2.0+, TI-89, TI-92, Mathematica or Derive-based CAS, but CAS
is ultimately the vehicle for the exploring of the mathematical content. Students are
content with learning the calculator skills and syntax as the learning progresses. 

A significant example of this is defining a function. All CAS technology has the facili-
ty to define a function before a question is attempted, thereby allowing ease of use as the
technology differentiates or solves using these functions. This avoids the typing in of a
function on several occasions throughout a longer multi-stage problem. It also allows the
defining of further functions that have been created in the solution. It has also been
found that successful students are fully integrating this new technology into their mathe-
matics learning and that they become masters at selecting when it is wise to use CAS, when
it is better to use CAS and ‘by-hand’ skills combined, and when it is quicker to do a
problem by hand alone.

Students

At Ballarat Grammar the 2001–2002 cohort of students in the pilot study were asked ques-
tions about their use of CAS. A question and some answers recorded in focus groups in
February 2003 are presented here.

Interviewer: Did you usually use the CAS menu or by hand algebra as your first
attempt at an algebraic question?

Students: Depends really.
Interviewer: Can we go around and each say?
Student 1: CAS.
Student 2: It depended if it was a really complicated… just use CAS.
Student 3: Definitely the same.
Student 4: Yeah, it depended on the size of it and if you were going to write it out

or just use CAS.
Student 5: If it was just practice or homework type of thing, to try and keep my by

hand skills up by doing it by hand and if I couldn’t, do it by the calcu-
lator and then by hand; sometimes I just got too lazy.

Student 6: Well, I’d have to say by CAS; my maths skills are pretty down hill I must
say… it’s just a confidence thing I thought… yeah.

Student 7: It would just depend, when you first looked at it if you thought it was
worth using CAS or not. Sometimes, I would get half way through a
question and I was doing it on CAS and I realised it would be easier to
do it by hand anyway.

Student 7’s answer is a common response. It is tempting to use the CAS for all ques-
tions, but as students become wiser users they become clearer as to where the advantage
is in having the open choice of a CAS in their hands at all times. 
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Colleagues

At the Mathematical Association of Victoria (MAV) Annual Conference in December
2003, a question was asked: why was the initial introduction of CAS described as
‘onerous’? The teacher responded:

Because [name] had the big job. She had to plan all the work and assessments, do all
the marking and do all the networking and training by herself. She had to take the
school along with her confidence: the school, administration, teachers, students, and
parents. And she was delighted with the results. So that has given her the confidence
for this year. Which is just as well because I have hounded her all year to ask ques-
tions, send students upstairs to interrupt her yet again to ask, ‘How does that
particular syntax go?’ (Teacher A, spoken at MAV conference 5 December 2003).

That same teacher went on to say in answer to another question from the floor:

I was terrified because I was new to Methods as well as to CAS and I am well aware
that the students know that [name] is the expert. I said to them, ‘Let’s go on a
journey together.’ I now know that there were bits I should have emphasised more,
but I am looking forward to next year. Yes, I have taught in a really different way and
things keep cropping up (Teacher A, spoken at MAV conference 5 December 2003)

As in any innovation in teaching, the level of collegiality is vital in taking a school on a
journey of change. In introducing CAS into the classroom, the confidence of teachers in
the mathematics faculty, and the parents of the students, is most important, especially for
the early parts of the journey. And most importantly the students need to be keen to travel
the journey. The high stakes assessment that faces them at the end of VCE is often part of
the path to a career that has been planned for some years. This means that students need
to feel confident in their chosen subjects, including Maths Methods CAS.

Student voice

Listening to students as they work with CAS is informative and often amusing. These snap-
shots of student conversation were transcribed in Maths Methods classes during 2004.

• ‘How good is it? I’ve converted [name]. He loves it. [To another student] How do
you work it out? In my head. Do you do Specialist? Yes. Well, you’re not allowed to
join the party.’

• ‘You can do it [trig equations] by hand which is probably quicker and easier.’
• ‘Can you set the domain for the k value [parameter] in CAS? No, you have to think!’
• ‘I like [name]’s way of using the pi on six scale. That’s nice, I like that. But you have

to have an idea of where you are going first.’
• [Talking about dependence on CAS] ‘It starts like that and you end up like grab-

bing it to get a fix! Can [name] use your CAS? He’s getting withdrawals.’

Where are we going?

Frank Moya, a teacher using Derive, is quoted in The Age as saying, ‘Traditionally mathemat-
ics courses have focused on how to perform particular mathematics procedures and
algorithms. With this technology there can be a greater focus not just in how to perform an
operation but when you should use that operation and why it works,’ (The Age, 2004a, p. 9).
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Technology free exam

It is expected that assessments in Victoria from 2006 will have a technology-free compo-
nent to balance the technology assumed exam. Decisions made at the VCAA Board
meeting (October 2003) state that:

The VCAA approved, in principle, the recommendation from the Mathematics
Expert Studies Committee that each of Mathematical Methods, Mathematical
Methods (CAS) and Specialist Mathematics have a technology free examination and
a technology assumed access examination (approved graphics calculator or CAS as
applicable)… subject to consultation on models for these examinations with key
stakeholders. (VCAA, 2003b, p. 7)

During a by-hand skills test during 2003, students were heard to say:
• ‘Can we just have our CAS please for two minutes?’
• ‘This is really hard: go on Garnsy, just give us two minutes, time us.’
• ‘Watch us fly with our CAS; see how much we can do.’
• ‘You do use by-hand in CAS. You use your hands to type it in!’

Analysis questions

The SAFE team is writing analysis questions for use as supplementary text material for the
subject Mathematical Methods CAS Units 1–4. The questions perfect party balloon and grey
spot in this section reflect what the team of authors had to consider when writing materi-
al for a course where CAS has changed how teachers teach traditional topics. Grey spot also
shows how CAS can be used in new material introduced into the Maths Methods CAS
course (Garner, McNamara & Moya, 2004b).

Making mathematics connect

Notes taken at the Heads of Faculty meeting held at Ballarat Grammar in June 2004,
stated that in using CAS the following advantages are observed: 

1. CAS suggests the mathematics (using exact and approximate solutions)
2. Observing patterns in CAS leads to the mathematics 
3. The big picture approach is supported by CAS 
4. CAS supports a more unified approach to the curriculum 
5. Learning algebraic and CAS methods together leads to more complete and

flexible understanding of a concept and algorithm. (Morphett, 2004)

The perfect party balloon question illustrates the above points, especially the use of exact
and approximate solutions to observe patterns, and the use of the big picture to intro-
duce the concept of differentiation. Figures 1 to 9 illustrate the step-by-step solution using
the Casio FX2.0+.

Perfect party balloon 
A birthday party is planned and balloons are bought. These balloons have been especial-
ly ordered to be exactly spherical in shape when blown up. The organisers at the party
note that the formula for the surface area (A) of a sphere is A = 4πr2.
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1. What is the exact value of the surface area of the balloon that has a radius of 1 cm?

A = 4π cm2

2. What is the exact surface area of the balloon that has a radius of 10 cm? 

A = 400π cm2

3. Sketch a graph for A(r) = 4πr2, r ∈ (0,15).

Point (6.31,500) required in 4. shown in next graph.

4. From the graph of A(r), calculate the values of r, correct to two decimal places, when
A = 500, 1000, 1500, 2000, 2500 cm2. 

The children at the party become bored with their party games and become intent on
finding the perfect party balloon. They fill in a table similar to the one below, tracing the
rate of change of the surface area as the balloon increases in radius. 

5. Fill in their table below by finding the gradient of the curve A(r) at
r = 2, 4, 6, 8, 10, 12, 14, giving your answers correct to two decimal places.

Screenshots showing the first and last gradient at r = 2 and r = 14 as required in the table
below.

r 2 4 6 8 10 12 14

rate of change of
surface area wrt radius 50.27 100.53 150.79 201.06 251.32 301.59 351.85

r 6.31 8.92 10.93 12.62 14.10

A 500 1000 1500 2000 2500
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The children notice that these values increase approximately linearly, a pattern that
intrigues them. To further investigate this relationship the children are shown that their
calculators can calculate this rate of change value, calling it , the derivative of A with
respect to r.

6. Using this notation, fill in the table below, using exact answers.

7. Find the general form for , the derivative of A with respect to r. 

Show that the exact answers in the table above match the formula found.

8. Sketch the graph of , for r ∈ (0,15).

A further relationship is investigated, when the children are told that the formula for the
volume of the balloon is 

r 2 4 6 8 10 12 14

= rate of change of

surface area wrt radius
16π 32π 48π 64π 80π 96π 112π

8π × 2 
= 16π

8π × 4 
= 32π

8π × 6 
= 32π

8π × 8 
= 64π

8π × 10
= 80π

8π × 12
= 96π

8π × 14
= 112π

r 2 4 6 8 10 12 14

= rate of change of

surface area wrt radius
16π 32π 48π 64π 80π 96π 112π
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9. Find the general form for , the derivative of V with respect to r.

10. Write down the exact answers in the table below for , for r ∈ (0,15).

The children notice that these values increase in a pattern that they investigate.

11. Sketch the graph of , and V(r) on the same axes, for r ∈ (0,15).

12. Help the children by commenting on the relationship between these two graphs.

Making mathematics easier 

The example grey spot shows how to set up a piecewise linear function using one equation
with the aid of a CAS, some matrices and absolute value functions. The solutions in this
section are produced with Mathematica, a computer based CAS.

Grey spot
Granny Smith is travelling on a pensioners’ bus, from Bendigo to Melbourne. It is sup-
posed to travel at 100 km/h from Bendigo to Kyneton for 48 minutes and then stop at
Kyneton for 1 hour. It then is supposed to travel at 90 km/h from Kyneton to Melbourne.
This section of the journey usually takes an hour.

1. Write a rule for the distance, g(t) km, Granny Smith is from Bendigo at time t hours
if the journey goes as expected. Use a hybrid function.

r 2 4 6 8 10 12 14

= rate of change of

surface area wrt radius
16π 64π 144π 256π 400π 576π 784π
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2. If the bus leaves Bendigo at 1.00 pm, what time will it be passing Woodend, a town
which is 90 km from Bendigo? Give your answer to the nearest minute.

The bus will be passing Woodend at 2:55 pm.

The above rule is the traditional approach used to solve problems of this nature. Try
setting up the following, as g can also be written as an absolute value function, g2 with the
rule:

g2(t) = a|t – v1| + b|t – v2| + c|t – v3| + d, where a, b, c, d, v1, v2 and v3 are real constants.

3. Write down the corner values v1…v3.

v1 = 0, v2 = 0.8 and v3 = 1.8.

4. Complete the missing rates of change values in the following matrix.

5. Solve this system of simultaneous equations.

a = 95, b = -50 and c = 45

6. Find the value of d correct to one decimal place, if g2(0) = 0.

d = -41
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7. Hence write down the rule for g2.

g2(t) = 95|t – 0| – 50|t – 0.8| + 45|t – 1.8| – 41

8. Sketch the graph of g2 for the journey.

9. Use this rule to confirm your answer to question 3.
The bus will be passing Woodend at 2:55 pm as expected.

Conclusion

The author of this paper is passionate about using CAS to enhance the teaching and
learning of mathematics. Her involvement in the VCAA CAS Pilot Study has been an
exciting development for her and for her students. The unrestricted use of CAS has led
to dramatic changes in pedagogy and assessment in each of the schools. CAS has proved
to be a powerful learning tool that allows students to move between numeric, graphical
and symbolic representations of a problem. It also allows students to observe patterns and
explore concepts. The focus of the algebra in senior mathematics courses previously has
been on how to carry out mathematical procedures, such as solving equations or differ-
entiating and integrating functions. CAS has made it possible to increase the emphasis on
the understanding of concepts and on helping students to decide when and why it might
be appropriate to apply a particular procedure, or a particular technique, be it CAS or by-
hand. ‘Unrestricted access to CAS has challenged us, as educators, to start inventing new
paradigms for the teaching and learning of senior mathematics’ (Garner, McNamara &
Moya, 2003, p. 271).
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A report in The Age (7 June 2004) states that, 

CAS allows students to acquire a deeper understanding of the discipline. Students
have a focus on understanding the conceptual framework, instead of rote learning.
When confronted with new and unseen problems they can apply what they know to
the new situation. (The Age, 2004b, p. 6)

This can be thought of as using algebra to prove a mathematical conjecture, and then
using CAS to provide the answer. In this context, CAS does not replace the mathematical
learning process, but enhances it.
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Drawing sense out of fractions*

Peter Gould
New South Wales Department of Education and Training

Many students consider that learning fractions has little to do with making sense.
Indeed, the arithmetical operations performed with fractions (addition, subtraction,
multiplication and division) appear to be ‘a dance’ carried out with whole numbers.
Students’ reasoning with fractions is often dominated by arcane whole number
manipulations that appear to work best when you suspend reasoning. What kinds
of experiences help students to show us what they really believe fractions are? How
can we assist them to understand that the two numbers that compose a common
fraction (numerator and denominator) are related through multiplication and divi-
sion, not addition?

Introduction

Although the role of calculating with fractions has changed over the years, fraction
instruction frequently remains focused on symbolic computation. If students see two frac-
tions they usually attempt to add some numbers, subtract some numbers, multiply
numbers or invert and then multiply some numbers. In each case the procedure that they
carry out involves doing something with integers. Perhaps it is not surprising that many
students do not have a strong sense of the size of fractions. After all, the operations that
they carry out with fractions are usually about counting or operating with whole numbers.

The limits of attempting to memorise rules for manipulating symbols in fraction calcu-
lations are well documented in large-scale assessment programs. Moreover, it is clear that
a focus on symbolic computation does not ensure that children can connect those rules
to their conceptual understanding of fractions. For example, children often conclude
that the fraction one-fifth is larger than the fraction one-third because of the whole-
number interpretation that five is greater than three. 

Clouds in my eyes

I was listening to the weather report recently, when I heard the forecaster describe the
current situation as ‘three-eighths cloud cover’. As I had been thinking a great deal about
how to best teach fractions, I began to wonder what people would think of when they
heard the statement ‘three-eighths cloud cover’. What image does it conjure up for you?

* This paper has been accepted by peer review.
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As teachers, we seek to understand how children think, before, during and after we
teach. This desire to understand how children might represent fractions in a natural
context lead to several Year 6 classes being invited to draw the sky to show three-eighths
cloud cover. The students’ responses provided quite a few insights into what they thought
about fractions.

Figure 1. Three-eighths ‘high cloud’.

Perhaps, not surprisingly, rectangles featured heavily in the images students drew.
Within these classes, students thought of fractions as parts of rectangles. 

Figure 2. A clouded graph.

In both Figure 1 and Figure 2, the cloud cover appears to be much more graphical
than factual. The clouds are used as icons to record that those pieces stand for clouds.
Clearly, not all students think about fractions or clouds the same way. In Figure 3, this
student’s drawing represented clouds using an area model, albeit in a rather stylised
arrangement. 

Figure 3. A stylised area model.
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Do all students think of three-eighths cloud cover as rectangles divided into eighths?
The answer to this question is obviously ‘No’. Although rectangles divided into eighths
did dominate the drawings, some students have multiple representations of fractions.
Figure 4 shows one student’s drawings where the sky is divided into a 5 × 8 grid and where
the sky is also represented as a sector graph!

Figure 4. Two different representations from the same student.

Approximately fifteen out of the forty squares are clouds. Does this suggest that this
student knows equivalent fractions? The diagrams suggest to me that this student can find
equivalent fractions using diagrams and by re-dividing the unit. This is evidence of the
Stage 3 expectations of fractions within the new NSW Mathematics K–6 syllabus.

If you asked your students to do the same task, what would it reveal about their under-
standing of fractions? That is, ‘The weather report said that there was three-eighths cloud
cover. Draw what the sky might look like.’ The value of this real-world context is that it
forces many students to think about fractions in a different way. Fractions are not simply
two whole numbers, one over the other. Look at the way that the student has represent-
ed three-eighths in Figure 5.

Figure 5. Matching the image and the fraction representation.

In Figure 5, the student has represented the sky with rectangular eighths and drawn
clouds that cover approximately half of six-eighths. This is quite a clever use of re-divid-
ing the units.
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When I first told others about hearing the weather report describing cloud cover in
eighths, several of my colleagues suggested that I was becoming obsessive about fractions.
It took me a while to convince them that I wasn’t hallucinating. The official unit of cloud
cover is oktas, or eighths of the sky. When the sky is completely covered by cloud (over-
cast), the cloud cover is eight oktas. When the sky is clear the reading is zero oktas.

Why do some students find working with fractions difficult? 
Imagine a student encountering the symbols we use to record fractions. She is told that

3
4 is the same as three out of four. Explaining what we mean by the numerator and the
denominator of a fraction might expand this ‘definition’. The student then demonstrates
her understanding of fraction notation by stating that three people out of four people is
the same as 3

4 , two people out of five people is the same as 2
5 and five people out of nine

people is the same as 5
9. All appears well until your precocious student surprises you by

writing 3
4 + 2

5 = 5
9. Now you have a lot of explaining to do! 

The rapid transition from modelling fractions to recording fractions in symbolic form,
numerator over denominator, can contribute to many students’ confusion. The result of
this rapid transition to recording fractions is that many students see fractions as two whole
numbers; three-quarters is the whole number three written over the whole number four. 

Kieren (1988) outlines how the teaching of fraction algorithms can contribute to the
development of a superficial understanding as follows.

In work on operations with fractions, the algorithms frequently are developed as an
extension of whole number algorithms… an extension of counting (adding with
common denominators), or an extension of the powerful syntax of the base-10
numeration system (decimal fractions). Because of this, the curriculum and instruc-
tion prematurely emphasise technical symbolic operating rules (lining up decimal
points, finding least common denominator, etc.). These extensions usually are not
built on the intuitive mathematics of fractional numbers… Children get the form but
not the substance of the system. This may result in temporary achievements with frag-
ments of knowledge but not in lasting, useful, powerful personal knowledge. (p. 177)

The history of the use of fractions provides the rationale for why we have traditionally
emphasised knowledge of methods of manipulating fractions. The expansion of business
and commerce during the industrial r evolution led to computation of fractions assum-
ing an important role in the school mathematics curriculum. A time-efficient path to the
formal symbolic computation served the needs of society at that time. The role played by
fractions in society changed as the day-to-day manipulation of ‘common fractions’
became less common. Our money system and our measurement system went decimal.
Nevertheless, an emphasis on formal symbolic computation has persisted within schools
(Behr, Wachsmuth, Post & Lesh, 1984).

Although the need for efficient formal symbolic computation with fractions has
reduced in society, fraction learning remains a serious obstacle in the mathematical devel-
opment of children (Behr, Harel, Post, & Lesh, 1992; Kieren, 1976; Kieren, 1988; Mack,
1990; Pitkethly & Hunting, 1996). Recording fractions in symbolic form needs to build on
an underpinning conceptual framework of units (or parts) and collections of parts that
form new units. Emphasising numeric rules too soon without underlying meaning dis-
courages students from attempting to see rational numbers as something sensible.
Perhaps more time needs to be spent on drawing clouds! 
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Recording thinking with diagrams

Sharing diagrams provide a good method of representing and calculating with fractions.
Not only are they more closely linked to the nature of fractions arising from division than
the traditional symbolic notation, they frequently provide access to the images students
hold of fractions.

Sharing diagrams are offered to a student as a tool to represent and support his or her
thinking. Representational tools are forms of symbolising that support thinking.
Students’ diagrams should represent fraction problems in the way that they think about
the problems. The value of sharing diagrams is in their congruence with the way that
problems are interpreted. Standard fraction symbols are dissimilar from both the
problem and the thinking involved in solving the problem. 

When provided with the opportunity to use diagrams to support their thinking, stu-
dents often are able to solve problems that normally wouldn’t be introduced until after
they had been taught formal algorithms. This was clearly evident in students’ recordings
when we asked Year 4 students questions that required dividing by a fraction amount.
Students were asked to draw what would happen if I have 6 cups of milk and a recipe
needs three-quarters of a cup of milk. In particular, they were asked to determine how
many times I could make the recipe before I run out of milk.

Figure 6. How many ‘three-quarter cups’ in 6 cups?

Figure 6 shows a very practical solution to this question. Six cups are drawn and three-
quarters of each cup is shown. What is also evident is the accumulation of the three
one-quarters to make the fourth and eighth quantities. Of course there are times when
the context of the problem comes through very strongly. 

Figure 7. A different way of accumulating ‘three-quarter cups’.
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In Figure 7, the student appears to have imagined pouring three-quarters of a cup into
the first cup. To add the next three-quarters the recording shows one-quarter to fill up
the first cup and then one-half of the second cup. For the next three-quarters we have one
half to complete the second cup and then one-quarter in the third cup. This process is
continued in reaching the answer of ‘8 times’. As well as demonstrating a clear sense of
the size of three-quarters, this sharing diagram suggests that the student recognises ways
of seeing three-quarters as composed of one-half and one-quarter. It could even be
argued that the student might even understand that eight lots of three-quarters is six,
although it is still some years before this will be introduced to the student.

Building on students’ informal knowledge of fractions is a sensible thing to do. It can
assist us to help students appreciate that fractions are not simply two whole numbers.
Using sharing diagrams with realistic contexts is a useful way of enabling students to draw
sense out of fractions.
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Improving mental computation skills*

Jim Green
Trinity Catholic College, Lismore, NSW

This paper reports on a teaching experiment, conducted in 2004, which aimed at
enhancing students’ mental computation performance. Taking advice from the
research, this experiment used a program of mental computation skills (devised by
the author) to address the needs of a group of Year 9 students. Previously, the
mental computation skills these students learned were incidental to classroom
teaching. The direct instruction of mental computation strategies was investigated
to see if they did make a difference and, to determine if students’ ability to compute
mentally improved over the course of the program.

Introduction

A review by Owens and Perry (2001) was conducted to assist in the development of a new
mathematics syllabus in New South Wales. Essentially, this review was a literature review
of pertinent articles and research pertaining to mathematics education generally. In this
review, Morgan (1999) is quoted as summarising many of the issues raised about teaching
mental computation. Owens and Perry (2001) stated that, ‘the intention is to encourage
children to develop flexible, idiosyncratic mental strategies, emphasising the mental
processes involved’. They suggested that effective teachers need to develop a rich network
of connections between different mathematical ideas and to develop proficiency in new
approaches to mental calculation. 

Taking advice from this research, a program of mental computation skills was devised
to address the needs of a group of Year 9 students. Prior to this program the mental com-
putation skills that this class had encountered were incidental rather than planned. The
direct instruction of mental computation strategies was investigated to see if they do make
a difference and to determine if students’ ability to compute mentally improves.

Literature review

Hill and Russell (1999) suggest that the middle years require more emphasis on student-
centred approaches to teaching and learning, with clear specification of core content
needed by students. In their comments they suggest making time for in-depth learning,
having a curriculum which emphasises thinking, problem solving and autonomous learn-

* This paper has been accepted by peer review.
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ing, and challenging individual students. Mental computation provides an avenue in
mathematics to allow student-centred teaching to become a reality, and further enhance
the opportunities for students to build on the knowledge that they have — simultaneous-
ly giving students experiences which are enjoyable.

The benefits of developing and using mental strategies for computing have been well
articulated, and many primary teachers are now encouraging students to invent and use
thinking strategies as a way to facilitate their development of number sense (McIntosh &
Reys, 1997). In solving mathematical problems they found that students used mental com-
putation; however, no student used only mental computation. The numbers in the
problems required some adjustment and some reflection on these adjustments before a
solution could be given. In essence, each student used number sense along with estima-
tion and mental computation in formulating a solution (Figure 1).

Figure 1

The use of thinking strategies in mathematics involves and overlaps with other aspects
of numeracy including mental computation, estimation and number sense. Mental com-
putation refers to the computing of an exact answer without any external tools such as
calculator or paper and pencil. The technique used may be an invented strategy or a tra-
ditional method. Estimation refers to the production of an approximate answer that
allows a decision to be made and often involves some form of mental computation as a
preliminary step. Number sense refers to the general understanding of numbers and
operations and usually includes both mental computation and estimation.

It is apparent that mental strategies turn a calculation that we cannot do into a calcu-
lation that we can do by employing relationships between numbers and operations. These
thinking strategies are closely linked to the user’s conceptual understanding of numbers
and flexibility in decomposing and recomposing numbers (Plunkett, 1979).

Research on mental computation is emerging and is beginning to furnish a profile of
student ability and facility in the middle stages of education (McIntosh & Reys, 1997).
Some of the findings of the research include:

• students think mental computation is important as it is the skill to be most used out
of the school context in adult life;

• students differ greatly in their understanding of what it means to compute mental-
ly, often thinking that to do the algorithm method in one’s head is a mental
computation;

• students can invent their own strategies although they are often dominated by
written algorithms;

• the ability of students to invent strategies varies greatly;
• the format in which a problem is presented stimulates different approaches and dif-

ferent performance levels;
• context influences performance and the strategies employed by students;
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• allowing students to describe their thinking strategies reveals interesting and cre-
ative thinking;

• the highest levels and use of mental computation are found in students who are
confident in their thinking, value alternative thinking strategies, and see the inven-
tion of techniques as a powerful result of their understanding of mathematical
relationships;

• students processing and thinking about numbers can be changed.
Some important implications from this research that can be addressed by the class-

room teacher are: 
• indicating to students that developing and using thinking strategies is a valued

process;
• asking students to explain how they performed a mental calculation; 
• providing a variety of computation settings to encourage students to use strategies

different from written algorithms; and 
• modeling the behaviour by sharing thinking strategies with students.
Instructional programs have included teaching specific strategies supported by repre-

sentations/models (Beishuizen, 1993), embedding problems in contexts (Klein,
Beishuizen & Treffers, 1998), and development of mental computation through a strate-
gy approach (McIntosh, 1998).

Most estimation and mental computation skills depend on using number relation-
ships, and some depend on numeric patterns. However, such relationships and patterns
have rarely been the focus of classroom instruction. It is well known that instruction in
the classroom needs to be allocated to calculators, mental computation, estimation and
standard written algorithms. Shumway (1994) recommends that allocation of time to
these components should be; written computation (10%), mental computation (20%),
estimation (30%), and calculators (40%), which is a dramatic reallocation compared with
traditional allocation of class time to these aspects of mathematics. 

The current allocation of teaching to these areas is inappropriate and that some alter-
natives need to be investigated. Menon (2003) concluded that focussing on instruction,
then on the number relationships for mental estimation and calculation seems pedagog-
ically sound and should bring about greater success in, and understanding of,
computation. In his research, Menon (2003) investigated shortcuts that students can use
for rapid computations. He indicated that some might argue that these shortcuts encour-
age rote learning and therefore detract from conceptual understanding, however, in his
experience he found that the shortcuts motivated students and that these shortcuts could
be taught using number relationships in such a way as to enhance number sense and con-
ceptual understanding.

Carroll (1996) found that traditional instruction in mathematics has generally pro-
duced students who are poor at mental computation and exhibit a weak sense of number
and mathematical relations. Interviewed students indicated that experiences with invent-
ed algorithms and discussing alternative solutions had lead to better ability to compute
mentally and a stronger number sense.

Significantly better performance on mental computation will not occur until teachers
recognise the role of computational alternatives, and give mental computation its right-
ful place. In preparing students for mental computation through appropriate strategies
some of the desired outcomes might be considered (McIntosh & Reys, 1997). These out-
comes should include:

• the appropriate use of calculators and an understanding of their shortcomings;
• a good operational knowledge of basic facts — addition, subtraction, multiplication

and division;
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• a clear, practical understanding of place value and the system of numeration;
• an understanding of simple fractions, decimals, percentage and interrelatedness;
• self-confidence in, and ability to use, a range of techniques for computing;
• the inclination and the ability to use thinking strategies first when checking calcu-

lations, estimating results, or performing various calculations;
• the instinct and willingness to think about numbers in natural, comfortable, and

flexible ways when computational results whether exact answers or estimates are
produced;

• the instinct and willingness to reflect on numerical results so as to judge their rea-
sonableness.

It is apparent in the research considered that improving students’ mental computation is
indeed a desirable curriculum and instructional outcome. 

Teaching students strategies that facilitate mental computation, estimation and
number sense and allowing students to investigate, explore and develop alternatives for
numerical computations are essentially the suggested avenues to improve student mental
computation skills. In this study the teaching of particular strategies was used to investi-
gate the possibility of enhancing student facility with mental computation. 

The study

In response to the apparent lack of attention on mental computation skills a short course
involving some skills was developed. It was hypothesised that this short course would assist
students in their ability to compute mentally. The course was a series of twenty-minute
lessons to be conducted over a period of nine weeks. An overview of the program and the
skills taught can be found in Appendix A. Prior to the program the students were pre-
tested and on completion of the nine lessons they were given a single lesson to review the
course of skills and a week later were post-tested on the skills examined in the short
course.

The students were in a Year 9 Advanced Mathematics class. The skills taught were
chosen specifically to meet the needs of these Year 9 students. The students were an able
group of mathematicians who find mathematics enjoyable and are regularly successful in
mathematics. In completing this course of mental computation skills, the students were
addressing syllabus content and understanding some of the strategies that many current-
ly used, without fully understanding, why they worked, as well as discussing and using
other strategies that they had not seen before in their mathematics classes.

Data from both the pre-test and post-test was analysed for the two test variables:
number of correct responses and time taken to complete the task to determine whether
the program had improved their speed to complete the computations and whether they
were able to get more of the problems correct. Data about gender, task items and strate-
gies were also investigated. 

Results

The data analysis of the results in this investigation was performed using SPSS for Windows
Student Version 11.0.0 (2001). There were 34 cases present (19 female, 15 male) for both
the pre-test and the post-test. The descriptive statistics provide information about the data
collected for both the pre-test and the post-test. Means for score and time improved while
standard deviations remained steady. This data suggested further investigation of the
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mean scores for both the score and time variables.
To determine the degree of association between the pre-test scores and times with the

post-test scores and times, Pearson correlations were used. These correlations indicated
that the pre-test scores were associated with the post-test scores significantly (p = 0.012),
suggesting that if a student scored well on the pre-test then they were highly likely to score
well on the post-test. More significant was the association between pre-test and post-test
times (p = 0.001) which indicated that if a student completed the task quickly then they
were extremely likely to complete the post-test more quickly.

To determine whether the difference between the pre-test and post-test scores was sig-
nificant a paired sample t-test was used. The results of these t-tests indicated that the
students scored significantly better on the post-test score (p = 0.000) than on the pre-test
score. The post-test scores were on average 5.15 higher than the pre-test scores. This rep-
resented an average increase of 17.2% by the students after completing the program. The
t-tests also indicated that the students improved their time to complete the problems sig-
nificantly faster (p = 0.000). The post-test times were on average 5.72 minutes (5 minutes
43 seconds) faster than on the pre-test. 

Together, the results comparing scores and times represent a highly significant
improvement in the students’ ability to compute mentally. The degree of significance on
both students’ score and time were very high (p = 0.000). Gender differences were not
significant. 

The items used in both the pre-test and the post-test were evaluated to determine
which items were found most difficult by the students. Means for each item on the pre-
test were calculated and compared with the means of the post-test scores. Many of the
items that showed marked improvement were towards the end of the skills program and
were considered ‘harder skills’. 

Each item in the pre-test and post-test were evident in the strategies taught during the
mental computation skills program. The items were grouped and scores for each of twelve
strategies were obtained. It was found that seven of the twelve strategies improved signif-
icantly based on the results of the pre and post-tests. These strategies were those that:

• squared numbers ending with five;
• combined numbers in a series;
• used difference of two squares;
• multiplied or divided by numbers greater than or less than one;
• simplified fractions and percentages (two strategies);
• multiplied numbers near 100 and 1000.
Equally important were those strategies that did not show significance. Although these

strategies did not show significant improvement they constituted an important part of the
skills program. They reinforced skills that the students already used and provided neces-
sary skills for the weaker students in the group.

Conclusions

The project investigated whether or not a skills program in mental computation strategies
could improve the students’ facility with number problems without the use of a calcula-
tor. In particular, the analyses of this project investigated: scores, times, strategies, gender
and items. These aspects enabled a deeper understanding of the skills program and its
effectiveness. As well, they provided further information about the program for future
development and use in the classroom.

The students’ scores were analysed for improvement between the pre- and post-tests.
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In this analysis it was evident that there was a significant correlation between the pre-test
and the post-test scores and that the students improved their scores by an average of
approximately 17%. The improvement in the students’ scores was highly significant. This
would suggest that the skills program was beneficial to the group of students that were
involved and that it would also be of benefit to other students of this cohort. 

The students’ times to complete the task were analysed for an improvement between
the pre-test and post-test scores. In this analysis it was evident that there was a significant
correlation between the pre-test and the post-test times and that the students improved
their times significantly. Again, this suggests that the skills program benefits are more
than just in the improved scores but it appears to improve the students’ efficiency in com-
pleting problems involving mental computation. 

The students’ scores were analysed for gender differences on scores and times. It was
found that there were no significant differences in the scores or the times between males
and females. 

The items were analysed to identify items which had improved significantly from pre-
test to post-test phases of the study. The results indicate that over 80% of the items
improved or remained the same and those items that did not improve declined by a small,
insignificant amount. Of the items that improved, 50% were found to improve significant-
ly. This would further validate the finding that the skills program was a significant catalyst
for improving students’ mental computation skills. 

The strategies were analysed to determine those which were useful in a skills program.
This aspect of the study resulted from the analysis of the items used in the skills program.
When combining items that evolved from the same strategy there were twelve strategies
in total that were taught over the course of the nine weeks of the program. It was found
that there were some strategies that the students were familiar with and did not really
improve; however, there was a significant improvement in 58% of the strategies taught in
the skills program. The strategies in the program were suitable to the cohort in the study.

Like Menon (2003) this study found that the strategies engaged and motivated stu-
dents and that these shortcuts could be taught using number relationships in such a way
as to enhance number sense and conceptual understanding. 

Recommendations

1. Further attention be given to the transfer of the knowledge to other aspects of
courses and other working mathematically situations/contexts. The strategies in
the skills program were extended in some instances; however, none gave the stu-
dents the opportunity to transfer the knowledge to problem situations. This was
intentional as the purpose of the program was to teach the skills and not get ‘stuck’
on decoding the problem situation.

2. Teaching mental computation strategies to students as part of an Enrichment Maths
program would also be an option in the future. Many students invited or involved
in these programs have a keen interest in mathematics and how mathematical
methods work. Investigating the strategies and inventing their own could easily be
components of such a program.

3. The skills used in the program were specifically chosen to suit the needs of the stu-
dents. Additional skills that target earlier year groups or lower ability students could
also be developed for similar programs.

4. The final recommendation would be that teachers recognise the role of computa-
tional alternatives, model the use of strategies that the students have learned,
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provide opportunities for students to explore new strategies and invest some time
in learning practical instructional techniques for alternative strategies

References
Beishuizen, M. (1993). Mental strategies and materials or models for addition and subtraction up to 100 in

Dutch second grades. Journal for Research in Mathematics Education, 24(4), 294–323.

Carroll, W. M. (1996). Mental computation of students in a reform-based mathematics curriculum. School
Science & Mathematics, 99(6), 305.

Hill, P. W. & Russell, V. J. (1999). Systemic Whole-school Reform in the Middle Years of Schooling (Proceedings of
the Middle Years of Schooling Conference, Melbourne). 

Klein, A. S., Beishuizen, M., & Treffers, A. (1998). The empty number line in Dutch second grades:
Realistic versus gradual design. Journal for Research in Mathematics Education, 29(4), 443–464.

McIntosh, A. (1998). Developing informal written computation (Paper presented at the annual conference of
the Australian Association of Research in Education, Brisbane). Retrieved 12 August 2004 from
http://www.aare.edu.au/02pap/mci02517.htm.

McIntosh, A. & Reys, R. E. (1997). Mental computation in the middle grades: The importance of thinking
strategies. Mathematics Teaching in the Middle School, 2(5), 322. 

Menon, R. (2003). Using number relationships for estimation and mental computation. Mathematics
Teaching in the Middle School, 8(9), 476.

Morgan, G. (1999). Strategies for calculating exact answers mentally. Teaching Mathematics, 24(3), 5–8.

Owens, K. & Perry, R. (2001). Mathematics K–10 Literature Review. Accessed 17 October 2004 from
http://www.boardofstudies.nsw.edu.au/manuals/pdf_doc/maths_k10_lit_review.pdf.

Plunkett, S. (1979). Decomposition and all that rot. Mathematics in Schools, 8, 2–5.

Reys, R. E. (1984). Mental computation and estimation: Past, present, and future. Elementary School Journal,
547–57.

Shumway, R. J. (1994). Some common directions for future research related to computational alternatives.
In R. Reys & N. Nohda (Eds), Computational Alternatives for the Twenty-First Century: Cross-Cultural
Perspectives from Japan and the United States (pp. 187–195). Reston, Va.: National Council of Teachers of
Mathematics.

Appendix A: Improving mental computation strategies (IMCS)

Program overview
Date Lesson & Content
23 Feb 04 Pre-test
01 Mar 04 Skill Lesson #1 — multiplication and division by 10, 100, 1000 etc.
08 Mar 04 Skill Lesson #2 — squaring numbers ending in 5
16 Mar 04 Skill Lesson #3 — subtracting numbers from 10, 100, 1000 etc.
22 Mar 04 Skill Lesson #4 — multiplying by 5, 50, 500 etc
29 Mar 04 Skill Lesson #5 — combining when adding and multiplying by 11
03 May 04 Skill Lesson #6 — difference between two squares
10 May 04 Skill Lesson #7 — multiplication and division by 2, 4, 8 etc. and

numbers > and < 1
17 May 04 Skill Lesson #8 — simplifying fractions and percentages
24 May 04 Skill Lesson #9 — multiplication of numbers near 10, 100, 1000 etc.
01 Jun 04 Review Lesson
07 Jun 04 Post-test
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Getting school maths online:
Possibilities and challenges*
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The World Wide Web (WWW) is making a significant impact in the field of mathe-
matics education. In recent years, several thousand web sites have been created
to promote the teaching and learning of school mathematics. It is now time to
ponder how this phenomenon should articulate with the school curriculum and how
the wealth of resources available in cyberspace can be appropriately integrated at
the classroom level. This paper discusses a range of instructional, curricular and
organisational issues associated with such a process and provides recommenda-
tions for future research.

Introduction

As early as the 1930s, Shoghi Effendi predicted the imminent arrival and expansion of the
World Wide Web (WWW) with these words: ‘A mechanism of world inter-communication
will be devised, embracing the whole planet, freed from national hindrances and restric-
tions, and functioning with marvelous swiftness and perfect regularity’ (1936, p. 203).

Several decades needed to pass before this vision became reality. The WWW can be
now considered as a computer network made up of literally millions of users worldwide.
The last decade has attested to a substantial transformation in the way knowledge has
been traditionally disseminated. Through WWW technology, information now flows
almost unrestrainedly throughout all the regions of the globe and easily reaches homes,
centres of learning and remote village settings. The speed of this process accelerates as
the globalisation processes dramatically unfold. So amazing has been this information
revolution that educationalists have been forced to consider its effects on education.
What we need to consider, as we progress into the third millennium, is how to harness the
potential instructional advantages of the WWW for the benefit of classroom teaching.

Reasons for online approaches in mathematics education

Several arguments can be put forward to advance the cause of teaching and learning
mathematics through online approaches. School curricula need to evolve in line with the
changing nature of our society. The WWW is similar to other important landmarks in the
evolution of the school mathematics curriculum such as the invention of the hand-held

* This paper has been accepted by peer review.
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calculator and the personal computer. Given its increasing and indispensable presence in
human affairs, the WWW must be reflected in the school curriculum if that curriculum
wishes to remain relevant. The nature of the WWW is such that it offers an enormity and
diversity of resources that are, for the most part, free for access and download. These
resources have the advantage not only of being recently created but also produced and
shared by field practitioners such as teachers, academics, instructional designers and even
students themselves. The range of resources has the potential to broaden the spectrum of
students’ learning experiences thus enriching the mathematics curriculum. Resources
available online are also suitable for distance education where students work at their own
pace and at any geographic location. Online resources can also be repackaged and
redesigned as, for example, thematic units linking school mathematics to real-life situa-
tions. Moreover, the WWW is a free-platform technology which makes it a friendly-user
mechanism going beyond regional technical specifications. It is above all, a wonderful
window to the world that can be opened with a single mouse click in the isolation and
remoteness of the school classroom.

Categories of online resources

For the purpose of categorisation, resources available on the WWW for teaching and
learning mathematics can be grouped into six inter-related categories, namely: drills,
tutorials, games, simulations, hypermedia-based materials and tools, and open-ended
learning environments (Alessi & Trollip, 2001; Handal & Herrington, 2003). Drill-and-
practice websites mostly present exercises for practicing well-structured mathematics
operations. Drill-and-practice formats also evaluate the correctness of students’ answers
once a set of questions have been attempted. Online tutorial applications are one step
ahead of drill-and-practice formats in that the former teaches respondents the procedure
for reaching the solution. Online instructional games allow students to participate in an
entertaining situation that simultaneously demands their engagement in problem solving
at several levels. Online simulations are applications that interactively model or fabricate
a real-life situation whose enactment in the classroom is impractical or even hazardous.
Hypermedia software, in turn, are complex databases of several kinds of mathematical
knowledge linked through nodes of information. Hypermedia formats can be compared
to electronic encyclopaedia covering a broad range of topics such as history of mathemat-
ics or mathematics vocabulary. By providing cross-curricular content, hypermedia
resources are an ideal environment for exploration and investigation. Finally, the WWW
also offers tools and open-ended learning environments that can be used for represent-
ing data graphically, experimenting with geometrical concepts through interactive
diagrams, or drawing complex curves given their equations. The sequence of formats out-
lined above can be considered as a continuum that progresses from an instructional
design that favours the independent, transmissive drill-and-practice approaches through
to tools and open-ended learning environments that facilitate a collaborative, problem
solving approach.

The organisation of resources into a virtual classroom is probably the most fascinating
example of the WWW’s potential in education and training (Anderson, 2001; Murphy &
Collins, 1997). Virtual classrooms place a community of learners together under the lead-
ership of one or more instructors using several online facilities such as
video-conferencing, electronic boards or electronic discussion groups. This online learn-
ing approach has been known as synchronous learning since students can learn
simultaneously regardless of location. They can also make use of asynchronous formats
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such as email and downloaded materials. Virtual classrooms are becoming popular in
adult training and are progressively making their way to the school environment. 

Issues in online mathematics education

The growing presence of the WWW in education will undoubtedly reflect the way the cur-
riculum is conceptualised and organised. An important discussion should focus on how
online learning experiences are aligned to a constructivist perspective of teaching and
learning mathematics (Lefrere, 1997). Such an articulation must certainly reflect the ped-
agogical worth of instructional approaches such as group work, discovery learning,
problem solving, real-life situations, in-depth discussions, use of manipulatives, field work,
and so forth. Vargo (1997) explains that the constructivist approach in computer educa-
tion also includes the student having more control and access to information, the use of
more discovery learning and explorations as well as the introduction of more case analy-
sis. That approach stands out in clearly contrast with an objective or behaviourist model,
in which the user only receives and replicates information. Nunan (1996) adds that flex-
ible delivery through online methods fosters a culture of self-learning, problem solving,
and activity-based learning. According to Winn (1997) the following principles apply to a
constructivist approach in WWW-based teaching and learning (p. 2).

• Access to the Information Superhighway is not a sufficient condition for learning,
though for students in distance learning programs, it may be a necessary one. 

• The information that we prepare for students comprises data to which we give a
structure that is determined in no small part by the medium in which the informa-
tion is presented. This structure will be influential in how students understand what
we tell them. 

• The acquisition of knowledge from information requires effort and involves percep-
tual and cognitive processes that decode symbols, deploy literacy skills to interpret
them, and apply inferencing abilities to connect them to existing knowledge. 

• The acquisition of wisdom from knowledge requires practice in the judicious appli-
cation of that knowledge in the personal and social context in which the student
acts. 

• By implication, testing just to see whether a student has received information,
which is not atypical even in higher education, sheds absolutely no light on what
students really know nor on whether they can productively use any knowledge they
have acquired. 

In brief, a constructivist approach to mathematics and online education envisions a
learning community in which learning activities are carefully selected to assist students in
constructing knowledge. These activities must also take account of students’ previous
experiences. The constructivist approach also considers the teacher not as the only knowl-
edge provider but as a learning facilitator who supports active learning. This role includes
the provision of learning activities through interactive online technology.

The utilisation of online resources in the teaching and learning of school mathemat-
ics may come with a number of instructional, curricular and organisational challenges. As
the literature on the field is nascent more research is needed to guide online education-
al endeavours. The following represents a collection of those issues which ideally must be
analysed within the context of the six categories of online resources described above.

The WWW is a relatively new learning technology. Certainly, little is known about its
cost-effectiveness in comparison to other instructional approaches. Likewise, more
research is needed to determine its effects on students’ attitudes towards the learning of
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mathematics. It is also important to identify instructional practices within the classroom
leading to students’ gains in achievement as they work with online learning resources.
Similarly, there is a need to examine whether current online learning approaches lead to
a decrease or an increase in the gap between high and low achievers. Likewise, the type
of social interaction, either among students or between teachers and students, that is gen-
erated while working with these resources requires further examination (Clark, 2000).
Research is also needed on the impact that WWW technology has on broadening stu-
dents’ learning or cognitive styles and teacher’s instructional styles. 

Literature generated in the last two decades shows that teachers’ pedagogical beliefs
about educational innovations can sometimes work against the implementation itself
(Handal, Bobis & Grimison, 2001). In particular, negative beliefs about the introduction
of technology into the classroom have been documented by Newhouse (1998) and Mills
and Ragan (1998). Consequently, it is necessary to characterise current teachers’ beliefs
about the worth of online instruction. Likewise, there is a need to examine parents’ and
school administrators’ perceptions about online instruction so that potential obstacles
can also be foreseen. At the same time, students’ perceptions of online learning need to
be appraised with respect to motivation to learn and engagement in learning.

The WWW offers a variety of applications that can be considered problem-solving
tools. They include applications to solve arithmetic, algebraic and differential equations,
curve drawing and graphical representation of data. It is possible that educators could see
some of these tools as a process of deskilling. Alternatively, assessment items can be
written to accommodate the use of these tools in such a way that reflects the measurement
of students’ higher order thinking capabilities. Assessment criteria would also need to be
re-formulated to distinguish measurement of students’ actual mathematical understand-
ing from their navigational skills.

In addition, a number of issues will inevitably arise as a consequence of the increased
access of the WWW both at home and at school. Should the whole curriculum or parts
thereof be aligned to the utilisation of online resources? How should literacy skills, dis-
covery, case analysis, inferring and other higher-order thinking abilities will be taught and
developed in online learning approaches? Which novel learning competencies such as
navigational skills, webpage design, computer architecture or applet programming, need
to be taught to better utilise online resources? Do these new competencies mean that the
curriculum could become overcrowded? If that is the case, which current content should
be removed from the curriculum?

Current research reveals that boys are more engaged than girls in computer studies
and do better in some aspects of mathematics (Kifer & Robitaille, 1992; McDougall,
2000). Hence, it can be argued that these gender-related trends might also be reflected
in the learning of mathematics using online resources. Similarly, it is reasonable to ques-
tion whether children from low-socio economic backgrounds will be disadvantaged due
to their lack of access to the WWW, particularly after school hours (Hartmann & Sweeney,
1999). It has been argued (Navin, 2001) that private schools, particularly from more afflu-
ent sectors of society, have an advantage over public schools given the disparity in the
investment in educational technology. In a futuristic situation, where WWW learning has
a greater presence in the curriculum, it is likely that textbooks will be modified and
adjusted accordingly. Textbook writers, curriculum designers and classroom teachers will
also need to pay more attention to cross-cultural issues such as differences between impe-
rial and metric units, language barriers and international events, among others. For
example, learning to add by counting elephants would not sound very relevant to
Australian Aboriginal students in the outback or South American children in the Andes
highlands.
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Not only is there a lack of literature about using online resources in the teaching and
learning of mathematics, there is also a scarcity of specialists in the field. Although both
human resources and research will inevitably grow hand-in-hand, the urgency of the hour
demands that resources and practical guidance be provided to classroom practitioners.
This raises a further set of critical questions to be addressed. Should the leadership come
from academics, regional or district consultants, or school head teachers? How should
classroom teachers’ experiences be shared and extended? Teachers’ networks, peer men-
toring, inservices, teacher education programs, university partnerships, showcase of best
practice, all need to be developed and documented to fulfil a comprehensive support
structure for professional development. 

The use of the WWW enables the use of a further set of related hardware and software
technologies such as data projectors, printers, laptops, data loggers; it also raises issues such
as having the classroom connected to the Internet, and of course, the purchasing of appro-
priate computers. Management and maintenance of the school Intranet is another
associated cost as well as the school licensing of more sophisticated software. Likewise, the
task of searching the WWW for identifying meaningful learning experiences is certainly
time-consuming and demanding for teachers (Godfrey, 2000). Setting up either a personal
or faculty database of relevant websites adds considerably to teachers’ workloads, particular-
ly when such a database is to be arranged by grade, curriculum area or degrees of difficulty. 

Despite its unique advantages, the WWW can be depicted as a disorganised and some-
times misleading pool of unrelated websites. When it comes to educational websites many
of them are of poor quality in terms of instructional design, being little different to tradi-
tional textbook formats, and being developed by people involved in commercial software
(Lefrere, 1997). It is therefore vital to focus our education agenda on issues such as: how
many of people involved in the production of current online resources are actually edu-
cators and capable of developing something for education purpose? How should teaching
education programs begin establishing courses on online instructional design? What
makes a website educationally sound? What can be learned from the literature on evalu-
ating computer-assisted instruction (CAI) software that can be applicable to online
resources? (Hosie & Schibeci, 2001). Which guidelines in evaluating online resources are
worth considering? How can teachers be trained to assess the quality of educational web-
sites? Which quantitative and qualitative research methodologies are most appropriate in
the evaluation of educational websites? For example, Hosie and Schibeci (2001) and
Reeves and Harmon (1994) have called for more context-bound evaluation rather than
checklists because the former captures a lot more of the interaction between the learner
and the courseware.

On the effectiveness of WWW-based instruction, Scanlon (1997) reviewed online learn-
ing in sciences and found that teachers are more inclined to use traditional resources
such as books than the Internet. Scanlon noted a number of concerns on evaluating
courseware online such as bandwidth, network reliability and integration of the curricu-
lum with technology. Simons and Jones (1999) evaluated the Online Mathematics
Enrichment website in the United Kingdom (www.nrich.maths.org.uk) which provides
support for gifted and talented students though the publication of problems and other
resources. The evaluation of the program with 450 teachers and 199 students was ‘judged
to be attractive, functional, easy to navigate, and contain high quality materials’ (p. 11).
According to the evaluators, ‘The main impact of NRICH on the more able students was
in terms of helping them to gain a wider appreciation of mathematics and raising the
profile of mathematics as a subject that could be interesting enough to pursue either
within or outside school or for further study’ (p. 11). Indeed, more research is needed to
explore the implementation of online approaches in teaching and learning mathematics.
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Conclusions and recommendations

Not surprisingly, as with any educational innovation, the introduction of WWW resources
in the teaching and learning of school mathematics comes with possibilities as well as
challenges. The instructional, curricular and organisational issues outlined in this paper,
although not comprehensive, serve as a discussion board for future research and plan-
ning. The lack of studies in this nascent field is hindering the utilisation of a vast number
of online resources that are already available for classroom use; and yet, the WWW is
developing at an increasing speed, not waiting for the school curriculum to catch up.
Crucial and urgent to this dissonance is the commitment of the academic community to
become engaged in more research in this area. Like a third millennium’s version of
Pandora’s box, the WWW is waiting for us to open it and to discover its marvels in this era
of globalisation. Hopefully, as educators we can harness its potential benefits rather than
succumb to possible chaos.
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Evaluating online mathematics resources:
A practical approach for teachers*

Boris Handal
University of Technology Sydney

Parvin Handal
NSW Western Sydney Health Area

Tony Herrington
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This paper describes a teacher-friendly approach to evaluating online mathemat-
ics resources. The Alessi and Trollip (2001) evaluation form is recommended as an
instrument for assessing the worthiness of online resources from an instructional
design point of view. An exploration of nearly 250 mathematics education websites
revealed the benefits and limitations associated with using such a checklist. These
issues are discussed through screen snapshots of webpages available from the
WWW. This exploration also revealed that online resources from professional organ-
isations’ websites seem to be better designed, organised, easy to search and more
comprehensive than those from individuals’ websites. 

Introduction

Gradually, World Wide Web (WWW)-based educational resources are making their way
into the school mathematics curriculum (Handal & Herrington, 2003). Online resources
are potentially useful compared to normal courseware because of their abundance, avail-
ability at no cost, platform free accessibility, and their wide-reaching accessibility. On the
other hand, a major limitation of online resources is their lack of appropriate pedagogy,
coupled with poor instructional design and layout. According to Alessi and Trollip (2001,
p. 392), ‘The tendency for the Web to be used only for presentation of materials greatly
restricts its instructional potential’. 

Little research has been done in the area of evaluating online mathematics education
resources. As the WWW grows in influence and size there is a need to document the
quality of these online resources and those aspects of their design that are inhibiting their
implementation. This study reviews a number of online mathematics resources and dis-
cusses their drawbacks in terms of the existing literature on courseware evaluation. The
instructional design elements embedded in Alessi and Trollip’s (2001) evaluation form
are used in this analysis.

Evaluating courseware

How do we know that courseware is well-designed and pedagogically sound? There are at
least two approaches in the evaluation of courseware. The first approach makes use of

* This paper has been accepted by peer review.
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evaluation forms and checklists that assess mostly interface design, navigation and/or
control features of a courseware as well as other intertwined pedagogical variables. These
features are then compared against a set of ideal criteria appropriate from an instruction-
al point of view. A number of evaluation forms and checklists have been designed in this
way (e.g., Alessi & Trollip, 1991, 2001; Reeves & Harmon, 1994; Sharp, 1996). A second
approach is to evaluate courseware with respect to learning outcomes and the quality of
the interaction with the learner. This second type of evaluation is referred to as context-
based evaluation since assessment is carried out as the resource is used by the learner in
a specific learning environment (Hosie & Schibeci, 2001). 

In either approach, a number of dimensions or criteria are identified for evaluation.
Reeves and Harmon (1994) have characterised fourteen instructional dimensions of com-
puter-based instruction which include epistemology and pedagogical philosophy.
Haugland and Wright (1997) developed the Haugland/Shade Developmental Software
Evaluation Scale (www.childrenandcomputers.com) to evaluate software for children.
Their scale is based on ten criteria, namely: 
(a) age appropriateness;
(b) child control;
(c) clear instructions;
(d) expanding complexity;
(e) independence;
(f) non-violence;
(g) process orientation;
(h) real world model;
(i) technical features; and 
(j) transformations. 
The distinctive feature of this scale is the introduction of a developmental variable.
According to the author, only one quarter of existing software can be considered appro-
priate for children (Haugland & Wright, 1997). In addition, Stubbs and Burnham (1990)
proposed five critical dimensions in the developing of electronic distance education
systems. These dimensions include: 
(a) time and place independence;
(b) realism;
(c) communication paths;
(d) ease of use; and 
(e) speed or immediacy. 

Alessi and Trollip’s (1991) quality review checklist focusses on interface design, navi-
gation and user’s control of the page and is based mainly on the following features: 
(a) language and grammar; 
(b) surface features; 
(c) questions and menus; 
(d) other issues of pedagogy; 
(e) invisible functions; 
(f) subject matter; and 
(g) off-line materials availability.

Checklists and evaluation forms have been criticised because of their focus on features
that are external and easy to measure, not capturing the process of teaching and learn-
ing. Indeed, context-bound evaluation tools can actually cover a broader range of
pedagogical issues because of the diversity of methodological tools used such as measure-
ment of learning outcomes through tasks and assignments; conducting interviews with
students and teachers, participant observation methods, collecting students’ work
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samples, video-taping student’s interaction, analysing students’ responses, and adminis-
tering attitudinal scales (Hosie & Schibeci, 2001; Reeves & Harmon, 1994).

Evaluation checklists

Although, context-bound strategies are powerful tools in bringing about a whole picture
of the effectiveness of a courseware, when it comes to evaluating a large quantity of edu-
cational material, such as the case of online resources, checklists do a faster job. This is
particularly pertinent for teachers because of their job demands and constraints.
Qualitative approaches require specialised training and a longer time to implement.
Evaluation forms and checklists have been successfully used for a long time in the aca-
demic community for courseware evaluation and have informed research and the
teaching community accordingly. These instruments are particular useful as ‘screening’
tests for new software, and are of most use at the point where a decision has to be made
about which software to trial. The use of evaluation forms and checklists also decreases
the subjectivity factor and provides teachers with structured assessment criteria without
necessarily requiring knowledge about multimedia or educational technology. By using
checklists, teachers can become aware of issues in designing and assessing educational
software. This is particularly true for teachers who have been educated in environments
where the only technology was the blackboard. 

Alessi and Trollip’s (2001) evaluation form builds on the framework of Alessi and
Trollip’s (1991) quality review checklist which addresses the evaluation of pedagogical
features, interface design, navigation and user’s control of an online resource. The check-
list has been successfully used in other studies as a courseware assessment tool (Noijons,
1994; Rasegotsa, 1999) and for training mathematics and science teachers in evaluating
courseware (Handal, Handal & Herrington, 2003). It seems to be indispensable given the
poor instructional design of a large amount of educational software available in the
market (Schwier & Misanchuk, 1994; Shneiderman, 1998). Alessi and Trollip’s (2001)
evaluation form is organised in items related to: 
(a) Subject matter; 
(b) auxiliary information; 
(c) affective considerations; 
(d) interface; 
(e) navigation; 
(f) pedagogy; 
(g) invisible features; 
(h) robustness; and 
(i) supplementary materials.
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Evaluating websites

This section illustrates important features indetified when using the evaluation form with
nearly 250 mathematics education websites. Categories were used to analyse the quality in
design and layout of the online resources focussing specifically on interface design, navi-
gation and user’s control. Although the discussion is not comprehensive, it is useful as a
framework for initial exploration and research. In addition, the organisation of these
resources was examined in terms of corporate or individual management of the websites.
The study also aimed to validate the categories used in Alessi and Trollip’s (2001) evalu-
ation form.

Six of the nine categories of analysis in Alessi and Trollip’s (2001) evaluation form
were used to evaluate the websites. The following three categories were not considered to
be relevant: supplementary materials, referring to the quality of the auxiliary printed mate-
rial that accompanies courseware, do not constitute a requirement for online resources
and was not considered. Likewise, invisible functions of the lesson are related to the
keeping of performance records as well as to issues of security and accessibility. Both fea-
tures are rarely used in online resources and therefore are not discussed here. Robustness
refers to the capacity of the program to work in different computer environments.
Internet applications are generally multi-platform, although some multimedia effects
need specific plug-ins and some webpages are designed to work better in either of the two
most popular WWW browsers, namely Internet Explorer or Netscape Navigator. 

During the exploration of the 250 mathematics education websites, some limitations
were observed when applying the Alessi and Trollip (2001) checklist. These limitations
highlighted essential differences in design and usability issues between online resources
and normal courseware. Not all the courseware design features are applicable to online
resources for several functional and usability reasons. First, there is a diversity of online
resource formats, namely: drills, tutorials, games, simulations, hypermedia-based materi-
als and tools and open-ended learning environments (Handal & Herrington, 2003). For
example, drill and practice exercises do not provide complete feedback to the users, that
is, a complete worked example. Contrary to many games applications, most tutorials do
not necessarily require the use of multimedia effects. Tools and open-ended learning
environments are not formatted in terms of questions and answers but require explo-
ration and investigation (Alessi & Trollip, 2001). Secondly, online resources differ from
normal courseware in that the former do not come accompanied by manual or printed
instructions on how to teach with the resource. This omission makes it difficult to evalu-
ate the online resource in relation to an overarching set of pedagogical goals, outcomes
or objectives. In other cases, some online simulations and games require the download-
ing of plug-ins from the WWW. This often makes the application unreliable as well as
more difficult for the assessing teacher to run and evaluate. Finally, many online
resources are embedded on webpages that are not consistent with other pages of the same
website. As opposed to normal courseware, the organisation and sequencing of online
learning activities are not well articulated and goal-oriented making it difficult for teach-
ers to choose especially when they are searching for activities supporting a specific
curricular topic. 

The following sections present a summary of the important features identified through
the evaluation of a large number of websites.
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Introduction

Presentation of goals and objectives can enhance the understanding and motivational
appeal of the subject matter and should be clearly stated and worded at the student’s
lexical level. Information must be relevant, accurate and complete. Table of contents,
indexes and directions must be clear and information must be accurate and related to the
curriculum. The screen in Figure 1 provides students with ample information about the
task. 

Figure 1. http://thesaurus.maths.org/mmkb/view.html?resource=guides

Displays

It is necessary to check whether (a) displays are uncluttered, (b) overwriting is avoided,
and (c) attention is maintained to relevant information. In terms of presentation, it is also
important to review whether texts, graphics, colour and sound are used appropriately.
Figure 2 shows a cluttered screen.

Figure 2. http://pbskids.org/cyberchase/games/numbersense
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Motivation

A webpage should maintain the user’s interest and must challenge the user across differ-
ent displays. Visual momentum influences the learner’s ability to extract and absorb
content that is relevant to him/her across successive displays. Features such as zoom,
sound or animation must be assembled in unity and be consistent. Figure 3 shows a
webpage with a dynamic percentage bar.

Figure 3. http://www.hellam.net/maths2000/percent1.html

Navigation aids

Tools availability should be checked to see whether the tools are active, or if they are
present but are not active. Some tools should be removed or hidden from certain places.
Otherwise, users get confused into thinking that the webpage is not working properly. For
example, the control panel of a webpage might not be active in some sections. Most
WWW browsers have sufficient navigational capabilities. Figure 4 shows an easy to follow
tool board for selection.

Figure 4. http://ambleweb.digitalbrain.com/ambleweb/ambleweb/ambleweb/mentalmaths/protractor.html
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Questions

Questions should be relevant and be presented in a variety of formats. Likewise, the
webpage must facilitate learner’s answering by giving clear choices and the possibility of
more than one try. Feedback must be relevant and supportive. Questions should be eco-
nomical with instructions on answering questions. The activity on Figure 5 shows an
activity linking numerical, graphical and symbolic data. 

Figure 5. http://www.thelearningfederation.edu.au/repo/cms2/tlf/published/10560/180204_education/L122_design_a_neighbourhood

Format of feedback

Self-evaluation can be achieved by giving the users a sense of accomplishment through
acknowledgement or visual cues that indicate their progress. Self-evaluation can be
achieved through, among others, self-tests or quizzes which require ‘yes or no’ or multi-
ple choice answers, or comments on results in simulation activity,. The activity in Figure 6
provides continuous feedback on the task.

Figure 6. http://www.aaamath.com/B/addk7ex1.htm
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Content structure

Menus should orient, give the opportunity of making a choice, and also of amending an
incorrect choice. A dynamic menu is shown on Figure 7.

Figure 7. http://www.bbc.co.uk/education/mathsfile/gameswheel.html

Directions

Advance organisers assist learners in finding information. Providing the user with an
overview of the topics to be covered and how to access them through hyperlinks in maps or
menus is a good start for any webpage. A consistent method of using this information should
be presented to the learner in the earlier stages with a on-screen reminder such as instruc-
tions. The screen on Figure 8 provides overview information about a webpage on symmetry.

Figure 8. http://standards.nctm.org/document/eexamples/chap6/6.4/index.htm
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Learning metaphor

The presentation of the information should be followed up by students’ activity, as stu-
dents will be more motivated if they participate actively with the webpage. Also, learning
experiences, when sequenced, must follow a specific theme or topic. The learning expe-
rience in Figure 9 relates to a collection of activities based on the number line bounce. 

Figure 9. http://matti.usu.edu/nlvm/nav/frames_asid_197_g_2_t_1.html?open=activities

Methodologies

Student’s interaction with the webpage should be more proactive than reactive. A proac-
tive interaction emphasises learner construction and generative activity whereas a reactive
interaction is an answer to presented stimuli or to a given question. Interaction must be
frequent and in a variety of forms. In Figure 10 students are required to draw geometri-
cal generalisations from manipulating objects.

Figure 10. http://nrich.maths.org/public/viewer.php?obj_id=266&part=index&refpage=monthindex.php
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Format of feedback

Appropriate webpages must consider the student’s awareness of his/her progress in the
learning activity. A webpage should be organised in such a way that the amount of infor-
mation does not overwhelm the user. Users should also know how the steps chosen are
completed so that they can progress. The tutorial in Figure 11 provides step-by-step solu-
tions for each problem.

Figure 11. http://www.algebrahelp.com/lessons/proportionbasics/pgw.htm

User control

Control of the lesson is defined by the degree of command held by the learner over the
webpage. Control includes navigation of the webpage, skipping the lesson, moving
forward and backward and other interactions with the webpage. Likewise more control
could be given for higher order thinking tasks such as problem solving and investigations
in contrast to repetitive tasks. The webpage on Figure 12 allows users to choose the trans-
formation they want to pursue.

Figure 12. http://www.waldomaths.com
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Language, style and grammar

Language and grammar should be at the appropriate reading level, technical term and
jargon, spelling, grammar and punctuation. Figure 13 shows a high lexical density text.

Figure 13. http://www.karlscalculus.org/calc1.html

Help

A help function may be available for each task so that the learner has continuos guidance
through the learning sequence as shown in Figure 14.

Figure 14. http://www.waldomaths.com
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Conclusions and recommendations

This paper dealt with issues associated with the interface design, navigation and user’s
control of an online resource. It indicates how evaluation forms and checklists can be
practical tools for teachers to identify positive and negative design features of an online
resource. The discussion also showed, in general terms, that the Alessi and Trollip’s
(1991, 2001) framework can provide teachers with a simple and at the same time mean-
ingful structure to assess WWW-based resources. These abundant resources require
professional judgment in their selection and articulation into the school mathematics
curriculum. 

Generally speaking, it was found that online resources created by professional organi-
sations and organised in inclusive websites such as the Learning Federation
(www.thelearningfederation.edu.au), Cambridge University (www.nrich.maths.org), the
National Council of teachers of Mathematics (illuminations.nctm.org/imath), York
University (http://www.counton.org) or the Shodor Foundation (www.shodor.org), have
a better instructional design than those created by individuals. These are comprehensive
websites whose online resources are more interactive, pedagogical oriented, sorted by
grade level and curriculum objectives, thereby constituting a better search strategy for
practicing teachers. Additionally, their URLs are also easier to remember! On the other
hand, it is estimated that there are 500 individuals’ websites — a figure that certainly
reflects the growing enthusiasm and commitment of the mathematics education commu-
nity to produce and share resources using the WWW medium. Eventually some sort of
centralised database of online resources by curriculum objective, grade level and/or type
of application sought should be designed to facilitate teachers’ identification and access
to the enormous amount and variety of online resources.

More research is certainly needed to modify courseware evaluation instruments to the
nature of online resources. Research is also needed to investigate the process of develop-
ing and supporting evaluation skills for practicing school teachers to facilitate the
application of these worldwide resources in the mathematics classroom.
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Mathematics and computers as ‘cognitive tools’

Rebecca Hudson
University of Wollongong

Computers as tools for teaching mathematics, have existed for fifty years. However,
not all mathematics teachers in secondary schools have embraced the potential of
using this tool. It has been claimed by several authors that computers are not sub-
stitutes for teachers, but rather are extension tools or ‘mind-tools’ that mediate
learning. Despite the technological advancement on our doorsteps, teachers are
still slow in using this technology in the classroom. This study will enlighten the
‘fallacy’ that most mathematics teachers think the use of computers results in an
added workload and extra lesson preparation. 

Introduction

‘The world is changing, technology is changing, mathematics is changing and mathemat-
ics education and society’s perception of, and support for mathematics education must
change to meet the needs of the twenty-first century’ (Burke & Curcio, 2000).

Background information on the potential of computer use

Schools and universities need to keep up with the rapidly changing global society. These
changes are reflected in growing consumerism, the information revolution, wider use of
information technology, and communication in all sectors of daily life, including educa-
tion, industry, leisure, travel, sports and medicine.

Countries around the world have embraced the integration of technology in their edu-
cation systems, as young people need to keep up with the technological changes
happening globally. Students need to learn computer skills to prepare themselves for the
workforce. The 2001 Census in Australia showed that nearly half of all households (49%)
used a personal computer at home and 36% of total households reported using the
Internet at home (www.abs.gov.au/ausstats/abs). The 2003 Australian Census showed
that families are using computer technology, which means that young people are being
exposed to increasing numbers of computers. Schools need to keep up with technologi-
cal change and must integrate computers in teaching mathematics and other subjects.

Positioning myself

Computers have been used in both the secondary and tertiary levels for over three
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decades. Yet when you enter classrooms, you will observe teachers in front of the class-
room lecturing and talking, using the blackboard to introduce a mathematics topic and
writing the content of their lesson on whole blackboard. The students are listening to the
teacher, and then opening their books to solve exercises. This is the common scene in
mathematics classrooms today, despite the technological advances outside the classroom.
There are already several reforms in education using computers as tools for teaching, like
the TIMMS 1999 Video Study (Hiebert et al., 2003). However, pedagogy has not progressed
significantly in fifty years. The majority of teachers are unaware of the potential of using
computers to teach mathematics. Teachers should reflect on this and understand that stu-
dents’ learning styles and beliefs have changed and our approaches should cater for their
needs. The youth of today is very different from the youth of fifty years ago: they are more
critical in their thinking, they question things happening in their environment, they are
bored sitting in a normal classroom listening to the teacher at the front of the classroom
and then using a book to do their homework and assignments. Today’s students want to
explore and experiment. This is because of their exposure to new technologies, new
information media such as the Internet, chat-lines, videoconferencing, simulations,
virtual reality experiences and digital music and movies. Often the students know more
than the teachers about the use of these technologies.

In my teaching of mathematics, I have used computers as tools in the classroom. My
observations and experiences are: 

• integrating technology in mathematics is a powerful tool for students to explore
mathematical ideas and real-world problems (the Internet, simulations, databases,
programming);

• using technology encourages conceptual learning rather than rote use of formulas
and algorithms (use of procedures and flowcharts);

• through the teacher’s guidance, students actively engage in the material which
encourages student experimentation (spreadsheets, BASIC and LOGO program-
ming, the Internet);

• students learn how to work with others in their groups and learn how to explore
questions (group research, interviews, collecting data);

• students are involved in the learning process when they collaborate with members
of the class;

• the use of technology in the curriculum enriches students’ understanding of math-
ematical concepts, increases their problem solving abilities and improves their
attitudes towards mathematics (formulas using spreadsheets, statistical programs);

• computers can be used as visualisation tools and integrating technology in the
mathematics curriculum provides an excellent opportunity to use digital cameras,
scanners, word processing and webpage authoring tools.

These observations are supported by Harskamp et al. (2000), Schoenfield (1987) and
Yelland and Masters (1997). However, the proper integration of information and commu-
nication technology (ICT) requires that teachers are familiar with hardware and software
issues (Watson & Tinsley, 1995). 
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Related studies

The following is a glimpse of studies on the potential of using computers in mathematics
in the learning environment.

Dubinsky and Schwingendorf (2001) conducted a long study on Calculus, concepts, com-
puters and cooperative learning. The emphasis of the C4L program is a pedagogical approach
based on a constructivist theoretical perspective of how mathematics is learned. 

They pointed out that students need to construct their own understanding of each
mathematical concept. They believe that the primary role of teaching is not to lecture,
explain, or otherwise attempt to ‘transfer’ mathematical knowledge, but to create situa-
tions for students that will foster their making the necessary mental constructions. A
critical aspect of their approach is a decomposition of each mathematical concept into
developmental steps, following a Piagetian theory of knowledge based on observation of,
and interviews with, students as they attempt to learn a concept. The following are the
guiding principles of their study and could be adopted when teaching mathematics.

Guiding principles 

(From Dubinsky & Schwingendorf, 2001)
1. Research into how students learn is primary (learning styles).
2. Conceptual understanding is the most important form of learning, but calculations

play a major role. 
3. Technology can be valuable, and some ways of using it can be more valuable than

others. 
4. Cooperative learning is the right context for a mathematics course. 
5. Lecturing should be replaced by a task-oriented interactive classroom. 
6. Textbooks and course structure must support the pedagogical strategy. 

Another study, conducted by Derry and Lajoie (1993) attempted to clarify how theory
influenced practice, and provided an analogy (computer-based learning environments)
in an effort to categorise the theoretical position that existed in the field of artificial intel-
ligence and education at that time. The analogy described three imaginary camps:
modellers, non-modelers, and middle camp (pp. 2–5). Those in the model camp develop
student models that allow the computers to interpret learners’ actions dynamically in the
context of a problem solving activity and to provide adaptive feedback based on the stu-
dents’ actions. In this use of the word modelling, experts’ models of human activity may
be automatically generated for the learners when the computer determines that assis-
tance is needed. Student models generate computer models of learning for learners to
observe and guide their future actions. The non-modellers believed that is impossible for
computer models to be extensive enough to provide the adaptive feedback required.
Hence, the non-modellers used technology as tools for learning and often require human
beings to serve as modellers or facilitators who used computer tools to enhance student
learning. 

Computers as ‘cognitive tools’ or ‘mind-tools’

It is important to discuss what computers can do to students’ minds and thinking.
Teachers often misunderstand the role of computers in the cognitive development of the
individual child. The following is a brief discussion of computers as ‘cognitive tool’ or
‘mind-tools’.
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Cognitive tools are both mental and computational devices that support, guide and
extend the thinking process of their users. A cognitive tool can be regarded as an instruc-
tional technique in so far as it involves a task, the explicit purpose of which is to lead to
active and durable learning of the information being manipulated or organised in some
way by the task, as asserted by Jonassen et al. (1993).

When using computers as a tool for teaching students are required to present informa-
tion and organise it in a meaningful way. This means that the students are engaged in
deep learning such as critical thinking and analysing problem solving. 

How technology tools support learning.

Technologies do not directly mediate learning; that is, people do not learn from comput-
ers, books, videos, or other devices that transmit information. Lajoie (2000) argued
learning is mediated by thinking (mental process). Learning activities activate thinking,
and learning activities are mediated by instructional interventions, including technology.
Learning requires thinking by the learner. In order to more directly affect the learning
process therefore, we should concern ourselves less with the design of the technologies of
transmission and more with how learners are required to think in completing different
tasks. Rather than developing ever more powerful teaching hardware, we should be teach-
ing learners how to think more effectively (p. 2). We should focus less on developing
multimedia delivery technologies and more on thinking technologies, those that engage
thinking processes in mind. The role of delivery technologies should be to display think-
ing tools — tools that facilitate thinking processes. Table 1 show how computers support
learning of students.

Table 1. Computers as cognitive tools to support learning

Some facts about computers Supports/enhance learning

computer as mental and computational
devices

extend thinking process; tools that facilitate
learning

computer as cognitive tools not a teacher or expert but as a mind-exten-
sion cognitive tool or ‘mind-tool’

computer as a tool for teaching students present information and organised them in a
meaningful way (databases, spreadsheets,
word processing, the Internet, simulation, arti-
ficial intelligence, graphics)

computer acts in the acquisition of cognitive
skills

problem solving, planning, designing, writing
or communication with software

the use of computers has effect in students’
mind

engaged in deep learning, like critical and
logical thinking, analysing and problem
solving (Mathematics software, Statistical soft-
ware, Programming languages, artificial
intelligence and instructional programs
designed by using computers like CAI, CAL)
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Technology integration in mathematics teaching

Information technology is now making its way into education. There is a need for a clear
integration of new technologies in school, not in addition: integration in subjects, inte-
gration in teaching, integration in learning, integration in the school, integration in the
profession of teachers (Watson & Tinsley, 1995, p. 5). Yet, this new technology is not
widely used in all subject areas. Teachers still think that using computers in the classroom
creates an additional workload (e.g., preparation of lesson plans). However, teachers
need to understand and be able to use technology in an ever-growing number of ways,
consistent with people who use it outside the classroom (Burke & Curcio, 2000).

As Burke and Curcio (2000) pointed out, ‘the world is changing, technology is chang-
ing, mathematics is changing and mathematics education and society’s perception of, and
support for mathematics education must change to meet the needs of the twenty-first
century’. Therefore, teachers must change the way they think about teaching and learn-
ing mathematics. Many authors and researchers have already established the potential of
using computers in mathematics teaching, the enhancement of students’ learning.

Technology integration, on the other hand, is an additional task faced by educators —
particularly classroom teachers — because they are the innovative ‘agents of change’ in
education. Therefore, the role of the teacher could change dramatically in the future. In
Australian schools, mathematics teachers are not using computers in mathematics.
Teachers who are willing to take up technology training could change their teaching
strategies. However, there are constraints to implementing technology in the mathemat-
ics curriculum, such as the support of the principal. 

Role of mathematics teachers in technology integration — what changes?

Shift on teaching methodologies

Increasingly, ‘computer technology’ is a powerful tool for teaching methodologies. The
students of today are becoming responsible for their own learning through flexible deliv-
ery, online teaching and learning and the notion of the teacher as facilitator. With the
introduction of computer-based networks, classrooms could include teachers and stu-
dents who are working together across long distances. 

The introduction and integration of computer technology in the classroom could
change the way teachers think and teach. No longer would it be commonplace to see
mathematics teachers standing in font of their students and directing them what to do.
The mathematics teacher of today could become a ‘busy bee’ going around the class-
room, setting up collaborative tasks, and developing students’ critical, analytical, logical
and teamwork skills. The teacher as builder derives from early classroom computer inno-
vations in which individual teachers not only select but also redefine learning activities
using technology. In turn, significant ideas for revising the technology are generated from
such on-site experimentation. This view represents a long-term professional development
process of training rather than brief contacts with educational materials. The teacher
needs to build new ways of making learning occur in the classroom (Hudson, 1997, p. 4).

The publication Computer-based Technologies in the Mathematics KLA (NSW DET, 1997,
pp. 7–8) considers several roles of mathematics teachers in implementing and integrating
computer-based technologies, such as:

• recognising the diversity of students and group of students;
• creating supportive and challenging learning environments;
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• providing all students with experiences in a wide range of computer-based activities;
• providing meaningful activities and learning contexts;
• interacting with students in a range of styles; and 
• valuing prior knowledge and experiences.

These roles require changes in the teachers’ teaching style and strategies. This task is a
very complex one. Teachers are already overburdened with paperwork and monitoring
student discipline in the classroom. They can only do their best to implement these roles
and changes. Watson and Tinsley (1995) mention various roles with respect to the teacher
with pedagogical implications in the IT classroom: acting in turn as manager, task-setter,
guide, accompanist, coordinator, explainer, counsellor, leader and even a fellow learner.
The teacher now has less control of pedagogy, instead interacting with students as a ‘facil-
itator’, ‘a learner’ and a ‘collaborator’. Teachers must accept that in these new rich
classrooms their autocratic control is diminished. Some students will bring a wealth of
knowledge about the use of computer-technology into the classroom. Students are tech-
nologically proficient, know more about computer games, techno-music, cyberspace
games, computer animated movies and communication gadgets like mobile phones. This
is the utmost reason why teachers’ roles in mathematics education need to change. 

Technology integration in the classroom calls for a new role for teachers in secondary
education, and the successful use of these technologies (computers) depends upon the
skills and training of teachers in the use of computers. Technology in teacher education
can contribute to successful implementation of technology-based learning in mathemat-
ics.

Watson and Tinsley (1995) state that with the influence of computers, ‘not only can
mathematics be taught differently, but in a very deep sense different, as much greater
emphasis being placed on numerical and algorithmic processes and on experimental
approach involving exploratory investigations’. Secondary teachers must thus develop a
deep epistemological view of the subject. Proper integration of IT means that teachers
must know about informatics in general and they must be familiar with the computer
itself, both in connection with the hardware and software considerations (pp. 32–33).

Bielefeldt (2001) conducted a survey on information technology in teacher education.
The survey was conducted in 1998 and collected information on 416 schools, colleges,
and departments of education (SCDEs) in the United States. Respondents were asked to
rate their own institutions in terms of a variety of indicators including coursework, tech-
nology facilities and support, skills of graduates, and field experience opportunities. An
analysis of the survey indicated four groups of items in which the questions were closely
related to one another:

• integration of technology into the program (teacher education);
• facilities;
• field experience and 
• application skills.

Of these, integration (the actual use of technology in the program) was the best predic-
tor of other aspects of capacity.

Integrating technology into mathematics teaching has great potential. Using comput-
er software (such as spreadsheets, CAD, LOGO, etc.) is an effective method of enhancing
students’ learning because their thinking skills, management skills, collaborative work
with teachers and students, and higher order-learning can be developed, as pointed out
by Jonassen et al. (1999). Teacher education should also incorporate technology teaching
in their respective area of expertise.

The use of emerging tools of information technology, such as the use of microworlds,
programming languages, e-mail, simulations, spreadsheets, CAD in mathematics teaching
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offers real opportunities for enhanced teaching and learning. Online tutorials and
courseware, as well as Internet-based subject offerings and distance learning can also be
used as technology tools.

Summary

The major challenges in the integration of information technology to the mathematics
classroom are pedagogy, curriculum content, the organisational structure of the school
and the classroom, and the role of the teacher. The teacher is faced by a responsibility to
implement and use technology-based learning in mathematics. To support this integra-
tion and implementation, head teachers and school leaders need to support teachers in
their professional development. 
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New York City school mathematics:
What are the vital outcomes?

Brian Lannen
Rhonda Horne

Neil Davis
Tom Frossinakis

A group of AAMT members recently worked in New York City on an in-school
teacher-training project. The intended vital outcome of the city’s innovations in
teacher professional development, is to make teaching more student-centred and
concept-focussed. However, outcomes at the school level are still strongly influ-
enced by high-stakes testing programs. This paper gives a background of the
teacher-training model, the education department’s philosophies as reflected
through its documents and mandated text programs, a case study of implementa-
tion, and a description of the testing practices.

Background: The teacher-training model

New York City has a population almost half that of the whole of Australia. The New York
City Department of Education oversees one million students in 1200 schools. Its teachers
have varied amounts of pre-service training, many of them young or new to teaching or
new to teaching in the USA. The City provides a range of professional development
opportunities for its teachers. These include ongoing college courses, regional and city-
wide workshop days, new teacher mentors and in-school coaches, and staff development
consultants.

The writers of this paper worked as in-school staff development consultants and
coaches alongside newly appointed school-based ‘math’ coaches. Their work involved
assisting the math coach with mathematics planning across the school, helping teachers
plan lessons and understand new text and manipulative resources, providing demonstra-
tion lessons and professional development workshops, and assisting teachers in-class as
they implement new ideas.

A pivotal document in guiding the pedagogic practice is A Comprehensive Approach to
Balanced Mathematics (New York City Department of Education, 2003). Essentially this is
to help teachers make their lessons more student-task oriented and concept-focussed.
The Chancellor’s office produced this document during the summer of 2003 in response
to a perception of diminishing standards of achievement in City schools. Along with this,
the Chancellor also mandated the adoption of set textbook programs in all schools. The
concern over achievement levels comes mostly from student scores in the highly revered
City and State standardised tests. Although the research component of A Comprehensive
Approach to Balanced Mathematics and the philosophies of the mandated texts might
suggest otherwise, many teachers still feel compelled to ‘teach to the test’ and feel that
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this is best achieved through an algorithmic approach to mathematics instruction. 
A vital responsibility for the consultants has been to gain teacher confidence and steer

them towards sound pedagogic practice. This task has been helped by the hands-on
nature of the teacher-training model and the generally positive response from students
who are being asked to be more engaged in their own learning.

This expectation is spelt out in A Comprehensive Approach to Balanced Mathematics:
‘During the mathematics workshop, students are encouraged to question, explore,
reflect, explain, and convince themselves and others as they seek understanding’ (p. 9).

In the book Content-Focused Coaching, former school District Superintendent Lucy West
writes of the need for consultants and coaches to bring about change at a grass roots
‘beliefs and values’ level: ‘Trusting the process and working with teachers in ways they are
willing to engage are crucial tenets in effective coaching’ (p. 129); ‘Successful staff devel-
opment is all about relationships.’ (p. 137).

The coaching process generally incorporated a series of lessons, firstly observing and
getting to know the teacher and students, then planning with the teacher for the follow-
ing lessons. Often the next lesson is taught by the coach/consultant and the consultant
then assists the teacher in planning and implementing the follow-up lessons.

The term being adopted for these student-active lessons is ‘workshop model’, where
each lesson is expected to contain elements of a mini-lesson (teacher-directed), inde-
pendent and/or small group work (student-centred) and a summary share session (class
community).

Philosophy and intended direction: The text programs

The mandated texts have provided a good source of investigative problems for the
student work phase. In middle schools (Grades 6 to 8), McGraw Hill’s Impact Mathematics
states in its program philosophy that ‘Effective teaching methods for middle grades stu-
dents are varied and student-centered. Impact Mathematics encourages active learning
through an assortment of teaching methods — collaborative problem solving, teacher-
directed instruction, class discussion, and individual practice’(Implementation Guide,
p. 49). Many of the activities in this program will be familiar to Australian mathematics
teachers: the locker problem, fraction strips, constructing a sector graph from a strip
graph, crossing a bridge, and more. The text writers acknowledge that many of the
algebra investigations are taken from Curriculum Corporation’s Access to Algebra (Lowe et
al., 1994). 

In elementary schools, the text scheme adopted is Everyday Mathematics, also by
McGraw Hill and originally researched at Chicago University. In the 2003–4 school year,
schools were directed to implement this program with Grades K–2, and given the option
to further implement it in Grades 3 to 5. The resources provided to each teacher were:

• A Comprehensive Approach to Balanced Mathematics: A Handbook for Educators (CAB)
produced by the New York Education Department;

• Everyday Mathematics program for the specific grade level, a program developed by
The University of Chicago School Mathematics Project (UCSMP). 

The Balanced Mathematics approach (CAB) is to communicate and disseminate informa-
tion in mathematics for a shared vision. Within the CAB, the workshop structure is
outlined for the teachers to complete their lessons. This structure is to support standards-
based mathematics teaching and learning by giving students the opportunity to engage in
purposeful mathematical activities and conversations. It also enables teachers to meet the
diverse learning styles and the needs of the students. The three components of the work-
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shop model (mini-lesson, student activities, reflection) are to be presented in both the
Literacy and Mathematics teaching and learning blocks. The CAB also outlines New York
standards for each grade and the pacing calendar for each month. 

Everyday Mathematics (UCSMP) was developed in order to enable the students in ele-
mentary grades to learn more mathematical content and become life long mathematical
thinkers. It begins with the premise that students can, and must learn more mathematics.
The program uses:

• real-life problem solving — numbers, skills and concepts are not represented in iso-
lation, but linked to contexts that are relevant to their everyday lives;

• balanced instruction — whole group, small group and individual activities;
• multiple methods for basic skill practice-choral drills, mental math routines, fact tri-

angles, review problems called math boxes, games and assessment;
• emphasis on communication — students are encouraged to explain and discuss

their mathematical thinking;
• enhanced home/school partnerships — daily home links, games, parent letters.
The instructional design is to maximise students’ learning and capitalise on student

interest:
• high expectations for all students;
• concepts and skills developed over time and in a wide variety of contexts;
• multiple methods and strategies for problem solving;
• collaborative learning in partner and small group activities;
• cross-curricular applications.
At the end of this year there has been some positive progress made in the teaching and

learning of mathematics. These are:
• the allocated time for mathematics — 60 minutes for Kindergarten to Grade 2 and

75 to 90 minutes for Grades 3–5;
• kindergarten teachers have commented that the real life aspect of the program has

improved the student learning in mathematics;
• cooperative learning in the mathematics sessions;
• student activities and games;
• promotion of manipulatives;
• mathematics literature;
• parent and home program;
• student reference book.

Something good: A case study of positive change

This case study is from a middle school in Brooklyn where positive change was seen to
occur as a result of the consultancy intervention and in line with the City’s objectives. The
school has an enrolment of 600 students in Grades 6 to 8. There is no mathematics coach
at this school and the Australian consultant was asked to work with teachers of one grade
level at a time, focussing firstly on the introduction of the workshop model, moving teach-
ers away from front-of-class lecturing and equipping them more with student-active
investigative tasks. Teachers in New York generally teach only at one grade level per year,
so a ‘seventh grade teacher’ may have five classes all at seventh grade. A vehicle for the
professional development, especially at the sixth grade level, was the new Impact
Mathematics mandated text scheme. Teachers at the school were previously using a mix of
textbooks, not necessarily the same text across all classes in a grade level. Teachers have
generally ‘acquired’ a class set of textbooks at some stage and keep them in their room as
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the source of exercises for students to practice on. Quite often, however, a lesson would
consist of the teacher copying a few exercises onto the board and then talking the stu-
dents through the solutions. It is rare for teachers to have access to photocopying facilities
in the school, so it is not easy for them to develop their own worksheets or merge ideas
from a range of printed sources. Some teachers, however, do try this and arrange and pay
for their photocopying privately as they feel ‘the text’ does not present material in the way
they want. One such teacher is Bill, a sixth grade teacher who is in his third year of teach-
ing and previously worked as a psychologist. At first Bill was wary of the Impact Mathematics
text, claiming that he already used a range of materials as he deliberately aimed to
develop students’ conceptual understanding. He did not want to give up that freedom to
fall in line with a set text and drive students through all the exercise work. 

This was a good starting point for the consultant. The teacher was already purposeful
in wanting to guide his students in developing concepts. Bill’s approach, however, was still
very teacher-directed and he did not seem to have an appreciation for how problems
could be taken from the text, mixed with and connected to other materials he liked, and
used to drive student investigation and discovery. He understood the term ‘constructivist’
but did not seem to probe his students to ascertain their cognitive models for mathemat-
ics. ‘Assessment’ was still seen as a regime of formal tests used to produce scores.

The consultant was able to reassure Bill that there is no need to throw out all of the
old, while introducing some things that are new. The text scheme in conjunction with the
NY City and NY State ‘core curriculum’ documents could be used as the guiding structure
and also a source of good investigative and formative activities. The visiting consultant
spent two or three lessons each week working with Bill and his classes. The classes were
firstly observed, then demonstration lessons given. Bill was pleased with the increased
level of student engagement and keen to debrief and plan with the consultant. Within the
space of a few weeks, he was eagerly setting up effective student learning experiences. It
was clear that this teacher already cared for his students and wanted to help them learn.
As the weeks went on, he became increasingly reflective and (unnecessarily) critical of his
teaching practice. He used some activities from the mandated text, mixed them with his
own ideas and a vast range of manipulative materials. For a topic on fractions, Bill had his
students use counters, play money, fraction strips, pizza shapes and calculators. He
became focussed on students developing concepts in an inter-connected knowledge
framework. Perhaps the most telling example was his spirited report to the consultant of
useful information that particular activities revealed about student understanding: ‘I had
no idea that they saw it this way. It’s no wonder they didn’t understand what I was trying
to teach them. So I modified the activity for the next class and they got it straight away.’

The success of positive change with Bill’s teaching practice is one of many such stories,
but it is certainly not the story with all. The reasons it worked here were initially that the
teacher genuinely cared for his students and felt the need to teach concepts. The teach-
ing approach and text mandated by the City were steps in the right direction, but the
changes in Bill’s classroom are not so much due to the ‘top-down’ directives, but more
due to the beliefs that Bill developed about the learning process. Consultancy support
with guidance and a building of trust helped this development.

Something not so good: 
Dominance of the State and City testing programs

Most assessment is still predominantly equivalent to traditional testing. In many classes
the curriculum methodologies are constrained by the need to prepare students for the
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high stakes testing that determines their progress through school. This diverts effort away
from learning for understanding towards a very algorithmic approach which is teacher-
centred, based on memorisation of processes and on drill and practice. Test preparation
becomes an overwhelming driving force as test time approaches. Additional allocations of
time are given to mathematics, both within the school day and extending the school day,
and with mandatory attendance. This is augmented by voluntary attendance at free after-
noon and weekend tutoring.

In some middle schools four days each week are devoted to teaching with the fifth ded-
icated to test preparation and testing. Above and beyond this are the monthly tests.

The preparation of tests seems to revolve around ease of marking with an overempha-
sis on multiple-choice questions. In the most recent Grade 9 state examination (Regents
Math A), approxitaely 70% of the marks were for multiple-choice questions. In teacher-
generated tests, the mark allocations often bear little relation to the complexity or
difficulty of the questions. In some extreme cases a multiple-choice question was weight-
ed equally with a several part, multi-step word question; i.e., at 10 marks each. The tests
are often adjusted to simplify calculation of percentage scores.

In the past there has been little cooperation between teachers in developing tests for
identical curricula. There is a growing trend towards using computer-generated tests,
either with stand alone software or software packaged as part of a textbook-based kit. At
the school level the results of examinations may even play a role in determining tenure
of teaching and administrative staff if schools have failed to show improvement in scores.

A student may pass a class without passing the examination. Class success is based on
tests (80%) and marks allocated to attendance and homework/class work (total 20%).
Project work, thought provoking assignments, portfolios, oral and other ‘alternative’
assessments rarely played a part in the classes that we observed. However, it is mandated
by the City that no student who has attended at least one day per semester, can receive
less than 40%. Yet an attendance rate of at least 95% is needed to gain a pass in the class
component.

At state examination level, a 65% result is considered a pass. This result is determined
by use of a scaling scheme on the raw score, which is varied from time to time. In the most
recent Math A (Grade 9) exam, the raw score for a 65% level was deemed to be a
minimum of 37 points out of a maximum 84. To obtain a school diploma, students
needed a raw score of 28 out of 84, and this was equivalent to a scaled score of 55%.

Few teachers make any detailed analyses of results of tests or examinations for remedi-
al teaching (re-teaching) or even to extend students. The consultants and coaches have
had a positive influence in this regard, promoting the use of cooperatively prepared tests
at grade level within schools and at regional level. 

Conclusion

While it remains that different camps still see different sets of outcomes as being vital, one
thing is certain: that it is vital that New York City get their education system right. Too
many students are currently disillusioned with an authoritarian system in which they expe-
rience little success. The department is making steps in the right direction as it focusses
on quality teaching with a philosophy of greater student ownership of their education.
The intense consultancy model being employed is a positive thing, and is helping to
change the attitudes and beliefs of some teachers and students. However, as teachers
become more successful, it is important that they stay and lead in the City system, rather
than be attracted to often more lucrative teaching assignments in neighbouring counties. 
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As for test preparation, the writers of this paper maintain that the best form of test
preparation is good teaching in the first place — with lessons that empower students with
a real understanding of, and appreciation for, the vital mathematics. As we continue our
work in this busy, crowded, diverse and energetic system, it is encouraging that we are
more frequently hearing these same sentiments on the lips of the New York City teachers. 
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Multiples of three and saving Australia in 1942*

John Mack
University of Sydney

The start of 1942 was a very frightening time for Australia. The Japanese had dev-
astated Pearl Harbor and much of the US fleet there, they had landed on the Malay
peninsula and would shortly capture Singapore, and had begun their island
hopping expansion in the south-west Pacific. Had they been able successfully to
invade Port Moresby via a seaborne attack from Rabaul, our supply lines would
have been cut off. Had their plan to trap the remnants of the US fleet off Midway
succeeded, Japanese naval control of the western Pacific would have been com-
plete. I shall explain one essential component of the story as to why this did not
happen!

Introduction

In December 1941, Japan launched a surprise carrier-borne attack on the main US Pacific
naval base at Pearl Harbor in the Hawaiian Islands, destroying many of the major warships
then in port. Fortunately, the US carriers usually stationed there, were at sea at the time and
so not destroyed. Simultaneous with this attack, Japanese forces landed on the Malayan
Peninsula and began their drive on Singapore, which was captured by mid-February 1942.
By late March, General MacArthur had arrived in Australia, having evacuated the
Philippines, and most of the islands of the south-west Pacific, and of the Dutch East Indies
(Indonesia), were occupied by Japanese forces. Darwin had been bombed, the British Navy
routed from the region, and Australians felt extremely vulnerable.

Yet within three months, the Naval Battles of the Coral Sea and Midway had restored
hope that a successful struggle would see the tables eventually turned. How did this
happen, and what role did Australia play in this short period? The big picture has been
documented, but not the crucial roles played by Allied codebreakers in achieving these
significant initial victories. I will tell you a small part of the bigger story of codebreaking
in the Second World War (WW2), involving some unsung heroes, both distant and local.

WW1 beginnings

Two aspects of history from the First World War (WW1) are relevant to my story. First, the
British realised that mathematicians could be usefully employed in cryptological (i.e.,

* This paper has been accepted by peer review.
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codebreaking) work and recruited some from universities. Second, although Japan was an
ally of the British Empire and America against Germany in this war, there were those in
Australia, Britain and America who even then were concerned about possible Japanese
plans for empire-building in Asia and the Pacific. These people consequently felt it useful
to have links into Japanese society and also personnel proficient in Japanese, so as to
obtain independent advice (other than through normal diplomatic channels) on direc-
tions in Japanese foreign policy at that time.

In particular, the Royal Australian Navy offered its officer cadets an opportunity to
study Japanese, and to facilitate this it gained the support of the Senate of the University
of Sydney to establish Japanese studies as early as 1917. 

Between the World Wars

Both Britain and the USA had made effective use of significant codebreaking achieve-
ments during WW1 and these also influenced the final negotiations regarding the sharing
out of Germany’s former Pacific territories amongst the victors, and in limiting the size of
Japan’s post-war Navy. Japan was unhappy with both, but the American and Australian
governments saw no reason to continue closely monitoring Japanese affairs. The British
were less complacent and its Royal Navy (RN) decided to continue covert operations
monitoring Japan. This was fortunate for young Eric Nave, from Adelaide, who had
entered officer training in the Royal Australian Navy (RAN) as a young lad during WW1
and realised that he could receive an extra allowance if he volunteered to study Japanese.
He did so well in this that James Murdoch, the Professor of Japanese at Sydney University
(who was also contracted to teach Japanese to selected Navy personnel), recommended
that he be sent to Japan for a couple of years to live in the country and to study for the
British examinations for translators/interpreters. Nave obtained excellent results and his
name was drawn to the attention of relevant staff in the RN. So, in 1925, when the RAN
no longer had need of specialists in Japanese, the RN requested that Nave be seconded
to it, which duly happened. Before long, Nave discovered that his task would be to estab-
lish interception and decryption facilities for the RN off China, monitoring in particular
Japanese naval and diplomatic messages.

Enter the age of radio

Have you given thought to how difficult it was for ships at sea to communicate with each
other, or with onshore stations, before radio communication became available? Navies
worldwide were among the first to exploit the benefit of radio communication as a means
of keeping in contact (and not just in contact but in instant contact!). But using radio, for
all its obvious benefits, had one major disadvantage: anyone who could pick up a radio
message could have access to its contents, and it was not difficult to develop interception
equipment that DID pick up radio messages!

So Nave came into the business of radio interception at just the right time, and he was
a major player in RN work on Japanese codes between the wars, when all seapower
nations were busy devising what they hoped would be safe codes for naval communica-
tion. The most widely used system for sending radio or cable messages was that based on
the Morse code of dots and dashes, so usable secure communication codes had to be
adaptable to this means of transmission. I shall briefly describe a coding system that was
usually highly secure, and is relevant to my story.
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Two-stage or superenciphered codes

Such codes involve a two-stage coding process. Stage 1 uses a codebook, in which all the
letters and digits, as well as commonly occurring words, phrases, numbers, etc., are each
assigned a unique codeword, which may be an ordinary word, a sequence of nonsense
letters, a set of digits, or some combination of these.

To encode a message (e.g., ‘We will attack Pearl Harbor at dawn on 12/7’), the cipher
clerk looks up each word in the codebook and then writes down the set of codewords rep-
resenting the above message. Now enter the second stage of the process, a stage most
easily done if all the codewords are actually numbers of the same length; e.g., of five
digits. The cipher clerk now picks up a second book, called an additive table. This book
might have 100 pages and on each page there is printed a square or rectangular array of
numbers, each the same size as the numbers appearing in the codebook. The clerk opens
the table at random, and, again at random, puts a finger on one of the entries in the array
(which can be uniquely identified by the row and column it sits at).

The clerk, having written down the set of numbers obtained from the codebook, now
writes down under each such number, in order, the numbers in the table, starting with
the chosen first one. Here is an example. Suppose the six codewords corresponding to
the original message are:

31625   23418   71624   33001   01499   62222

and that the 6 consecutive entries in the table are:

21324   44556   06290   66529   12413   88374

The clerk puts one row below the other:

31625   23418   71624   33001   01499   62222
21324   44556   06290   66529   12413   88374

and then adds them in columns, without carry (oh joy!), obtaining

52949   67964   77814   99520   13802   40596

These are the actual ‘groups’ (known as GATs — ‘groups as transmitted’) that the cipher
clerk will send. Of course, the clerk will also have to send information on date and time,
on the sending station and the intended recipient, and, most importantly, on the exact
starting point in the additive table used in composing the message.

The intended recipient, having picked up the radio message and correctly transcribed
it, will then have all the information needed to know where to start in the additive table.
‘Stripping the additive’ from the GATs reveals the original codewords, whose meanings
are then looked up in a ‘reverse codebook’.

Even without using additional tricks to disguise, for example, how the starting point in
the additive table is hidden in the full message, trying to decrypt a message of this kind is
no mean feat!

Since the Japanese language does not use the standard Roman alphabet and is also con-
structed differently, Japanese radio clerks used a system called Kana Morse, based on one
form of representation of the language. So, as a first step in intercepting Japanese radio mes-
sages, our interception operators had to become proficient in Kana Morse, a non-trivial task.
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Breaking a code of this kind

The simplest and best way to break such a code is to obtain, without it being discovered,
copies of both codebook and its additive table, preferably also with a list of instructions
on how to compose a message sent using the code. Without this last bit, a codebreaker
has first to work out how the various bits of formatting information are included among
the actual GATs of the intercepted message, and so discover what part of the additive table
was used, before being able to decrypt it. 

In practice, without benefit of access to stolen goods, the codebreaker hopes that a
number of intercepts will be made, so that their actual forms may be compared in case it
is possible to guess which bits contain the critical formatting data. Even so, the task is
unlikely to succeed, unless one is led to suspect that a couple of the messages were
encoded using the same starting point in the additive table, or at least a common section
of it. Another helpful clue might come from guessing that some of the intercepts contain
exactly the same underlying message, or have similar structures that suggest an underly-
ing formality of style. Fortunately for us in WW2, both the German military and the
Japanese military found it hard to escape formality with regard to message construction,
modes of addressing recipients, etc., which all helped in the unravelling of the underly-
ing codes.

There are several techniques available for systematically trying to obtain some new
information about two-stage codes from a set of intercepted messages, once one has been
able to make a start. A key process for this is called ‘aligning messages’, or ‘putting mes-
sages in depth’, which means finding intercepted messages which one believes have used
a common part of the additive table, and working out exactly where some of this common
part lies in each message. Doing this will be virtually impossible unless one is able to
obtain lots of intercepted messages. Even then, it remains impossible if those sending
messages are careful to make random choices of starting points for additives and avoid
sending stereotyped messages. Fortunately, again, careless or harassed cipher clerks were
prone to use the same page, and even the same starting entry on the page, for more than
one message. Other radio interception techniques helped in locating the origin of a
message and even identifying the operator who sent it.

I shall not discuss further general methods of attack, as my purpose is to explain why
a special simpler technique was able to be used on JN25, the Japanese Navy’s principal
operational code used during WW2.

Enter the British: Tiltman and Turing, Bletchley Park 
and the Far East Combined Bureau (FECB)

Brigadier John Tiltman is regarded now as the best British codebreaker of all time. The
Japanese Navy introduced a major new five-digit code, JN25, in mid-1939 and Tiltman was
given the task of fathoming its structure. He realised that it bore some similarity to certain
Japanese Army codes that he had previously studied, and so suspected that it was indeed
a two-stage code. By the end of 1939, he had confirmed this and had also found a truly
unexpected feature. He suggested that every five-digit codeword in the JN25 codebook
was not a randomly chosen number, as expected, but a multiple of 3. So, for example,
23418 may well have been a codegroup, but 31625 could not be one. This reduces the pos-
sible maximum number of codewords from 100 000 to one-third this number, i.e., around
33 000 — a considerable reduction! It was also quickly realised that this feature simplified
the finding of codewords and additives, because there is a very quick mental check on
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whether or not a number is a multiple of 3.
To obtain the hidden codeword from a GAT in an intercepted message, one has to find

the additive used to produce the GAT and subtract it. If the original codewords were
random five-digit numbers, this step usually does not help unless it produces a known
codeword. But for JN25, unless the step gave a multiple of 3, one knew immediately that
the number, suspected of being the additive used, had to be wrong.

Alan Turing and his team of mathematicians at Bletchley Park devised a simple
mechanical aid, called the subtractor machine, to exploit the ‘multiples of 3’ aspect of JN25.
Suppose I have been able to collect several messages that are aligned, so that I can
arrange them, one above the other, with GATs containing the same entry of the additive
table all appearing in the same column. If I am correct in this, then the same additive,
when subtracted simultaneously from all the GATs in the one column, should always
produce multiples of 3 in every place. If I know the additive from previous work, then I
can check this. If I do not know the additive, then trying possible additives at random is
not a practicable strategy. I can perhaps find the correct additive by guessing that one of
the GATs in this column hides a commonly occurring codegroup that I already know.

If, for example, I suspect that the codegroup 23418 is hidden in one of these GATs,
then I take the first GAT in the column, and work out what I must subtract from it to
obtain 23418. Suppose this is 34184. I then subtract this from every other GAT in the
column and check if each result is a multiple of 3. If most are not, give up and try out
23418 on the next GAT, repeat the subtractions and check again for resulting multiples
of 3.

If none works, then I sigh and try the process with another commonly occurring code-
group suspected to lurk behind a GAT. If, at some stage, I end up with every subtraction
a multiple of 3, my confidence that I have found the correct additive goes up steadily with
the length of the column being used. I am pretty well certain if this length is 8 or more
(although in practice, very experienced operators probably settled for fewer GATs in a
column). 

This machine was built and in operation during 1940. The British codebreaking unit
in the Far East, associated initially with Captain Nave, had been expanded into a unit
called the FECB, initially based at Hong Kong. It was moved from there to Singapore once
Japanese attacks in China and Indo-China threatened its position. It became progressive-
ly more involved with the effort to build up the JN25 codebook and additive table, and to
‘read’ individual messages in this code, because the Bletchley Park group was obliged to
focus more intensively on the war in Europe.

Other machines were subsequently built and put to use to exploit the flaw in the JN25
codebook; for example, to find ways of aligning intercepted messages.

Enter the Americans: Fabian and Station CAST 

The British and American codebreakers began regular exchange of information early in
1941. At that time, none of the main American cryptographic centres had placed much
emphasis on JN25, nor had made much progress with it. Lieutenant Rudy Fabian, in
charge of signals intelligence Station CAST in the Philippines, then sent one of his staff
to FECB, and he returned with full information on how the British had ‘solved’ the con-
struction of JN25 and were using that to break, little by little, into individual messages.
Fabian decided that all the codebreaking activity at CAST would focus on JN25 and
encouraged its study elsewhere, but Station HYPO on Hawaii was required to continue
work on other codes. It is ironic to record that the first really useful JN25 message com-
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pletely solved by the Allies occurred just as Pearl Harbor was attacked.
This event immediately gave much more importance and intensity to this task. FECB

and CAST worked on it, under attack, until both had to be evacuated in February 1942.
Some FECB staff, and most of Fabian’s team were relocated to Melbourne, while most of
FECB went to Colombo in Ceylon (Sri Lanka).

Re-enter Sydney University and Captain Nave

Early in 1940, four academics at Sydney University — two mathematicians, Professor T. G.
Room and ‘Dickie’ Lyons, and two classics scholars, Professor Dale Trendall and ‘Aps’
Treweek — with encouragement from the military at Victoria Barracks, Sydney, decided
to meet together to learn some Japanese and to study cryptology. By October, their work
had been officially noted by the military. Captain Nave returned to Australia in 1941 and
was asked to help set up a cryptographic intelligence unit in Melbourne. He learned of
the Sydney group and after meeting them, recommended they be joined with some mili-
tary intelligence personnel to create this group. Later in that year, Room and an officer
from the unit were sent to FECB to gain information on their current work and it is likely
that they learnt something about JN25 as well as other codes being studied there.

So, when Fabian arrived in Melbourne, he found this unit in operation and by mid-
March had set up a new operational station, later called FRUMEL (Fleet Radio Unit
Melbourne), continuing the attack on JN25.

Coral Sea, Midway and the Kokoda Trail

Throughout March, April and May 1942, the stronger Allied attack on JN25 began to
produce important operational information, usually with only partial decryption of mes-
sages, combined with other data obtained from direction finding, traffic analysis and
radiofingerprinting. 

FRUMEL made important contributions to the intelligence that enabled the Allies to
learn of the planned Japanese seaborne invasion of Port Moresby, coming across the
Coral Sea from Rabaul. The US Navy staged a successful counter attack (the Battle of the
Coral Sea) and forced the invaders to retire, having lost an aircraft carrier in the process.
This battle was also the first naval engagement in which warships did not directly fire at
each other: the battle was fought out by carrier and land-based aircraft and established
completely the dominance of aircraft carriers in all future naval battles.

This was the first significant defeat of the Japanese in the Pacific area. Fearing that a
further seaborne invasion attempt would fail because of uncertainty over the provision of
air cover, the Japanese decided instead to attack Port Moresby overland from the north
coast of New Guinea, leading to the later extensive fighting on the ‘Kokoda Trail’. 

FRUMEL picked up the message conveying this decision not to use the seaborne
route. This information was significant for the imminent Battle of Midway, as it enabled
the US Naval commanders to withdraw carriers stationed in the Coral Sea back towards
Pearl Harbor and to include them in their plans for this battle.

Admiral Yamamoto, the leader of the Japanese Navy, planned to invade the strategical-
ly important small island of Midway, confident of luring the remnants of the US Pacific
Fleet, with its all-important carriers, into a trap where his superior forces would destroy
them. JN25 intelligence revealed enough detail of these plans for US Admiral Nimitz to
plan his own surprise attack on the main Japanese naval force. The result was the Battle
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of Midway, 4–6 June 1942, in which four Japanese carriers were sunk, the invasion force
again withdrew, and after which the Japanese no longer could claim naval supremacy in
the Pacific.

These two crucial victories were tremendous morale boosters for Australians and saved
Australia from the real threat of total isolation from all Allies, and possible invasion.
Neither would have occurred without the enormous help provided by Tiltman’s discovery
of the ‘multiples of 3’ flaw in the design of the Codebook of JN25, which, astonishingly,
the Japanese kept in place with all subsequent changes in this code!
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Mathematical knowledge of some entrants 
to a pre-service education course*

Heather Mays
University of New England

Standards for teaching emphasise the need for teachers to have deep content
knowledge. To assess the mathematical knowledge of students enrolling in its
B.Ed. program, the University of New England has introduced a mathematics diag-
nostic test. This work is the first stage of an ongoing research project into the
numeracy needs of students entering the B.Ed. program. The test is a pen-and-
paper test that replaces previous on-line, multiple-choice tests. This paper reports
on the test results, discusses some common errors made by students and outlines
the future direction of the research.

Background

A three-year research project into the numeracy needs of students enrolling in the
Batchelor of Education (B.Ed.) program at the University of New England was com-
menced in 2004. The decision to introduce a mathematics diagnostic test for students
enrolled in the B.Ed. program was made in recognition of the fact that it is important that
people entering the teaching profession have a deep understanding not only of the
processes of teaching and learning but also of the content from their discipline area (Hill,
Rowe, Holmes-Smith & Russell, 1996; Thomas, 2000, 2002; Darling-Hammond, 2000;
Brown, 2002; Ingvarson, 2002; Buckingham, 2003, Committee for the Review of Teaching
and Teacher Education, 2003a, b). This, in turn, has been acknowledged by the introduc-
tion of standards for the teaching profession (Interim Committee for a NSW Institute of
Teachers, 2004). 

Diagnostic testing is concerned not only with assessing a student’s level of competen-
cy but also with providing suitable follow-up support/remediation. Such tests allow
educators to engage in curriculum planning based upon improved knowledge of individ-
ual students and of trends in performance. Previously, students enrolling in the B.Ed.
program undertook a series of compulsory, online, multiple-choice tests called personal
maths profiles (PMPs). Students who made errors on the tests were directed to a set of text-
books for the purpose of self-remediation. This system did not provide academic staff with
any information regarding student performance and cheating, in particular having
someone else take the tests, was also a major issue.

To overcome these problems, B.Ed. students are now required to undertake a compul-
sory pen-and-paper mathematics diagnostic test. Calculators are not allowed. The test

* This paper has been accepted by peer review.
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replaced the PMPs, which, although they were conducted and marked online, did not
lead to any data collection or analysis. The pen-and-paper test has the disadvantage of
being slower to mark and analyse than online tests, but has the major advantage that aca-
demic staff have access to students’ hand-written working. This paper provides an
overview of the analysis of the student responses on the test.

Data source and methodology

The B. Ed. program typically has enrolments of about 170 students each year. At the time
of writing, 159 students had completed the diagnostic test, including 51 males and 108
females. Of the intake, approximately 62% had successfully undertaken some mathemat-
ics at Year 12 level since 2001, with another 26% undertaking mathematics at Year 11
level. The remaining students had either not taken mathematics in their senior years or
had done so more than three years earlier. 

Despite the high proportion of students who had successfully completed a senior sec-
ondary mathematics unit, it was decided that all students should be tested, using an
instrument that would expose any misconceptions regarding mathematical content that
the students would be expected to have mastered before teaching primary-level mathe-
matics. Details of the test instrument are provided in the next section.

The Mathematics Diagnostic Test (MDT)

The test comprised five mental computation questions and thirty items taken from the
1999 Trends in International Mathematics and Science Study (TIMSS) test (TIMSS USA,
2000). The maximum possible mark was 37. The rationale for using these items was two-
fold: the test items have been previously evaluated and validated, and the test is an
instrument that has been used to assess the mathematical performance of Year 8 students
from around the world. Benchmark data are available for each question, enabling com-
parisons to be drawn between the performances of B.Ed. students with those of students
who completed the 1999 TIMSS test.

The TIMSS items covered five content areas: fractions and number sense, measure-
ment, algebra, geometry and data representation, analysis and probability. Similarly, the
items covered five cognitive domains: knowing, using routine procedures, investigating
and problem solving, mathematical reasoning, and communication. The MDT included
a selection of items to ensure coverage of the five content strands and the one process
strand from the NSW K–6 Mathematics syllabus. However, questions were left open-ended
on the MDT, whereas the TIMSS items included four choices of answer. This alteration
was made to reduce the chance that students would guess answers and to provide staff
with access to all the resultant errors.

Test results

The test results have been analysed in several ways including summary statistics for the
entire cohort of students, question analysis by strand and common errors. These are now
detailed.
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Summary statistics

The level of mastery required by students was set at 80% (or a mark of 30/37). This level
was considered to be appropriate to meet the standard set by the Interim Committee for
a NSW Institute of Teachers. Only seventeen of the 159 students taking the test achieved
this level of mastery. The breakdown of scores is shown in Table 1. The scores were nor-
mally distributed with a mean mark of 22.2 (60%) and standard deviation of 5.68 (15%).
The lowest score was 8/37 (21%) and the highest score was 34/37 (92%). Forty students
(25% of the intake) scored less than 50% of the total marks available.

Table 1. First year test scores for MDT 2004.

Score /37 Score % Frequency Cumulative %
0–4 0–10.9 0 .00%
5–9 13.5–24.3 3 1.89%

10–14 27.0–37.8 14 10.69%
15–19 40.5–51.4 31 30.19%
20–24 54.1–64.9 58 66.67%
25–29 67.6–78.4 36 89.31%
30–34 81.1–91.9 17 100.00%
35–37 94.6–100 0 100.00%

Question analysis by strand

The types of questions that were well handled by the cohort included reading informa-
tion from graphs (but not generating their own graphs), basic computation involving
whole numbers (except for multi-digit subtraction) and completing numerical patterns
(but not using algebraic rules). All of these questions had a success rate of 80% or higher
and a baulking rate no greater than 8.2%.

The question types that were least well handled included conversion between metric
units, calculations with fractions, decimals and ratios and the use of algebraic rules to
extend a pattern. None of these questions had a success rate greater than 35%. Baulking
rates varied between 6.3% and 40.3%.

Overall, the baulking rates were reasonably low (the mean was just below 12%). The
main exceptions were the question on triangular numbers, which had a baulking rate of
40.3%, the question on the average weight of a salt crystal, which had a baulking rate of
27%, and questions on substitution of a pronumeral into a linear equation and the
repeated use of fractions, each of which had a baulking rate of 22.6%. All of these ques-
tions were calculation-intensive and required several steps to solve. Low baulking rates
were associated with low-complexity questions that required little computation, including
the mental computation questions and questions involving interpretation of diagrammat-
ic or graphical information.

Low baulking rates were not always associated with high success rates, particularly for
the mental computation questions. Of these, the multi-digit subtraction question had a
baulking rate of 7.5% and a success rate of 47.8% (i.e., an error rate of 44.7%), the ques-
tion on adding fractions had a baulking rate of 10.7% and a success rate of 30.8% (i.e.,
an error rate of 58.5%), and the question on multiplying decimals had a baulking rate of
7.5% and a success rate of 22.6% (i.e., an error rate of 69.9%). Similarly, the student-pro-
fessor problem had a baulking rate of 10.7%, a success rate of just 4.4% and an
exceedingly high error rate of 84.9%. 
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In summary:
• students were proficient at identifying numerical patterns but poor at deriving and

using algebraic rules;
• students were proficient at reading graphical information;
• students had a poor background in probability;
• students demonstrated a reasonable grasp of equivalent fractions but lacked ability

to use fractions in problem solving and in conversion between different units of
measurement;

• geometry questions were well handled;
• students seemed to have a good knowledge of the basic facts of measurement but

were unable to apply this knowledge to the solution of problems; 
• students lacked computational skills, particularly in the areas of multi-digit subtrac-

tion and operations involving fractions and decimals. 
The main areas identified as requiring attention were the use of metric units, patterns

and algebra, fractions and number sense and mental computation (particularly multi-
digit subtraction, addition of fractions and multiplication of decimals). The cohort
appeared to have good recognition of basic facts but lacked the ability to apply this knowl-
edge to the solution of problems. This situation was compounded by the cohort’s poor
computational skills. Some of the common errors that were identified are discussed next. 

Common errors

The identification of common errors has allowed us to tailor classroom materials to the
needs of the particular cohort. This section focuses on some of the common errors made
by the students. 

Multi-digit subtraction

One error was demonstrated by 4 students (2.5% of the cohort). In this technique, stu-
dents treated each ‘column’ of digits as a separate problem and subtracted the smaller
digit from the larger digit, resulting in the working:

Another error was made by 10 students (6.3%). Here, students showed a lack of under-
standing of ‘borrowing from zero’. Whilst students actually ‘borrowed’ to enable them to
perform the subtraction, there was no ‘pay back’. The resultant working was:
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Operations with fractions and decimals

a)

The most common error (frequency of 47 or 29.6%) was for students to add the
numerators and the denominators yielding the working:

A further 12 students (7.5%) multiplied the numerators and added the denomina-
tors giving:

Both of these errors represented a lack of understanding of the structure of frac-
tions, combined with ‘misremembered’ details of the algorithm for adding
fractions.

b) Place in ascending order: 

The most common error was made by 28 students (17.6%). Here, students focussed
on the denominators of the fractions and showed some understanding of how the
magnitude of the denominator affects the numerical value of the fraction. Fractions
were placed in order of decreasing denominators:

Similarly, a further 18 students (11.3%) focussed on the value of the numerators
and placed the fractions in ascending order by numerator:

c) Shade of the grid (6 × 4) 

Students needed to identify that there was a total of 24 cells in the grid and that

Two common erroneous answers were to shade 8 cells (11 students or 7%) or 3 cells
(8 students or 5%). 

d) 0.3 × 0.3

The most common erroneous answer was 0.9, which was given by 98 students
(61.6%). This arose due to a lack of understanding of place value and led to other
difficulties on the test, most notably for questions that required students to convert
measurements in one set of units to another set of units. Another 4 students (2.5%)
added the decimals, yielding an answer of 0.6. 

Writing algebraic expressions: The student-professor problem

This question was the most poorly handled on the test; only 7 students (4.4%) correctly
answered it, while a further 84.9% attempted it unsuccessfully. The most common error
was to write a numerical ratio, either 1:16 (20 students or 12.6%) or 16:1 (56 students or
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35.2%). A further 34 students (21.3%) reversed the order of the pronumerals in the equa-
tion, giving the answer P = 16S. This result is well recognised and can arise from confusion
over the use of letters to represent units rather than variables; e.g., 1 m = 100 cm. It shows
a basic lack of understanding of the concept of variables, resulting in an inability to work
with algebraic rules. 

Problem solving

The elevator problem
Students were required to determine the number of floors travelled by a lift and then to
convert this into the distance travelled by using the fact that the floors were 3 m apart.
The main source of error here was arithmetic (counting the number of floors travelled).
104 students (65.4%) made this error, which is one of process rather than a misconcep-
tion and could have resulted from misreading the problem.

A bag of marbles
This question had a high baulking rate (36 students or 22.6%). Students needed to iden-
tify the effect of reducing a quantity by a fraction and then to reverse the process to
calculate the original amount. One correct version is:

The most common error was to ‘undo’ the parts of the problem by multiplying by the
denominator. So ‘gave away a third’ led students to multiply 24 by 3. Similarly, ‘gave away
a quarter’ led students to multiply the result by 4, giving:

A total of 8 students (5%) produced this solution. Other errors arose as a result of incor-
rect calculations.

Ratio of width of a rectangle to its perimeter
The question stated that the width of a rectangle was half its length and asked students to
calculate the ratio of the width of the rectangle to its perimeter. This required students to
recall the formula for perimeter and to replace length by twice the width. The most
common error (70 students or 44.1%) was to write the ratio of width to length, which
could have resulted from simply misreading the question.

What is left if I spend five eighths of $240?
Students were required to either calculate five eighths of $240 and to subtract the answer
from $240 or to realise that if five eighths of an amount is spent then three eighths
remains. However, 17 students (10.7%) calculated five eighths of $240 and returned the
answer $150. The source of the error could either be misreading the question or omitting
the final step of the solution process.
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Club membership
This problem could be solved by using the method of simultaneous equations.
Alternatively, students could recognise that half of the number of members is 43. Adding
7 to this value gives the number of females (50) and subtracting 7 gives the number of
males (36). The most commonly used method was the latter. However, 35 students (22%)
added 14 to 43 to obtain the number of female members (57) and subtracted 14 from 43
to obtain the number of male members (29). There was no written evidence that any
student checked their answer to ensure that the constraints had been met. Very few stu-
dents attempted to apply the method of simultaneous equations to this problem,
reflecting a lack of understanding of the power of algebra in problem solving. 

Mathematical notation: Write in simplest form: n × n × n
This question is linked to the measurement strand of the NSW syllabus, where Stage 3 stu-
dents are required to use correct notation for units of area (e.g., m2) and volume (e.g.,
cm3). A total of 64 students (40.2%) gave the answer 3n. 

Conclusions and follow-up

This paper has presented the results of a diagnostic test used with students entering a pre-
service education course. The test involved five mental computation tasks and thirty items
taken from the 1999 TIMSS test. The main areas of weakness identified by the test were:

• mental computation;
• structure and value of fractions and decimals;
• operations with whole numbers, fractions and decimals;
• use of algebraic rules to express numerical patterns;
• applying algebraic rules to solve problems;
• reading and using correct mathematical notation;
• appropriate use of problem-solving techniques.
The identification of common errors was useful for two reasons. Firstly, it provided

direction for workshops in the core unit, where pedagogical knowledge is used as a
vehicle to develop mathematical understanding (Callingham & Mays, 2004). Secondly,
probable sources of error were identified. By addressing these in workshops, the aim was
to improve the undergraduates’ own understanding of mathematics and to develop
appropriate problem-solving techniques (including reviewing answers and developing
appropriate checking rules). 

The work is part of a larger ongoing research project. Students who did not achieve
80% or better on the retest were encouraged to enrol in a new elective unit in mathemat-
ical misconceptions. The unit was designed to help students to identify and remediate
their own mathematical misconceptions in order that they will, upon graduation, be able
to help primary students in the same tasks. The evaluation of the second stage is to be
undertaken in 2005.
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The rewards and difficulties of 
working mathematically*

Heather McMaster
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Michael Mitchelmore
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This paper summarises the experiences of several teachers who taught a number
of Working Mathematically activities using workbooks designed by the authors. The
teachers felt that, because of the requirement to communicate their ideas with each
other, students had gained a deeper understanding of the mathematics. The activ-
ities also enabled students to make stronger connections with their everyday
experiences and with other mathematical topics. However, many teachers report-
ed difficulties due to time constraints and several had problems integrating
Working Mathematically activities with their regular textbooks. The results point to
issues which need urgent attention if the rewards of Working Mathematically are to
be realised in practice. 

The new NSW 7–10 Mathematics Syllabus

For the past year, NSW schools have been teaching mathematics to students in Years 7 and
8 (students mostly at Stage 4) from a new syllabus (Board of Studies NSW, 2002). There
is little change in the mathematical content of the new syllabus compared with the previ-
ous one. The major change is in the teaching process. What was previously a separate
Problem Solving strand has been replaced with Working Mathematically as a process
strand. This strand is to be interwoven with five content strands. To this end, the syllabus
lists a large number of illustrative Working Mathematically activities for each content
strand. 

‘Working Mathematically’ appears to be a uniquely Australian expression used to
describe how mathematics is used in practice. It includes the processes of questioning,
apply strategies, communicating, reasoning and reflecting. The objective is that:

Students will develop knowledge, skills and understanding through inquiry, applica-
tion of problem-solving strategies including the selection and use of appropriate
technology, communication, reasoning and reflection. (Board of Studies NSW, 2002,
p. 12)

The implication is that teachers are expected to follow a process-based approach to
mathematics, treating mathematics as a set of interesting challenges or problems rather
than as a series of methods and formulae to be learnt for examinations.

* This paper has been accepted by peer review.
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Only a few of the Working Mathematically activities listed in the syllabus can be found
in textbooks. This is particularly true for Working Mathematically within the Space and
Geometry strand. The following Stage 4 examples from the syllabus are typical:

• interpret and make models from isometric drawings (communicating);
• use dynamic geometry software to investigate angle relationships (applying strate-

gies, reasoning);
• recognise that similar and congruent figures are used in specific designs, architec-

ture and art work; e.g., works by Escher, Vasarely and Mondrian; or landscaping in
European formal gardens (reflecting).

To implement the new syllabus effectively, teachers need to prepare lessons that use
the Working Mathematically processes to teach the mathematical concepts in the content
strand. This requires considerable time, thought and creativity. 

The Working Mathematically workbooks

To make the Working Mathematically approach of the new syllabus easier for teachers to
implement, we wrote two student workbooks (Part A and Part B) for the Stage 4 Space
and Geometry strand (McMaster & Mitchelmore, 2003). Activities are included to cover
every content outcome of the Space and Geometry strand.

Wherever possible, workbook activities relate to real life or other key learning areas
(physics, chemistry, biology, geography, surveying, sport, history, art, design and religion).
The activities are also carefully sequenced. Students begin by looking at a simple case
where a concept is used, then investigate similar cases and special cases before arriving at
a generalisation. Questions in the workbooks are deliberately designed to help students
make linkages with existing knowledge and experience.

Students are provided with visual stimuli and a variety of tables, grids, space for geo-
metric constructions, and paper for ‘cut-out’ activities. Computer software used in the
workbook is free to download from the internet and additional manipulative materials
and activities are inexpensive and readily available. The workbook also serves as notes for
study and future reference.

In 2004, five schools trialled the workbooks. In addition, about seventy teachers tri-
alled individual activities. The purpose of the trial was to gain feedback and share
experiences so that the workbooks could be improved. Teachers were given privileged
access to the website www.workingmaths.net which includes comments on the workbook
activities and a discussion forum. 

This paper reports primarily on the results of informal discussions held half way
through the year with teachers from three of the trial schoolsæan independent school for
girls (Years 7 and 8), a comprehensive state school (Years 7 and 8), and a state primary
school with two classes for gifted and talented students (Year 6). Some students in the last
school, as well as some individual teachers from other schools, were also interviewed. The
aim was to obtain insights into the following questions:

• Which types of activity are most worthwhile and why?
• What difficulties are experienced with the Working Mathematically approach?
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Experiences of teaching Working Mathematically

The independent school for girls

There are four streamed mathematics classes in each of Years 7 and 8 in this school, and
they all trialled the workbooks. 

The teachers selected as the most worthwhile an activity, called ‘Travel Tests’, in which
students discuss the following questions in small groups.

1. Andy and Bill take a ride together on a see-saw. Andy sits on one side of the see-
saw, 2 m from the centre. Bill sits on the other side, 1 m from the centre. With
each tilt, whose side travels through the greater angle?

2. Andy and Bill take a ride together on a merry-go-round. Andy chooses to ride a
horse that is near the outside edge of the merry-go-round. Bill chooses to ride a
horse that is nearer to the centre. Who travels faster?

3. Andy and Bill travel with their families around Australia. They both travel along
the same roads, but Andy’s family travel in a clockwise direction while Bill’s family
travel anti-clockwise. Who travels further?

This activity generated much argument and discussion among the students. The teach-
ers noted that they did not have to lead the discussion but merely facilitate it — quite a
change from their normal role. As a result, students communicated with considerable
conviction and authority: ‘This is my diagram. This is how it works.’

A second activity considered particularly worthwhile, required students to answer the
following four questions:

1. Describe the pattern of the ripples made when you throw a small pebble into still
water.

2. When you pour pancake mixture into the centre of a smooth, flat pan, why does
the mixture spread out in a circle?

3. Why is an archery target round?
4. If you squash a circle (e.g., the circle of a roll of cardboard) so it is half of its orig-

inal height, what shape does the circle become? What happens to the amount of
space inside the circle as you squash it?

Teachers liked this activity because it caused students to think about what they had
recently learned. In particular, they made connections between abstract concepts and real
life situations and saw the value in using mathematical language to communicate ideas.

A third activity which turned out to be valuable, requires students to cut up plastic
straws to specified lengths, thread three pieces of straw onto a long pipe cleaner, then
twist the two ends of the pipe cleaner together so that (if possible) each straw piece forms
the side of a triangle. Questions guide the students to explore the relation between the
apex angle and the base, and then to explain why the length of a side of a triangle can
never be more than the sum of the lengths of the other two sides.

Some of the students in a third stream class insisted that they could make a triangle
out of the three pieces that were 12 cm, 6 cm and 6 cm long. They showed the teacher
their ‘triangles’. He explained to the students that these straws placed together would not
make a triangle if the pipe cleaner was not threaded through them. The teacher’s first
reaction was that he would avoid this argument by omitting these three lengths in future. 

On the other hand, the teacher of a top stream class had decided to omit this activity
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because she believed her students did not need the practical work. She wanted to use the
newly bought textbook and decided to teach the same concepts using it. However, when
she analysed the results of the subsequent geometry test, she discovered that the third
stream class had achieved a better result than her class on a question related to this activ-
ity. It appears that students in the class who had argued with their teacher had understood
and remembered the concept better than those who merely used diagrams.

The major difficulty found by teachers at this school was a time issue: They spent
longer than intended on the Space and Geometry strand. Nevertheless, they felt the time
was well spent because students had gained a deeper knowledge of the subject through
the connections they had made.

The state comprehensive school

This small central school (Years K–10) is classified by the NSW Department of Education
and Training as geographically isolated, and it receives a socio-economic allowance.
There is only one mathematics class in each of Year 7 and Year 8, both taught by the same
teacher, and both trialled the workbooks.

The teacher commented that all the ‘hands-on’ activities were worthwhile for her
classes. The two most worthwhile activities were one in which students cut out possible
nets to see whether they formed cubes, and another in which polygons made out of card-
board were stapled together to make Platonic solids. The students were excited about
discovering these solids for themselves and were interested in the historical connection
between the Platonic solids and the five ‘elements’ of the ancient Greeks: fire, water,
earth, air and the universe. One student, who had difficulties in numeracy and literacy,
found the topic particularly fascinating. The teacher commented, ‘He could not spell a
word like “school” but he could spell “tetrahedron” and could tell you about each of the
platonic solids in great detail.’

The ‘Travel Tests’ activity, described earlier, was also rewarding. In this case, the
teacher assigned the questions as homework. One student discussed the second question
with his father, who used a circular saw analogy to convince him that Andy and Bill trav-
elled at the same speed. The teacher could not shake the student’s conviction by
argument or drawing a diagram, so she took the class into the school yard and had two
children run around in concentric circles. The puffing and panting of the student who
ran around the outer circle convinced the others that he had run faster. Class discussion
of the other questions in this activity revealed several other misconceptions about dis-
tance, time and speed which the teacher was able to address.

The only difficulty this teacher mentioned was that she did not have similar workbooks
for the other strands of the syllabus. Some of her students do not work well from text-
books, but like the scaffolding provided by the workbook. Also, she commented that most
of her students have no interest in trying to remember anything with which they cannot
make real life connections.

Selective classes in a state school

Gifted and talented students in the ‘opportunity classes’ in this school are selected from
public primary schools in the area, based largely on a test given in Year 4. The two Year 6
opportunity classes, who had both completed Stage 3 mathematics, trialled the work-
books. 

The teachers said they enjoyed teaching from the workbooks because they fit with their
use of small group work and their intention to promote higher order thinking. They
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found that the workbooks benefited students by requiring them to give precise explana-
tions. Students who grasp mathematical ideas quickly seem reluctant to express their
understandings verbally. One example of this occurred in an angles activity. Having drawn
vertically opposite angles and found that as one angle becomes smaller, its vertically oppo-
site angle also becomes smaller, students are asked why this happens. One of the students
commented, ‘It’s easier to just know it’. Explaining such relationships deepened students’
understanding beyond a superficial, procedural level. 

One teacher commented that gifted students often ignore the practical aspects of a
problem. For example, in the third question of the ‘Travel Tests’ activity, no student con-
sidered the fact that the two cars travel on different sides of the road. Making such
connections helped students realise the value of non-mathematical knowledge in helping
to solve mathematical problems.

The students particularly liked an activity that enabled them to be artistically creative
while learning about congruence and similarity. The workbook reproduced two historic
Spanish Islamic designs, and students were asked to use grids provided to create their own
geometrical designs. Their designs were mounted and displayed in the classroom. Figure
1 shows two of their many beautiful designs.

Figure 1. Designs by two Year 6 students.

One teacher noticed that all of his students did well on a subsequent Space and
Geometry test and that there was less spread of results compared with previous years. The
only difficulty he perceived was that his students would be bored if they had to repeat the
mathematics they have already learnt the following year in high school.

Other teachers

Six teachers who had tried out individual workbook activities were interviewed. These
teachers had chosen a wide variety of activities, the most popular ones being the ‘Travel
Tests’ activity described earlier, activities that explored geometrical shapes using pipe
cleaner and straw models, and activities that involved drawing and art. These were viewed
as ‘fun types of extension activities’, and had served this purpose well. 

Three teachers reported particular incidents where a workbook activity had helped
students understand a mathematical concept. In all cases, the students were not in the top
classes. Two teachers reported using selected activities with students in Years 9–11.

All the teachers mentioned ‘time pressure’ as a major difficulty, since they had to
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follow the same teaching programs as other teachers not using the workbooks. Four of
the teachers explained that they had not used the workbook as much as they had hoped
because they were using new textbooks and were more focused on trialling these. A
teacher in her first year of teaching felt she was more willing to try out new ways of teach-
ing than more experienced teachers. 

Discussion

Despite large differences between the trial schools, teachers reported the same two main
reasons why the Working Mathematically approach is worthwhile: 

• because Working Mathematically activities require students to reason and to com-
municate mathematical ideas to their peers, they achieve a far deeper
understanding of the topics studied than they would otherwise do;

• because many Working Mathematically activities are set in realistic contexts, stu-
dents are able to establish stronger connections between mathematics and their
world. This realisation not only promotes greater understanding, but is also highly
motivating. 

In all of the trial schools, students were confident enough to ask questions and com-
municate mathematical ideas based on their own investigations and understanding. At
two of the three schools there was an indication that the Working Mathematically
approach may be reducing the spread of test results. This result is consistent with the find-
ings of studies in England (Boaler, 1998) and the United States (Schoenfeld, 2002) that
a process-based approach to mathematics teaching can narrow the performance gap
between students while raising performance as a whole. 

Research has shown that when students learn mathematical concepts in real world con-
texts, as opposed to the traditional approach where learning is abstract or ‘context-free’,
they demonstrate important differences in attitude and interest towards mathematics
(Boaler, 1998). These differences are particularly important because they are likely to
affect the students’ subsequent learning of mathematics. The teachers in this study seem
to have been reporting a similar effect. 

The major difficulty in implementing a Working Mathematically approach seems to be
a perception that investigative activities take too much time. The time required could be
reduced somewhat as teachers and students become more familiar with the teaching
approach and resources become more streamlined. However, there is no doubt that
Working Mathematically activities do take time; but the question must be asked: is it not
time well spent? If students achieve a deeper level of understanding, benefits could come
by reducing the time necessary for revision when the topics are extended in later stages
of the syllabus. Also, although the time spent teaching Space and Geometry may be
greater, there may be savings in other strands. The Space and Geometry activities, for
example, make links with Measurement, Number, and Patterns and Algebra. If this is hap-
pening, the overall time required to teach the syllabus may not be so greatly affected.
Hiebert (2003) provides some evidence to support this claim.

Many teachers view the Working Mathematically approach as being better suited to
higher ability classes. There is no evidence from our enquiry that this is the case. High-
achieving, average and low-achieving students all seem to have benefitedæbut in different
ways. Teachers still need to adapt their teaching to the students in their class. 
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Conclusions

It appears that there is much to be gained from Working Mathematically, as it can give
students a greater depth of understanding and a more positive attitude towards mathe-
matics. However, even when resources are available to support this process-based
approach, many teachers still perceive that there is insufficient time available to imple-
ment it. 

Implementation of the Working Mathematically strand in the new NSW 7–10 mathe-
matics syllabus is not going to be easy. It cannot be achieved simply by covering the
content in the new textbooks, even if they are supplemented with a few worksheet activi-
ties. It is also not enough for individual teachers, or even all the teachers at one year level,
to introduce an integrated programme of investigative activities. To take full advantage of
the rewards of Working Mathematically, the difficulties need to be overcome by a school-
wide collaborative effort. Such efforts may lead to teaching programs which are radically
different from the ones currently in use. 
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Vygotsky’s notion of zones of proximal development (ZPD) is used to introduce one
aspect of pedagogy that can be differentiated in order to make teaching and learn-
ing more inclusive: planning of learning trajectories. This strategy is illustrated with
reference to a case study of one Grade 5 lesson.

Introduction

Lev Vygotsky was an eminent Russian psychologist who lectured on the development of
thought, language and social development — among other topics — from about 1920 to
1934. Throughout his short career, and particularly just before he died of tuberculosis,
Vygotsky and his followers were under threat because their social development theory did
not fit with the prevailing scientific and political ideology of Russia. Although ideas from
the Vygotsky school of thought were withdrawn from circulation after his death, they con-
tinued to be developed in secret by his students. Later changes in the USSR allowed
Vygotsky’s own research findings and other teachings to be re-published, and after some
time his work in developmental psychology had a profound influence on school educa-
tion in Russia. Interest in Vygotsky’s theories has spread throughout the Western world,
and neo-Vygotskian theorists have developed further sociocultural theories such as activ-
ity theory and situated cognition. Each of these theories builds on the Vygotskian premise
that ‘the interpersonal precedes the intrapersonal’ (Daniels, 2001, p. 70).

The key to learning, here, is social participation. For Vygotsky, the development of the
mind resulted from social-goal oriented and socially-determined patterns of interaction
between human beings. An important idea was that each child, in relation to learning of
any particular topic, has a ‘zone of proximal development’ (Vygotsky, 1978, p. 86). This
ZPD evolves ahead of the child’s development, because it describes learning that could
take place with the assistance of adult guidance. With social interaction that provides
some mentoring, a child’s knowledge develops. This results in a new zone of potential
development. In a way, it’s like holding the carrot before the donkey in that the ZPD is
forever ahead of the learner; but of course the ZPD is unlike the carrot because the zone
changes as the child moves forward. Thus a child is never ‘in’ the zone, and the knowl-
edge and skills of the zone are always proximal (potential) rather than current.

The neo-Vygotskian educational theorists, Wood, Bruner and Ross (e.g., 1976) — and
later Bruner (e.g., 1983, 1986) — developed the concept of leading children’s learning

* This paper has been accepted by peer review.
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forward through ‘scaffolding’. Bruner (1996) wrote about scaffolding as a logical struc-
turing of ideas to be understood in an order that is likely to lead children to develop
further and faster than they would on their own. Scaffolding of learning involves two
processes: (a) active guidance and modelling by the tutor; and (b) active construction of
knowledge by the learner; but these two aspects are responsive and interactive, not merely
sequential. 

In essence, scaffolding involves a mentor — perhaps a teacher, parent, or more knowl-
edgeable peer — taking on an instructional role by providing pedagogical pathways and
modelling that support children’s movement into new territories. Thus teachers’ inter-
vention provides supportive tools for learners that extend their knowledge and skills,
thereby allowing learners to successfully accomplish tasks not otherwise possible.
Scaffolding closes the gap between task requirements and the skill level of the learner
(Greenfield, 1984, p. 118), but teachers should remove scaffolding as soon as the recip-
rocal cognitive structure of the child can stand on its own. These ideas form a useful
theoretical foundation for exploring ways that teachers can scaffold learning in order to
advance children’s mathematical learning. 

Managing diversity

Times when all Australian children were expected to achieve to a common ‘pass’ standard
before progressing from one grade level to the next have passed. These days, it is more
common to aim to have each student achieve, but with varying degrees of success in rela-
tion to their peers. Thus having different goals and realistic expectations for individuals,
or for groups of students participating in any lesson, is common. Hence many mathemat-
ics classes are ‘ability’ grouped, or at least teachers provide remedial teaching and
extension. Teachers have different expectations for students and do their best to provide
the sorts of instruction and activities that will allow each child to succeed. 

This sounds fine in theory, but is problematic in many respects. Catering for diversity
in these ways can exacerbate difference: one could say, ‘Those who have it, get it,’ —
whether the latter ‘it’ be increased opportunities to learn, more challenging teaching, or
higher expectations of teachers, peers, parents, and self. Those who do not achieve so
easily usually get more teachers’ time and attention, but much of that is spent repeating
explanations and demonstrations — perhaps more loudly or slowly — and working on
lower-level tasks. Such teaching may repeatedly make the same cognitive demands or,
more commonly, lower the demands progressively so that both children and teachers can
experience a sense of achievement and lesson completion. Moderation of expectations
preserves the self-concepts of teachers as well as learners. While it is comfortable to lower
expectations for children who continually struggle with mathematics concepts and
processes, extensive research projects (e.g., Askew, Brown, Rhodes, Johnson & Wiliam,
1997) have shown that effective teachers of numeracy maintain high expectations of all
children. 

Further, it is clear that no teacher can deal with, day after day, thirty changing zones of
potential development related to a wide range of mathematical concepts, terms, skills and
activities. If we can move children’s mathematical development forward as a whole class,
the question of how best to mentor such development becomes more manageable. In this
ideal situation, learning objectives belong to a class and all children can understand and
participate fully in vital stages of a lesson, including its introduction, its key learning activ-
ities, discussion periods and — most importantly — lesson closure. Again ideally, the
closure includes planned opportunities for reflection, metacognition and perhaps higher

 



MAKING MATHEMATICS VITAL: PROCEEDINGS OF THE TWENTIETH BIENNIAL CONFERENCE OF THE AUSTRALIAN ASSOCIATION OF MATHEMATICS TEACHERS

[ MOUSLEY, ZEVENBERGEN & SULLIVAN ]
203

level thinking such as abstraction, generalisation, and networking of mathematical con-
cepts. Further, it forms a class-wide platform for planning of the following lesson. 

A key question here is how to get all children headed along the same learning trajec-
tory. Any learning for a lesson or a sequence of lessons comprises three inter-related
components: (a) the learning objective; (b) the learning activities; and (c) the teacher’s
prediction of how the students’ understanding will develop in the context of a lesson or
a sequence of lessons (Simon, 1995). Simon used the word ‘hypothetical’ to suggest that
all three factors are likely to be somewhat flexible, with many experienced teachers
changing the learning goals and adapting aspects of planned activities in response to
their perceptions of students’ levels of understanding as well as ongoing evaluations of
their performance of classroom tasks. Thus actual learning trajectories cannot be known
in advance, but hypothetical ones can be planned. 

As noted above, a common reaction to children bringing varied levels of understand-
ing to mathematics lessons is to plan quite different learning trajectories. While usually
working on the same general topic, some children will experience lower starting points,
less demanding activities and easier-to-achieve learning outcomes (see Figure 1, repre-
senting so called ‘ability’ grouping) while others will be extended to
higher-than-expected learning outcomes. Another way of coping with difference is to
‘ramp up’ expectations, starting with relatively easy work but recognising that the students
will reach different points of achievement along a common hypothetical trajectory (see
Figure 2). Here, starting points are assumed to be the same, activities progressively more
demanding, and students attain various levels of engagement, success, and challenge.

Figure 1. Hypothetical trajectories for different ‘ability’ groups.

Figure 2. A hypothetical learning trajectory for the whole-class.

Of course, actual outcomes are never as neat as these models: children rarely learn
only what teachers intend to the planned level of competency. They fall behind or exceed
teachers’ expectations, and actual outcomes tend to cluster around or parallel intended
trajectories. 

It is important to note four weaknesses of the above models. First, neither one sets up
a climate for whole-class discussion and group reflection on what has been learned.
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Second, both have the potential to disenfranchise some students, weakening self-concepts
and publicly displaying levels of lesser achievement. Also, neither model forms a strong
whole-class foundation of shared experience and understandings that can be used in
teachers’ planning for further learning. Last, the models do not address the question of
equity: students who come into lessons with less competence leave the classroom less com-
petent — and perhaps with an even greater differential. International comparisons
indicate that Australia is failing to offer all students appropriate educational opportuni-
ties (see Lokan, Greenwood & Cresswell, 2001), and there is plenty of evidence that
children from lower SES backgrounds are the ones who typically get left behind.

Maximising success in mathematics for disadvantaged students

In a three-year research project, we are exploring how to improve outcomes for
Indigenous pupils and those from lower SES backgrounds by making relatively minor
changes in mathematics classrooms. We are using teachers in schools where there is a mix
of SES student backgrounds, and are researching mathematics teaching in upper primary
and junior secondary levels because results may be transferred to both lower and higher
levels. In recognition of research findings about the negative effects of achievement
grouping as well as a concern that mere ramping of tasks has the potential to exacerbate
difference, our focus is on improving whole-class teaching.

Our research is exploring ways that whole-class pedagogy can be differentiated to meet
the needs of individuals while moving students forward though communal experience.
We are researching whether teachers find specific inclusive strategies easy to use, what
additional demands they may place on teachers, what teachers must know and be able to
do to put them into effect, and ways in which the strategies change the learning experi-
ences of and outcomes for students in mathematics classrooms. In particular, we wish to
identify ways that such differentiation in pedagogy may improve outcomes for Indigenous
pupils and those from lower SES backgrounds.

The data collection is being be guided by a framework, developed from Clark and
Peterson (1986), that has teachers’ beliefs and understandings interacting with opportu-
nities, constraints, intentions, and actions. The research approach is a combination of (a)
interpretive analysis of teaching and teacher development, and (b) broader quantitative
data collection. Currently, teaching experiments using the processes established by
Sullivan, Bourke and Scott (1997) are being carried out, involving modelling and coach-
ing (see Guskey, 1986, and Clarke, 1984, for a rationale for this approach). In each
classroom, a researcher is working with the teacher. Observation notes are being recoded,
using a format developed as part of the investigation, and some children’s work is being
collected. Short pre-lesson and post-lesson interviews and/or written reflections by the
teachers are being used to collect evidence of teachers’ planning and reactions as well as
specific case examples. 

Differentiated learning trajectories

The strategy being reported in this paper is the use of ‘differentiated learning trajecto-
ries’. These are whole-class trajectories, with the added feature that teachers invite
students experiencing difficulty to solve a similar problem with reduced cognitive
demand, but only as a scaffolding step that provides immediate access back to the class’
hypothetical learning trajectory (see Figure 3). The alternative pathways are shaped by

 



MAKING MATHEMATICS VITAL: PROCEEDINGS OF THE TWENTIETH BIENNIAL CONFERENCE OF THE AUSTRALIAN ASSOCIATION OF MATHEMATICS TEACHERS

[ MOUSLEY, ZEVENBERGEN & SULLIVAN ]
205

‘enabling prompts’. The whole class still works on the basic tasks, but some students have
differentiated experiences that enable them to undertake those tasks in order to reach
the same levels of attainment as their peers. Thus the class remains a coherent learning
community based on common mathematical experiences and ideas. This notion is easiest
to understand through an example.

Figure 3. Differentiated learning trajectories.

Roma’s lesson: Areas of rectangles and triangles

The teaching of the area concept starts with the idea of area as covering (with tiles, feath-
ers, wrapping paper, or whatever) in the first year of schooling. As skills of describing,
measuring, and comparing areas are introduced, the underpinning idea is ‘area as
squares’. Activities like counting the number of squares enclosed in a shape drawn on
squared paper, and/or coloring squares to create shapes, are common in primary class-
rooms. The next stage — still in primary mathematics education — is to build a
foundation for understanding area formulae; usually the idea of the area of a rectangle
as being ‘length by width’ is tackled formally, often with children gaining little under-
standing to underpin that knowledge. Less commonly, teachers use activities to explore
basic ideas about the area of other straight-sided shapes such as the triangle and the
rhombus. Children have the potential to get left behind in the teaching and learning of
each of these stages, so junior secondary teachers are often faced with the need for reme-
diation — or perhaps ‘ability grouping’ — as students move to formal calculation and
comparison of areas of more complex straight-sided shapes, circles, surfaces of solids, etc. 

Roma is a Grade 5 teacher who, when presented with a worksheet that asked children
to work out the area of some given solidly-colored shapes such as the one shown in Figure
4, thought that only about half of the class would be able to complete the sheet.

Figure 4. How many squares?

However, an alternative worksheet was provided, for children to help themselves to if
they wished. The ‘enabling prompt’ on the sheet had rows drawn in (see Figure 5). A
further prompt worksheet that they could help themselves to had squares drawn in (see
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Figure 6). Square counters were also available, but were not used by the students. These
graphic prompts, only used on the first example on each sheet, were enough to enable
all students to complete the worksheet successfully.

Figure 5. First enabling prompt.

Figure 6. Second enabling prompt.

It is important to note several points:
• it was the children’s decision whether to use those prompts, and whether they

needed one or both to enable them to progress to the original task;
• picking up an extra sheet was not a very public act;
• the conceptual essence of area — as rows (lengths) and a number of these (width)

— was the focus of the prompts;
• the cognitive demand was removed only one step at a time, with a return to the full

demand once children had engaged with the prompt(s);
• there was certainly no sense of their being a remedial group needing extra teach-

ing; in fact, the children taught themselves, with the assistance of pre-prepared
scaffolding tools.

All of the children were able to participate fully in mid-lesson discussion about their
work, reporting a variety of ways of thinking about area that all came back to the ‘length
by width’ idea, even if those words were not used by everyone. The differentiated learn-
ing trajectories had enabled the class to have enough communal experience to proceed
as a whole group.

The next stage of the lesson involved finding the areas of three triangles that were
drawn on squared paper (see Figure 7).

Figure 7. What is the area of each triangle?
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As a result of the children’s communal experience with rectangles, it only took one
suggestion from the teacher to set some children who had been drawing in and counting
squares and half squares onto the right track: ‘Think about what you did with areas of rec-
tangles’. Those children were soon drawing rectangles around their triangles and
calculating their areas (and half areas) using what they had learned earlier in the lesson.
Again, they all seemed able to participate in a lesson-closing discussion that involved some
abstraction, generalisation, and networking of mathematical concepts. While individual
testing was not undertaken after this lesson, it appeared that all students reached a
common learning objective even though there had been some differentiation of learning
trajectories. The observer noted that there was a sense of communal knowledge that
could be used as a platform for further development.

Conclusion

Differentiating learning trajectories in this way is just one form of differentiated peda-
gogy. Results from our early work in this broader endeavour are promising. What we have
found to date is that:

• through a research process of modelling and coaching, teachers soon learn to
employ such strategies effectively;

• the strategies are broad enough to be useful in most mathematics lessons and
indeed some other lessons;

• children who have the potential to be left behind in the teaching and learning
processes are usually able to participate fully, sometimes at a surprising level of
engagement and success.

It is useful to think of what is happening in the classrooms in the light of Vygotsky’s
theory about zones of proximal development. Children in the observed classrooms have
certainly achieved more with mentoring than they would have on their own. However, the
mentoring provided has not been repeated teaching by the teacher, peers, or parents. It
is self-tutoring, using pre-planned scaffolding that is supplied by the teacher, but its use is
under the control of students. In the case presented above, enabling prompts took the
form of drawings that provided just enough assistance to scaffold thinking so that stu-
dents could quickly re-join the class’ learning trajectory. The prompts merely presented
the same problem, but with a slightly lower conceptual demand.

Over the next two years of this project, we will focus more on gathering empirical data
to find out how the use of such strategies moves children’s mathematical development
forward.
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Algebra outcomes for your K–9 class

Thelma Perso
ACT Department of Education, Youth and Family Services

For too long formal algebra has been taught in Australian secondary schools
without an acknowledgement of the necessary pre-algebra understandings that
underpin it. What are they? Is basic pattern work and sound understandings in
number sufficient?

Background

For many teachers of mathematics, both primary and secondary, algebra is ‘that brand of
mathematics where you use letters instead of numbers’. This definition is also used, I
believe, by the wider community, and is often a broad reflection of the way algebra is
taught.

For too long algebra has been considered something to be taught in high school. I per-
sonally believe that formal algebra is frequently taught too soon to many students, even
in a high school. The achievement of algebra outcomes is dependent on the understand-
ing of ideas that underpin formal algebra, or pre-algebra. Too often these understandings
are assumed to be developed through work in Number and other strands during the
primary years. Formal algebra often just ‘appears’ in the curriculum, usually at the start
of secondary schooling. Since it doesn’t seem to connect with other learning is it any
wonder that the above definitions and misunderstandings arise?

Algebra outcomes are desirable for all children, not just those wanting to study higher
mathematics. It is the responsibility of all teachers to ensure appropriate learning experi-
ences for the children they teach in order that their students achieve these outcomes. A
K–12 approach is essential and as a consequence a K–12 understanding is required by all
teachers of mathematics.

What is algebra?

The Collins Australian Dictionary (1981) on my desk defines algebra as, ‘A mathematical
system used to generalise certain arithmetical operations by using letters to stand for
numbers’, and that is exactly what it is, but the problem lies in the ‘using letters to stand for
numbers’ part of the definition. Many misconceptions arise when we start taking that liter-
ally. For example, if we write ab as ‘letters standing for numbers’ we may be tempted to think
that a and b have place value and that therefore means that a is in the tens position. So if a
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has a face value of ‘3’ then in the number represented by ab it must stand for ‘30’.
Hence, we are not able to take the definition from the dictionary literally with respect

to ‘using letters to stand for numbers’. The most important part of the definition, I
believe, is the part about ‘used to generalise… operations’. It is this generalisation that
gives algebra its power. Unfortunately many teachers emphasise the ‘using letters to stand
for numbers’ part at the expense of the ‘used to generalise… operations’ part, with the
result that lots of students in schools (who later become adults like you and me) connect
school algebra with the use of letters in mathematics and frequently have unfavourable
recollections of their ability to succeed with algebra at school.

Let us have a closer look at the ‘generalisation of operations’ aspect of the definition.
We know that 5 + 3 = 8 and therefore 3 = 8 – 5. We might then consider the same with
another set of numbers: 2 + 7 = 9 and therefore 7 = 9 – 2. So we might ask ourselves, ‘Is
there something general happening here that does not depend on the numbers being
used?’. We try it again with another set of different numbers such as 1 _ + 3 _ = 5 and
notice that yes, 3 _ = 5 – 1 _ . So what seems to be happening (in words) is ‘when we add
two numbers together to get a total then the first number we added seems to always equal
the total subtract the second number’.

If we let the first number be represented by m (whatever the number actually is) and
the second number be represented by z (whatever the number actually is) and the total
be represented by k (whatever the total actually is) then we could say that m + z = k means
that z must equal k – m (that is, z = k – m). So if m + z = k it follows that z = k – m.

We might test this out with another set of numbers just to check: 23 + 42 = 65 so if our
theory is correct then 42 = 65 – 23. We are correct. We can see here then that what is hap-
pening with the numbers is a very powerful operation fact that works regardless of what
numbers we are using. This fits in with the dictionary definition stated above: ‘A mathe-
matical system used to generalise certain arithmetical operations by using letters to stand
for numbers’. 

When should algebra be taught?

Historically, algebra has been taught in high schools. There is a very good reason for this.
As we learn more and more about arithmetic the need to be able to generalise its prop-
erties and learn more about the patterns produced through arithmetic operations
increases.

There are some aspects of algebraic thinking that do, however, occur in very young
children. Indeed, basic patterning is developed at a very early age and the ideas of ‘in
general’ and ‘unknown quantity’ are implicit in each of the mathematics strands of Space,
Measurement, Chance and Data, and Number. Children who pair counting numbers with
a repeating pattern of shapes are working with and creating a function. For example:

4 5 5 4 5 5

‘Change’ is also a very important algebraic idea with which young children are very famil-
iar. They understand that most things change over time and when they measure something
changing over time they can describe it with words (e.g., ‘It is hotter today than it was yes-
terday’) and including numbers (e.g., ‘My plant grew three centimetres yesterday’).

Clearly there is a difference between developing algebraic ideas and teaching formal
algebra. I can recall my first algebra lessons when as a student I was plunged immediate-
ly into the formal syntax and semantics of algebra; using letters in equation-solving and
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so on. This should be avoided at all costs. Teachers in the early years and middle and late
primary years should avoid teaching and using the formal language of algebra and be
sure that their students do not equate algebra with symbol manipulation, as many of us
did. Of course, if we are certain that our students do understand these early algebra ideas
of generalisation then it makes sense that we continue to build on them.

The teaching of the early ideas of algebra as outlined above however, should begin in
the early years of schooling. This is so that when the time comes for introducing formal
algebra, it is part of a seamless transition and students understand and appreciate the
need for symbols and algebraic expressions resulting from ‘where they are at’ with their
work in arithmetic.

We need to understand what this means for children who are working towards achiev-
ing these outcomes but for whom we may be unable to describe their progress with the
language of formal algebra. We are able however, to describe what it might look like
without the language of formal algebra. Mathematicians describe the algebra children
can do prior to their demonstrations of formal algebra achievement, as outcomes in pre-
algebra. Diagrammatically;

Pre-algebra and algebraic thinking

We have seen that algebra is to do with making generalisations. For example, many chil-
dren (and adults) are able to make statements about numbers and number operations
such as 3 + 4 = 4 + 3 and similarly 6 × 7 = 7 × 6. For them to realise however, that there is
something general happening here that has nothing to do with the specific numbers used
is an example of when they are using algebraic thinking. To formalise this thinking and
use variables to represent these situations, such as a + b = b + a and a × b = b × a (and
knowing that a and b represent any numbers) is a demonstration of an outcome in
algebra. Hence, the algebraic thinking that underpins the algebra outcomes is not
algebra but nevertheless is essential to the achievement of the algebra outcomes. This
algebraic thinking is often called pre-algebra.

Let us consider the three desirable algebra outcomes for all children listed above, in
the context of pre-algebra.

Variation

Students need to be able to: 
• understand that nature of variation (or change) and represent it in different forms.
Another word for ‘variation’ is ‘relationship’. We get the words ‘variation’ and ‘vari-

able’ from the word ‘vary’ and so variation is about things that vary or change over time.
For example, our height changes over time and we can collect some data representing
our height at different times in our lives, show this data in a table, and draw a graph of
those changes. We can also write an equation to describe the height change over time. So
we have many ways of showing and describing (including with words) the variation in our
height over time. 

For some things that vary, it is difficult to collect exact data. An example of this might
be our hunger levels as the day goes by. We know that this ‘variable’ changes because we
can describe it in words with statements such as, ‘When I get up I’m usually pretty hungry
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but after I have breakfast I’m not hungry until about mid morning, unless I play some
sport and then I’m ravenous afterwards.’ In this statement there are three different levels
of hunger described in the words: ‘pretty hungry’, ‘not hungry’, and ‘ravenous’. We might
plot these points on a graph as shown:

Having drawn these points we would then probably join them with some curvy lines
since we know that our hunger increases or decreases gradually over time (sometimes at
faster rates than others) and that we do not just suddenly feel really hungry unless we
simply have not been thinking about it for a while, but this does not mean our hunger
level has not been increasing.

Very young children can describe change using words only; e.g., ‘I’m colder than I was
yesterday’. As children get older they need to learn how to represent this change using
tables, graphs, and symbols as well as being able to describe it verbally. They also need to
be able to interpret the changes that other people represent in tabular, graphical and
symbolic forms. Teachers should help them do this.

Children learn the early ideas of ‘function’ through early work on proportion. For
example they know that there are two fifty cent pieces in every dollar and so can read and
make sense of a table of proportionate values such as:

Number of dollars 1 2 3 4 5
Number of 50c pieces 2 4 6 8 10

So they are developing the early understandings of ‘dependence’ where one quantity
depends on another. In this example, the number of 50c pieces depends on the number
of dollars you have. Children may develop these understandings through trading activi-
ties where they trade five white cards for one red card, for example.

Generalisation and symbolic expressions

Students need to be able to: 
• generalise to some extent and use symbolic expressions
A ‘symbolic expression’ might be something like 2k + 3, and expressions like these are

the building blocks for algebraic representation. For children to understand a symbolic
expression, they need to understand what a variable is; i.e., what the ‘k’ is in the above
expression. There are many misconceptions that children have about the use of variables
in algebra (see Perso, 1993), so we must be extremely careful to ensure that we, as teach-
ers, understand what a variable is in the formal algebra sense.

Students learn to express generality primarily through working with patterns. They can
describe in an oral or written form, the repeating patterns they see in objects, shapes,
colours, letters, actions and in numbers. They can also hear patterns in music, sounds and
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rhythms. Students can skip count by sixes for example and then colour the numbers they
have said on a hundreds chart. They can then ‘see’ the pattern in their numbers in the
colours of the squares. This will then help them work out what the next number will be
because of where it is, as opposed to what the number is in the sequence. They can see
beads threaded on a necklace in a repeating pattern of colours such as red, red, blue,
green, red, red, blue and predict the next colour. Children can represent the pattern in
the colours using numbers: 1, 1, 2, 3, 1, 1, 2, 3… or using another number pattern such as
3, 3, 6, 4, 3, 3, 6… They can also represent the same pattern using physical actions such as
claps and stamps by first saying what each action will represent in the pattern: for example,
if a clap is for the red, a stamp is for the blue and a flick is for the green, the pattern will
be ‘clap, clap, stamp, flick, clap, clap, stamp, flick’. This is helping them to be able eventu-
ally to generalise. A student in a Year 4 class, for example, might be able to go one step
further and say, ‘The twentieth action in this pattern is a “flick” because the pattern repeats
with a sequence of four different things; so every fourth action will be a “flick”’.

As students develop they are able to recognise ‘growing’ patterns and distinguish them
from repeating patterns. They can determine the nature of the growth and suggest rules
such as, ‘It goes up by two each time,’ and they can use their rule to predict what the next
elements will be. For example, consider a pattern represented with matchsticks:

By setting up a table as follows students can see that they are adding two matches to
the previous shape each time. So they would know that the fourth shape in the pattern
would have the ‘same number of matches as the third shape plus two.’

Pattern number 1 2 3 4
Number of matches 3 5 7 9

Students who are further developed in understanding patterns will then be encour-
aged to see if they can connect the pattern in the pattern numbers with the pattern in the
number of matches. They might see that the two patterns are connected in some way,
identifying a connection between the elements of the pattern and their position in the
pattern. They are then eventually able to verbalise this connection and say for example,
‘If we double the pattern number and add one to the answer, we can tell how many
matches are needed for the next one.’

Facility with the symbolism of algebra will then enable them to write this statement
using symbols; i.e., ‘If we let the number of the pattern be represented by p and the
number of the matches used be represented by m, we can show this as m = 2 × p + 1.’ Being
able to generalise this rule using symbols is formal algebra. The essential understandings
described here that underpin this facility and the understandings that it depends on, are
pre-algebra. You can see that the more experience children have with visualising the pat-
terns in the shapes, translating the patterns into numbers, and then understanding and
describing the patterns in the numbers in words, the smoother the transition into formal
algebra. Many curriculum documents and textbooks include pattern work prior to formal
algebra but few explain to teachers (or students) what the connection is and why it needs
to be emphasised and developed.

It is very important for the understanding of the use of variables in formal algebra that
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children have lots of experience to say or read their expressions. In the example above,
for instance, children need to read m = 2 × p + 1 as ‘the number of matches equals two
lots of the number of the pattern add one’. This verbalisation is critical. If students are
unable to do this than it is likely that they will never move beyond a simplistic understand-
ing of why letters are used in algebra.

If students do not understand m and p as each representing ‘the number of’ some-
thing, they very quickly start to think of m as standing for the word matches and p as
standing for the word pattern. This belief that a letter in mathematics stands for a word
is held by many students studying formal algebra and is the root of many problems (see
Perso, 1993).

To write, solve and understand equations and inequalities (the latter part of the
outcome) requires a deep understanding of the equivalence relationship.

Equation solving and equivalence

Students need to be able to: 
• write, solve and understand equations and inequalities
To solve an equation (an expression where one part is equal to another part) or

inequality (an expression where one part is greater or less than another part) is to find
all the values that make the expression true. Children need to be able to write equations
and inequalities using the symbolism of algebra, having been given the constraints of a
situation, and then solve these equations and inequalities. They then have to be able to
make sure their answer/s make sense in context. 

Clearly, being able to write an equation is a lot more demanding than simply being
able to solve one. This outcome is a clear statement by curriculum writers that symbolic
manipulation and being able to use equation-solving strategies (which was once one of
the main foci of learning algebra in school) is insufficient on its own, but is a part of a
bigger process. Being able to write an equation using symbols means understanding the
syntax and semantics of algebra, and knowing how to identify variables, as described pre-
viously, from a written context.

It is clear that to understand what an equation is, we need to understand what ‘equals’
means. If we write 2 + 4 = 9 – 3, we are describing an equivalence relationship between
two expressions. If we carry out the operations of addition and subtraction indicated in
these expressions, we observe that their answers are equal: i.e., 6 = 6. We can see that there
is a difference here: two expressions can be equivalent while their answers are equal. The
expressions are not equal; in one sense it is not correct to say that 2 + 4 equals 9 – 3
because they are not the same expression. Technically they are only equal after you
perform the operations that are indicated.

This might seem like splitting hairs but this is a very important point if children are to
be able to work with algebraic expressions and solve equations. It is important that the
idea of equality is taught as a relationship, not as an operation. Many children learn that
the equals symbol is telling them to ‘do something’. They need to learn that it is alright
to have an expression such as 3 + 4 and just leave it like that without feeling the need to
‘find the answer’. Research has shown that this drive to ‘close’ an expression is very strong
in students and comes from a sort of ‘conditioning’ (Collis, 1974). This conditioning is
due to experiences in their classrooms where, whenever they see an equals sign, it is in
the context of having to find an answer; hence, they inadvertently learn that ‘equals’ is a
mathematical operation and that the ‘=’ symbol means ‘do something now’ or ‘find an
answer now’. 

Children need to have lots of experiences with the idea of ‘equivalence’ both with
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objects and numbers. Lots of balancing experiences with beam balances and with visual-
isation for example, are important. 

They can see when the two sides of a beam balance are not level and can decide to put
more ‘things’ on the side that is ‘lower’ in order to maintain the balance or to take some-
thing off the side that is ‘higher’. 

Students also need to develop compensation strategies using objects and manipula-
tives to give them a sense of the ‘balance’ that the relationship of equivalence embodies.
For example, to the question, ‘If you have three books and I have five books, what could
we do to each have the same number of books?’, children should be encouraged to
respond with things like, ‘You could give me one of yours’, or ‘You could go and get two
more’, or ‘We can put all our books together and then each take half of the books’.
Children should learn to physically show and draw these responses as well as to verbalise
them. As they get older, they should also be able to represent them on a calculator.

Students similarly need to be engaged in writing equivalent number sentences such as
4 + 1 = 7 – 2 or 4 + 1 = 2 + 3 and then being asked to write down as many other equiva-
lent statements as they can for 4 + 1. This partitioning of numbers is frequently done in
the context of ‘calculation’ but usually students are working with one operation only; i.e.,
the idea of doing partitioning is so that students learn all of the ‘parts’ that make up a
number. For example,

3 + 8 = 11
4 + 7 = 11
5 + 6 = 11
6 + 5 = 11

so 3 + 8 = 4 + 7 = 5 + 6 = 6 + 5 and so on. This is not the same as using different opera-
tions in equivalent expressions as described above, because what is happening here is that
the students are continually comparing with the answer, that is, closing their expression,
in order to compare. They need to learn to ‘hold that fact’ and change one side of the
equivalence without changing or closing the other. For example,

if 3 + 4 = 9 – 2
then 1 + 2 + 4 = 9 – 2

and so learn to work from one line of working to the next without closing (or finding the
answer) of either side. This should not be left until students are working with variables (as
needed by formal equation solving in algebra) but must be developed strongly in the
context of numbers first.

It must be pointed out that in order to solve an equation like 3 + m = 12, the techniques
of formal algebra are not required. These types of equations can be done intuitively and stu-
dents should be taught to do these using intuitive methods. Asking children to translate
statements of this type using language such as, ‘What do we need to add to three to get
twelve?’ is extremely helpful for children learning to work with unknown quantities. It is this
verbalisation combined with an understanding of inverse operations that will lead children
to go on from this, to say things like, ‘We can work this out by saying twelve take three’.

Many questions with a variable on either side of the equals symbol can also be done
intuitively, for example 3 + m = 11 – m. Some students will be able to work this out without
using formal algebra but only if they feel comfortable working with these expressions and
also if they are able to appreciate and understand the idea of variable and know that the
value of m must be the same on both sides. 
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All of these methods help children to develop skills and understandings that are essen-
tial for using formal algebra to solve equations. Clearly there is an enormous amount of
learning that underpins success with formal equation-solving and enables children to be
able to write equations, which is what the desirable outcome is about.

Concluding remarks

Often, due to the poor teaching experiences that we had as students and the resulting
lack of understanding of the subject by ourselves, we pass on that fear and ‘aura of the
unattainable’ to our students. Indeed, the values attached to facility and understanding
of ‘algebra’ by our society have a lot to answer. The subject is almost revered by many insti-
tutions, particularly universities, and educated ‘snobs’ who believe that facility with
‘algebra’ is unattainable by the masses. This, I believe, is nonsense, since every child, pro-
vided with appropriate learning experiences, is able to achieve algebra outcomes to some
extent.

I have attempted here to draw attention to the enormous responsibility that we have
to this end. If we want all students to have success with algebra that is beyond a superfi-
cial facility with algebra syntax and symbols, we must first ensure their success with
pre-algebra.

(Note: For further reading and examples of classroom activities and detailed lesson
notes that support the approach to teaching pre-algebra understandings as described in
this article, see Perso, 2003)
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Box plots: Issues for teaching and learning*

Romaine Saunders
Presbyterian Ladies’ College, Perth

Pat Forster
Edith Cowan University

In this paper we discuss reasoning to do with box plots. We review findings in the
research literature on upper-secondary students’ understanding of box plots, refer
to relevant comments in the examiners’ reports for tertiary entrance examinations
in Western Australia, and describe our own observations in a Year 12 class. A
common theme is that students’ comparison of properties of two or more sets of
data using box plots tends to be limited to quoting statistics. It seems that devel-
oping strategies for comparison is a challenge for teachers. Appropriate strategies
will be explored in the conference session.

Introduction

Research by Biehler (1997) and Pfannkuch, Budgett, Parsonage and Horring (2004) indi-
cates that students are generally able to construct box plots accurately after instruction,
but interpretation of the plots tends to be narrow, especially when comparison is involved.
The examiners for the Tertiary Entrance Examinations (TEE) in Western Australia report
similar outcomes, namely that students are usually competent with constructing the plots,
but interpretation and comparison tend to be limited (e.g., Curriculum Council, 1998b,
2002b, 2003b). 

With interpretation in mind, we investigated introducing the plots using dot-frequen-
cy diagrams and histograms, in a Year 12 class. The teaching approach was in line with
Bright and Friel’s (1998) recommendation that students can benefit from comparing dif-
ferent graphs of the same data. McClain and Cobb’s (2001) description of educational
software that allows the user to group data into equal sized groups on dot-diagrams also
influenced the approach that we took. Comparison was discussed in class in the context
of establishing change of origin and scale effects on data. 

In this paper, we summarise the findings of Biehler (1997), Pfannkuch et al. (2004),
and the TEE examiners (Curriculum Council, 1998b, 2002b, 2003b), and describe the
treatment of box plots in the Year 12 class and the learning outcomes. In addition, we list
examination questions that will be discussed in the conference session. The questions call
for comparison of data using box plots.

* This paper has been accepted by peer review.
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Reported findings

Biehler’s (1997) study involved a group of Year 12 students and a group of student teach-
ers. Both groups had undertaken statistics courses in which statistical software was used
for analysing data. Students were interviewed in pairs at the conclusion of their courses
and asked to work on a statistical problem. They were to decide whether weekly hours
spent on homework was the same for students for whom a curfew was imposed and for
students without a curfew. Data were provided. Software use was an option. 

In general, the students jumped to produce computer outputs without questioning
whether they would inform the topic being investigated. When interpreting box plots of
the hours of homework, some showed that they did not understand that area and lines
indicate the location of data, and they were confused about the property that the number
of data and the area of boxes are not in proportion. 

In using box plots to compare the hours of homework with and without a curfew, stu-
dents tended to focus on differences in the medians. They paid limited or no attention to
spread, or had difficulty interpreting the measures of spread. They tended to use mainly
technical language in their conclusions (e.g., comparisons were in terms of the median,
etc.) and had difficulty in stating their conclusions in terms of the homework/curfew
context. Their technical interpretations were characterised by imprecise language.

The study by Pfannkuch et al. (2004) involved a class of Year 11 students. A unit of
study was specially designed to address known problematic areas in students’ statistical
reasoning. At the end of the unit the class completed an assessment that required them
to analyse maximum summer temperatures for two cities and choose which city to visit for
a summer holiday. Students were asked to pose a statistical question (e.g., which city has
the higher maximum summer temperatures?), analyse the temperature data, draw a con-
clusion, justify the conclusion with three statements, and evaluate the statistical process. 

All chose to calculate the five statistics for box plots and many drew the plots for the
two sets of data. Then, most students compared features of the data as displayed on the
plots in a non-discriminating manner and did not justify or explain their conclusions.
Most (27/30) compared equivalent statistics (e.g., median values) but did not discuss the
statistics in relation to the data sets as wholes, and many (16/30) included range which
was not relevant to the question. More than half (18/30) compared non-equivalent
summary statistics. Twenty-one mentioned variability but none discussed variability in
relation to the medians. Nine alluded to distribution but there was little attempt at defin-
ing the shapes of the distributions. Thirteen students presumed that the data sets were
not a valid basis for comparison because they were unequal in size.

The 1998 TEE question on box plots (Curriculum Council, 1998a) asked students to
compare the distribution of heights of 30 adult females and the distribution of heights of
30 adult males. Data were displayed as box plots and were listed for females. The five sta-
tistics (extreme, median and quartile values) for the heights of males were listed.
Examiners noted that: ‘Many students commented upon the similarities and differences
for the individual statistics rather than, as required, on the general features of the distri-
butions such as central location, range and symmetry’ (Curriculum Council, 1998b, p. 4).
The TEE question in 2002 (Curriculum Council, 2002a) asked students to discuss the sim-
ilarities and differences in the central tendency and dispersion of three sets of data. The
data were displayed as box plots (two sets) and the five statistics were provided for the
third set. Examiners noted: ‘Far too many candidates made statements that could not be
inferred from box and whisker plots… many failed to recognise the similarity in the
shapes of the boxplots’ (Curriculum Council, 2002b). A similar question was asked in
2003. Fewer students made invalid statements, many based their comparisons on median,
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range and interquartile range (as expected), but few mentioned the opposite skew of two
of the distributions (Curriculum Council, 2003b). 

In summary, weaknesses in students’ interpretation of box plots, as reviewed above,
were: 

• not recognising the convention that the frequency of data for each interval on a
box plot is the same; 

• using imprecise language; and 
• having difficulty stating conclusions in terms of the real contexts of data. 

Problems with comparison of data sets were: 
• basing comparison on the five statistics that can be read from the plot, without

recognising global relationships; 
• not recognising variability; 
• not integrating comparison of measures of variability with comparison of the

medians; 
• not recognising distribution shape; and 
• wrongly assuming samples must be the same size for valid comparison. 

Further, (a) most of these weaknesses with interpretation are not peculiar to the use of
box plots but apply to students’ interpretation of data generally (e.g., Buffler, Allie,
Lubben & Campbell, 2001), and (b) comparison can challenge experts as well as students
(Biehler, 1997). In particular, comparison of box plots becomes complex when different
measures of spread support different conclusions, and interpretable patterns sometimes
do not exist (Biehler, 1997). 

Box plots in the Year 12 class

The description below is based on systematic research in the first author’s 2004 Year 12
Applicable Mathematics class. The second author attended the class as an observer,
during a unit of work on statistics. The lessons were video-recorded, audio recordings
were made of students’ one-to-one conversations, and students’ assessment scripts were
photocopied. The claims in this paper are based on analysis of the video and assessment
data. 

The Applicable Mathematics syllabus specifies that students should: ‘Construct and
interpret boxplots, noting their use in comparison of centres and spreads of data… for
ungrouped data, the lower/upper quartile is the median of scores to the left/right of the
median’ (Curriculum Council, 2003a, p. 49). In practice, outliers are not distinguished
on the plot. The Year 12 class had constructed box plots and undertaken simple interpre-
tation in Year 10. 

Box plots were discussed in two separate lessons in the Year 12 class. The night before
the first lesson, students were set an introductory activity for homework. A worksheet was
provided which asked them to: draw dot-frequency diagrams for four sets of listed data;
divide each set of data into four equal groups by circling the dots on the diagrams; and
determine the mean, median, quartile and extreme values for each set. The worksheet
gave an example of what was expected (see Figure 1). The diagram on the worksheet was
produced on Autograph 2.10 (Hatsell, 2002). 

The lesson started with whole-class discussion on the dot-frequency diagram in the
example. The corresponding diagram from Autograph was projected onto the whiteboard,
without the grouping. Students were asked to describe the graph and they commented
that there were ‘repeated values’, ‘more lower values than higher values’ and that the
graph ‘isn’t symmetrical’. They were asked to consider how the data could be displayed
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in different ways. They suggested a histogram and a frequency polygon. These were hand-
drawn on the projected dot-diagram. The hand drawing allowed the processes of
construction to be discussed. Then a student suggested a box plot and this was also drawn
on the whiteboard, using statistics that students had calculated, and with reference to the
grouping of data on the dot diagram. Each student drew a histogram on one of her dot-
diagrams, and a box plot on the scale above it (see Figure 1). 

Subsequently, students constructed box plots for all sets of data on the worksheet.
When they had finished, the box plots were produced with Autograph and were displayed
on the whiteboard. The class was questioned on the plots. The relationships listed below
were identified. Ambiguity and imprecision similar to that observed by Biehler (1997)
were evident but are hard to avoid. 

• Set A (see Figure 2): there are 50% of data in the interquartile range, the middle
50% of data lie in the interquartile range, the benefit of the interquartile range over
the range is that it can take away extreme pieces of data that do not fit, the median
is not in the middle of the plot, the median is in the middle of the data;

• Set B: there are double the number of data in the left box as in the right, there are
double the number of data because the whiskered quarter is not there so the data
are included in the box, the density of data is greatest in the left box;

• Set D: the minimum is the same as the lower quartile, the maximum is the same as
the upper quartile, a lot of data are the same, there are repeated values at the quar-
tiles, data are densely packed at the beginning and end, half the data are on one
side and half are on the other side, the maximum and minimum are symmetrical
about the median;

• Set E: the longer whisker means the gap between the upper quartile and maximum
is large. 

Data set A: 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 7, 8, 9, 10

   0 1 2  3 4  5 6  7 8  9  10

   0 1 2  3 4  5 6  7 8  9  10

1

2

3

4

Mean = 4·35, Min = 1, Q1 = 2·5, Median = 4, Q3 = 5·5, Max = 10

Figure 1. Worksheet example.

Figure 2. The box plots for the data that were provided.
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Other work on box plots was as follows. Students were set homework that required
them to calculate summary statistics and produce box plots for data before and after the
addition of a constant or multiplication by a constant. The results were discussed in class
and, as well, interpretation of box plots was revisited. 

There was agreement on the effects of addition and multiplication, for example, that
spread among data was the same before and after addition of a constant to all data; and
spread increased/decreased if all data were multiplied by a constant because distance of
data from zero (not the median) changed. Comparison of the width, range and
interquartile range of the box plots, and positions of the medians, featured in the conver-
sation. As well, it seemed from students’ responses in class that there was widespread
understanding of (a) the convention that the whiskers and boxes on a box plot each rep-
resented one quarter of the data in a set, and (b) that the total number of data and
distribution of data within intervals could not be inferred from a plot.

The students were also directed to read worked examples in their textbook (Lee,
1999) and complete the textbook questions on box plots. Comparison questions and the
solutions that were provided encouraged use of the medians to characterise groups (e.g.,
to show that one group of students tended to have taller students than another). As well,
they encouraged comparison of extreme values, interquartile-range, range, skewness and
symmetry, and interpretation in terms of real-life contexts. 

In a subsequent assessment, a question was included that involved comparison of
weights of eggs produced by free range and caged chickens. Students compared the
medians (15 out of 23 students), and/or range (17 students), interquartile range (11 stu-
dents), extreme values (2 students), and shapes of the distributions (1 student). Five
commented about central tendency (not the median), two commented about dispersion
without mentioning range or interquartile range, one discussed interquartile range in
relation to the median, and four related their answers to the weight context. Hence, stu-
dents tended to not go beyond technical comparison of equivalent statistics. The
outcome is consistent with the findings of Biehler (1997), Pfannkuch et al. (2004) and
the TEE examiners (e.g., Curriculum Council, 2000b). 

Conclusion

After looking at students’ responses in class and in the assessment, we reached two main
conclusions. First, targeting the principles that underlie box plots with the dot-diagram
approach potentially contributed to students’ understanding of the principles. The
Autograph software was valuable in that it produced accurate, attractive graphs quickly.
These were the focus of discussion. The problem that the construction processes are not
evident on computer-generated graphs was addressed with the by-hand construction. 

Second, too little time was spent on strategies for comparison of contextualised data
represented as box plots. Albeit, any further time on box plots in class would have been
at the expense of time on other syllabus components. Furthermore, as Biehler (1997) and
Pfannkuch et al. (2004) point out, ‘strategies for comparison’ is an undeveloped field.
Attention needs to be given to developing a framework for comparison. 

Therefore, in conclusion, we invite conference participants (or readers of this paper)
to pursue this important task and consider strategies for comparing the box plots from
the following questions, and to decide what form of questions are appropriate for testing
understanding of statistical reasoning related to box plots. 
(a) Advanced Placement Statistics 2000 Question 1, 2003 Question 1. Available from

http://apcentral.collegeboard.com. Free registration, then follow the links:
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<Exams > Exam questions > Statistics>.
(b) Western Australian Applicable Mathematics Tertiary Entrance Examinations, 1998

Question 4, 2003 Question 6. The 2003 question is available from www.curricu-
lum.wa.edu.au/pages/publication05.htm

(c) Education Queensland, Box plots worksheet Question 3. Available from
http://exploringdata.cqu.edu.au/boxplots.htm. Follow the link <Boxplots work-
sheet>.
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Mathematics: Dead or alive!*

Beth Southwell
University of Western Sydney

There is very life in our despair,
Vitality of poison.
(Lord Byron, Childe Harold)

We use the word ‘vital’ in different ways depending on the context involved. For example,
if we want to describe a person, we refer to their vital statistics, i.e., usually the date of their
birth, marriage and/or death. Vital functions usually relate to a person’s heart, liver or
lung organs. If we say something is of vital importance, we are referring to a circumstance
without which nothing can successfully proceed. So how do we relate mathematics to this?
Is a person’s success or failure in mathematics a matter of a statistic? Is it a vital function?
Is it of such importance that life cannot go on? What we believe mathematics is about and
how it functions will determine the answers to these questions. Should teachers be
making mathematics vital or is this the task of the learner alone? These are fascinating
questions which need to be explored together with possible pathways for gaining further
understanding. How the AAMT Standards for Excellence in Teaching Mathematics in
Australian Schools helps in this regard must be considered.

The Oxford Dictionary gives the following definition of the word ‘vital’:

a. & n. Of, concerned with or essential to, organic life, as v. energies, functions, v.
power (to sustain life), wounded in a vital part; essential to existence or to the matter
in hand, as in a v. question, question of v. importance, secrecy is v. to the success of
the scheme; affecting life, fatal to life or to success &c., as a v. wound, error; … v. sta-
tistics (of birth, marriage, death &c.). [OF f. L. vitalis, (vita life, cogn. w. vivre live &
Gk bios life, see –AL)]

So, is mathematics vital? Is it alive? Has it died? The theme of this conference, ‘Making
mathematics vital’ could be read in several ways. Whether a person is alive or dead is
gauged by the existence or not of a heart beat. Is the heart of mathematics beating or has
it been stilled in some way? Does the theme suggest that mathematics is not necessary for
life? 

A teacher told me once that she and her class planned a ‘mathless day’. When she
asked them how they knew when to come to school, most of the class said they had looked
at the clock at home. When asked how they got to school, they were able to tell in fairly
mathematical terms, facts about direction and distance. When asked what lesson they

* This paper has been accepted by peer review.
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would do, they agreed that mathematics always came first. So, right from the start of the
school day, they had to admit that they used mathematics and there is no such thing as a
‘mathless day’.

On another occasion, primary teacher education students were asked to keep a journal
of their experiences in meeting and doing mathematics in their everyday life. At the end
of the semester, one comment, among many, was that one cannot escape mathematics:
‘Mathematics is everywhere!’ This student has never since been able to see mathematics
except as a vital everyday necessity. Mathematics is vital for life.

There are some pessimists who observe the lack of interest in doing mathematics as dis-
played by some students in some classrooms and say that mathematics has lost its meaning
and does not enthuse students though possibly never going so far as to recommend that
mathematics be dropped from the school curriculum. There are those who recognise the
kind of political football that mathematics becomes at times when educators, politicians
and bureaucratic officials play off one aspect of learning and teaching mathematics
against another; but do these circumstances mean that mathematics is dead? I believe
not! So consider the factors that can kill mathematics and those that can breathe life into
the subject. Factors that kill mathematics in the classroom include: 
1. the acceptance of myths about mathematics such as that which states that mathe-

matics is arithmetic or computation;
2. the lack of understanding of mathematics as a dynamic discipline;
3. lack of knowledge of mathematics;
4. lack of knowledge about how mathematics is learnt;
5. lack of enthusiasm on the part of the teacher;
6. lack of faith in the learner;
7. fear of failure; and
8, overwork.
There are probably others, too, but this list is a formidable one in itself and it is never
good for one to dwell too long on negatives. The above factors are prevalent in some
schools more than others and some of them relate more to certain circumstances than to
others. For instance, teacher education courses for both primary and secondary teachers
quite often fall short of what is required to alleviate some of the above factors. This can
be due to lack of time, inability to fund mathematics and mathematics education units
sufficiently and even lack of understanding on the part of the teacher educators, particu-
larly those who are not mathematicians or mathematics educators themselves. In many
cases, policy is determined by such people despite impassioned pleas and explanations by
the mathematics educators. 

There are also students who apply for university courses in education because they
have not done sufficiently well to get into other courses or have been unable to get a job
in the area for which they prepared themselves in their undergraduate degree. In many
cases this means the student is not committed to teaching mathematics so much as
earning a salary or getting a job in the easiest way possible. 

Primary teacher trainees have an extra pressure on them in so far as they will be
expected to teach a range of subjects, including most that they have not previously
studied. This quite often includes mathematics. This could mean that they will have inad-
equate background knowledge in mathematics for teaching in the primary school where
an understanding of fundamental concepts is absolutely vital.

Another possible contributory factor is the curriculum. When emphasis is placed on
arithmetic or on passing public examinations, students cannot be blamed for having per-
ceptions that are negative and counterproductive as far as their mathematical
development is concerned. This is a most difficult problem to solve but there are two
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areas through which some of the deadening factors can be treated. One is from the point
of view of the teacher and the other is from the point of view of the student. Then, too,
the way in which these relate must be considered. In their report on professional devel-
opment McRae, Ainsworth, Groves, Rowland and Zbar (2001) stated that the two
directions that the issue must be tackled are, ‘the ways in which professional development
activity is constructed and evaluated, and by supporting the crucial importance of its place
in change efforts focussed on outcomes-based education’ (p. 18).

Professional learning of teachers of mathematics

Many types of in-service courses and professional development programs have been insti-
tuted in schools and by systemic authorities. Just to mention a few, there are the Early
Years Numeracy Project in Victoria, Count Me In Too in New South Wales and Australian
Science and Mathematics School program in South Australia. One that has been having
considerable success in NSW, besides Count Me In Too, is the Lesson Study process. In
this project, initiated by the NSW Department of School Education, was adapted from the
Japanese experience (Stigler & Hiebert, 1999). 

The Lesson Study process involves a group of teachers within the one school with a
team leader meeting regularly to plan, teach, evaluate and refine a lesson. The following
steps are usually carried out:

• teachers meet and plan lesson
• one teacher implements the lesson, observed by at least one other in the group.
• group meet to evaluate the lesson
• group meet to refine lesson for next iteration.

The process can be repeated until teachers are satisfied they have produced a good lesson.
The particular strengths of this process, very much in keeping with McRae et al.’s

(2001) criteria for professional learning programs, are:
• a focus on student performance;
• the practice of teaching and learning;
• enhancement of pedagogical and discipline knowledge;
• a focus on active, collaborative learning.
An evaluation carried out by White and Southwell (2002) found that participating

teachers:
• deepened their understanding of how students learn mathematics; 
• enhanced their mathematical content knowledge;
• developed skills to teach mathematics more effectively;
• provided more meaningful classrooms for mathematics; and 
• worked collaboratively in teams.
The last of these points was the one most emphasised by most teachers. The value of

working collaboratively seemed to be a surprise for some and a definite benefit for most.
The value of observing other teachers and being observed themselves was also considered
a great asset.

The implementation of this Lesson Study program contributed greatly to alleviate
factors 2, 3, 4, 5, and 6 as listed above. The question remains, however, as to the effect if
continued long term and although, logically, the method should reduce the time involve-
ment because of the shared preparation, not all teachers agreed that it did. 

While this particular implementation of the Lesson Study process is considered unique
because of the individual school’s ownership and authority, there are similar programs
that differ mainly in the extent of outside expert involvement. 
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Of a different type of program for professional learning is the Australian Science and
Mathematics School, the first of its kind in Australia (www.asms.sa.edu.au). It is a joint
venture between the South Australian Department of Education and Children’s Services
and Flinders University and is dedicated to the learning and teaching of mathematics and
science. Besides a strong emphasis on mathematics and science in the curriculum,
ongoing professional development of staff is also central to the School’s focus. This
emphasis on professional development involves a wide range of strategies.

The AAMT Standards for Excellence in Teaching Mathematics in Australian Schools lists per-
sonal professional development as one of the subgroups in the strand Professional
Attributes. Lesson Study meets the requirements of this section but also those in the other
two strands.

The investigational approach to learning and teaching mathematics

In approaching this aspect of teaching and learning mathematics, the assumption is made
that the emphasis on outcomes-based learning is not based on a student’s cognitive
achievements only or even on cognitive achievement that is equal to all other students in
the same age level but also on the appreciation of mathematics and other affective crite-
ria that may be considered as contributing to achievements in mathematics. For instance,
if a student reaches a certain level of achievement in a computational process, the
outcome achieved may be admirable but even more admirable is that the student has
gained a sense of confidence in his or her ability and enjoyment in that confidence.

For many years, teachers of small children have utilised their amazing curiosity to
explore mathematical situations. In that way, mathematics has come to life for the chil-
dren and teachers have felt a sense of satisfaction that the children’s enjoyment and
enquiry have been achieving positive results for them all. In the past two decades, teach-
ers of older students have also discovered that teaching through investigations not only
arouses interest and achievement for the students but also gives them as teachers a sense
of being a facilitator and encouraging the mathematical development of their students
(Southwell, 2004).

An investigational approach is one that can be utilised at all levels. Ollerton (2003)
maintains that 

because mathematics is essentially a collection of ideas used to describe the world and
a set of tools for solving problems, students need to experience mathematics in
problem solving ways. Each module, therefore, needs to be based upon exploring
ideas and using and applying mathematics. (p. 102)

Students can be encouraged to devise different methods and come up with different
options. This is one of the real advantages of investigations. The creativity and independ-
ent thinking of learners is sometimes overlooked but in investigations, they are
encouraged to develop novel ways of doing mathematics. This can have valuable out-
comes as far as everyday life is concerned. Sometimes students lose interest in a
mathematical situation or problem because it is not ‘real’ to them. 

There are some important implications of working through investigations and
problem solving. These include the following:

• work in this area is best related to the students and not imposed by pre-conceived
ideas of what the teacher thinks is required;

• work in investigations must proceed from the student’s point of view;
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• the onus is on the teacher to be aware and to notice how students respond;
• working mathematically embraces all aspects of problem solving and includes

more, e.g. materials;
• working mathematically can encompass routine tasks;
• thinking mathematically involves abstractions, generalisations, argumentation,

going beyond a particular problem or investigation.
These implications need to be considered more fully in relation to the outcomes that

are desired as a result of mathematics teaching and learning. The benefits of such an
approach include:

• collaborative learning groups are most suited to investigations;
• the student can set his/her own goals and work at his/her own pace;
• it encourages creativity and independent thinking and working;
• the students can work on a situation of their own choosing and hopefully commit

themselves to resolving the situation; and
• students are more highly motivated.
There are many detractors from this investigational approach to teaching and learn-

ing mathematics. Time is an issue when students are expected to sit for public
examinations within a certain time frame. This can, indeed, be a problem but not an
insurmountable one. Another argument that is sometimes put forward against an investi-
gational approach is that it is haphazard and unfocussed. This is where the awareness and
skill of the facilitator teacher is needed to ensure that the outcomes achieved are linked
to the students’ existing body of knowledge and not be left as an isolated fact, no matter
how exciting and satisfying that might be. Also the question must be asked: ‘Ultimately, is
the outcome of proficiency or high score beneficial if the student becomes anxious and
subsequently a non-performer?’

The links between teachers’ professional learning 
and the students’ achievement

Causal relationships of this kind between teachers’ professional learning and students’
positive outcomes are difficult to establish. There are so many factors impinging on a
mathematics classroom and as well these may affect students in different ways and at dif-
ferent times. One or two examples are pertinent, however. Manouchehri (2003) reports
a study in which a mathematical inquiry environment was established through mathemat-
ical modelling. She particularly sought to develop the ideas of argumentation and a
learning community and as a result claimed a richer understanding of the power of
groups and opportunities for professional development that arose.

Reid (2002) described a study investigating reasoning patterns of Grade 5 students.
They were given a counting squares problem and asked whether they could prove they
had found them all. From their responses which included the investigational processes of
conjecturing and testing their conjectures, Reid (2002) was able to identify the reasoning
patterns of the students for different situations. In this way he not only gained a greater
understanding of the way in which the students were thinking but he was gaining profes-
sionally himself.

While AAMT (2002) has concentrated on professional standards for teaching, the
resulting impact on student learning cannot be ignored. The strands and substrands of
the document are interrelated. If teachers set their sights on high standards for their own
performance, there is a stronger than otherwise chance that students’ outcomes in terms
of achievement in performance, attitude and application will improve.
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Conclusion

It is not assumed that if the above actions are implemented that mathematics will spring
back into a vital life experience for all students. These are only two of the many factors
that operate in this complex situation. There are many other factors that are outside the
scope of our considerations and, indeed, outside our control: a student’s health, for
instance, family circumstances, and socio-economic considerations are generally outside
a school’s influence. 

Several recent reports have suggested that the role of the teacher, the importance of
professional learning and the establishment of an environment of innovation need to be
considered (Department of Employment, Science & Training, 2003; Lovat, 2003;
Australian Council of Deans of Education & Australian Council of Deans of Science,
2004). These are all for the purpose of enlivening mathematics and science or teachers
in general. Lord Byron’s words are very apt. The very fact that we sometimes despair of
what is happening awakens and enlivens us to do something about it. Mathematics is not
dead: it is alive and with help will become the force it has always been.
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Action research for improving 
professional standards in mathematics*

Beth Southwell
University of Western Sydney

Teachers of all subjects are constantly being asked to reflect on their teaching in
order to develop greater understanding and skill in teaching and to enhance stu-
dents’ learning outcomes. It is suggested that this reflective practice is one
component of teaching and learning mathematics that will revitalise mathematics in
Australian schools. With ever increasing demands on teachers’ times, it is neces-
sary to find ways in which this reflective process can be implemented without
taking additional time. Some of the difficulties that teachers might encounter in
implementing the AAMT Standards for Excellence in Teaching Mathematics in
Australian Schools will be discussed and an action research strategy recommend-
ed for overcoming them. 

Excellence is something all thinking people hope to achieve, though sometimes it seems
a long way off. The old adage, ‘The more we know, the more we realise how little we
know,’ is a timely reminder for teachers that the will to learn is a life time passion.
Teachers in general can be described in terms of Chaucer’s clerk: ‘gladly wolde he lerne
and gladly teche’. Striving for excellence in teaching mathematics must inevitably involve
learning and this is emphasised in the AAMT Standards for Excellence in Teaching
Mathematics in Australian Schools. 

The question is therefore raised as to methods that can be used to provide appropri-
ate professional learning programs for teachers. For some time, teachers have been asked
to become reflective practitioners (Schon, 1983; Boud, Keogh & Walker, 1985) and to
enable their students to also be reflective in the work they do. 

The process of reflection is sometimes confused with metacognition or simply going
back over an experience. These are involved but real reflection goes a stage or two further
and leads to commitment to action as a result of the reflection. In mathematics, this
action could be in terms of the links that are made between different areas of knowledge
or between different methods or strategies; or having worked on some realistic problem
or investigation, the class or just the student could decide to take the kind of action that
could best be described as social action. Unless one acts on the outcome of the reflection,
the process could become counterproductive.

To reflect on a mathematical experience, the learner needs to return to that experi-
ence, remember the positive aspects of the experience, deal with negative issues such as
anxiety or fear of failure or unwillingness to take risks, then re-evaluate the experience.

* This paper has been accepted by peer review.
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This re-evaluation should lead to a new perspective on the situation, and perhaps a
change in behaviour, but certainly a commitment to action. In the re-evaluation phase,
the four processes of association, integration, validation and appropriation are relevant.
The experience or situation on which reflection is taking place needs to be made mean-
ingful through association with some previous learning or idea. The learner then needs
to integrate any new learning into an existing body of knowledge, validate it in some way
to see if it makes sense and then appropriate it as personal knowledge.

Figure 1 is adapted from Boud, Keogh and Walker (1985).

Figure 1. The reflection process in context (adapted from Boud, Keogh & Walker, 1985, p. 36).

Reflection is an aspect of professional learning for mathematics teachers that can be
subsumed by others, e.g., action research. Action research seems to have been known to
teachers for some time and is a process that is accessible to most teachers. It is a key
method of being involved in one’s own professional learning.

Action research

Burns (1990) describes action research as, ‘the application of fact finding to practical
problem solving in a social situation with a view to improving the quality of action within
it’ (p. 252). He also suggests that there are four main characteristics of action research,
namely, it is situational, collaborative, participatory and self-evaluative. 

Further to these characteristics, Arhar, Holly and Kasten (2001) list the elements of
ethical commitment, cycle of reflective practice, public character and collaboration
(p. 39). Commitment to professional practice is almost a prerequisite to engaging in
action research. The cycle of reflective practice is given as observe, act, reflect. The
process might start by the practitioner observing something in their professional practice
that intrigues them or concerns them. A plan is then formulated to gather data which
lead to reflection for further observation and action. For action research to be true
research, it has to be shared with others and so has a public character (Arhar et al., 2001).
It also has to involve others and therefore is collaborative, either between the researcher
and the subjects or between researchers as well. 

Arhar et al. (2001) identifies several types of action research and makes a distinction
between them and teacher research in general. Teacher research can be described as any
research carried out by a teacher or a group of teachers. Similarly, classroom research is
research carried out in and about the classroom by a teacher or anyone else. Action
research is 

Research undertaken by individuals or groups which is founded on an active ethical
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Behaviour
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commitment to improve the quality of life of others, is critically reflective in nature
and outcome, is collaborative with those to be affected by actions undertaken, and is
made public. (Arhar et al., 2001, p. 47)

It follows then that teacher action research is action research carried out by a teacher
or others and classroom action research is action research that takes place in and is con-
cerned with life and practices occurring in the classroom. Collaborative action research
is undertaken by individuals or groups who have a common focus.

Another definition of action research is that of Carr and Kemmis (1986) who wrote:

Action research is simply a form of self-evaluative enquiry undertaken by participants
in social situations in order to improve the rationality and justice of their own prac-
tices, their understanding of these practices, and the situations in which the practices
are carried out. (p. 162) 

They suggest that the two essential aims of action research are to improve and to involve.
In a later paper, Kemmis and Wilkinson (1998, cited in Atweh & Heirdsfield, 2003, p. 56)
identified five additional characteristics of action research to the three usually accepted
as planning, action and reflection. The five were participatory, collaborative, social, criti-
cal and emancipatory. It is participatory if it involves people within a practice in the
process of research; it is collaborative if it involves individuals or groups of people both
from within the situation and without; it is social in that it is part of a social context and
critical in that it sets out to answer concerns that have come as a result of examining some
situation or practice. It is emancipatory if it enables all participants to control the way in
which their practice and their knowledge of their practice is improved.

Issues in action research

Crawley (1998) finds that action research recognises the complexity of the classroom sit-
uation and the large number of factors that impinge on the classroom. He and others
(Noffke, 1994, cited in Raymond & Leinenbach, 2000, p. 302) see the relationship
between theory and practice being enhanced through the action research process.
Academics in general are considered to be more interested in the theoretical bases for
learning and teaching mathematics whereas the classroom teacher is very much con-
cerned with improving the learning and teaching situation in the classroom.

Noffke (1994, cited in Raymond & Leinenbach, 2000) identifies several issues in action
research. The first is whether action research is real research. Arhar et al. (2001) claims
that for research to be real, the results must be made public. In the cases that follow, this
has been done in varying degrees. In one case the results have been taken overseas (Osler
& Flack, 2002) and all have been shared within the classroom and the school concerned.

Another of Noffke’s concerns has to do with the politics of knowledge production and
refers to the establishment of appropriate relationships between researchers and practi-
tioners and the breaking down of barriers between them. The valuing of researchers by
teachers and of teachers by researchers is a key element in research partnerships. Atweh
and Heirdsfield (2003) hint at this issue when they discuss authorship and voice in
research (p. 57). 

Raymond and Leinenbach (2002) ask the question as to whether collaborative action
research is just another name for reflective practice. If one accepts the process put
forward by Boud et al. (1985), then action research is more than reflective practice. In
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the re-evaluation of an experience, the learner has to be able commit to action and in
action research the commitment must turn into actual action. Another critical aspect is
that in action research, the individual is developing him or herself within and through his
or her practice.

Some of these issues are developed further in relation to the three cases described
below.

Learning from others

Case one

Raymond and Leinenbach (2000) report a collaborative action research project in which
Marylin, in reflecting on her algebra classes, was constrained to ask questions in relation
to her teaching and her students’ learning of algebra. She was teaching a Grade 8 in a
school that had decided that all Grade 8 students should learn algebra. She was con-
cerned as to whether what she was doing would help her students to understand algebra
better and whether what they learned in her class would help them for future learning.
She sought the assistance of a university lecturer, Anne, who was interested in other ques-
tions as well as those Marylin had formulated for herself. She was interested in exploring
how the involvement in a collaborative action research project would affect Marylin as a
mathematics teacher. They worked as teacher and researcher initially but as the project
progressed, Marylin became more and more involved in the researcher role.

Marylin was using a particular manipulative approach in twenty-six lessons, preceded
by a nine week period when she taught using a non-manipulative approach and a text-
book. For the study she had 120 subjects from five classes. Data were gathered using an
end of year survey, weekly student reflections, student work samples, test scores, teacher
reflections and teacher observations and a whole class interview conducted by the univer-
sity partner. Some students were also videotaped doing algebra problems. The second
phase took place the following year when the students were mailed a survey to complete
to test the durability of the Eighth Grade program. The response rate was low (19 out of
90 mailed). Of these, eight agreed to participate in an individual interview.

In the first year of the study, it was found that the students’ scores were higher during
the manipulative phase than during the textbook phase and on a standardised test,
Marylin’s students performed better than expected. In the second year, most of the class
entered classes that were very different from the one they had enjoyed with Marylin. From
a follow-up survey, it became evident that most of the students could not succeed in the
classes in which they were first placed. Despite some concern that the transition was not
proceeding smoothly, Marylin was able to reflect on her own beliefs and enabled students
to ask questions about their own learning. As a professional development experience for
Marylin, it had proved fruitful. 

Case two

The use of action research in a study on the professionalisation of beginning women
teachers was reported by Atweh and Heirdsfield (2003). Three women in their first year
of teaching in schools at a considerable distance from each other formed an action
research network with the university staff. The study focussed on the concern of the teach-
ers to ensure that their teaching of mathematics was inclusive and bridged the gap
between the university and the employer’s responsibilities. Data were collected through
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regular teleconferencing of the action research cell, access to email, and reflective jour-
nals. University team members also contributed reflections based on all the
documentation available, including records of the teleconferences. 

Analysis of the data resulted in perceived learning in relation to inclusive curriculum
and professionalism in teaching. At the beginning of the year, all three teachers had
found it challenging to find a pedagogy culturally appropriate for their students who
came from diverse backgrounds. It was found that over the course of the study, the nature
of the comments made by the three teachers changed significantly to convey a change in
the way in which they thought of the situation. From a deficit model of describing the
class, it became for two of the teachers a concern for the appropriateness of the curricu-
lum. In terms of their professionalism, all three gained in their confidence in teaching
mathematics, in the development of reflective practice and in developing supportive pro-
fessional networks. 

Case three

Two primary teachers relate their Poppy legend as an explanation of what they learnt over
a period of time and how their collaboration affected their teaching practice. After an
initial jolt caused by a conversation in the classroom and the realisation that the Grade 5
students with whom they were working had little understanding of what schools are
about, the two teachers listed the conclusions they had drawn from the conversation and
set about redefining their own beliefs first and then gathering activity ideas to assist stu-
dents redefine theirs. They discovered the Project for the Enhancement of Effective
Learning (PEEL) and were able to enter into a fruitful relationship with academics who
were able to encourage them to believe that what they were doing was very important and
other outcomes such as an awareness that they were:

• encouraging students to develop strategies to remain ‘on task’ for extended
periods of time;

• developing and using teaching strategies and procedures that encouraged stu-
dents to make links in their learning; 

• valuing what students brought to class and provided opportunities for them to
access and use their prior knowledge; and 

• doing research related to that of others who were exploring their theories of
teaching and learning. 

(Osler & Flack, 2002, p. 229)

While this project began as a partnership between two teachers with a concern about
the way in which their students view school, the subsequent research and collaboration
with academics resulted in outcomes with very definite benefits to mathematics teaching.
The teachers involved developed a deeper understanding of their own teaching practice
and how that relates to their students’ learning. Particular aspects such as the linking of
ideas is of relevance for mathematics teaching.

Conclusion

The AAMT Standards for Excellence in Teaching Mathematics in Australian Schools (2002) advo-
cates three domains of excellence with relevant substrands in each case. These substrands
are not mutually exclusive so the interrelationships between them need consideration. In
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the examples of action research above, teachers gained greater understanding and knowl-
edge of their students as Osler and Flack (2002) did, and a greater understanding of the
way in which their students learn as the three teachers in Atweh and Heirdsfield’s (2003)
study. All the participants reported above were highly committed to maximising their stu-
dents’ opportunities to learn mathematics and to reach high standards of performance.
All the examples also reported professional growth in varying degrees, including person-
al professional development. Osler and Flack in particular reported the effect of their
growth on their colleagues though there were elements of this in the other two examples.
Certainly, all three examples portrayed the characteristic of action research of making
public the results of their studies, thus fulfilling community responsibilities. The third
AAMT domain, that of professional practice, was exemplified to a degree and was to be
found in each the three examples.

From the above examples, researchers have used a number of different strategies to
collect data. These have included group discussions, surveys, individual interviews, action
research cells, reflective journals, observation and videotaping. Others that might be
added to the list are: photographs, field notes, rating scales and check lists, focus groups,
and life history. The importance of keeping records and the final report writing are key
issues that need to be considered at some early stage of the research. Unfortunately, it is
outside the scope of this paper because of length and timing.

The value of action research to improve the learning and teaching of mathematics is
without question (Crawford & Adler, 1996). In so doing, it has the potential to enhance
the professional learning of teachers and strengthen their understanding of their prac-
tice as well as improving their practice itself. It is probably not possible for all mathematics
teachers to engage in action research in its fullest sense but there are many opportunities
for collaborative action research in all levels of schooling.

References
Arhar, J. M., Holly, M. L., & Kasten, W. C. (2001). Action Research for Teachers. New Jersey: Merrill Prentice

Hall.

Atweh, B. & Heirdsfield, A. (2003). The use of action research for the professionalisation of beginning
women teachers as they learn about inclusive mathematics. Mathematics Teacher Education and
Development, 5, 53–65.

Australian Association of Mathematics Teachers (2002). Standards for Excellence in Teaching Mathematics in
Australian Schools. Adelaide: AAMT. 

Boud, D., Keogh, R. & Walker, D. (1985) Promoting reflection in learning: A model. In D. Boud, R. Keogh
& D. Walker (Eds), Reflection: Turning Experience into Learning (pp. 18–40). London: Kogan Page.

Burns, R. R. (1990). Introduction to Research Methods in Education. Melbourne: Longman Cheshire.

Carr, W. & Kemmis, S. (1986). Becoming Critical. London: The Falmer Press.

Crawford, K. & Adler, J. (1996). Teachers as researchers in mathematics education. In A. J. Bishop & K.
Clements (Eds), International Handbook for Mathematics Education (pp. 1187–1206). Dordrecht, The
Netherlands: Kluwer.

Crawley, F. E. (1998). Guiding collaborative action research in science education contexts. In J. A. Malone,
B. Atweh & J. R. Northfield (Eds), Research and Supervision in Mathematics and Science Education
(pp. 173–198). Mahwah, New Jersey: Lawrence Erlbaum Associates.

Osler, J. & Flack, J. (2002). Tales from the poppy patch. In J. Loughran, I. Mitchell & J. Mitchell (Eds),
Learning from Teacher Research (pp. 222–245). Sydney: Allen & Unwin.

Raymond, A. & Leinenbach, M. (2000). Collaborative action research on the learning and teaching of
algebra: A story of one mathematics teacher’s development. Educational Studies in Mathematics, 41 (3),
283–307.

Schon, D. A. (1983). The Reflective Practitioner: How Professionals Think in Action. London: Temple Smith.

 



MAKING MATHEMATICS VITAL: PROCEEDINGS OF THE TWENTIETH BIENNIAL CONFERENCE OF THE AUSTRALIAN ASSOCIATION OF MATHEMATICS TEACHERS

[ STEPHENS ]
235

Relational thinking about numbers 
as a bridge to algebraic reasoning*

Max Stephens
University of Melbourne

Some students choose to solve number sentences, expressed as an equivalence
relation, by first identifying relations between numbers on opposite sides of the
equal sign, while other students use calculation from the outset to simplify and
solve the expressions involved. The first kind of thinking may be described as rela-
tional and appears to embody thinking which is quite different from the second
approach. Using a study of Japanese students, this paper illustrates relational
thinking and identifies some key features. Students who solved number sentences
relationally were more likely to apply this thinking to algebraic expressions.

Researching relational thinking

The Standards for Excellence in Teaching Mathematics in Australian Schools (AAMT, 2002)
point to the importance of teachers having ‘a strong knowledge base to draw on in all
aspects of their work’. The research reported in this paper is directly concerned with the
third aspect of professional knowledge, namely ‘knowledge of students’ learning of math-
ematics’. The teaching of number in the primary school should provide opportunities for
learning about number properties and the structure of number sentences — much more
than being able to calculate. Looking ahead to the early years of high school, students
need an understanding of structure and relationships, based on their experiences with
number, as they are introduced to algebra. Many students, however, appear to find alge-
braic thinking new and puzzling, whereas others are able to make clear connections with
their knowledge of number patterns and relationships.

These issues provided a rationale for the current study which was carried out in two
stages: the first stage in Tsukuba University’s attached schools in Tokyo (Grades 3, 5, 7)
from February to March 2004 with one class at each Grade level; then a second stage com-
pleted in Tsukuba City schools (Grades 4, 6, 8) during April and May 2004, with three
classes involved at each Grade level. In all, 379 students were involved.

The study aimed to address claims raised in three previous studies, and to answer two
further research questions. Kieran (1981) claimed that many children in elementary
school think the equal sign is a direction to find the answer (and not as an indication of
equivalence or balance). Do children in Japan think of the equal sign as indicating an
equivalence relation or a balance? Given the further claim by Carpenter and Franke
(2001) that the proportion of children in the elementary school, prior to instruction, who

* This paper has been accepted by peer review.
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can think relationally, is quite low (probably no more than 10%), it was important to ask
how accurate is the estimate for children in Japan. In addition, Behr, Erlanger and
Nichols (1980) argued that there is no evidence that children change their thinking
about equality as they move through the elementary school. Is there evidence of such
change for children in Japan?

Two further research questions were asked. From students’ responses, is it possible to
identify some clear identifying features of relational thinking? Finally, if students in
Grades 5 to 8 exhibit clear instances of relational thinking for number sentences, does
this thinking transfer to some expressions involving literal symbols?

Questions involving number sentences

Different questionnaires for Grades 3–4, Grades 5–6 and Grades 7–8 contained three
groups of common items involving number sentences. These were based on a shorter
questionnaire prepared with colleagues, George Toth and Loretta Weedon, of the
Catholic Education Office in Melbourne. The three groups were as follows:

• Group A
Consisting of four addition questions, such as

26 + 39 = 23 + 
+ 17 = 15 + 24

• Group B
Consisting of three subtraction/difference questions such as

39 – 15 = 41 – 
99 – = 90 – 59

• Group C
Two questions involving balancing, such as 746 – 262 + = 747

Children were not prompted in any way to opt for a particular method of solution.
They were, however, asked to explain their thinking for each question. Clearly, the
numbers were chosen such that ‘relational thinking’ was a feasible method of proceed-
ing. In Group A, for example, since 26 and 23 are three apart, the missing number is 3
more than 39. In Group B, equal differences require a different logic. Being able to apply
relational thinking for the expression 746 – 262 + = 747 depends on seeing the last
number as one more than the first number, so recognise that – 262 + is equivalent to
adding 1.

Children could solve this question by calculation. For example, some children first cal-
culated 746 – 262 to give a new expression 484 + = 747, and after that calculated
747 – 484 to find 263. By reducing the initial expression to a simpler form, they used the
difference between 747 and 484. Such calculation-based thinking rests ultimately on
simple arithmetic relations. Nevertheless, clear differences between calculation-based
(arithmetic) thinking and relational thinking emerged from children’s responses. These
will be discussed later.

Questions involving multiplication would have proved difficult for younger students,
and required them to be familiar with order of operations. The use of addition and sub-
traction was seen to give all students an opportunity to attempt all number questions with
confidence.
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Questions involving literal symbols

For Grades 5 to 8 only, additional questions involved using literal symbols. One question
was included for Grades 5/6. Two questions were included for Grades 7/8. Literal terms
and number terms had to be placed in a relation true for all values of the unknown. The
link question for Grades 5–6 and Grades 7–8, asked students to place n – 1, n + 5, 7 and
1 into four ‘boxes’ of the expression + = + such that the resulting expression ‘is
always true’. It was possible for a correct response such as (n – 1) + 7 = (n + 5) + 1 to be
written in the reverse order and without brackets. In addition, students in Grades 7–8
were asked to write a similar expression involving the terms n – 1, n + 1, m + 3 and m + 1.

In order to deal successfully with these expressions involving literal symbols, it was
hypothesised that students needed to use thinking similar to that required for thinking
relationally about numerical expressions. 

Students’ responses to numerical expressions

Scoring scheme

Individual questions were not scored separately. An overall or ‘holistic’ scoring scheme
was applied to each group of number sentences, using the following scores: 

0 arithmetical thinking (no evidence of relational thinking in any question)
1 relational thinking shown in some questions, but not successfully executed
2 relational thinking shown in some questions and successfully executed
3 relational thinking shown in most questions and successfully executed
4 relational thinking shown in all questions and successfully executed

This multi-point scale allowed a single score to be given to each group even where the
thinking may have been different across sub-questions. Scoring advice was prepared for
each group, and a benchmark sample, illustrating the five-point scale, was prepared for
graduate students who then worked in pairs to mark children’s written responses.
Children’s responses were all ‘double checked’, and any discrepancies noted. There were
high levels of agreement between pairs of markers with discrepancies easily resolved.

Responses to Group A (addition) questions

The percentage of calculation-based responses (score = 0) was about 45% for Grades 3–4,
and remained between 30% and 40% for the other two grades, with a slightly smaller pro-
portion of calculation-based responses in Grades 7–8 compared to Grades 5–6.

The proportion of those using relational thinking (score 1, 2, 3, 4) increased steadily
by grade level, with the proportion of those relying completely and successfully on rela-
tional thinking (score = 4) increasing from about 22% in Grades 3–4 to about 42% in
Grades 5–6, and to about 40% in Grades 7–8.

Responses to Group B (difference) questions

The percentage of calculation-based responses was slightly more than 60% in Grades 3–4,
suggesting that younger students were less inclined to use relational strategies for the
Group B questions than they were for Group A questions.



MAKING MATHEMATICS VITAL: PROCEEDINGS OF THE TWENTIETH BIENNIAL CONFERENCE OF THE AUSTRALIAN ASSOCIATION OF MATHEMATICS TEACHERS

[ STEPHENS ]
238

The proportion of calculation-based responses fell to nearly 40% in both Grades 5–6
and Grades 7–8. Across all grades there was a steady increase in the proportion of stu-
dents who use relational strategies on all questions (score = 4), rising from about 10% in
Grades 3–4 to over 30% in Grades 7–8.

In both Grades 3–4 and Grades 5–6, about 20% of students scored 1 on Group B ques-
tions. Their most prevalent mistake was to apply to difference questions the same
relational strategies that had been used successfully to deal with addition problems. By
Grade 7–8 the proportion of students using this ‘failed relational thinking’ fell to just over
10%. For Group A and C questions, the proportion of correct responses was so high,
regardless of strategy used, that score = 1 was rarely applied.

Responses to Group C (balancing) questions

For Grades 3–4, the proportion of students using a calculation-based approach was nearly
80%, dropping to 65% for Grades 5–6 and to about 55% for Grades 7–8. Nevertheless,
the proportion of fully relational responses to Group C questions by Grades 3–4 students,
while less than 10%, showed that some quite young students were able to solve these more
complex balancing questions relationally. By Grades 5–6, the proportion of fully relation-
al responses (score = 4) to Group C questions doubled to about 20%, and was over 30%
for Grades 7 & 8.

Summary

Successful relational thinking (score ≥ 2) was most readily applied to addition questions
(Group A). It was applied less readily and sometimes with lack of success to difference
questions (Group B), and less readily, but still with evident success by some students, to
the balancing questions (Group C). These results are summarised in the following table:

Score ≥ 2 Grades 3–4 Grades 5–6 Grades 7–8
Group A 50% 60% 63%
Group B 15% 36% 46%
Group C 20% 32% 42%

Disposition to apply relational thinking seemed to peak for Group A in Grades 5–6
with little extra growth in relational thinking in Grades 7–8. However, for the other two
Groups of questions, there was steadily increasing growth in disposition to use relational
strategies across the three grade levels.

Even by Grade 7–8, there remained a proportion of students (ranging from 30% for
Group A to over 50% for Group C) who relied entirely on calculation-based approaches.

The estimate by Carpenter and Franke (2001) based on a USA study that only about
10% of children, prior to instruction, were able to think relationally was not supported by
this study, with a much higher proportion of children at all grade levels showing a capac-
ity to engage in relational thinking.

Contrary to the claim by Behr et al. (1980), disposition to use relational thinking
increased by grade level for all groups of questions as children moved through elemen-
tary school and into junior high school.

In contrast to Kieran’s (1981) claim, many children in this study interpreted the equal
sign as indicating a balance or equivalence between both sides of an expression, as the
next section illustrates.
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Illustrations of relational thinking

The study provided rich and varied illustrations of children’s relation thinking in regard
to the three groups of questions used. Despite these differences, some underlying charac-
teristics of relational thinking can be identified.

Student 5.19 (Grade 5, student #19) completed the number sentence 23 + 15 = 26 + 
by saying, ‘Comparing 23 and 26, since 26 is three more, so 15 has to become three less.’

Student 5.38 analysed the number sentence 43 + = 48 + 76 by placing the two pairs
of numbers directly under each other: 43 + and 48 ↑-5 + 76 ↑+5.

Student 5.21 solved 73 + 49 = 72 + by connecting 73 and 72 with a line under which
was placed -1. Student 5.21 then drew a line joining 49 and the box on the right hand
side. The student said: ‘The box has to contain an opposite number [to -1] that produces
zero.’

Student 5.37 analysed the number sentence 23 + 15 = 26 + in the following specific
way: ‘Because I have to make 23 + 15 equal to a “three larger” number and a “three
smaller” number, I get 12. Left side and right side are balanced.’

Student 8.10 re-expressed 99 – = 90 – 59 as (90 + 9) – = 90 – 59 and then rewrote
this as (90 + 9) – (59 + 9) = 90 – 59.

Student 7.32 transformed the initial difference sentence to 39 + (–15) = 41 + (- ) and
then applied the procedures that had been used to deal with ‘addition type’ sentences:
‘An increase in the first number has to be balanced by a [corresponding] decrease in the
second number. In this way (-15) becomes (-17)’. 

Student 7.31 transformed the number sentence 99 – = 90 – 59 to 99 – 90 = – 59
obtaining a correct result of 68. 

Student 7.21 took 23 + 15 = 26 + and generated two sub-relationships, 23 + x = 26,
and 15 – x = 12, where x = 3 gives a missing number of 12. 

Key features

Students who think relationally about number sentences appear to:
• focus on a number sentence, viewing it as a whole; 
• treat the equation symbol as standing for equivalence or balance between the

numbers and operations involved, and not simply as an answer to a calculation;
• identify — or impose — a structure depending on the nature of the numbers and

the operations involved;
• impose different structures, and describe these structures in different ways;
• do not work from left to right and do not solve by calculating sub-totals;
• use structural relationships between different terms, depending on the numbers

and the operations involved. 
On the other hand, calculation-based or arithmetic thinking:

• simplifies a numerical expression through calculation to the point where a simple
relation can be applied to solve a problem;

• produces a new numerical expression as a result of calculation (unlike relational
thinking which typically deals with all terms in the one expression or line);

• is clearly appropriate in some situations where relations between numbers are not
evident;

• was preferred by some students in some questions who had used relational thinking
in other questions;

• was the only strategy used by some students;
• cannot be used successfully with expressions involving literal symbols.
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Performance on expressions involving literal symbols

The previous five-point scoring scheme was modified to grade responses to questions
involving literal symbols. This scoring scheme was applied to responses from students in
Grades 5–6 and in Grades 7–8 to questions involving use of literal symbols:

NR used for no response to the question
0 no evidence of relational thinking: incorrect or inadequate relation
1 relational thinking shown: correct relation shown but nothing else
2 correct relation shown, and successfully illustrated with one or more numeri-

cal examples
3 correct relationship shown, and explained by indicating some structural

balance with respect to the number terms, arguing for example that ‘we can
ignore’ n or m terms

4 correct relationship shown, and explained by explicit and clear reference to
structure showing that all terms ‘balance’ on both sides.

Grades 7–8 responses

Question 1
How did those who used relational thinking for the number sentences respond for
expressions involving literal symbols?

• 33 students (out of 144) showed high level relational thinking (score ≥ 3) on all
three groups number problems: Group A , Group B, and Group C.

• Of these, 30 scored ≥ 3 on the questions involving literal symbols, showing that
those who used high relational thinking on number sentences had a very high prob-
ability (91%) of dealing successfully with expressions involving literal symbols.

Question 2
Did those who used relational thinking for expressions involving literal symbols respond
at the same level for number sentences?

• 77 students (out of 144) scored ≥ 3) on one or more question involving literal
symbols.

• 60 of these students responded at ≥ 3 on one or more groups of the numerical ques-
tions, showing a strong reverse trend (78%). Still, there were some students who
dealt successfully with expressions involving literal symbols and opted to use arith-
metical thinking on the numerical expressions.

Question 3
How did those who did not think relationally on number sentences perform on expres-
sions involving literal symbols?

• 37 students had score = 0 on each of Group A, Group B, and Group C. Their
responses to the literal expressions were scored as follows:
(score 0) 7 students
(score 1) 11 students
(score 2) 6 students
(score 3) 4 students
(score 4) 9 students

• 18 students of 37 appeared to be experiencing difficulty (score = 0, 1) with literal
expressions. The other 19 (score ≥ 2) were able to shift to relational thinking when
required to deal with literal expressions.
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Grades 5–6 responses

Question 1
How well did students in Grades 5–6 who used relational thinking for the number sen-
tences deal with the expression involving literal symbols?

• Of 23 students who showed clear relational thinking (score ≥ 2) on all three groups
of number problems, 19 scored ≥ 1 on the question involving literal symbols. Only
two of these 23 failed to respond to the question involving literal symbols, contrast-
ing with a much higher non-response (NR) level for students in Grades 5–6 as a
whole.

• 35 students out of 133 did not answer this question (NR = 35). Given that seventy
two students (54%) wrote a correct relation involving the four terms (score ≥ 1),
students who showed clear relational thinking (score ≥ 2) on all three groups of
number sentences had a much higher probability (83%) of dealing successfully
with expressions involving literal symbols.

Conclusions

The study showed a clear and strong link between children’s disposition to use relational
thinking to solve number questions and their ability to read and correctly construct
expressions involving literal symbols.

The results, while convincing for students in Grades 7–8, are more encouraging still
for students in grades 5 & 6 who have not been exposed to expressions involving literal
symbols. Nevertheless, performance of students in Grades 7–8 should not be underrated,
since they were given a question involving two ‘unknowns’, which they had not been
taught.

Further investigation is needed to explain why the Japanese curriculum is effective in
disposing many students to use relational thinking in dealing with numerical expressions
and expressions involving literal symbols. One of the strengths of the Japanese National
Course of Study is its emphasis on having students read and interpret number sentences
in uncalculated form. This is also evident in textbooks.

The curriculum is not effective for all students. Some were unable to deal successfully
with expressions involving literal symbols. However, other students who used calculation-
based approaches in dealing with numerical expressions could deal successfully with
expressions involving literal symbols. The picture is a complex one and needs to be inves-
tigated further.

This research suggests that a calculation-focused curriculum in the primary school is
unlikely to provide students with the mathematical capacities needed to understand alge-
braic structure and reasoning in high school. There are implications also for the way we
approach arithmetic in Australian primary schools. Too many Australian students see no
link between their study of arithmetic in primary school and their introduction to algebra
in high school. It appears that the mathematics curriculum for elementary schools in
Japan is able to balance the twin goals of achieving computational proficiency and under-
standing the structure of arithmetic operations.
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Mathematics for everybody:
Implications for the lower secondary school*

Steve Thornton
University of Canberra

John Hogan
Redgum Consulting Pty Ltd

If we take as our starting point the quite reasonable proposition that numeracy is
‘having the competence and disposition to use mathematics to meet the general
demands of life at home, in paid work, and for participation in community and civic
life’ (Willis, 1992, pp. 77–84), then the interaction between school mathematics and
numeracy becomes critical. The practice of school mathematics focusses on
developing student knowledge and understanding of mathematics per se; it also
emphasises the applications of mathematics to other contexts. In both of these
practices the primary purpose is, appropriately, the development of mathematical
understanding. However we would argue that, in the school setting, the context for
numeracy lies beyond the mathematics classroom, most obviously as an integral
part of students’ learning across the curriculum. Here the focus is not on the math-
ematics; it is on the context. Yet understanding the mathematics is crucial in
working within that context. In this paper we propose a ‘numeracy framework’ as a
way of describing numeracy, diagnosing learning issues, supporting teacher plan-
ning and for teaching to students so that they can choose to act numerately beyond
the mathematics classroom. We use the results of an Australian research project in
numeracy across the curriculum in the middle years of schooling, and examine the
implications for teachers of mathematics.

Numeracy — More than solving problems with mathematics

It seems that numeracy is finally being taken seriously by education and training sectors
and systems around the world. However there still does not seem to be a shared under-
standing of what ‘numeracy’ is. People perceive and describe numeracy in many different
ways. A wide variety of terms is used almost interchangeably with numeracy. These
include, for example: mathematical literacy (e.g., Organisation for Economic
Cooperation and Development, 2001), quantitative literacy (e.g., Steen, 2001; Dossey,
1997; Forman, 1997), mathematical skills (e.g., Marks & Ainley, 1997), statistical literacy
(e.g., Watson, 1995), critical numeracy (e.g., Yasukawa, Johnston & Yates, 1995) and crit-
ical mathematical literacy (e.g., Frankenstein, 2001).

Yet despite this rich and varied discussion of the importance of mathematics in action
in practice, a focus on the mathematical concepts, procedures and skills students should
know and be able to do is still the dominant paradigm in schools of what it means to be

* This paper has been accepted by peer review.
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numerate (Thornton & Hogan, 2003). Such a focus on the essential aspects of mathemat-
ics appears to embody a naïve view of improving student numeracy. It assumes that,
‘mathematics can be learned in school, embedded within any learning structures, and
then lifted out of school to be applied to any situation in the real world’ (Boaler 1993,
p. 12).

However, this does not appear to be the case. There is a growing literature on the
nature of transfer of learning and the evidence suggests that students do not automatical-
ly use their mathematical knowledge in other areas. Lave (1988) found that even
experience in simulated shopping tasks in the classroom did not transfer to the supermar-
ket. On the other hand, it appears that people use highly effective informal mathematics
in specific situations (Carraher, Carraher & Schliemann, 1985).

It would be easy to attribute this lack of transfer of mathematical skills to other con-
texts to a deficient mathematics curriculum and poor teaching, but the quite
considerable debate about transfer of skills shows that even if mathematics were taught
and learned very well people would not necessarily apply it to new situations (Griffin,
1995). Researchers in the area of situated cognition argue that cognitive skills and knowl-
edge are not independent of context, and that activities and situations are integral to
cognition and learning (Brown, Collins & Duguid, 1989).

In order to respond to these issues there has been an attempt to contextualise school
mathematics using contexts which appear to be relevant to the students. It was hoped that
this would help students to see the purpose and usefulness of the mathematics they were
learning, and that the mathematics would make sense. However, despite teachers’ best
efforts many of these ‘real world problems’ appeared contrived rather than real (Willis,
1992); required students and teachers to participate in ‘a wilful suspension of disbelief
about reality and mathematics’ (Williams, 1993); and left out factors relevant to the real
situation (Boaler, 1993). Further, these attempts still had a primary purpose of teaching
mathematics rather than developing numeracy. It would seem that if students are to learn
to use mathematics outside the mathematics classroom then that is where they need to
experience using mathematics.

There are many examples of the numeracy demands and opportunities across the
school curriculum (Hogan, 2000; Hogan & Kemp, 1999). Many of these activities could
be performed in ways that make little demand on numeracy and indeed they could be
structured explicitly to avoid mathematical demands. However, done well and fully, these
tasks are likely to make considerable call upon students’ capacity to apply mathematical
ideas in context. Doing mathematics well is integral to doing geography (or history, or
language, or technology, or science, etc.) well. Thus teachers in all curriculum areas need
to take seriously the numeracy demands of their curriculum and the strategies they use
for students to learn. It is everyone’s business (Hogan, Jeffery & Willis, 1998; DEETYA,
1997); it is crucial to student learning within the subject.

A numeracy framework 

Over the past few years we have been working with teachers in primary and secondary
schools to explore the numeracy demands and opportunities that occur across the cur-
riculum. The research methodology was based on Research Circles (Australian National
Schools Network (ANSN), 1999), in which teachers came together for periods of time to
discuss their work, to observe and evaluate classroom incidents, and document these case
studies. The teachers undertook to record, in as much detail as possible, the circum-
stances in which students encountered mathematical ideas, the problems they had in
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understanding the mathematics and/or the context, the action taken by the teacher and
what the students did next.

The research provided a rich array of examples of teachers observing student numer-
acy, and a constructive forum through which others could provide feedback. It became
apparent that the teacher-researchers had begun to look more closely at the students’
responses to numeracy demands across the curriculum. They had begun to see that a
student’s numeracy problem might not be simply a matter of not knowing the mathemat-
ics, but might relate to the context, or the student’s inability to continue work on the task
once confronted with something they could not do. When it was seen to be an issue with
the mathematics, the teachers were more sensitive to what the mathematical problem
might be.

The examples provided support for the idea that numeracy requires more than
routine facility with basic mathematical procedures, and more than the capacity to apply
mathematics to a set of applications within the mathematics classroom. Numeracy
requires the purposeful use of mathematics beyond the mathematics classroom.

We claim that being numerate requires a blend of mathematical, contextual and strate-
gic know-how. However the blend of these three ‘know-hows’ needed for a particular
situation will be determined both by the context and by the orientations, skills and knowl-
edge of the person, and their capacity to take up three key roles. These roles have been
described (Hogan, 2000; Willis, 1998) as the fluent operator, the learner and the critic. These
six aspects of being numerate form the basis of a numeracy framework that we have been
using with the teachers. 

A NUMERACY FRAMEWORK
Being numerate within a context involves a blend of three types of know-how
Mathematical
Contextual
Strategic
and three roles
The fluent operator
The learner
The critic
(Hogan, 2000)

Three types of ‘know how’

Mathematical ‘know-how’ involves knowing, understanding and using the mathematical
ideas which typically comprise the school mathematics curriculum in measurement,
number, geometry (space), algebra, probability and statistics (chance and data).

Caroline is an art teacher working with a small group of somewhat disengaged 14 or
15 year-old boys. She set them the task of making a ‘tag’1 mural containing their school’s
initials. In designing their tag, the boys had to call on several mathematical concepts such
as ideas of scale, cost and location. When ordering wood for their mural they discovered
that measurements were given in millimetres, and they needed to convert their calcula-
tions from centimetres.

Contextual know-how involves understanding the contextual features of the mathemat-
ics in the situation — what terms mean in the context, and what interpretations make

1. A tag is a piece of graffiti usually spray-painted onto a large public surface. It acts as an identifier and
symbol of the graffiti artist’s identity.
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sense. This requires more than a familiarity with the context. It requires an understand-
ing of how the mathematics in the situation is shaped by the context.

The boys in Caroline’s art group used their mathematical knowledge of scales to cal-
culate the desired final size of their mural. They then made the decision, on economic
grounds, to paint the mural onto plywood. However when they rang building suppliers
they found that plywood came in sheets of varying thicknesses, and they had to decide on
a thickness that would be economical, manageable, and that would not buckle. Their
choice of the final size was shaped by the context.

Strategic know-how involves the orientations and strategies to manage one’s way
through routine or non-routine problem situations. These include almost habituated
ways of getting going when stuck, selecting key information and representing and organ-
ising it in models, diagrams and lists, breaking a task into component parts or identifying
and working on related problems or sub-problems, and organising the approach in a sys-
tematic way. It may also involve making one’s assumptions explicit to decide whether a
particular procedure is appropriate, posing questions for oneself in order to come to
grips with the essence of the task, and knowing to check that the solution makes sense in
the context and fits the original specifications or constraints.

The boys in Caroline’s art group came across the challenge of how they were going to
enlarge their tags from the A4 piece of paper onto three boards of much larger scale. One
particular student who did not have a strong background in mathematics, but proved to
be a good problem-solver, suggested transferring the drawing onto an overhead trans-
parency, then projecting the image onto the plywood of a large enough scale, and to then
trace around the image.

Three roles within a particular context

The fluent operator
Within a particular suite of contexts, people who are numerate will show fluency of use of
the knowledge and skills regularly used in those contexts. This is the comfortable, quick
and ready, almost unconscious use involved in being ‘at home’ with their everyday uses of
mathematics. Their mathematical actions and thoughts will be smooth (fluid) and almost
automatic with the relatively routine aspects of the situations. These are the actions of the
experienced administrator undertaking a task done over and over. There is no new learn-
ing and any mathematics being done by the reader is almost unconscious. Developing
fluency with numeracy tasks in familiar settings is a useful skill. 

Julie is a Science teacher working with a class of thirteen year-olds. The students were
watching a video on how the blood circulates around the body. The narrator talked about
the number of red blood cells in the body, what their purpose is and how they travel
around the body. After the video Julie asked the students if they had any questions and
what they thought of the video. Straight away one of the students asked some questions
related to red blood cells:

‘What does 250 million look like? That is a lot of blood cells! How is it possible for all
of those cells to fit into our body?’

‘If you were fatter, like myself, wouldn’t you have more red blood cells?’
It was apparent to Julie even after an initial discussion with the class that many of the

students did not know how to represent 250 million using numbers. She had assumed
they would all be fluent operators with respect to the number itself. However most of the
students were not able to visualise 250 million as a quantity of cells, or indeed as a quan-
tity of anything. 
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The learner
The numerate person, however, also uses mathematics to help make sense of something
new or to deal with new or altered circumstances; that is, to learn. This is the deliberate
‘Can I make sense of this?’ kind of use of mathematics to cope with an unfamiliar task or
understand something new.

The young man who asked the questions is acting numerately, by asking the questions.
He was using his limited knowledge of mathematics to try and make sense of something
new and he was heroic enough to ask the questions on behalf of the class. We can guess
that he was figuring that 250 million was a lot of cells: how do you fit that many ‘things’
in a body? He was using his common sense notion that a bigger body might contain more
blood and therefore have more blood cells than a smaller body. The mathematics and the
context (the science) were interacting to confuse him. Having the agency to ask the ques-
tions is something we might want for every young student. 

The critic
Finally, the numerate person uses mathematics sensibly and critically, knowing what math-
ematics is and is not, and what it can and cannot do in order to be able to judge and
question the appropriateness of its use.

In looking at information from two different sources, a conflict becomes apparent.
The text that students were reading claimed that there are about 5 million red blood cells
in a microlitre of blood. This means that there are around 6 trillion cells in a human body.
Perhaps the 250 million is in a drop of blood, around of a millilitre. Having the capacity
to ask questions about whether the mathematics is appropriate, and to try to reconcile
information from different sources, is a key aspect of being critically numerate.

Thus, a person who is numerate within a particular context must, to different levels
and varying degrees, assume each of the three roles of the fluent operator, learner and
critic.

Implications for the teacher

An awareness of numeracy across the curriculum generates opportunities for engaging
students with the numeracy in tasks. The teachers in the projects with which we have been
involved, who have begun to explore these opportunities, have been suggesting the fol-
lowing strategies. Teachers and educators not involved in this research have commented
that this list just represents ‘good teaching’. This may be true. The essential point to make
about this list though is that they are to be applied to numeracy — across the curriculum. 

• Capturing the numeracy in the moment
Be alert to the numeracy demands that arise in class work. Take the time to notice
the students learning needs in the experience. Decide to deal with it — then or
later. 

• Being aware of possible numeracy demands when planning
Take the time to review your curriculum planning for possible numeracy demands.
This does not mean ensuring that these demands are always pointed out to the stu-
dents prior to the experience (indeed if the numeracy demands are always
identified for the students they will not get the essential experience of dealing with
them themselves) but the teacher can be prepared for the possibility that the stu-
dents might need extra time, extra support or explicit teaching. Planning also
means that teachers can ensure that students are confronted with dealing with suf-
ficient numeracy demands over the school year. The teacher might also identify any
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areas where sensible links to mathematics could be made and therefore where there
might be opportunities to enhance student numeracy.

• Allowing students to work it out
Provide students with both individual and collaborative opportunities to work
things out for themselves. Do not rush to do it for them. Be patient and flexible with
time to allow students to engage with the numeracy themselves, ask questions, fully
understand the lesson and gain confidence in themselves as learners.

• Supporting student numeracy learning by questioning
Facilitate discussion and support students’ deliberations by asking questions about
their handling of the task. Questioning can help students identify the numeracy
and then use their mathematics. Try to keep the questions open to encourage a will-
ingness to participate.

• Diagnosing student numeracy by listening purposefully
Monitor students’ numeracy knowledge and skills by asking questions and listening
purposefully as students engage with numeracy in a moment.

• Debriefing the numeracy
Ask open questions that encourage students to reflect on the use of mathematics in
the situation and the role numeracy played in their learning, understanding and
problem solving. Ask the students, ‘What is the key mathematical idea that we have
used here?’ Ask them too, ‘Where else might we use this idea?’ 

• Practising
Give the students a different context that makes similar numeracy demands to one
they have completed to allow the students an opportunity to practice their capacity
to be numerate. 

• Promoting critical use of mathematics
Discuss with students whether or not mathematics might be able to shed new light
on a situation. Where mathematics is being used: is this use appropriate? When they
have used some mathematics to learn something, do something, make something:
was it the best method? 

• Teaching the framework to the students
As with literacy models explicitly teach the students about numeracy and the ideas
in the numeracy framework. Discuss with students what it means to be numerate.
Students can practice the role of identifying any mathematical concepts, ideas,
terms, procedures and skills that may exist in the situation. They can find out more
about the meaning and sense of mathematical terms and processes as used within
particular contexts and how the context might influence the mathematics. They
can practice deciding if the group might need to use mathematics in a context.
They can ask whether the mathematics needs to be altered, how accurate the group
needs to be, if it makes sense in the context and whether they used a good method.
They can ask whether it makes sense or not to use mathematics, who is using the
mathematics and why, what is their purpose in using mathematics, as there might
have been a better way to do the mathematics, and so on. They can practice finding
out about the mathematics they might need to use in dealing with a situation. 

• Sharing information on student numeracy with others
Sometimes a teacher cannot seem to find the way to help a student with a particu-
lar numeracy problem. Teachers have found that it helps to share problems like this
and get advice from others. 
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Implications for the mathematics teacher

Given the claim that numeracy, in the sense described above, can only be learned and
practised within the context in which it is met, what, then, is the role of the mathematics
teacher? How might the mathematics teacher support the development of student
numeracy as practical intelligent use of mathematics in context? How can the mathemat-
ics teacher acknowledge the traditional goals of the mathematics curriculum, but also
take seriously that one part of the job is to support students’ numeracy beyond the math-
ematics classroom?

While we cannot assume that because we have taught something inside mathematics it
will be transferred by the learner to new situations, we propose that there are some things
we can do, as mathematics teachers, to help. We suggest that the role of the mathematics
teacher must include, at least, aiming to:

• Build confidence, identity and agency
If students are to act numerately beyond the mathematics classroom they need the
confidence and disposition to see themselves as competent users of mathematics,
and to acknowledge the agency of the discipline of mathematics (Boaler, 2003).
Thus the mathematics teacher’s role will include encouraging students to interro-
gate the mathematics by asking questions such as: what is the key idea here? Could
we use this idea in some other setting? Is the solution to this problem mathemati-
cally consistent?

• Build mathematical understanding
Acting numerately beyond the mathematics classroom will require that students see
mathematics as a sense-making enterprise (Flewelling, 2001). The mathematics
teacher’s role will thus include providing students with opportunities to develop
both relational and instrumental understanding (Skemp, 1976), and to encourage
students to ask questions such as: does the solution make sense? Is there another
way of looking at this problem? What if we changed some of the constraints or
parameters?

• Promote mathematics as connection-making
If students are to act numerately beyond the mathematics classroom they will
require the capacity to draw on a rich array of mathematical skills and understand-
ings, and to appreciate that all areas of mathematics are richly connected. Thus the
role of the teacher is one of connection-making (Askew et al., 1997), encouraging
students to look for links. Where have you used this elsewhere? Where might we use
this elsewhere? Can we draw on other parts of mathematics to help solve this
problem?

• Provide authentic opportunities for students to use mathematics
The capacity of students to act numerately beyond the mathematics classroom will
be enhanced when students are given the opportunity to act numerately within the
mathematics classroom. Mathematics teachers should provide opportunities for stu-
dents to engage with tasks that are both mathematically rich and contextually
authentic. Such tasks may not necessarily be practical, nor immediately relevant to
the student. However they should provide opportunities for students to make deci-
sions about what mathematics might help, about what information might be
necessary or extraneous. It is important to note that we do not consider word prob-
lems such as those typically found in textbooks authentic. It is not the mention of a
context that makes a problem authentic; rather it is the nature of the reasoning and
decision-making that must be undertaken by the student.
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• Acknowledge that not all mathematics is immediately practical
The power of mathematics lies in its capacity to de-contextualise a situation.
Removing the ‘noise’ of a problem by abstracting it into a mathematically concise
and tractable form enables the student to see beyond the immediate and seek more
generalised principles. The mathematics teacher should thus promote mathemat-
ics as a study worthwhile in its own right, provide opportunities for students to see
the power of mathematical reasoning, and to see how abstract mathematics can
shed new light on situations from the real world.

An example of a mathematics teacher promoting numeracy: furniture removal

Phil is a Grade 6 teacher at a school in the Australian Capital Territory. He was looking at
distance-time relationships in his mathematics class. He asked the students in his class the
seemingly simple question, ‘If I want to move the furniture in my house from Canberra
to Sydney, a distance of 300 km, and the van travels at 100 km per hour, how long will it
take to return to Canberra?’ After students had given the simplistic answer of six hours,
Phil asked the class to divide into groups and ask questions of the situation. What followed
provided a rich insight into students’ numeracy, as they discussed issues such as accuracy
and constraints, and made sense of the mathematics in context.

Some groups presented a solution that took into account time taken to unload the van;
some discussed to which part of Sydney the delivery was to be made; some discussed the
need to take a break from driving; some discussed the difference in speed between a full
and empty van. It was clear that the students felt ownership of their reasoning and solu-
tion; that they saw mathematics as integral to the problem; that they appreciated the
limitations of that mathematics within the context; that they could switch fluently
between de-contextualised thinking and an appreciation of the real problem.

Our observation of the interactions within the lesson suggest that two things made this
incident one which could help to build student numeracy: the problem itself and partic-
ularly its lack of specificity, and the teacher’s role in prompting critical thinking. By not
specifying in the problem other aspects of travel or furniture removal that students
should take into account, students were given the opportunity to build agency. They were
able to decide for themselves what might or might not be important. A more tightly spec-
ified problem might immediately exclude some students who could not make sense of the
situation or read the words; it might close discussion about what should be considered; it
might remove the agency from the students, the context and the mathematics, and place
it with the teacher or the textbook. Specifying the problem so that there is a ‘right answer’
might prevent students from examining the reasonableness of answers and discussing and
accounting for differences between solutions.

As the teacher Phil saw his role as primarily one of asking questions. He encouraged
the students to draw on their knowledge of both the mathematics and the context. He
asked students to evaluate their answers by asking ‘What if…?’ and ‘Have you thought
about…?’. He encouraged and valued a variety of solution methods including use of a dis-
tance-time-speed formula, but also a sense-making approach that built on students’
everyday understanding of speed.
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Conclusion

For students in the middle years of schooling the most common context in which they
might have the opportunity to develop and demonstrate numeracy is within other cur-
riculum areas. The teacher of those curriculum areas has a crucial role to play in noticing
when numeracy is important, and in providing students with the time and opportunity to
explore the numeracy in the context.

The mathematics teacher has an equally important role to play. This is not one of
teaching the mathematics ‘first’, so that students can then use it in other curriculum
areas. Nor is to try to ‘invent’ contexts that give the appearance of making mathematics
useful. Rather it is to promote agency and sense-making, and to give students an oppor-
tunity to appreciate the power of mathematical reasoning both for its own sake and within
an authentic context. This requires teachers of mathematics to value complexity rather
than simplicity, fuzziness rather than clarity, and to allow students time to grapple with
deep mathematical ideas.

References
Askew, M., Brown, M., Rhodes, V., William, D. & Johnson, D. (1997). Effective Teachers of Numeracy: Final

Report. London: King’s College

Australian National Schools Network (1999). Research Circles. Accessed 30 June 2003 from
http://www.nsn.net.au/research/rescircles/index.html. 

Boaler, J. (1993). The role of contexts in the mathematics classroom: Do they make mathematics more
‘real’? For the Learning of Mathematics, 13 (2), 12–17.

Boaler, J. (2003). Studying and capturing the complexity of practice — The case of the dance of agency. In
N. Pateman, B. Dougherty, & J. Zilliox. (Eds), Negotiating Between Theory and Practice: Proceedings of the
2003 Joint Meeting of the International Group for the Psychology of Mathematics Education and PME-NA 1–3 to
1–16. Hawaii: PME.

Brown, J. S., Collins, A. & Duguid, P. (1989). Situated cognition and the culture of learning. Educational
Researcher, 18 (1), 32–42.

Carraher, T., Carraher, D. & Schliemann, A. (1985). Mathematics in the streets and in schools. British
Journal of Developmental Psychology, 3, 21–29.

DEETYA (1997). Numeracy = Everyone’s Business: Report of the Numeracy Education Strategy Development
Conference. Adelaide: AAMT

Dossey, J. A. (1997). National indicators of quantitative literacy. In L. A. Steen (Ed.), Why Numbers Count:
Quantitative Literacy for Tomorrow’s America. New York: College Entrance Examination Board.

Flewelling, G. (2001). Realizing a Vision of Tomorrow’s Mathematics Classroom: A Handbook on Rich Learning
Tasks. Ontario: CMSTE

Forman, S. L. (1997). Afterword: Through mathematicians’ eyes. In L. A. Steen (Ed.), Why Numbers Count:
Quantitative Literacy for Tomorrow’s America. New York: College Entrance Examination Board.

Frankenstein (2001). To read the world: Goals for a critical mathematical literacy. In B. Lee & T. Spencer
(Eds), Mathematics: Shaping Australia (Proceedings of the 18th Biennial Conference of the Australian
Association of Mathematics Teachers). Adelaide: AAMT.

Griffin, M. M. (1995). You can’t get there from here: Situated learning, transfer and map skills.
Contemporary Educational Psychology, 20, 65–87.

Hogan, J., Jeffery, M. & Willis, S. (1998). Whose job? EQ Australia, 1, Autumn, 48–50.

Hogan, J. & Kemp, M. (1999). Planning for an emphasis on numeracy in the curriculum. Accessed 1 October
2004 from http://www.aamt.edu.au.

Hogan, J. (2000). Numeracy across the curriculum. The Australian Mathematics Teacher, 56 (3), 17–20.

Lave, J. (1988). Cognition in Practice: Mind, Mathematics and Culture in Everyday Life. Cambridge: Cambridge
University Press

Marks, G. & Ainley, J. (1997). Reading Comprehension and Numeracy Among Junior Secondary School Students In
Australia. Camberwell: ACER.

OECD (2001). Knowledge and Skills for Life. First Results from PISA 2000 (p. 22). Paris: OECD



MAKING MATHEMATICS VITAL: PROCEEDINGS OF THE TWENTIETH BIENNIAL CONFERENCE OF THE AUSTRALIAN ASSOCIATION OF MATHEMATICS TEACHERS

[ THORNTON & HOGAN ]
252

Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 77,
20–26

Steen, L. A., (2001) Mathematics and Democracy. The Case for Quantitative Literacy. London: The Woodrow
Wilson National Fellowship Foundation

Thornton, S. & Hogan, J. (2003). Numeracy across the curriculum: Demands and opportunities. In
Conversactions: Conversations and Actions: 2003 Curriculum Conference of the Australian Curriculum Studies
Association 28–30 September 2003, Adelaide, South Australia (http://www.acsa.edu.au/) 

Watson, J. M. (1995). Statistical literacy: A link between mathematics and society. In Forging Links and
Integrating Resources (pp. 12–28). Darwin, NT: Northern Territory University.

Williams, S. (1993). Mathematics and being in the world: Toward an interpretive framework. For the
Learning of Mathematics, 13 (2), 2–7.

Willis, S. (1992). Being numerate: Whose right? Who’s left? Literacy and Numeracy Exchange, Autumn.

Willis. S. (1998). Which numeracy? Unicorn, 24 (2), 32–41.

Yasukawa, K., Johnston, B. & Yates, W. (1995) Numeracy as a critical constructivist awareness of maths: Case
studies from engineering and adult basic education. Regional Collaboration in Mathematics Education: An
ICMI Regional Conference (pp. 815–825). Melbourne: Monash University.

Acknowledgements

The authors are grateful for the research assistance of Dr Chris Stocks, for the advice and
support provided by Rick Owens and Kathy Dawson of the ACT Department of
Education, Youth and Family Services, and for the enthusiastic participation of all teach-
ers involved in the project. This project was funded by a grant from the ACT Department
of Education, Youth and Family Services, and conducted under the auspices of the
Australian National Schools Network



MAKING MATHEMATICS VITAL: PROCEEDINGS OF THE TWENTIETH BIENNIAL CONFERENCE OF THE AUSTRALIAN ASSOCIATION OF MATHEMATICS TEACHERS

[ WATSON ]
253

Lessons from research:
Students’ understanding of statistical literacy*

Jane M. Watson
University of Tasmania

This paper reports on the findings of research into the development of students’
understanding of statistical literacy over the years of schooling from Grade 3.
Statistical literacy at the school level is associated with the application of concepts
from the chance and data part of the school curriculum in contexts that expand with
students’ experiences over the years and that ultimately require critical questioning
skills. Various tasks and examples of students’ levels of performance are present-
ed to illustrate the development of student understanding. These focus on
language, sampling in context, and questioning claims.

Introduction

‘Chance and data’ has been a component of the mathematics curriculum in most
Australian states for well over a decade now. The model curriculum, embodied in A
National Statement on Mathematics for Australian Schools (Australian Education Council
[AEC], 1991) and Mathematics — A Curriculum Profile for Australian Schools (AEC, 1994),
was written with the advice of statisticians but with virtually no research on student under-
standing and its development over time. The documents, however, spawned an interest in
educational research in the field, particularly in Tasmania, and several projects have been
carried out over the years. The earliest research, although including a range of contexts,
was reported in terms that reflected relatively closely the curriculum itself (e.g., Watson,
1999). Awareness of the underlying presence (‘omnipresence’ according to Moore, 1990)
of variation in all chance and data activity, led to an expansion of the focus of research to
students’ appreciation of the importance of variation as they learned about chance and
data (Watson, Kelly, Callingham & Shaughnessy, 2003). Some of these outcomes were
reported in Watson (2002). A further awareness of the need to assist all students to
acquire statistical literacy skills and document the development of these understandings
led to further research with an increased interest in the context within which chance and
data activity occurred (e.g., Watson & Callingham, 2003). This report briefly introduces a
hierarchy to achieve the goals of statistical literacy, suggests a model of the development
of statistical literacy understanding, and provides some examples that may be useful for
teaching or assessment purposes in the classroom.

* This paper has been accepted by peer review.
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Models

A pathway to achieve the goal of critical thinking in statistical settings can be put forward
in a three-tiered hierarchy (Watson, 1997) that has the following sub-goals:

• understanding statistical terminology (Tier 1);
• understanding statistical terminology when it occurs in various contexts (Tier 2);
• questioning statistical claims made in context but without proper justification (Tier 3).
Although it might be attractive to think that terminology is mastered first, then it is

mastered in context, and finally critical questioning develops, both common sense and
research indicate that there is likely to be much interaction among the tiers. A limited
understanding of the term ‘sample’ as a ‘test’ may enable a student to become involved
in a context such as blood testing or testing water from a stream. Considering the idea in
the context may assist in building a broader conception including the part-whole relation-
ship and the need for the sample to be representative of the whole from which it is taken.
It is likely, however, that the need to assess a claim for validity will require a deep under-
standing of both terminology and context.

Recent research used responses from 4000 students to 80 items designed to cover the
statistical literacy hierarchy, to suggest a potential model for the development of statisti-
cal literacy. The analysis was based on considering student ability and item difficulty at the
same time and producing a scale including both. Analysing the content of items that were
increasingly difficult for students helped suggest the characteristics of increasingly sophis-
ticated understanding. As partial credit was given for items in terms of increased structure
and/or appropriateness of responses, it would be expected that the increasing sophistica-
tion of responses to particular items would reflect the increasing sophistication on the
overall scale. This research suggested that there are six levels associated with the develop-
ing construct of statistical literacy (Watson & Callingham, 2003). These are summarised
in Table 1.

Table 1. Suggested levels of the statistical literacy construct (adapted from Watson & Callingham, 2003).

Level Brief characterisation of levels

6. Critical Critical, questioning engagement with context, using proportional reason-
Mathematical ing particularly in media or chance contexts, showing appreciation of the need

for uncertainty in making predictions, and interpreting subtle aspects of lan-
guage.

5. Critical Critical, questioning engagement in familiar and unfamiliar contexts that do
not involve proportional reasoning, but which do involve appropriate use of
terminology, qualitative interpretation of chance, and appreciation of varia-
tion.

4. Consistent Appropriate but non-critical engagement with context, multiple aspects of
Non-critical terminology usage, appreciation of variation in chance settings only, and statis-

tical skills associated with the mean, simple probabilities, and graph
characteristics.

3. Inconsistent Selective engagement with context, often in supportive formats, appropriate
recognition of conclusions but without justification, and qualitative rather
than quantitative use of statistical ideas.

2. Informal Only colloquial or informal engagement with context often reflecting intuitive
non-statistical beliefs, single elements of complex terminology and settings,
and basic one-step straightforward table, graph, and chance calculations.

1. Idiosyncratic Idiosyncratic engagement with context, tautological use of terminology, and
basic mathematical skills associated with one-to-one counting and reading cell
values in tables.
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Looking in detail at the content of items and how they were distributed across the vari-
able construct suggested the increasing sophistication of terminology across all levels
from Level 1, the increasing engagement with context from Level 3, and the ability
increasingly to criticise claims in context from Level 5. This is shown in Figure 1. These
results support the interactive view noted above on how critical thinking develops and
suggest that the model should be useful in developing classroom activities and assisting
students to move to higher levels in relation to the statistical literacy construct. Examples
from each of the three tiers are presented here to illustrate the development taking place.

Levels Tier 1 Tier 2 Tier 3
6. Critical mathematical
5. Critical
4. Consistent non-critical
3. Inconsistent
2. Informal
1. Idiosyncratic

Figure 1. Tiers and levels of statistical literacy.

Terminology

Two of the words explored in relation to the development of statistical literacy were
‘average’ and ‘random’. For the first, students were asked, ‘If someone said you were
“average”, what would it mean?’ For the second, the question was, ‘What things happen
in a “random” way?’ It might be expected that the question on average would be easier
than the one on random and this was indeed the case. The increasing codes for respons-
es for ‘random’ are given in Table 2, as well as the levels at which these codes appeared
in the statistical literacy construct. There are two aspects of increasing understanding
being observed: one relative to responses to the specific task (code) and one relative to
the many questions included in the survey (level).

Table 2. The development of understanding of the term ‘random’ (Watson et al., 2003).

Although students were likely to be able to give an example of an average (‘I’m normal
height’) at Level 2, the description of something that happens in a random way (lottery)
was likely at Level 3. Giving a consistent mathematical description of an average (one

Code Description Examples Level

3 Definition + Example; To pick
without any pattern

‘Random means something that does
not happen in a pattern. In a Tatts
lotto draw…’

6

2 Definition – No order, choose any,
unpredictable; Multiple Examples
from different aspects below

‘It means in any order. The songs on
the CD came out randomly.’

4

1 Example – Natural (Weather),
Human design (Breath testing),
Game/selection (Tattslotto)

‘Choosing something. Random
breath test.’

3

0 Inappropriate (ransom, fighting,
everything); Chosen (weak), in
order, random numbers/alphabet

‘Very quickly’ –
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equivalent to mean, median or mode) was likely at Level 4, whereas the description of
random with examples was not likely until Level 6, where mathematically-based critical
skills also appeared. These changes in performance were likely, but not necessarily, seen
with increasing grade.

Terminology in context

The contexts within which terminology were set appeared to have an influence on the dif-
ficulty level of interpretation by students. Reading and/or summing values from tables
that only involved locating information cued by context (such as, ‘How many children
were swimmers?’) were the easiest questions. Contexts familiar to students, such as con-
ducting a survey in a school appeared easier than contexts found in media reports based
on national or international affairs. Consider the question in Figure 2 based on surveying
a school.

Figure 2. Survey question based on Jacobs (1999).

The question in Figure 2 was intended to explore students’ understanding of sampling
in a survey context. Students made many suggestions, which were coded in four cate-
gories. These are summarised in Table 3, with examples. Informal suggestions were made
at Level 2, whereas students made reasonable suggestions at Level 4 and were likely to
combine more than one statistically appropriate idea at Level 3.

Table 3. Development of understanding of sampling in context (Watson et al., 2003). 

Code Description Examples Level

3 Representative & random; Random
only

‘10 from each grade, 5 boys and 5
girls picked at random.’
Random only: ‘Put all 600 student
names in a hat and draw out 65.’

5

2 Based on one or more factors ‘You would survey 60 children, 10
from each grade so you could see an
average for each grade.’

4

1 Just the students I meet; take them
all

‘50 students that I meet.’
Entire population: ‘You would survey
them all.’

2

0 Misinterpretation ‘Choose them all because the more
raffle tickets they sell the more
money they get.’

–

MOVIEWORLD
A class wanted to raise money for their school trip to Movieworld on the Gold Coast.
They could raise money by selling raffle tickets for a Nintendo Game system. 
But before they decided to have a raffle they wanted to estimate how many stu-
dents in their whole school would buy a ticket. So they decided to do a survey to
find out first. The school has 600 students in grades 1-6 with 100 students in each
grade. 
How many students would you survey and how would you choose them? Why? 
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Critical questioning

Although questioning of statistical claims can take place in any context the most sophisti-
cated level of questioning was likely to occur in less familiar social contexts. Three
extensions of the previous question, however, show how critical questioning can be devel-
oped out of a straightforward context. Figure 3 contains a series of questions following
the question in Figure 2.

Other students in the school conducted surveys.
MVE2. 
Shannon got the names of all 600 children in the school and put them in a hat,
and then pulled out 60 of them. 
What do you think of Shannon’s survey? 

GOOD  BAD  NOT SURE — Why? 
MVE5. 
Raffi surveyed 60 of his friends.
What do you think of Raffi’s survey?

GOOD  BAD  NOT SURE — Why?
MVE6. 
Claire set up a booth outside of the tuck shop. Anyone who wanted to stop and
fill out a survey could. She stopped collecting surveys when she got 60 kids to
complete them.
What do you think of Claire’s survey?

GOOD  BAD  NOT SURE — Why?

Figure 3. Extension survey questions based on Jacobs (1999). 

It would be expected that appropriate appraisals of these items would occur at Level 5
and this happened for these three items. A summary of the descriptions of the codes,
along with examples and levels are given in Table 4. What is important about the
Movieworld items is that they allow students to be given credit for partially appropriate
answers and development can be monitored, for example from Level 3 inconsistent
responses. In terms of a question that requires critical thinking, it is interesting to note
that some of the lower level responses reflect an appreciation of what is happening in the
context (Tier 2), without that added critical element.

The final critical questioning example was based on a media report that was consid-
ered to present an unfamiliar context (Watson & Chick, 2004). The three graphs in
Figure 4 were accompanied by the newspaper headline and the instruction to ‘Comment
on any unusual features of the graphs.’ The general statement was meant to avoid sug-
gesting students look for specific errors. An examination of the graphs shows that the
column labelled 95 in the first graph has the number 6 at the top but its height on the
scale appears to be 2. The sum of numbers within the graph is not 46, as indicated at the
top. Also the numbers in the last graph do not add up to 46. 
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Table 4. Development of critical questioning in a sampling context (Watson et al., 2003).

Code Description Examples Level

MVE2 Shannon got the names of all 600 children in the school and put them in a hat, and
then pulled out 60 of them.

3 Random methods; range ‘Good, because it’s a good random
way to survey.’

5

2 Fair chance; sample size; methodology
(easy)

‘Good, there’s a lot of people.’ 4

1 Method too random, inaccurate; inad-
equate sample size; unfair; time
consumption

‘Bad, he could pick the wrong
people.’

3

0 Misinterpretation; no reason or logic ‘Bad, too many people.’ –

MVE5 Raffi surveyed 60 of his friends.

3 Lack of range &/or variation ‘Bad, they would probably say the
same thing.’

5

2 Unfair; vague friendship factor; uncer-
tainty; adequate sample size

‘Good, you get a lot of answers.’
‘Not sure, it depends how many of his
friends have different opinions.’

3

1 Inadequate sample size; ‘easy’; good
to use friends

‘Good, because they are his friends.’ 3

0 Misinterpretation; no reason or logic ‘Good, more money for them.’ –

MVE6 Claire set up a booth outside of the tuck shop. Anyone who wanted to stop and fill out a
survey could. She stopped collecting surveys when she got 60 kids to complete them. 

3 Non-representative ‘Bad, some kids might go twice.’ 5

2 Uncertainty; adequate sample size ‘Good, you just have enough.’
‘Not sure, because people who
thought it was a bad idea wouldn’t
bother.’

5

1 Inadequate sample size; fairness; free
choice; assuming range and variation;
‘easy’

‘Good, it is their own choice.’ 3

0 Misinterpretation; no reason or logic ‘Good, first in best served.’ –

Figure 4. Set of three graphs used in the critical questioning task (Haley, 2000).

BOATIES’ SAFETY FAILURE

These graphs were part of a newspaper story reporting on boating deaths in Tasmania.
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In the case of this item there was a large variety of responses, as might be expected
from the general nature of the question. These are summarised within four codes in
Table 5. Whereas the combined codes 1 and 2 showed that students at Level 3 were likely
to be engaged in the task with responses that study the graphs carefully it was not until
Level 6 that students were likely to find an error in the graphs.

Table 5. Development of critical graph questioning (adapted from Watson & Chick, 2004).

Of students in Grades 7 and 9, only about 3% found an error in the graphs, whereas
about 40% considered other unusual features (Code 2). Mathematics teachers are natural
sleuths when reading the newspaper but it would appear that students are not. There is a
need to make students aware of the need to check and perhaps question every claim
made in the media, even if it appears in an authentic-looking graph.

Summary

This paper presented examples of items used in research in order to document student
understanding of statistical literacy as tasks become more sophisticated. Whereas a statis-
tician might only be interested in the time when students are likely to achieve the most
statistically appropriate level of response, the coding schemes adopted here give indica-
tions of progress along the way. Using such schemes in classroom assessment would give
teachers a feel for how students are progressing and what understandings might be
needed to progress to a higher level response.

It is also important for teachers to be aware of the three goals of statistical literacy:
understanding language, understanding language in context, and being able to criticise
claims made without justification in any context. It is not sufficient to stop when students
can demonstrate the meaning of a term, even if that meaning is quite sophisticated. It is

Code Description Examples Level

3 In-depth graph analysis that 
recognises mistakes.

‘The first graph has a mistake, the 6
is on 2.’
‘Well on graph 1 it says there is a
total of 46 but I counted and it has
only got 38.’

6

2 Correct graph interpretation or
comment but not the errors.

‘The number of deaths has risen
over the years.’
‘The way they’re set out. They don’t
have anything telling you what the Y
and X axes are.’

3

1 Partially correct interpretation. ‘They’re all different graphs. They’re
[sic] all got different meanings.’
‘Most people drowned in 1999. A lot
of people were tanked [drunk].’

3

0 Statistically inappropriate response. ‘They all look okay to me.’
‘People should wear life jackets.’
‘The graphs show us that boats are
just as dangerous as cars are.’
‘Hardly anyone wore life jackets in 99.’ 
‘Less people died by not wearing life
jackets.’

–
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also necessary to place the term in context and question understanding of the statistics
and the context. The fact that partially appropriate responses to all items appear across
the construct gives clues to the overall level of student thinking and where help might be
given to increase performance. Particularly striking is the presence of increasingly appro-
priate responses to definitions across the levels of statistical literacy. It would appear that
whereas informal understanding of definitions will allow students to begin to engage with
other tasks, the ability to provide sophisticated descriptions develops alongside contextu-
al and critical understandings. This may reflect the overall development of literacy skills
more generally, including students’ ability to express themselves in writing, and items
such as these may provide links to research more broadly based across the school curricu-
lum.

It is hoped that these items and their rubrics may provide starting points for teachers
to develop their own items to assess the growing understanding of statistical literacy con-
cepts by students in their classrooms.
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Quality pedagogy and teaching 
in K–12 mathematics*

Paul White
Australian Catholic University

Aligning elements of the current New South Wales pedagogy model for quality
teaching with a number of community perceptions of school mathematics suggests
some areas for concern. By taking a deeper look at the nature of mathematics, this
paper argues that mathematics teaching of both early ‘empirical’ and later ‘invent-
ed’ mathematics too often has tenuous links to previous knowledge and at best
provides superficial applications to life. It is argued that quality teaching at both
levels, while having different emphases, should employ a similar approach to
‘engagement’, ‘problematic knowledge’, background knowledge’ and ‘connected-
ness’, namely teaching through generalisation from known contexts. However, what
constitutes meaningful learning varies with the individual, and invented mathemat-
ics may be inappropriate for a large number of students

Constructivists’ views of knowledge which emphasise the active construction of knowledge
rather than receiving transmitted knowledge have provided the impetus for learning and
teaching mathematics now for a number of years. The strong focus on students’ individ-
ual construction of their own knowledge in social settings resulted in the teacher’s role
being seen primarily as one of facilitator and nurturer. The active role of teaching was in
effect de-emphasised. A swing back to acknowledging the importance of teacher actions
has been prompted by research which showed that a prime factor behind successful
student learning is the quality of teaching (Hill & Rowe, 1998). In New South Wales
(NSW), the Department of Education and Training (2003c) argues that recent develop-
ments in educational research have shed light on what constitutes quality teaching, and
that quality learning comes from quality teaching and those key teacher actions which
promote such teaching and learning can be identified and communicated to teachers.
The basis then of this focus on quality teaching is effective pedagogy and consequently a
new model for pedagogy in New South Wales schools has been established (NSW
Department of Education & Training, 2003b).

Pedagogy and quality teaching

The NSW model has as its cornerstone the characteristics of authentic pedagogy (Newmann
and Associates, 1996). Two key factors in authentic pedagogy are higher-order thinking

* This paper has been accepted by peer review.
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and connectedness to the real world. The latter is seen as making learning relevant to stu-
dents and thus providing them with a curriculum which is authentic for them. The
Queensland School Reform Longitudinal Study (2001) expanded the authentic peda-
gogy model to what it called productive pedagogy, adding areas relating to language and
problematic knowledge. The Queensland longitudinal study has in turn provided the
basis for the New South Wales model, which comprises three dimensions. Intellectual
quality is the central dimension, with quality learning environment and significance making
up the other two dimensions: 

• intellectual quality focusses on producing deep understanding of substantive con-
cepts, skills and ideas; 

• quality learning environment focuses on classrooms where students and teachers work
productively in an environment clearly focused on learning;

• significance refers to learning which is meaningful to students.
Each dimension has six elements. There is no suggestion that all the elements in the
model should be instantaneously embraced. First, the list is extensive and trying to incor-
porate them all at once would be a daunting task. Second, individual teachers may
recognise attributes that they currently use with success. Thirdly, the model is generic and
it may be that some aspects are not appropriate to mathematics. So, which elements are
not seen as strong aspects of mathematics teaching?

What is not done well?

A first negative community perception of mathematics in school is that students get it
wrong, do not like it and so ‘hide’ in class. Relevant elements in the model are ‘problem-
atic knowledge’ (intellectual quality) and ‘engagement’ (quality learning environment).
The NSW Department of Education and Training (2003b) defines these two elements as
follows:

Problematic knowledge: Students are encouraged to address multiple perspectives
and/or solutions and to recognise that knowledge has been constructed and there-
fore is open to question. Tasks require students to present or analyse alternative
perspectives and/or solutions.

Engagement: Most students, most of the time, are seriously engaged in the lesson or
assessment activity, rather than going through the motions. Students display sus-
tained interest and attention.

The interpretative nature of the first element promotes mathematical activity as more
than finding a mystical answer. The relationship between the second element and avoid-
ance of participation is self evident.

A second community perception relates to the common cry in mathematics’ class-
rooms of ‘When are we ever going to use this?’. Relevant elements in the model are
‘background knowledge’ and ‘connectedness’ from the significance dimension. The
NSW Department of Education and Training (2003b) defines these two elements as
follows.

Background knowledge: Lessons regularly and explicitly build from students’ back-
ground knowledge, in terms of prior school knowledge, as well as other aspects of
their personal lives. 
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Connectedness: Lesson activities rely on the application of school knowledge in real-
life contexts or problems, and provide opportunities for students to share their work
with audiences beyond the classroom and school. 

Both elements involve significance because they can connect to real-life situations. To
begin, a closer look at the nature of mathematical ideas is considered.

The nature of mathematics

Booth (1990) describes a paradigm shift in school mathematics, from ‘empirical mathe-
matics’ to ‘invented mathematics’. Empirical mathematics arises from real-life situations
and can be explored by contextual investigation. Invented mathematics is developed and
extended solely in terms of earlier mathematics. The shift means that the mathematics
curriculum cannot be regarded as a single entity, but needs to be examined at the two
stages.

Empirical mathematics

Empirical mathematics is the main focus of the early school years, where the relation to
concrete experience is clear. However, empirical mathematics does not end there. Topics
such as financial mathematics, chance and data, and graphs continue until the end of sec-
ondary school. 

The study of empirical mathematics consists essentially of two components:
• recognising where a particular mathematical concept arises; and
• learning how to use that mathematics more effectively.
For example, in primary school, students learn that equivalent grouping situations

lead to multiplication, and learning ‘times tables’ and other techniques enables them to
solve problems more effectively. The same applies to more sophisticated but still empiri-
cal ideas such as ratio, angle and rates of change.

• Ratio
Partitioning, fair sharing, odds in betting, proportions in making cakes involve a
similar type of comparison between like quantities called a ‘ratio’. Learning how to
manipulate ratios abstractly enables one to understand a wide variety of discourse
in the press and to carry out one’s own calculations. 

• Angle
Corners, slopes, and turns can be identified in the environment. All involve the
inclination between two lines through a pointæan ‘angle’. Learning about angles in
abstract diagrams enables one to make more accurate constructions and use
trigonometry.

• Rates of change
Rate of change is significant in motion, population growth, etc. Representing such
situations graphically leads to the ideas of gradient, average rate of change, and
instantaneous rate of change, all of which assist in the interpretation of real-life sit-
uations. Learning about differentiation provides a means to investigate change
situations more precisely.

These examples show the power of mathematics for empirical situations: instead of
having to investigate a problem situation concretely, a solution can be predicted using
standard manipulations of symbols which represent that situation. 
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Quality teaching of empirical mathematics
The early years
Several recent, successful numeracy initiatives (e.g., Count Me In Too in New South
Wales, and the Early Numeracy Research Project in Victoria) have focussed on building
concepts on children’s own ideas and strategies. Because counting, shape, and length (for
example) are so close to the world, teaching is also linked to children’s real-life experi-
ences through the use of teddies, fingers, and counters. In general, then, the
recommended approach to teaching empirical mathematics in the early years incorpo-
rates a strong emphasis on engagement and background knowledge. The fact that
children and adults alike see the skills and concepts taught as important supports them
as being connected. The interpretation of different empirical situations also supports
problematic knowledge. 
The later years
Unfortunately, with empirical mathematics at the secondary level, there is strong evidence
that many students do not make any connection with the mathematics they are learning
and real situations. This disconnection explains many of the difficulties they experience
in learning and applying the mathematics. Consider again the three examples.

• Ratio: Hart (1982) indicates a weak link between the concept of ratio and real-life
multiplicative contexts. 

• Angle: Many student difficulties arise because the angle diagram does not seem to
be easily linked with any real angles. In one study, one third of Year 8 students could
not identify angles in slopes and turns (Mitchelmore & White, 2000). 

• Rate of change: White and Mitchelmore (1996) found that many first-year universi-
ty students do not see the symbols in calculus as representing anything, so they
cannot use the manipulative techniques they have learned to solve contextual prob-
lems. 

Teaching empirical mathematics without linking it to experience seems to be very
common. For example, recently, most Diploma of Education students observed by the
author chose to start their lesson with an abstract definition. When asked why, the stu-
dents referred to how they had been taught themselves, to the resources available to them
and to their desire ‘not to confuse the students’.

How can the quality elements be used in teaching higher level empirical mathematics?
Consider the three examples for a third and final time:

• ratio can be taught by exploring a variety of multiplicative situations, identifying
their common features, practising ratio manipulations, and then applying the skills
learnt;

• angle teaching can be based on identifying the angular similarities between vari-
eties of real contexts; 

• an understanding of rates of change via graphs of real-life situations is now seen by
many as fundamental. Materials by Barnes (1992) have been published along these
lines, but the approach has not been adopted by most mainstream texts.

The approach suggested here is that students begin with appropriate examples and
finish with the abstract definition, not the other way around. Hence, they see how the
appropriate mathematical idea is common to all the contexts encompassed by the
concept. This approach addresses the four key pedagogy elements because there is a
natural ‘connection’ to situations outside the classroom. 
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Invented mathematics 

A common description of invented mathematics is that it is very abstract, meaning that it
is totally removed from reality. The essence of this claim is that mathematics is self-con-
tained.

• Mathematics uses everyday words, but their meaning is defined precisely in relation
to other mathematical terms and not by their everyday meaning. The syntax of
mathematical argument is also precise and concise, with none of the redundancy
common in everyday language.

• Mathematics contains objects that are unique to itself. For example, although every-
day language occasionally uses symbols like x and P, objects like x0 and √(-1) are
unknown outside mathematics.

Self-containment is a crucial feature of invented mathematics. It is the lack of refer-
ence to any specific context that makes the mathematics applicable to many different
contexts and therefore contributes to its usefulness and power.

Historically, mathematics has become increasingly independent of experience as more
systems and structures have been invented. Mathematicians look for completion — ways
to apply current ideas and results to higher degrees of generality — by extending them
to larger domains. For example, expressions like 152 and 23 arise in real-world situations
involving area and volume. The empirical concept of a power is then applied to expres-
sions for very large and small numbers and to compound interest calculations. To
incorporate these ideas into a complete consistent system, however, requires the inven-
tion of concepts like zero, negative, rational and irrational powers. At each point in this
extension/completion process, it is crucial that the new objects be related to each other
and the previous objects in such a way that they can be operated on without any appeal
to any external meaning they might have.

If invented mathematics is self-contained and removed from reality, how can it have
anything to do with problematic knowledge, background knowledge and connectedness?

Quality teaching of invented mathematics
A large part of invented mathematics consists of rules for operating on mathematical
objects and relationships. Some students can learn these ‘rules of the game’ well and gain
high marks in examinations. It is, therefore, not surprising that there is often no attempt
to apply invented mathematics to anything other than symbolic contexts. Other examples
include symbolic algebraic manipulation in calculus; graphing of polynomial, rational
and trigonometric functions; and proving geometric theorems and trigonometric identi-
ties.

It would be unfair to suggest that teaching in the higher grades never attempts to apply
new mathematical knowledge in some way. Such attempts usually fall into one of two cat-
egories:

• artificial exercises
White and Mitchelmore (1996) report on students’ responses to an exercise involv-
ing a cube of volume 64 cm3 shrinking at a rate of 96 cm3 per minute. As one
student doing this example (who was obviously well connected) observed, the cube
was in its last moments of existence. This type of example only requires students to
strip away a façade of context and uncover the mathematical exercise underneath. 

• applications in finance, statistics and graphs
For example, Quality Teaching Program Local Interest Group (2001–03) produced
assessment modules to support the implementation of the Stage 6 General
Mathematics Syllabus in NSW. In 2001, the modules were line of best fit for age and
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height graph, financial mathematics, and data analysis. These topics are essentially
empirical mathematics, which is why realistic applications can be easily found.

It would appear that large sections of the senior mathematics syllabus deal with
abstract ideas where it is too difficult to find related realistic contexts. Does this mean that
invented mathematics should be treated as a special case where many of the key pedagogy
elements are not relevant? 

Background and problematic knowledge 
It is true that self-contained mathematics can only be related to other mathematics, but it
is still possible to link learning to something meaningful. Otherwise, there is no case for
teaching invented mathematics at all! There are at least three ways to make invented
mathematics meaningful. 

• An example-based approach similar to that for empirical mathematics. For
example, consider the index laws. The sequence 64, 16, 4 can also be written 43, 42,
41, which to be consistent should extend to 40, 4-1… The similarity between the two
sequences provides the basis for zero and negative powers. In this approach, the
rationale for completing a mathematical system can also be expounded. 

• Mathematicians do not invent mathematics out of thin air — they build on previ-
ous work. So, any mathematics has at least a tenuous link back to reality. For
example, algebraic manipulation can still be regarded as making generalisations
about numbers.

• Linking in the world of mathematics need not be a purely academic affair — it can
have a human face. The history of mathematical thought is a rich source of real life
stories which give mathematical results a human perspective and provide opportu-
nities to engage in narrative (another pedagogical element).

Connectedness
Topics like graphing complex trigonometric functions or solving nth degree equations
never have any direct real-life applications for a student in school. Connectedness, there-
fore, appears unattainable. However, the definition given by the NSW Department of
Education and Training (2003a) suggests a broader interpretation:

Connectedness: Students recognise and explore connections between classroom
knowledge and situations outside the classroom in ways that create personal meaning
and highlight the significance of the knowledge. This meaning and significance is
strong enough to lead students to become involved in an effort to influence an audi-
ence beyond the classroom (p. 59).

The key phrase here is ‘situations outside the classroom… that create personal
meaning’. There are a number of ways to provide personal meaning beyond the class-
room. For example:

• students may see success with algebraic high level mathematics as contributing to
their overall competence, their self-esteem as well as their future career prospects;

• challenge can provide personal meaning through involvement in the processes of
generalisation and explanation — a dozen undergraduate teacher education stu-
dents of the author all agreed that the challenge of a problem was a great source of
engagement and connectedness;

• the creation of self-contained, consistent and complete systems within the world of
mathematics can provide aesthetic satisfaction to some students.

Therefore, that engagement and connectedness can be achieved in invented mathe-

 



MAKING MATHEMATICS VITAL: PROCEEDINGS OF THE TWENTIETH BIENNIAL CONFERENCE OF THE AUSTRALIAN ASSOCIATION OF MATHEMATICS TEACHERS

[ WHITE ]
267

matics through qualities unique to the subject. 
To summarise, in the ‘invented’ paradigm, quality teaching can foster engagement

through the use of background and problematic knowledge, narrative, and connected-
ness, even if these elements need to be interpreted in a wider sense. 

Conclusion

Approaches to teaching both empirical and invented mathematics have been presented
which could help engage students by making the content more meaningful to the stu-
dents. For higher level mathematics using challenge, purpose and narrative may, however,
only provide a meaning beyond the classroom for the ‘true believers’. Others may find
these suggestions just ‘maths for maths sake’ (as one student put it) and so another
source of disconnection. There is also the challenge (for the teacher) of how to explain
the purpose of many topics in higher level mathematics. Our conclusion is to advocate
empirical mathematics for all, but not necessarily invented mathematics for all.
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The year in which my love of maths changed:
Pre-service primary teachers’ self-image 

as mathematicians*

Sue Wilson
Australian Catholic University
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In this study pre-service teachers reflected on their own school experiences and
their views of themselves as learners of mathematics while studying school stu-
dents’ experiences of mathematics. This paper discusses pre-service teachers’
written responses to readings on students’ learning problems, such as maths
anxiety, and shows how their reflections brought about changes in their self-image
of themselves as students, and their assessment of their capacity to learn and
teach mathematics. They emphasised the potential of individual teachers to have
a lasting influence, and showed increasing awareness and exploration of alterna-
tives to the approaches that they experienced.

Introduction

This research investigated the effect of an explicit study of mathematical anxiety and
problems faced by school students on pre-service teachers’ self image as learners of math-
ematics. It is hypothesised that reflecting on their own experiences during a study of
mathematical learning difficulties may enable pre-service teachers to better identify and
deal with them. This reflection may enable them to develop a more positive self-image as
learners of mathematics, through enhanced self-awareness — a necessary corequisite to
developing a deep and connected knowledge and consequently becoming a more effec-
tive teacher of primary-aged children. Participation in the study may also provide students
with greater insight into how children’s anxiety about mathematics can be minimised by
teachers.

Background

The study arose from two parallel streams of research: how teachers’ images of themselves
as mathematicians impact upon their teaching practices and the factors contributing to
anxiety about mathematics among both school aged students and pre-service primary
teachers. Research into the effectiveness of primary teachers of mathematics has consis-
tently pointed out the need for effective teachers to have a deep and connected
knowledge of mathematics and to have a positive view of themselves as learners of math-
ematics. Askew et al. (1997), studying effective teachers of numeracy in primary schools,

* This paper has been accepted by peer review.
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identified three types of teachers: transmissionist, discovery and connectionist. The study
found clear evidence that teachers’ own perceptions of mathematics and how it is learned
were more important in promoting positive outcomes for students than particular teach-
ing methods or classroom organisational practices. Ma (1999) in a landmark study of the
mathematical knowledge of US and Chinese elementary school teachers, identified that
Chinese teachers possessed a deep knowledge of simple mathematics that enabled them
to effectively address issues that were likely to impact on students’ mathematical under-
standing in the elementary classroom. This deep knowledge is a function not only of
mathematical content but also of teachers’ views of themselves as learners and doers of
mathematics. Hence there is a strong argument that mathematical anxiety among pre-
service teachers must be overcome if they are to develop the knowledge necessary to
become effective teachers of mathematics.

Mathematics anxiety has been identified as a specific learning difficulty in mathemat-
ics for many children (Dossel, 1993). It is characterised by a feeling that mathematics
cannot make sense, a feeling of helplessness in the face of mathematics, and an inability
to take control of one’s own learning. It is suggested that, in many cases, this anxiety can
be traced to inappropriate teaching practices, and to a belief in the wider society that
‘some people can do maths and some cannot’. There is strong evidence that many pre-
service primary or early childhood teachers have a fear of mathematics, and see
themselves as unable to learn effectively (Haylock, 2001). Previous research such as that
conducted by Trujillo (1999), who carried out in-depth interviews with pre-service
primary teachers in the United States, has attempted to trace the roots of mathematics
anxiety. However, relatively little has been done to investigate how studying subjects at
university might impact upon this anxiety. Where such research has been conducted it has
often focused on how subjects that teach mathematical knowledge have assisted students
to develop deeper knowledge (Chick, 2002), or on how subjects that deal with mathemat-
ics teaching strategies impact on pre-service teachers’ beliefs and attitudes (Frid, 2000). 

Rationale for the study

This study adopted a different approach. While this study did not examine teacher effec-
tiveness in a school situation, or pre-service teachers’ own knowledge of mathematics, it
attempted to look at pre-service teachers’ images of themselves as learners and doers of
mathematics. Enhancing this self-image may contribute to pre-service teachers develop-
ing the capacity to see mathematics as making connections, to see learning as developing
deep knowledge, to see their role as teachers as being to provide opportunities for school
students to solve rich and complex problems, and to adopt a view that all students can
learn mathematics (AAMT, 2002). It investigated the effect of an explicit study of mathe-
matical anxiety and problems faced by school students on pre-service teachers’ self image
in mathematics. It was felt that to focus on the factors impacting on school students’
mathematical difficulties, pre-service teachers may better understand how their own
school experiences affect their views of themselves as learners of mathematics and poten-
tially bring about a more positive self-image of themselves as students and of their capacity
to learn and teach mathematics. The reasoning is that pre-service teachers may be able to
identify themselves through the case studies of children.

This process can be compared to the technique of bibliotherapy in which people are
assisted in dealing with problems in their lives by reading about similar situations happen-
ing to a third person, or in some cases, to an animal. The technique is based on the active,
dynamic process of reading, enabling the person to identify with the protagonist in the
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story, followed by individual or group discussion in a non-threatening environment (Aiex,
1996).

The setting and methods

The setting for this study was the subject Mathematics and Learning Difficulties offered
as part of an inclusive education major at the University of Canberra. The subject looked
specifically at difficulties school-aged children experience in mathematics, both as a result
of specific learning difficulties and as a result of cultural and attitudinal factors, and
examined research conducted into how school children feel about mathematics and
about themselves as they learn mathematics. Thirteen pre-service primary teachers —
twelve females and one male — were members of the class. At the first session, students
were asked to prepare a written description of a critical incident in their own school math-
ematics education that made a major impact on their image of themselves as learners of
mathematics. This could have been a positive or negative experience during their math-
ematics learning that had meaning for them as an adult. This critical incident reflection
was then sealed and stored until the subject had been completed. The responses were not
read by the principal researcher until after the end of semester.

During semester as part of the assessment for the subject students were required to
keep a log of reflections on readings, personal observations in schools and voluntary
further reflections from their own schooling. They were asked to recall and write about
incidents that they experienced as a student at school or university that had an impact on
how they felt about mathematics. Prompts were provided for journal writing, including:

• ‘Something I learned’
• ‘Something I felt reassured by’
• ‘Something that surprised me’
• ‘Something I disagreed with’
• ‘Something I would like to know more about’.
This was presented as an open-ended task and students were not required to address

every prompt. Students could voluntarily submit copies of the weekly journal entries for
the research project, to be stored until formal assessment had been completed. In addi-
tion they had the option of submitting additional sealed personal reflections which would
not form part of the assessment for the course and did not need to satisfy formal assess-
ment requirements. A clear distinction between criteria used for formal assessment in the
subject and the use of reflective writing as a research tool was made. After the completion
of the unit, the critical incidents and journals were summarised, but not interpreted.

The critical incidents

In the accounts of the critical incidents, several themes predominated. These were the
role of the teacher, the cycle of fear, failure and avoidance, the students’ perceptions of
the nature of mathematics, their self-image as a learner of mathematics, and, less com-
monly, the influence of parents. These themes are consistent with five themes identified
from ‘mathematics autobiographies’ of seventy-two pre-service teachers training to teach
at primary, middle, and secondary level in the USA (Sliva & Roddick, 2001). They found
that almost all students mentioned the role of the teacher in the development of their
mathematics understanding, placing them on a continuum from ‘enabling’ (patient and
understanding, giving full explanations and answers to student questions) to ‘disabling’
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(intimidating students, not fully explaining concepts or not considering students’ feel-
ings); and many described a trend of fear, failure and then avoidance in their
mathematics experiences. 

Ellsworth and Buss (2000) collected autobiographies from sixty-one pre-service teach-
ers studying elementary education methods classes in the USA. They defended the
validity of using these recollections, even though they admitted they could be biased, on
the grounds that it was the way that students recalled situations that influenced their
current belief systems, even if their memories were not precise. They identified five
themes which included the powerful effect of teachers and three facets of the ways math-
ematics was presented (relevance, comprehension, and emphasis on skills and
memorisation). 

The role of the teacher

There are parallels between these themes and those identified by the students in the
current study. Students’ written critical incidents tended to focus on descriptions of a
teacher or a way in which they perceived mathematics was presented as a subject; and
their image of themselves as learners of mathematics and the feelings that this invoked.
Students retained intense memories of their experiences with ‘disabling’ teachers.
Heather described her teacher writing continuously on the board and not explaining:

I can still see the teacher, I can picture her face as if it were yesterday, I can hear her
accent and I can remember vividly the year in which my love of maths changed. The
doubts that crept in back then creep in still now when I attempt to learn new mathe-
matical strands.

Barbara described her discomfort during the line up for times tables questions before
students were allowed to go out for lunch in Grade 4:

After a number of failures Miss A’s facial expressions became unbearable to see. I
remember ‘putting up a wall’ avoiding her looks but still trying to get the right answer
in the right time. Miss A eventually took to getting cross and impatient, detected
through facial expression, body language and her tone of voice. I shut down, I did
not make eye contact. I did not react.

Odette recalled a similar experience at a new school in Grade 3 when children had to
stand in front of the class and recite the week’s tables:

This absolutely terrified me and I hated the entire experience. To this day I still don’t
like saying my times tables and I often need to double check that I have a correct
answer.

It is worth noting, that even a good experience with an ‘enabling’ teacher was some-
times not enough to overcome pupils’ perceptions about the attitudes of their peers.
Patsy wrote: 

I felt very slow but this teacher seemed to have endless patience and gave 1 on 1 atten-
tion and eventually I succeeded. While I was very happy with my personal success I
still felt very slow. I felt all the students at the tables were watching me and thinking
I was stupid.
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The students showed an awareness of the potent effect that an individual teacher could
have on a student, and even at the start of the subject, in the description of the critical
incident, some were reflecting on the type of teacher that they aimed to be.

‘I don’t want to be a teacher that I had as a child. I believe I know a lot about the
damage that can be done to avoid it.’ (Barbara) 

‘I want to be good at teaching maths and ensure positive outcomes for my students.’
(Cathy) 

‘I am aware of what happened to me in primary school and there is no way I want to
repeat that so Im [sic] determined to have great maths lessons even though I will have to
study beforehand.’ (Felicity) 

‘I believe there are more positive ways of encouraging one to learn them [times tables]
rather than singling out individual children with such a daunting experience.’ (Odette)

Image of themself as a learner — fear, failure, and avoidance

The cycle of fear, failure and avoidance described by some students has implications for
their self-concept as learners of mathematics. This behaviour reflects the coping mecha-
nisms that some students used in class in situations which they found extremely stressful.
The vocabulary of the critical incident descriptions is replete with negative terms: ‘fear’,
‘failure’, ‘not fast enough’, ‘freeze’, ‘not good at rote learning’, ‘struggled with basic
things’, ‘believed I could not see what everyone else could’, ‘believed I could not “do”
maths’. Several students who classified themselves as ‘confident’, ‘relaxed’ or ‘enthusias-
tic’ in early primary school described changes that occurred in their beliefs about
themselves as learners in the middle years. Even some students who appeared to have
achieved some success showed an awareness that they were lacking in understanding:
‘Thankfully the answers were provided at the end of the book so I always looked as if I did
well but really I had not an idea,’ (Felicity), and: ‘What amazes me is that I snuck through
high school not truly understanding maths but yet passing’ (Noel). The potential of indi-
vidual teachers to have a lasting influence is indicated by their comments: ‘Yeah. I wished
I could say something to those teachers. They still impact on me,’ (Barbara, a mature-age
student whose teachers said she did not have the ability to continue at school).

Journal reflections

The writings in the journals included a variety of responses. Some students used the
opportunity to reflect on themselves as learners, others reflected on observations from
their classroom experience, and did not explicitly connect their observations to their own
experience. Almost all the journals included deliberations about how to apply the read-
ings to their future role as teachers 

Some reflections showed progress in students’ perceptions of themselves as learners of
mathematics: ‘The article helped answer many questions I had about my own experiences
of learning maths,’ (Barbara). In some cases, these included development of a deeper
understanding of what it means to learn mathematics such as the student who now per-
ceives her grades from school ‘as a reflection of my ability to observe and imitate’, not of
her mathematics understanding (Odette), and their awareness that there are alternatives
to the approaches that they experienced: ‘Basically I feel a bit cheated — like I got a
second rate education,’ (Jenny).

The results of using these readings to assist pre-service teachers’ understanding of
their own learning parallels one of the outcomes of the bibliotherapy technique, namely
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that the person realises that they are not the only one who has the problem (Aiex, 1996).
Felicity wrote: ‘The biggest thing I have learned this week is that I am really not alone in
this anxiety.’ 

Extensive sections of some journals were devoted to a consideration of the effects of
the readings on their intended teaching practices. The comments about teaching fell into
two categories. One group of comments talked about the reassurance that pre-service
teachers felt when faced with research that concluded that the best teachers were not
always those who had performed best in mathematics at school: ‘It gives me great comfort
to know that although I may not graduate at the top of the mathematics class, this will
have no lasting bearing on my ability to teach it,’ (Jenny). The second group of comments
reflected a determination that negative learning experiences would not be transferred to
their students and continue a cycle of negative attitudes beliefs and feelings about math-
ematics: 

This also leads me to my second thought that, for those teachers, who like me, have
never believed maths to be their ‘thing’, there is the distinct possibility that our desire
not to let students suffer our fate and to improve on our own childhood experiences
in classrooms could well be the factor that makes us the more effective teachers. We
are more open to the need for reflective teaching and professional development, and
more willing to look for alternate explanations and examples. (Jenny)

The pre-service teachers started to discuss the implications of the readings for them-
selves as teachers and identify specific strategies that they might adopt in their teaching.
Some of the comments detail specific issues such as the need to ensure that students see
purpose and make connections in their mathematics learning. Others show specific
detailed analysis of applications taken from particular readings, and descriptions of learn-
ing tools that they intend to incorporate into their classrooms. In several cases during the
eight weeks of the journal reflections the focus of the comments moved from discussions
of the self as a learner to later comments which focussed almost exclusively on teaching
considerations.

Although comments about the influence of parents and families tended to be less
common, a graphic description of ‘arguments and intense yelling sessions’ when parents
helped with homework (Odette) shows the powerful effect of such incidents. Mature age
students among the class included some comments about their role as parents of mathe-
matics learners, and the strategies that they observe their children using, adding another
dimension to their discussion.

Conclusion

A focus on the factors impacting on school students’ mathematical difficulties developed
pre-service teachers’ understanding of their own school experiences and their views of
themselves as learners of mathematics, and brought about changes in their self-image of
themselves as students and assessment of their capacity to learn and teach mathematics.
The potential of individual teachers to have a lasting influence, and the students’ aware-
ness that there are alternatives to the approaches that they experienced, were emphasised
in their comments.

Clearly such a study, conducted over a short time in a University environment, cannot
reliably predict how these pre-service teachers might convey their feelings about mathe-
matics to students. Thus follow-up longitudinal workplace-based studies investigating the
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link between mathematical anxiety of pre-service teachers and their effectiveness as teach-
ers of mathematics to young children will be an important element of further research in
the area.

Future research could also investigate the application of the techniques used in the
study, such as critical incident analysis and journal writing, possibly in combination with
bibliotherapy, to investigate their potential to combat maths anxiety in primary and high
school students.

Teaching mathematics well, in an engaging way, to pre-service primary teachers is
clearly a key aspect of their education. However an explicit focus on learning difficulties
may well be a powerful additional element in addressing some of the well-documented
anxiety felt by many pre-service primary teachers. 

References
Aiex, N. (1996) Bibliotherapy. Learning Disabilities OnLine — ERIC Digest 82. Accessed 12 August 2004 from

http://www.ldonline.org/ld_store/bibliotherapy/eric_digest82.html.

Askew, M., Brown, M., Rhodes, V., Johnson, D. & Wiliam, D. (1997). Effective Teachers of Numeracy (Final
Report). London: King’s College

Australian Association of Mathematics Teachers (2002). Standards for Excellence in Teaching Mathematics in
Australian Schools. Adelaide: Author.

Chick, H. (2002). Evaluating pre-service teachers’ understanding of middle school mathematics. In B.
Barton, K. Irwin, M. Pfannkuch & M. Thomas (Eds), Mathematics Education in the South Pacific: Proceedings
of the 25th Annual Conference of the Mathematics Education Research Group of Australasia (pp. 179–186).
Pymble NSW: MERGA

Dossel, S. (1993) Maths anxiety. The Australian Mathematics Teacher, 49 (1), 4–8.

Ellsworth, J. & Buss, A. (2000). Autobiographical stories from preservice elementary mathematics and
science students: Implications for K–16 teaching. School Science and Mathematics, 100 (7), 355.

Frid, S. (2000). Constructivism and reflective practice in practice: Challenges and dilemmas of a
mathematics educator. Mathematics Teacher Education and Development, 2, 17–34.

Haylock, D. (2001). Mathematics Explained for Primary Teachers. London: Paul Chapman.

Ma, L. (1999). Knowing and Teaching Elementary Mathematics. Mahwah, NJ: Lawrence Erlbaum.

Sliva, J. & Roddick, C. (2001). Mathematics autobiographies: A window into beliefs, values, and past
mathematics experiences of preservice teachers. Academic Exchange Quarterly, Summer (5), 101. 

Trujillo, K. (1999). Tracing the roots of mathematics anxiety through in-depth interviews with pre-service
elementary teachers. College Student Journal, June.



MAKING MATHEMATICS VITAL: PROCEEDINGS OF THE TWENTIETH BIENNIAL CONFERENCE OF THE AUSTRALIAN ASSOCIATION OF MATHEMATICS TEACHERS

275

Workshop papers and notes

 



MAKING MATHEMATICS VITAL: PROCEEDINGS OF THE TWENTIETH BIENNIAL CONFERENCE OF THE AUSTRALIAN ASSOCIATION OF MATHEMATICS TEACHERS

[ AUSTIN ]
276

Geometer’s Sketchpad: Some basics

Anna Austin
Brighton Grammar School (Vic.)

Features of Geometer’s Sketchpad

The Toolbox

The toolbox appears on the left of the screen. It includes six tools.

Selection Arrow Tools — used to select and move objects

Point Tool — used to construct points

Compass Tool — used to construct circles

Straight Edge Tools — used to construct segments, rays and lines

Text Tool — used to show or hide labels and to add text

Custom Tools — used to define, manage and use custom tools

The Menus

File — allows you to create, save, and print a file
Edit and Display — contain commands that alter the appearance or format of objects
Construct — provides commands for geometric constructions e.g.; construct segment,

midpoint, parallel line, or angle bisector
Transform — allows you to apply geometric transform-ations e.g.: translations, rotations,

dilations and reflections 
Measure — allows measurement of numeric properties of objects e.g.: distance, slope and

area. It has a calculator which enables relationships between measurements to be
determined

Graph — lets you create coordinate systems and draw graphs
Window — enables you to manage open document windows 
Help — provides information on how to use the program
Context — appears when you right-click in a sketch. It presents the options relevant to

selected objects.
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Using the Construct Menu

Geometrical constructions may be created using the Construct Menu.
To enable any of the commands in this menu you first need to select one or more objects.
These are called the selection prerequisites. The commands will only enabled after the
appropriate prerequisites are selected. 
If the command you wish to use is unavailable it is likely that you have too few or too many
objects selected. Deselect the unwanted objects and try again.

Summary of the selection prerequisites for commands in the Construct Menu
Command: To use this Command select:
Point on object One or more path objects
Midpoint One or more segments
Intersection Two intersecting objects such as a straight line, circle, or arc
Segment, Ray, Line Two or more points
Parallel Line A straight object and one or more points; or a point and

one or more straight objects
Perpendicular Line A straight object and one or more points; or a point and

one or more straight objects
Angle Bisector Three points. The vertex needs to be the second point

selected.
Circle by Centre and Point Two points
Circle by Centre and Radius A point and a segment or distance measurement
Arc on circle A circle and two points on that circle; or a centre point and

two other points equally distant from the centre point
Arc through 3 points Three points that do not lie on the same line
Interior Circle Interior — One or more circles

Polygon Interior —- Three or more points
Arc Sector Interior — One or more arcs
Arc Segment Interior — One or more arcs



MAKING MATHEMATICS VITAL: PROCEEDINGS OF THE TWENTIETH BIENNIAL CONFERENCE OF THE AUSTRALIAN ASSOCIATION OF MATHEMATICS TEACHERS

[ AUSTIN ]
278

Using the Measure Menu

To measure an object’s properties you need to first select the object and then choose from
the available commands in the Measure Menu. If the command you want to use is unavail-
able it is likely that you have not selected the correct prerequisites. You may have too few
or too many objects selected. Deselect the objects and try again.

Summary of the selection prerequisites for commands in the Measure Menu
Command: To use this Command select:
Length One or more segments
Distance Two points, or one point and one straight object 
Perimeter One or more polygon interiors, arc sector interiors, or arc

segment interiors
Circumference One or more circles or circle interiors
Angle Three points. The vertex needs to be the second point

selected.
Area One or more interiors or circles
Arc Angle One or more arcs, or a circle and two or three points on the

circle
Arc Length One or more arcs, or a circle and two or three points on the

circle
Radius One or more circles, circle interiors, arcs, or arc interiors
Ratio Two segments or three collinear points
Calculate Always enabled
Coordinates One or more points
Abscissa (x) One or more points
Ordinate (y) One or more points
Coordinate Distance Two points
Slope One or more straight objects
Equation One or more lines or circles
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Some basic application

Constructing a Line Segment and its Midpoint

With the Point Tool construct two points in a new sketch. Keep the shift key held down
when constructing the points and they will both be selected simultaneously. Go to the
Construct Menu and select Segment. With the segment selected, go to the Construct
Menu and select Midpoint. Your sketch will appear as follows:

Constructing a Perpendicular Bisector

Select the Arrow Tool and use this to select (highlight) the line segment and the mid-
point. Go to the Construct Menu and select Perpendicular Line. The following should
appear:

Constructing a Triangle

Select the Point Tool and use this to construct three points in a new sketch. Use the Arrow
Tool to click on these points to select them simultaneously. Go to the Construct Menu and
select Segments. This will give you a triangle. Now select the Text Tool and label the
points with letters by touching each of the vertices. 

Measuring an Angle

To measure an angle you need to select the vertices in correct order. The second point
selected will be the vertex of the angle you wish to measure. For example, to measure
∠BAC, select points in the order B, A, C. The Arrow Tool is used to select the points. Go
to the Measure Menu and select Angle. Sketchpad will measure the angle and write it
onto the screen. Now measure the other angles in the triangle. Move the vertices of the
triangle with the Arrow Tool to see how the angle measurements change. 
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Using the Calculator

With the Arrow Tool go to the Measure Menu and select Calculate. Click on the angle
measurement written at the top left of the screen; e.g., ∠BAC. This will write the informa-
tion to the calculator. Click + on the calculator and select the next angle. Add the third
angle in the same way and press OK. Sketchpad should write something like this on the
screen: µ∠BAC + µ∠ACB + µ∠CAB = 180°. 
Move the vertices around to see the angles change. The angle sum remains invariant. 

Measuring Distance and Length

Open a new sketch. 

Distance between two points 
With the Point Tool, construct two points between which you want to measure. Highlight
these points simultaneously with the Arrow Tool. Go to the Measure Menu and select
Distance. Sketchpad will name the points and write the distance between them on the
screen; e.g., AB = 3.49 cm.

Length of a line segment
Construct a line segment between the two points. Go to the Measure Menu and select
Length. Sketchpad will write the length of the line segment on the screen; 
e.g., µ AB= 3.49 cm. Lengths can be measured simultaneously by selecting more than one
line segment. 

Measuring Slope

To measure the slope or gradient of a line or line segment, you first need to select it. From
the Measure Menu, select Slope. Sketchpad will superimpose a coordinate system on the
screen and calculate the slope. A number of slopes can be measured simultaneously by
selecting them at the same time.
Open a new sketch and measure the slopes of the three sides of a triangle.
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Measuring Area and Perimeter of Polygons

Open a new sketch.
Each part describes a different construction.
1. Construct 3 points and keep these highlighted. Go to the Construct Menu and

select Triangle Interior. Sketchpad will display the interior. Use the Measure Menu
to measure the Area and Perimeter. These quantities will be written on the screen.

2. Moving in a clockwise direction select 4 points with the Point Tool. Go to the
Construct Menu and select Quadrilateral Interior. Use the Measure Menu to
measure the Area and Perimeter of the quadrilateral. 

3. Select 6 points in a haphazard way. Go to the Construct Menu and select Hexagon
Interior. What happens? Measure the area and perimeter. With the Arrow Tool
move the points around. Observe what happens.

Note that the points do not have to be connected for Sketchpad to construct a polygon
interior.

Measuring Area and Circumference of a Circle

Open a new sketch. 
Select the Compass Tool and draw a circle. Go to the Construct Menu and select Circle
Interior. Using the Measure Menu, measure its circumference, area and radius.
Use the calculator to determine the following ratios: 

1. 2.

Note that you need to use the brackets on the calculator pad for C/(2r).
The sketch shown below uses 5 decimal place accuracy. The precision can be adjusted in
the Edit Menu under Preferences.

Alter the radius to see that the ratios and are invariant.
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Determining Equations of Lines and Circles

1. Open a new sketch. With the Point Tool construct two points. Using the Construct
Menu draw a line between these points. With the line selected, go to the Measure
Menu and select Equation. This will superimpose a coordinate system on the screen
and write the equation of the line. Move the points to see how the equation
changes. 
Note that Sketchpad will not be able to determine the equation of a line segment.
You must construct a line.

2. In a new sketch, construct a circle with the Compass Tool. Go to the Measure Menu
and select Equation. Sketchpad will superimpose a coordinate system and write the
equation on the screen.



MAKING MATHEMATICS VITAL: PROCEEDINGS OF THE TWENTIETH BIENNIAL CONFERENCE OF THE AUSTRALIAN ASSOCIATION OF MATHEMATICS TEACHERS

[ AUSTIN ]
283

Using the Graph Menu

Open a new sketch

Plotting Points 
Select Plot Points from the Graph Menu. 
Select Rectangular and enter points (-3, 2) and (3, 6).
Construct a line between these points using the Construct Menu and then use the
Measure Menu to determine its equation. 

Sketching a Function
From the Graph Menu select New Function. Using the keypad, enter in the box. Press
OK. Sketchpad will write the equation onto the screen. Whilst this is highlighted, select
Plot Function from the Graph Menu and the graph should appear.
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Some geometric constructions

The traditional tools for geometric construction are a point, an unmarked straight edge
and compass. In order to construct a figure you need to know its properties and work out
a way of creating it so that its properties remain invariant.

Constructing an Isosceles Triangle

Properties: Two sides are equal length. 
The angles opposite the equal sides are equal

Method of construction: Construct a circle. On the circumference of the circle con-
struct two points. Select the centre and the two points and
use these to construct a triangle. An isosceles triangle will
appear inside the circle.

Hide tools of construction: As we only want to see the isosceles triangle, we need to
hide the circle. This can be done by selecting the circle and
using the Hide Circle command in the Display Menu.
Alternatively, right click on the circle and select Hide from
the Context menu. When the circle disappears, only the
isosceles triangle is visible.

Verify properties: The side lengths and angles of the triangle can be meas-
ured. The measurements show that two sides are equal and
two angles are equal. These properties remain invariant no
matter how the vertices are moved. The triangle is Isosceles.

Complete the information for the following shapes and then construct the figures using
Geometer’s Sketchpad. After each construction you should verify that the properties of
the figure are invariant. When the figure is completed you should hide the construction
tools leaving only the required shape visible.

• Equilateral Triangle
• Square
• Rectangle
• Parallelogram
• Rhombus
• Kite
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Constructing better 
mathematics classroom tests

Priscila C. De Sagun
Department of Education — National Capital Region, Philippines

This paper helps participants walk through the guidelines in crafting the different
test formats: short answer and completion, true or false, multiple choice and match-
ing type. It also introduces the participants to the constructed response Item format
as well as the scoring guide or rubrics for a more subjective appreciation of the stu-
dents responses. The practice exercises provide the hands-on learning experience
intended to enhance their test construction skills.

Although authentic assessment or alternative assessment has caught increasing attention,
most educators agree that the traditional paper-and-pencil tests should not be discarded.
We need to combine all these tools to provide a more accurate picture of the learners.
Writing effective tests is an indispensable task for all classroom teachers. Sound decisions
about student performance as well as teaching effectiveness can only be arrived at
through sound information gathered from sound assessment procedures such as a well-
written test. Despite the fact that teachers undertake test construction year in and year
out, research revealed that they need training on how to do the following: plan and write
longer tests; write unambiguous test items; and measure skills beyond recall of facts. 

Planning your next test

The following suggestions are intended to improve the quality of your next classroom test. 
1. Prepare a test blueprint or table of specifications. 

Invest adequate time for planning so that your test matches the content you are
teaching. The blueprint serves as a tool for improving the validity of the interpreta-
tion of the results of the test as it describes the content the test should cover and
the performance that is expected of the students in relation to the objectives of that
content. It also describes the type of thinking skills to be assessed. This will ensure
that one writes items that test skills other than recall. As mentioned earlier, research
revealed that teacher-made tests emphasise recall of information. It is important for
tests to measure higher order thinking skills as well. It also serves as a basis for
setting the number of items and for assuring that the test should have the desired
emphasis and balance. Figure 1 shows the suggested format of the test blueprint. 

2. Match question type to the level of learning targets desired. 
Well-crafted selected — response and brief constructed — response items do a
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good job of assessing knowledge and simple understanding particularly when stu-
dents must recognise or remember isolated facts, definitions, concepts and
principles. These include multiple-choice questions (MCQ), true/false, matching
type, and fill-in-the-blank questions.
Deep understanding and reasoning skills are demonstrated most efficiently in con-
structed response items; however, MCQ can also be used to assess reasoning
depending on the manner by which the item is formulated. 

3. Construct questions carefully. 
The most important process in test-making is selecting the wording of each ques-
tion. The items should be carefully worded using straightforward language. Careful
attention should also be given to writing the distracters or options. 

Crafting selected response test items

1. Crafting short answer and completion items
• Word items specifically and clearly so that only one answer is correct.
• Put the blank toward the end of the sentence.
• Avoid copying statements verbatim.
• Omit the important words. A completion item should require a student to

respond to important aspects of knowledge and not to trivial words.
• Use one or two blanks only.
• Attend to length and arrangements of blanks.
• Specify the precision you expect in the answer.
• Avoid irrelevant clues.

Levels of behavior /
No. of Placement of Items

Contents/
Objectives

KF & P CU R

No. of
hours
taught

Total
no. of
items

%
of

items

1. Define and give
examples of an
arithmetic sequence

1 1 2
2/54 =.04

2 4%

2. Tell whether the
finite sequence is or
is not an arithmetic
sequence

1 1
1/54 = .02

1 2%

3. Given two terms of
an arithmetic
sequence, find: the
first term, the
common difference,
or a specified nth
term

3 3
3/54=.05

3 6%

…
Total 50 100%

Legend:
KF & P: Knowledge of Facts & Procedures
CU: Conceptual Understanding
R: Reasoning

Figure 1. Suggested format of test blueprint.
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2. Suggestions for improving true-false items
• Assess important ideas, rather than trivia, general knowledge, or common

sense.
• Make sure the item is either definitely true or definitely false.
• Use short statements when possible.
• Use positive statements and avoid double negatives, which many students find

especially confusing. If you must use a negative function word, be sure to
underline it or use all capital letters so it is NOT overlooked.

• Avoid copying sentences verbatim.
• True and false statements should have approximately the same number of

words. 
• Do not present items in a repetitive or easily learned pattern (e.g., TFTF…,

TTFFTT…, TFFTFF…). 
• Do not use verbal clues (specific determiners) that give away the answer (e.g.,

always, all, never, absolutely and every tend to make propositions false. Often,
usually and frequently tend to make propositions true).

• Attribute the opinion in a statement to an appropriate source. 
• Focus on one idea. 
• Avoid long sentences. 
• Avoid using vague adjectives and adverbs such as frequent, sometimes, occa-

sionally, typically and usually

3. (a) Crafting basic multiple-choice items
• Focus item to assess specific learning targets
• Prepare the stem as a question or problem to be solved.
• Write a concise correct alternative.
• Write destructors that are plausible
• Edit the item to remove irrelevant clues to the correct answer.

(b) Crafting the stem of the item
• Write as a direct question. 
• Put alternatives at the end.
• Control vocabulary and sentence structure. 
• Avoid negatively worded stems. 
• Avoid textbook wording. 
• Create independent items.
• Definitions go in the alternatives. 

(c) Crafting alternatives or foils
• Strive for creating 3–5 functional alternatives. 
• All alternatives should be homogenous
• Put into the stem words or phrases that are repeated in each alternative. 
• Use consistent and correct punctuation in relation to the stem.
• Arrange alternatives in a list format rather than in tandem.
• Arrange alternatives in a logical or meaningful order (magnitude or

size, degree to which they reflect a given quality, chronologically, or
alphabetically).

• Avoid a collection of true-false alternatives. 
• Avoid using ‘none of the above’. 
• Avoid using ‘all of the above’. 
• Avoid verbal clues. 
• Avoid technical and unfamiliar wording. 
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4. Crafting basic matching exercises
• Assess only important performance and content.
• Match tasks to your learning targets and the test blueprint.
• Make a matching exercise homogeneous.
• Explain completely the intended basis for matching. Avoid long written direc-

tions which place unnecessary premium on reading skill. 
• All responses should serve as a possible option for each premise.
• Use short list of responses and premises. Put no more than 5 to 15 elements

in the response list. 
• Avoid perfect matching. 
• Longer phrases appear in the premise list, shorter phrases in the response

list.
• Arrange the response list in a logical order. 
• Identify premises with numbers and responses with letters.

Evaluating test items

Exercise: Put a G in the space before the items you feel are good, and put a P before the
items you feel are poor. Explain your answer. If the item is poor, improve the item.

Completion items
Identify the word(s) being referred to by the following statements. 
1. The smaller angle formed by the hands of the clock at 2:30 is ______.
2. ____________ is the term given to the abscissa and ordinates of a point.
3. The graph of ___________________ is a ___________ that opens _____________.
4. The Indian king who thought that his servant was asking for a modest reward when

he requested for one grain of wheat for the first square of the chess board, two
grains for the second, four for the third, and so on was __________.

5. The technique of adding a number to both members of an equation to make one
side a perfect square is called __________________________________.

6. The circumference of a circle with radius equal to 26.5 cm is __________. 
7. At exactly six o’clock, the angle formed by the hands of the clock is a

__________________________. 

True-false items
Write T if the statement is true and F if otherwise. 
____ 1. When rounding-off we always reduce a number to a given place value.
____ 2. 7 is greater than 4.
____ 3. We usually round off numbers to the nearest whole number.
____ 4. 4 + 5 × 2 = 18
____ 5. Numbers that are not prime do not have more than two factors.
____ 6. The value of 6 in the number 2 680 234 is six hundred thousands.
____ 7. Lines that never intersect are parallel and those that intersect are perpendi-

cular.
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Multiple-choice
Encircle the letter of the correct answer. 
1. The diameter of a circle is approximately ______ of its circumference.

A. B. C. D. 

2. Which of the following is not equal to 1?

A. B. C. D. None of the above

3. Which of the following is not a non-terminating decimal?
A. .12           
B. 3.67         
C. 0.574        
D. all of the above

4. Which is in order from least from least to greatest?
A. 12497; 12507; 12521 
B. 12497; 12521; 12507 
C. 12507; 12497; 12521
D. 12521; 12507; 12497

5. A _______ has a whole number and a fractional part.
A. fraction  
B. mixed number  
C. least common multiple  
D. simplest form

6. In the metric system, temperature is measured in degrees __________
A. Celsius    
B. Fahrenheit     
C. all of the above  
D. none of the above

7. The most reasonable unit for measuring the liquid in a fishbowl is ______
A. mm 
B. L       
C. mL 
D. kg 

8. Mr. Lopez solved the division problem below on the chalkboard.
252 ÷ 7 = 36
Which of the following could Mr. Lopez use to check his answer?
A. 7 × 42
B. 36 × 7
C. 36 × 252
D. 252 × 7

9. Of the following, which is not true for all rectangles?
A. The opposite sides are parallel
B. The opposite sides are equal
C. All angles are right angles
D. The diagonals are equal
E. The diagonals are perpendicular
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10. Sound travels at approximately 330 metres per second. The sound of an explosion
took 28 seconds to reach a person. Which of these is the closest estimate of how far
away the person was from the explosion?
A. 12 000 m
B. 9000 m
C. 8000 m
D. 6000 m

11. Sheila is solving this problem.
(32 _ 42)2 _ ?
Which step is correct in the process of solving the problem?
A. (32 _ 44)
B. (92 _ 162)
C. (72)2

D. (9 _ 16)2

Matching items
Exercise: Match the two columns
____ 1. composite A. Numbers with only two different factors
____ 2. equivalent fractions B. Numbers that name the same amount
____ 3. simplest form C. The greatest common factor of the

numerator and denominator is 1 
____ 4. prime D. Numbers with more than two different

factors
____ 5. least common multiple E. The smallest number that is a common

multiple of each of two numbers 
____ 6. greatest common factor F. The greatest factor a pair of numbers

have in common
____ 7. least common denominator G. Fractions with different denominators
____ 8. unlike fractions H. You can use the least common multiple to

write fractions with this
____ 9. multiples I. When you find a common denominator

for fractions, you change the fraction to
this

____ 10. like fractions J. Denominators such as eighths are ___ of
fourths

____ 11 volume K. The distance around a circle
____ 12. circumference L. The number of square units needed to

cover a surface
____ 13. area M. The measure of the space inside a solid

figure 
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Crafting constructed response test items

Constructed-response items for mathematics provide students with an opportunity to 
• solve problems and explain their methodology for solving problems; 
• communicate mathematical ideas in a variety of ways; 
• apply estimation strategies; and 
• select and use appropriate technology to enhance mathematical understanding. 

Constructed-response items for mathematics will generally allow students an opportunity
to show what they know and are able to do in relationship to several different content
standards. 

1. Find the area of the triangle above.
2. Suppose the base of the triangle above is increased by 10% and the height is

decreased by 10%.What is the ratio of the area of the new triangle to that of the
original triangle? Show or explain how you found your answer.

3. Consider any triangle with a base, b, and a height, h. Suppose the base of the trian-
gle is increased by 10% and the height is decreased by 10%. Will the ratio of the
area of the new triangle to that of the original triangle remain the same for all
values of b and h? Justify your answer mathematically.

Constructed-response scoring guide 

Score description
4 Student demonstrates a thorough understanding of the area formula for triangles

by correctly determining ratios of areas in both a particular and a general case.
3 Student demonstrates a general understanding of the area formula for triangles by

determining ratios of areas in both a particular and a general case, with only minor
errors and/or omissions.

2 Student demonstrates a basic understanding of the area formula for triangles by
correctly completing or using correct strategies to complete a significant portion of
the required tasks.

1 Student demonstrates minimal understanding of the area formula for triangles.
0 Response is incorrect or contains some correct work that is irrelevant to the skill or

concept being measured.
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Activities to develop fraction concepts

Richard Evans

Introduction

Currently, fractions are introduced in the early primary grades, with successive grades
spending more time on them each year. Depending on the textbook, addition and sub-
traction of fractions may begin around Grades 3 or 4, with multiplication and division
commencing around Grades 5 or 6. Review of operations on fractions continues through
Grades 6, 7, and 8. For many students, the heavy emphasis on procedural knowledge
(symbolic rules and manipulation) is not built on a strong conceptual knowledge of frac-
tions. Researchers have discovered some of the reasons why children have difficulties with
fractions, and suggest that we might do things differently. 

We will examine the following questions relating to fractions and decimals.
1. Should models be used when learning about fractions or decimals, and if so, which

models should be used?
2. How do we develop a firm conceptual knowledge of fractions and decimals and

when do we introduce symbols? 
3. What kinds of activities should be done before computation with fractions and dec-

imals in order to develop ‘fraction and decimal sense?’ 

Modeling fractions 

Researchers from the Rational Number Project (Cramer & Henry, 2002) devised a cur-
riculum based upon four beliefs: 
1. children learn best when actively involved with multiple concrete models; 
2. in order for students to develop mental images needed to think about fractions con-

ceptually, they need to use concrete models over extended periods of time; 
3. students need opportunities to discuss fraction ideas as they construct their own

understanding of fractions as numbers; and 
4. students need to develop conceptual knowledge of fractions prior to formal work

with symbols and algorithms. 
Three commonly used models are the region or area model, the length or linear model,
and set models.
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Region (area)

In this model, a surface or region is subdivided into smaller congruent parts. Usually, the
regions subdivided are ones students are familiar with. However, there are some very
good reasons for using specific models, such as rectangles. Other models and aids which
could be used are Fraction Bars, Cuisenaire Rods, Pattern Blocks, graph paper, Base Ten
Blocks, and paper strips. These same activities can be used to develop an understanding
of decimals and percentage. 

Activity 1
Divide the rectangle and circle shown in Figure 1 into fifths and discuss with your part-
ners the advatages and diadvantages of using with a rectangle versus a circle.

Figure 1

Length or measurement models

This is similar to the area model, except that the length of the object is compared instead
of the area. Models for this include number lines, string, and rulers. 

Activity 2
Take a piece of rope and three clothes pegs. Have two students hold the ends of the rope
and have three volunteers place the clothes pins where they think 2/5 or some other frac-
tion would be located if the ends of the rope are zero and one. After placing the three
clothes pins, have the class vote on which of the three they think is closest to the actual
location of 2/5. Now fold the rope over from one end to the first of the 2/5 markers. The
length of the fold is 1/5 according to the first person. Keep folding counting the fifths
until you get to five. Do it for the other two estimates as well. (Students can do this at their
desks with strips of paper and they can change the target fraction to 5/3 with the end-
points being zero and four or one and four, etc.)

Set models

In this model, the whole is actually a set of objects and subsets of the whole make up the
fractional parts. Any set of counters can be used for set models. The set model may well
be the most common representation of fractions in everyday life. 

Activity 3
Draw a set model illustrating 3/5.
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Beginning activities for developing fractional concepts

Show students pictures of sets of fractions (Figure 2) and ask them which ones represent
fourths.

Figure 2

Which of the following models represents one-third (Figure 3)? If a model does not rep-
resent one-third, explain why it does not.

Figure 3

Activities where students count fractional parts (or decimals) are good exercises. Students
need to realise that 3/5 is a representation of having three of the pieces called fifths.
Similarly, eight-tenths is a set of eight things called tenths. Students should be shown how
four-fourths can be seen as one whole and that ten-fourths is two wholes and half of
another. Counting fractional pieces and comparing them helps students understand why
five-ninths is less than three-fourths. We want students to think of 3/5 as three 1/5 pieces. 

Activity 5
Use a calculator to count fractional parts. What does the calculator read when adding
one-fourth to three-fourths? 

Activity 6
Guess my number: Each of you will be given a piece of paper to stick on someone’s back.
That piece of paper will have a fraction or a decimal written on it. Your job is to guess the
fraction or decimal on your back by asking ‘yes or no’ questions. You may ask a person at
most two questions, then you must go ask another person. This activity is used to develop
fraction and decimal vocabulary.

Mixed numbers and improper fractions

Mixed numbers and improper fractions are topics that can be natural outcomes from
counting fractions. They should be taught right along with other fractions, and not as
something different. Rules for changing from mixed numbers to improper fractions
should be delayed until students discover it. Students should be given experiences where
they change things like 3 5/8 to 2 13/8, 1 21/8, and 29/8. This is the natural progression
from a concrete approach. This is also very helpful in doing operations later on such as
4 1/3 – 1 3/5. We really change 4 1/3 to 3 4/3 and eventually to 3 20/15. 

Activity 7

What happened as you decreased the unit by one each time?
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Part/whole activities 

As much as possible, these activities should always be done at first using physical models
and not diagrams. Be sure your questions can be answered with the models given.
Problems in which unit fractions (fractions whose numerators are one) are usually the
easiest ones to work with. The mixed number questions or improper fractions are the
most difficult for students to understand. Students should be given opportunities to
discuss among themselves and try to convince one another they are correct. 

These same kinds of activities can be done with decimals and percentages.

Whole-to-part activities

Give students the whole and ask them to divide it into some fractional part. This gets back
to our original activity where a rectangle represents one whole and you are asked to find
two-thirds or three-fourths. You could also use the other models to do the same kind of
activity. 

Activity 8
If the counters in Figure 4 represent one unit, what would represent two-thirds? 

Figure 4

Activity 9
Solve the following problems using Cuisenaire Rods.
(a) If the brown Cuisenaire Rod represents one whole, what rod would equal three-

fourths? 
(b) If the blue rod is one, what rod would equal two-thirds?
(c) If the black rod is one, what rod would be one-half?
These same activities could be done using other models, such as Pattern Blocks.

Part-to-whole activities

Give the students some fractional part and ask them what the whole might look like. In
essence, we are turning the previous problem around. 

Activity 10
If the rectangle in Figure 5 represents 3/5, what is the whole.

Figure 5

Activity 11
Solve the following problems using Cuisenaire Rods.
(a) If the purple rod is two-thirds, what rod represents the whole?
(b) If the dark green rod is three-fourths, what rod represents the whole?
(c) If the brown rod is 4/3, what rod is one?
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Part-to-part activities

These activities are similar to the part-whole activities above. The difference is that instead
of arriving at one, we want to obtain another fraction. 

Activity 12
Solve the following problems using Cuisenaire Rods.
(a) If the purple rod is 1/2, what is 3/4?
(b) If the blue rod is 1 1/2, what is 2/3?
(c) If the rectangle in Figure 6 is 2/3, what is 1/2?
(d) If the rectangle in Figure 6 is 4/3, what is 1/2?

Figure 6

Activity 13
Solve the following problems.
(a) If the diagram in Figure 7 represents 0.3, what represents one? One half?

Figure 7

(b) If the brown rod represents 40% or 0.4, what could represent 10% or 0.1?

Ordering, comparing and equivalent fractions

Comparing unit fractions

Students often carry over their whole number concepts to fractions. Thus, they may
believe that 1/8 is greater than 1/5, because 8 > 5. Having students compare fractional
pieces from the same sized whole is important. They need to come to the realisation that
the larger the number on the bottom, the smaller the fractional part. Students will need
experiences doing this. 

Activity 14
Put ‘>’, ‘<’ or ‘=’ in the blank space below and explain your thinking.
(a) 1/5 1/8
(b) 1/10 1/7
(c) 2/3 2/6
(d) 3/9 3/5
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Close to zero, half, or one?

Students need experiences with fractions so that they can readily know that 1/25 is close
to zero, 4/9 is close to one-half, and 9/10 is close to one. 

Activity 15
Tell whether the following fraction is closer to 0, 1/2 or 1 and explain your reasoning.
(a) 2/12
(b) 1/3
(c) 2/9
(d) 7/9
(e) 6/5
(f) 3/4

Activity 16
Put ‘>’, ‘<’ or ‘=’ in the blank space below and explain your thinking by relating the frac-
tions to zero, half or one.
(a) 4/5 7/8
(b) 5/11 4/7
(c) 6/11 5/9
(d) 2/9 1/5

Estimating fractions

Students should be shown portions of figures which have been shaded and be asked to
estimate a fraction that might be used to represent it. Look at the exercises below. 

Activity 17
Name a fraction which would be close to the shaded portions in each diagram in Figure 9.

Figure 8

Activity 18
The chocolate bar activity. In this activity six chocolate bars are placed in three rows. One
row has three bars, another row has two bars and the third row only has one bar. One-by-
one students enter the room and stand next to the row of candy bars they think will give
them the most to eat at that given instant. When they are done, questions are asked to
help them develop their fractional understandings. The number of chocolate bars and
the number of rows can vary.

Equivalent fractions

The procedure for identifying equivalent fractions, namely multiplying or dividing the
numerator and denominator by the same number, leaves a lot to be desired. The process
is very procedural and not very conceptual. Students need to discover those rules on their
own.

The rectangular area model is a rich and powerful model to use when working with
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equivalent fractions. Examine the rectangles in Figure 9. You could divide the first rectan-
gle into sixths in two different ways. Students should recognise they need twice as many
pieces to get sixths as thirds. You could divide each of the thirds in half to get sixths or
you could divide the rectangle in half horizontally. Each yields that 2/3 equals 4/6.
Students should be given lots of experiences in doing activities like this by either folding
pieces of paper or by drawing rectangles and cutting them vertically and horizontally. 

Figure 9

Students should discuss how we got six pieces by dividing each of the thirds in half
obtaining twice as many shaded regions. Collecting data and organising it can help stu-
dents conjecture that multiplying the numerator and denominator by the same number
will result in equivalent fractions.

Activity 19
Paper folding is a good way to explore equivalent fractions. Pose some questions which
will develop conceptual ideas about equivalent fractions. 
(a) Take two strips of paper the same length and fold them to illustrate whether 2/3 is

greater, less than, or equal to 3/4.
(b) Use paper folding to show how many eighths is 3/4.
(c) Use paper folding to show how many ninths is 2/3.

Simplifying fractions

When students change the fraction 6/8 to 3/4, it is often called ‘reducing the fraction.’
Unfortunately, the term ‘reducing fractions’ is a poor name for this process. Fractions are
not reduced, they are merely simplified or renamed. We would highly recommend using
the term ‘simplify’ the fraction or ‘rename’ the fraction when working with equivalent
fractions. Using the idea of the multiplicative identity element is probably best left for the
seventh and eighth grades, when students are beginning to explore algebraic concepts.
Many students when asked what they did to change 3/4 to 6/8 reply by saying I multiplied
by two. They do not recognise that they used the identity element for multiplication.

Comparing fractions

Usually students are taught rules for comparing or ordering fractions (e.g., cross multi-
ply), and usually these rules are not based on any conceptual understanding. Instead,
students should think about the fractions and try to justify their conclusions based on con-
ceptual understanding. 
(a) More of the same-size part: this is the case where students are comparing fractions

such as 2/6 and 4/6. Since the numerator is counting the same size pieces, and 
2 < 4, then 2/6 < 4/6.

(b) Same number of parts, but the parts are different size: this is the case when compar-
ing 3/4 and 3/6. Since fourths are greater than sixths and we have the same
number of each, 3/4 > 3/6.

(c) Greater than or less than one half or one: this would be the case where students
compare two fractions such as 3/7 and 5/9 or 7/8 and 4/3. Since 3/7 < 1/2 and
5/9 > 1/2, then 3/7 < 5/9. Similarly, since 7/8 < 1 and 1 < 4/3, then 7/8 < 4/3.
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(d) Closer to one-half or one whole: students should be able to compare 4/5 and 9/10.
Since each is just one piece away from one and 1/10 is less than 1/5, therefore 9/10
is closer to one and is the greater fraction.

(e) Changing to an equivalent fraction to apply the above strategies: students could be
asked which is greater 6/9 or 3/5. Since 3/5 is equivalent to 6/10 and ninths are
greater than tenths, 6/9 > 3/5. We use the idea of ‘common numerators’.

Same number of parts away from zero, half, or one?

For example 4/5 is less than 7/8, since they both are missing one part to equal one whole.
Since fifths are greater than eighths, 7/8 > 4/5.

Activity 20
Which is greater: 5/9 or 7/13? Explain.

Activity 21
Order the fractions below from least to greatest using the strategies above. Be able to
explain your reasoning.
2/3, 4/7, 3/8, 4/5, 2/9, 5/4

Reference
Cramer, K. & Henry, A. (2002). Using manipulative models to build number sense for addition of fractions.

In B. Litwiller & G. Bright (Eds), Making Sense of Fractions, Ratios, and Proportions (pp. 41–48). Reston,
VA.: NCTM.
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Changing the focus of computation instruction 
in primary schools:

Putting the research into practice

Judy Hartnett
Brisbane Catholic Education

Computation is recognised as an aspect of mathematics education in need of a
change in focus. Shifting the emphasis from teaching the traditional written algo-
rithms to mental computation based on strategies and number sense has been
advocated by researchers across the world and has been adopted in syllabus doc-
uments across Australia. As yet there has been little widespread change evident at
the classroom level. This paper outlines attempts by the author to enact change in
the whole staff of two primary schools in Queensland.

Why change computational focus? 

Recent curriculum documents in Australia and overseas the US Principles and Standards for
School Mathematics (National Council of Teachers of Mathematics, 2000), the Dutch Proeve
van een Nationaal Programma (Treffers, DeMoor & Feijs, 1989), and the Australian National
Statement on Mathematics for Australian Schools (Australian Education Council, 1991) have
indicated that mathematics education needs to change emphasis to match the develop-
ments in the world today. For school mathematics to be useful, it needs to reflect the
computational techniques used in everyday life (AEC, 1991; Clarke, 2003; Irons, 2001;
Willis, 1990). Where computation, as part of school mathematics, continue to be orient-
ed towards paper and pencil techniques (McIntosh, 1990, 2002, Willis, 1990), those
outside the classroom are predominantly mental (Carraher, Carraher & Schliemann
1987; Northcote & McIntosh, 1999). Kilpatrick, Swafford and Findell (2001) specified
that the goal of mathematics instruction should be mathematical proficiency which has
been defined by Schoenfeld (1992) as needing to involve conceptual understanding,
computational fluency, strategic mathematical thinking and a productive disposition. 

Teaching computation

The traditional didactical approach to teaching computation, where the teacher directly
instructs the whole class in the procedures of the traditional written algorithms followed
by pencil and paper practice exercises: all set out, usually in a text book and often expect-
ed to be completed in silence, is quite comfortable for many classroom teachers of
mathematics. Generally, this is how they were taught themselves. They like the routine
and it is quite a straightforward method of instruction. To change to a focus on mental
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computation requires a change to having students discuss and share strategies and
methods of solution, is unsettling to many teachers. Becker and Selter (1997) stated,
‘teaching is no longer seen as treatment and learning as the effect. Learners are people
who actively construct mathematics’ (p. 511). Mental computation can play an important
role in constructing understandings in mathematics, stimulating not only conceptual
understanding and procedural proficiency but also number sense and the understanding
of number relations (McIntosh, Reys, & Reys, 1992).

Brownell (1935) stated that mathematics instruction could not be significantly
improved by turning away from more complex methods of instruction because teachers
are not sufficiently prepared to implement them. This statement was made a significant
time ago and unfortunately this factor is having an impact on the potential change in
focus of computation in primary schools today. If there is to be a shift in computational
instruction focus teachers will need to adopt teaching strategies more in line with the
development of conceptual understanding than computational procedures.

Supporting the classroom teacher

All over the world calls for reforming school mathematics are being heard. These calls are
urgent, but not new (Becker & Selter, 1997). Selter (1997) stated that desired reform
‘cannot happen simply by setting the scene. Practising teachers need to know how to deal
with the subject matter in a way differing from the so called traditional one’ (p. 55). The
teachers’ knowledge base has to consist of domain specific and topic specific background
knowledge, but also of specific knowledge about instructional activities and material to
support learning. 

Clarke and Peter (1993) stated that it has been clear for a number of years that, for
many teachers, transforming their teaching entails changes in their beliefs, changes in
their knowledge of mathematics and the processes by which children learn mathematics,
and changes in their own instructional practice. They saw the process by which teachers
change their practices and their knowledge and beliefs as fundamentally a learning
process. Teachers need pedagogical support, mathematical content support, practised
models and resources and methods for utilising informal written methods.

Pedagogical support

The draft Queensland Years 1–10 Mathematics syllabus (Queensland Studies Authority,
2003) includes a stronger support for mental computation in schools. Through access to
professional development teachers believe that a shift in focus to mental computation is
appropriate. However, they would like support to put this into practice. When working
with teachers who agree with the need for the shift, questions arise that include:

• What teaching approaches work best for the development of mental computation
strategies? 

• Is there a list of mental computation strategies to teach or look for in student work?
• Should teachers teach the strategies to students or should students invent their own

strategies for mental computation?
• Is there a sequence for the development of mental computation strategies?
• Is there a set of descriptions for mental computation strategies to facilitate focussed

discussions?
• What models (resources) could teachers use to aid the students’ understanding of
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mental computation?
• Does the traditional written algorithm have a place in primary mathematics at all if

the focus is on mental computation?
To change the focus on computation instruction in primary school teachers are going

to need help to view the teaching of mathematics differently. The classroom activity needs
to have a focus on discussion where the sharing of strategies is common and expected.
Students should be encouraged to be flexible in their thinking, with spontaneous think-
ing being encouraged. Students should be encouraged to reflect on their strategies and
methods used. The shift away from the traditional teaching methods for computation is
going to be difficult for teachers as the new Queensland Years 1–10 mathematics syllabus
(QSA, 2003) will likely be implemented with little or no professional development or
support materials in terms of computational instruction. 

Mathematical content support

Successful mental computation requires accuracy, flexible use of a range of strategies and
affective traits like persistence and confidence. Teachers often have a very limited person-
al, conscious repertoire of mental computation strategies themselves and as such are
hesitant to take on the content (or intent) of the new syllabus. Knowing what strategies
exist and having time to use these and to rate the usefulness of them will influence teach-
ing and learning in classrooms. 

Categorisation of strategies

A variety of researchers (Beishuizen, 1993; Cooper, Heirdsfield & Irons, 1996; McIntosh,
1990; Reys, Reys, Nohda & Emori, 1995) have attempted to categorise mental computa-
tion strategies. These categorisations have been developed for the study of students’
strategies when being interviewed by researchers, i.e., for analysis. 

A proposed categorisation of mental computation strategies was trialled by the author
with teachers and students to provide a common language (see Table 1). While it was
found to be useful for the teachers a major stumbling block in seeing this categorisation
utilised in the classroom was the lack of time available for the teachers to really under-
stand the strategies and to recognise them. Some class groups developed their own names
for some strategies which served to personalise them but this understanding remained
localised in these classrooms.

Table 1. Proposed categorisation of computation strategies.

Strategy Description
Counting on/back Counting forwards or backwards in steps
Doubling/halving Applying knowledge of multiples and factors and their

relationship
Breaking up numbers Splitting numbers into manageable parts
Adjusting and compensating Changing one or more numbers and then compensat-

ing for the adjustment
Using place value Applying knowledge of place value to simplify a compu-

tation
Using compatible numbers Choosing and using combinations of numbers that ‘go

together’
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Within each strategy there were many variations and teachers were presented with
examples of these and references to resources to support each of the strategies. The
intended aim was for the document to form a reference for teachers to support their
teaching and fostering of mental computation strategies throughout classroom activities.
Teachers found the resource useful and were amazed at the possible strategies. They did
need time to familiarise themselves with the strategies before they felt comfortable to
make major changes to their practice.

Models and resources

Currently the most common model to support the teaching and learning of computation
in Queensland primary schools is multi attribute (MAB) base-ten blocks. Miura and
Okamoto (2003) found that children can be taught to use the blocks to make canonical
(tens and ones) constructions, but this does not necessarily indicate a change in their cog-
nitive representation of number. Instead, it appeared that children might simply acquire
proficiency in using blocks to construct numbers. Once the children received instruction
on using the base ten blocks, they almost always made canonical construction to repre-
sent numbers. However, this did not automatically lead to an understanding of place
value. For students to successfully develop flexible strategies for mental computation,
multiple representations of number are useful. 

Resnick (1982), criticised the use of base-ten blocks for the teaching of computation
because the materials provided a strong conceptual but weak procedural representation
of operations on numbers. The base-ten blocks not only provide only one (canonical)
representation but also lead to very procedural methods of computation — usually tradi-
tional written algorithms.

Classroom models recommended throughout the professional development program
used by the author to support mental computation include number boards and number
lines. Number boards are generally in the form of hundred boards where the numbers 1-
100 are represented on a ten by ten grid. The benefit of this model is that students can
utilise the format to easily add and subtract tens by moving up or down rows and add or
subtract ones by moving right or left in a row. This reinforces mental computation in that
natural usage is to do the larger numbers first (the tens) as opposed to the traditional
written algorithm which has students work from the ones to the tens.

Figure 1
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Number lines take many forms from number frames which have spaces for numbers
or physical objects to go in representing the number as well as indicating addition and
subtraction utilising benchmarks of 5 and 10 depending on the particular frame being
used.

Figure 2

Number lines have been included as part of the curriculum in the Netherlands
(Beishuizen, 1997). A variety of forms of number lines has been reported in the United
Kingdom where they referred to number tracks, numbered lines, unnumbered lines and
then empty number lines. Empty number lines ‘serve both basic number operations and
flexible mental strategies’ (Beishuizen, 1997, p. 18).

Figure 3
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Klein, Beishuizen and Treffers (1998) discussed many reasons for the adoption of the
empty number line. The empty number line is well suited to link up with informal solu-
tion procedures because of its linear character and lack of set representations of
numbers. It also provides the opportunity to raise the level of students’ activity to give stu-
dents freedom to develop more sophisticated strategies. The empty format stimulates a
mental representation of numbers and number operations and seems well suited to the
representation and solution of non-standard context or word problems. Students using
the empty number line were cognitively involved in their actions. In contrast students who
used materials such as base-ten blocks or the hundred square sometimes tend to depend
primarily on visualisation, which results in a passive ‘reading off’ behaviour rather than
cognitive involvement in the actions. Students using empty number lines also keep track
of what they are doing, leading to a reduction of the memory load while solving a
problem.

Teachers in Queensland are very heavy users of classroom textbooks for supporting the
teaching of mathematics. There are very limited commercial resources readily available
to support a strategy based mental computation focus. Most available resources have a
focus on the instant recall of answers to computations and are marketed as maths mentals
books. These books are often used by teachers to set homework for the students. By intro-
ducing a focus on mental computation and the use of models like number boards and
number lines teachers have begun to see other options – however these have been seen
as extra activities rather than as replacements for the focus on traditional algorithms and
teaching models to replace current classroom resources like MAB base ten blocks.

Informal written methods 

What is the teacher to do when children are faced with [mental computations] where
the digits are difficult to hold in the head while calculating? Should the teacher
ignore practices and understandings related to mental computation of smaller
numbers which the child has acquired and teach the standard formal written algo-
rithm? Or should the teacher build on practices and understandings related to the
mental computation of smaller numbers and help the child develop extensions of
these practices? (McIntosh, 2002, p. 377)

A shift to mental computation is often seen as requiring the removal of students using
any pencil and paper to compute. Thompson (1999) discussed partial written methods
used in the United Kingdom, referred to in the Numeracy Project framework as jottings.
He saw a sensible extension of these jottings to develop informal written methods, and
then move to more formal strategies, culminating in the adoption of standard algorithms
by those who understood them and/or wish to make use of them. McIntosh (2002)
reported teachers using this approach by following a six-stage developmental sequence as
a basis for developing informal written computation (see Table 2).

Table 2. Development of informal written computation from mental computation (McIntosh 2002).

Stage Process
1 Strengthen children’s mental computation with two digit numbers
2 Encourage children to explain their mental methods using paper and pencil
3 If method is ‘sound’, conference and refine recorded explanation
4 Strengthen this method on examples of a similar difficulty
5 Extend its use to more difficult calculations
6 Consolidate it as an understood, secure written method
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Research is continuing on non-standard recordings, particularly in the Netherlands.
The important aspect for teachers to see is that a focus on mental computation strategies
is possible, and is in fact preferable, while utilising written methods. The focus is not to
remove pencil and paper from the classroom but to change the focus of computation
away from learned procedures including the traditional written algorithms which have for
so long taken up time in Queensland schools (and beyond).

Putting the research into practice

As discussed above, when teachers have been introduced to the possibilities of a higher
inclusion of mental computation into maths programs they see the value in the shift of
focus. What is lacking is the teachers’ own pedagogical and mathematical knowledge and
knowledge of strategies to enable them to lead the students through activities to support
mental computation skill development. Having support in the form of a
consultant/researcher in the classroom taking the lead and modelling lessons using
strategies and also by having a reference document with examples of possible strategies
has shown the beginnings of change as discussed in this paper. The teachers so far, have
not felt confident enough to make a big change in their general practice when the con-
sultant/researcher is not present.

It is a belief of the author that mental computation can replace the traditional written
algorithms as the main computational instruction focus in primary schools if the teachers
are supported in terms of knowledge and skills for implementation. This idea will be tri-
alled during 2005 in a teaching experiment with the proposed outcomes being the
students’ increased accuracy, flexibility of strategy choice, and attitudes; and the teachers’
confidence, increased personal repertoire of strategies and positive beliefs and attitudes
about mental computation. The teachers will be supported in terms of pedagogy and
mathematical content and strategies by a researcher in the classroom leading lessons and
activities. The students will be exposed to a variety of computational strategies, models
and methods of recording. The researcher will document the program of learning
throughout the study. It is proposed that it will be possible to teach students alternative
computation strategies and to see flexibility in strategy choice and recording methods in
the students’ standard repertoire by the end of a year. This study is planned to guide a
wider shift in focus for schools with support to implement the new Qld Maths syllabus.
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Algebra revisited*

Marj Horne
Australian Catholic University

Poor concepts of the symbols used in algebra contribute to students’ difficulties.
Some concerns include the understanding of the addition sign, the equals sign and
the variety of meanings for the pronumeral x. Following a discussion of student
understanding of algebraic concepts, some activities are suggested which foster
discussion around some of the ‘big ideas’ of algebra and have the potential to
make the concepts of algebra explicit.

Introduction

The mention of the word algebra often brings a negative reaction from the listener. Many
adults comment that mathematics was ‘okay’ until they started algebra. It then became
hard and sometimes they add that they subsequently failed mathematics. I have heard
teachers comment that when the word algebra was mentioned it was like a chilly wind
blew through the classroom. The perception seems to be that algebra is difficult. 

Why is it that algebra causes so many difficulties for children learning mathematics?
Many children seem to ‘hit a brick wall’ in their mathematics learning early in Years 7 and
8 and this is usually attributed to algebra. Recently there has been a lot of international
attention on early algebra being introduced in the first few years of school. Changes in
curriculum in many places have included algebraic development right from the start of
schooling and this should make a difference but these changes will take some years to
filter through and affect students at Years 7 and 8.

Understanding of the operation symbols

So what are some of the causes of these difficulties with learning algebra? One of the dif-
ficulties is that although one aspect of algebra is generalised arithmetic, the signs and
symbols in algebra are not exactly the same as they are understood by many students in
arithmetic. For example, when some students see 5 + 7 they immediately recognise the +
as a sign to combine the two numbers and give the response 12. Once the number is seen
as 12 the original components such as the + sign are no longer visible and a single
number, 12, replaces the expression 5 + 7. In algebra however, a + 7 is different: the plus
sign does not mean ‘combine the two parts to make a single number in the same way’ as

* This paper has been accepted by peer review.
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it did for the arithmetic expression (Chalouh & Herscovics, 1988). The expression a + 7
can be considered as a single object made by combining the two components a and 7 but
these components maintain their identity within the object.

Many children try a variety of ways to combine the separate components. Most teach-
ers of Years 7 and 8 have seen expressions such as 4x + 3 simplified by students to 7x. Some
students will have learned the procedure for simplifying expressions and can use it to sim-
plify quite complex expressions but then add an extra step to write the final expression
as a single term, thus eliminating the plus sign. Students who leave the expression as
4x + 3 without trying to combine the parts are said to have ‘acceptance of lack of closure’
(Collis, 1975). This understanding is a critical part of algebraic development. 

Understanding of ‘=’

Another aspect of differences between symbol use in arithmetic and algebra is the equals
(=) sign. Freudenthal (1983) claimed four different categories of meaning for the equals
sign: 

• the result of sum; 
• quantitative sameness; 
• a statement that something is true for all values of the variable (identity); and 
• a statement that assigns a value to a new variable. 

A full understanding of the equals sign as it is used in algebra requires all of these mean-
ings. However, for many students = is the sign that indicates the need to do something —
an operator sign — or to move to the next step; or even as an indicator of where to write
the answer — a syntactical indicator (Carpenter & Levi, 2000) — so they will record incor-
rectly using equals signs. I saw this demonstrated in a classroom recently where students
were solving a problem. The question concerned how many legs there were with two
lions, four cubs and four storks. After the sharing time at the end of the lesson, the display
shown below was on the blackboard.

2 × 4 = 8 + 4 × 4
=8 + 16 = 24 + 4 × 2
= 24 + 8 = 32

This misuse of the equals sign during the solution to a problem is also common among
secondary school students who use = as a sign to do the next step in solving an equation;
for example, cosA = 0.5 = 60°. Other students will use the equals sign at the start of a row,
so it becomes the sign for the next line of a solution even if the task is solving an equa-
tion as in the example below.

3x – 4 = 2x + 5
= 3x – 4 – 2x = 5
x – 4 = 5
= x = 9

The meanings of these symbol components of arithmetic and algebra need to be made
explicit for the students. The new curriculum in Queensland addresses this by including
the algebraic structure as part of early understanding of mathematics and recognising
that this structure underlies both arithmetic and algebra. In other places also, the primary
school curriculum has recognised the need for improved understanding of the equals



MAKING MATHEMATICS VITAL: PROCEEDINGS OF THE TWENTIETH BIENNIAL CONFERENCE OF THE AUSTRALIAN ASSOCIATION OF MATHEMATICS TEACHERS

[ HORNE ]
310

sign. However, for Year 7 and 8, students who have not had these experiences and who
are still operating with the idea that the equals sign is an indication of where to write the
answer, there needs to be discussion about these issues so that the reasons for using the
symbols in a particular way are based on understanding rather than ‘because the teacher
tells me I have to set it out that way.’

Understanding of the pronumeral

Yet another group of errors arise because of lack of explicit explanation for the different
uses of the pronumeral. Here is a list of equations where pronumerals can be considered
to have different meanings. 

1. x + 2 = 5
2. 3x + 4 = 15
3. x(x – 2) – 15 = 0
4. a(x + b) = ax + ab
5. 2x + 3x = 5x
6. y = 2x – 4
7. 4x + 3y = 12
8. y = mx + c
9. A = l × w

Sometimes the x represents a number which is known, and sometimes it represents an
unknown number. Sometimes it represents one number and sometimes many. On some
occasions the pronumeral is a variable, and on others, a constant. A more complete list of
possible meanings for the ‘x’ is given here. 

• a specific known number
• a specific unknown number
• more than one specific number
• any number
• (any object)
• a variable which may be dependent or independent
• a constant
• a quantity that can be measured
• a quantity that can be calculated
In the first of the equations above, most students look at it and know immediately that

x = 3. In this situation x is not an unknown. The equation is transparent. Many students
thus find it difficult to understand why the textbooks use complicated algorithms to
‘solve’ such equations. The methods of solution given make much more sense when
applied to the second of the equations as nearly all students would need a formal method
of solution. The third equation not only requires a method of solution but yields more
than one value for the pronumeral.

The distributive law, which is the fourth equation, is an identity which is always true for all
possible values of the pronumerals involved and relates to Freundenthal’s third category of
meaning for the equals sign. In the fifth equation, the x is not restricted to pronumerals or
algebraic objects made up of pronumerals, but indeed could be any object. This is the root
of what has become to be known as ‘fruit salad algebra,’ based on using the letter to repre-
sent an object often starting with that letter so 3a + 4a = 7a is read with the a being ‘apples’
rather than the desired understanding at this level of a representing a number.
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The understanding of x which relates to functions and relations is as a variable, and is
represented in equations six to eight. It also relates to Freudenthal’s fourth category for
the understanding of the equals sign. As an independent variable, x does not just repre-
sent any number but rather all numbers in the possible domain. For students there is a
difference between an expression written in the assignation form such as equation 6 and
the linear relation represented in equation 7. Equation 8 also raises the idea of constants
and variables. I remember being puzzled over this distinction for years as a student in
high school and at university.

In the final equation, the l and the w represent the length and width of a rectangle and
as such in the student’s eyes are know quantities because they are easily measured. The A
is different because it is not measured directly but is rather calculated. This difference in
understanding explains why students who otherwise can solve an equation like 3x = 21,
have difficulty finding the length when the area is 21 cm2 and the width is 3 cm (Usiskin,
1988).

Students often adopt one meaning for the pronumerals and do not attend to others.
A classic situation arose when a teacher was returning a test to a Year 8 student. The
student complained that he had been unfairly treated as the teacher had marked the
question wrong when it was correct. The teacher looked at the linear equation, for which
the student had the answer 39 and explained to the student that 14 was the correct value
as it made the equation correct. The student responded in frustration, ‘But all last year
you told us that x could be any number and so what is wrong with 39?’ The symbol x has
many different meanings which are rarely if ever made explicit and this can contribute to
students’ misunderstandings. These multiple meanings need to become part of the class-
room conversation.

One key aspect of algebra is its use in generalisation. The student above has over gen-
eralised the meaning of the x but on other occasions we want students to generalise.
Algebra has often been described as generalised arithmetic, and part of it is the abstrac-
tion from specifics in arithmetic to general underlying structures. 

Difficulties in this abstraction process often occur because students may focus on inap-
propriate generalisations and interpretations, as well as obstructions caused by semantics
and alternative approaches to semantics deduced from the ‘concrete’ situation. For
example, given a simple one- or two-step linear equation in early algebra, students will
often solve it by a guess and check method in spite of the teacher presenting a different
approach. This is reinforced by success in the problems in the Year 7/8 textbooks, and
becomes entrenched but does not lead to further understanding and allow transfer to
more difficult situations. Similarly in arithmetic, the equality symbol is often seen as a
signal to perform operations, but this is a limited conception and causes an obstacle in
algebra. Left to their own devices without direction, students are unlikely to develop the
semantics of algebra as we know them because the types of experiences they have are
limited and often lead to alternative representations which do not then relate to other sit-
uations. Another example of students developing entrenched but non-productive
understanding is with students using a backtracking method. They might record it
happily as 5x + 3 = 8 = 5 = 1 and all students involved at the time understand what this
means, but it is a misuse or different meaning of the symbols and will limit future devel-
opment. This means clear guidance is needed to assist the students to construct
knowledge and use mathematical language and sign systems that are compatible with the
language and sign systems of others.

Backtracking causes a further obstacle. Students are often shown how they can solve
fairly complex equations with one occurrence of the variable on the left hand side of an
equation and a single number on the right hand side. They practise this skill and become
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adept at using it. This often leads to a strong reluctance to relinquish it when in the fol-
lowing years they meet equations for which backtracking cannot be used, and thus
handicaps their further development in algebra.

Algebra sense

Students need to develop a sense of algebra. What do I mean by algebra sense? Algebra
sense is an understanding of the objects of algebra and the different representations as
well as the ability to sense the form of the result of a particular process (Horne & Maurer,
1998). It is the ability to visualise the nature and form of the solution and to move readily
between the representations or mathematical sign systems rather than the ability to work
with the objects to produce the required solutions, although of course producing solu-
tions is also necessary in developing algebra. In many ways, algebra sense corresponds to
number sense, though algebraic experiences are not as much a part of the students’ world
as numerical experiences. 

A critical part of developing algebra sense is encouraging discussion where the use of
language and student explanation can assist them in their developing understanding.
The few activities below are designed to allow all students to participate in developing
mental algebraic skills and more particularly to make sense of algebra. The key part of
these activities is the ensuing discussion in which the issues can be made explicit and the
big ideas of algebra be raised. Part of the focus is on some of these key principles of
algebra. For example, the first activity focusses on the approaches students use in solving
equations. The idea is to enable the students to share their ideas about how to solve equa-
tions. The ensuing discussion should also raise the issue of when different methods are
useful and efficient and the difference between ‘arithmetic’ linear equations which can
be solved using backtracking methods and ‘algebraic’ equations which have more than
one occurrence of the x. Filloy and Sutherland (1996) call this separation between what
they see as arithmetic and algebraic, the didactic cut.

Activity 1

Which of these equations 
A. are easy to solve in your head? 
B. could you solve in your head but it requires extra thinking? 
C. would you prefer to use a pen and paper to solve?

1. 2x + 5 = 9
2. 3x – 4 = x + 2
3. 4x + 3 = 12
4. 5 = 2x + 1
5. 3x – 8 = 5x + 2
6. 6x – 5 = 3x + 2
7. 3(x – 4) = x + 2
8. 2(x + 5) = 9
9. 5x – 2 = 9
10. (11x + 5)/3 – 4 + 2 × 3 = 11
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Another question to ask then is what different methods could be used to solve these
equations and which is the most efficient method for each question? We know many stu-
dents use guess and test even though teachers have often tried to insist on the students
setting out their solutions to equations by using a balance method. For this activity the key
focus for the students could be which methods are most suitable for which equations.
Instead of the question above about doing the problems in their heads, the question
might be: 

For which of these equations could you use 
A. guess and test; 
B. backtracking; 
C. the balance method; or 
D. other? 

The activity can also involve group discussion before the whole class has a sharing time.
Allow the students some time of individual work to decide on their answers then have
them share their strategies in groups of 3 or 4. The question did not actually ask for the
solutions to the problems but in the discussion about the strategies the solutions will arise.
Following a time of group discussion, the key approaches can be discussed with the whole
class with the students also suggesting how to decide on the best method to use each time.
The other key point that will arise is that there is not one best method. While the balance
method always works and is often the taught algorithm, it is not the most efficient method
for an equation like 20/(2x + 3) = 4 or 32/(3x + 1) = 4. The focus of this question was
solution of equations. Activity 2 is also focusing on solving equations.

Activity 2

Write down five different equations that have a solution of x = 3.5.

The approaches that students use to do this task can be shared with the class. In order
to elicit a variety of answers from the students, criteria can be added such as at least one
of the equations has to have an x on each side of the equals sign.

The activities used can be from any aspect of algebra. The critical aspect is that they
are fairly open and encourage the students to share and discuss meaning. Activity 3 is an
open task that focusses on equivalent expressions and raises the whole issue of simplifica-
tion. 

Activity 3

Ask the students to write down three different expressions equivalent to 2x + 3. Collect
verbal answers from all students (the teacher acting just as scribe), arranging them in up
to five different groups on the board as students give their answers to you. The answers
should be recorded on the board with no corrections. It is up to the students to discuss
any discrepancies. The groups might be

• those which change the order of terms or insert symbols: e.g., 3 + 2x, x × 2 + 3;
• those in which the number term is changed: e.g., 2x + 6 – 3, 2x + 1 + 10/5;
• those in which the coefficient of x is altered or a series of x terms are added or sub-

tracted: e.g., 8x/4 + 3; 2x + 3 + x;
• those which are a combination of the last two groups;
• a miscellaneous group which may include changes to the x: e.g., x2 + x + 3.
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If too many answers are coming in for any of the first three groups, ask them to try to
change some other aspect of the expression. The students also will need to check that
they agree with each recorded expression. When answers have been collected from the
whole class, the students can explain why you have grouped them in the way you have by
explaining the common aspects of each group and the differences between them. Of
course with older students expressions can be with different powers. There should be
class discussion about how we know the expressions are equivalent and students should
try to explain how they arrived at their answers. Another way to do this is to put up the
expression and focus the nature of the student answers by specific questions while still
leaving them partly open. For example:

• Write down an expression with no 3 in it.
• Write down an expression with no 2 in it.
• Write down an expression with a – sign.
• Write down an expression that begins with a negative number.
• Write down an expression with a fraction in it.
• Write down an expression with a b in it.
One of the early rules students suggest is often to change the order so the negative

raises that question. Students often think a – b is the same as b – a. Rather than immedi-
ately correcting the students who suggest that the order does not matter, follow up by
using the same task but with the starting point 2x – 6, or some other similar expression.
As part of the discussion one of the questions becomes, ‘How do you know when two
expressions are equivalent?’ Another key issue to raise in the discussion is which of the
expressions is simplest. For many students x + x + 1 + 1 + 1 is the simplest as it shows the
basic meaning. 

Activity 4

Write down an ordered pair which satisfies the equation 2x + 3y = 6.
An important part of all these activities is the discussion which ensues. Students should

explain how they arrived at their answers and discuss the relative ease of using different
types of numbers and approaches.

Try it again with y = x2 + 3. Did strategies change for this problem and if so why?

Concluding comments

These activities and the associated discussions are an attempt to engender in students a
sense of algebra. Estimation and number sense are acknowledged as critical to our teach-
ing. An important part of the introduction of ordinary calculators in schools is the
corresponding emphasis on estimation skills as students develop the number sense nec-
essary in tandem with calculator skills. Symbolic manipulators (computer/calculator
algebra systems) are to algebra as ordinary calculators are to number, although there is
one important difference. Students are continually meeting number and measurement in
a variety of ways in the world around them and in their out-of-school experiences. A cor-
responding algebraic world experience is not as accessible. Algebra provides a language,
notation and procedures that enable problems from the world to be more easily and effi-
ciently solved. The rarity of this experience in everyday life means we must be extra
careful to include experiences that can support the development of algebraic estimation
skills and assist in the development of algebra sense. Our approach to teaching algebra
has to allow for a variety of approaches. Efficient mental methods are not always the same
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as written algorithms and change more with the components of the question rather than
with the nature of the question. Number sense plays an important part in this. How will
the corresponding algebra sense be developed? We will need to change our teaching pro-
grams to include approaches which will build algebra sense.
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Numeracy development:
What it looks like in the classroom

Chris Hurst
Guildford Grammar Preparatory School

The interpretation of the terms ‘numeracy’, ‘real-world problems’ and ‘real-life prob-
lems’ has varied considerably. Consequently, the ways in which numeracy is
developed in the classroom has also varied. In this paper, various views of numer-
acy are examined and a different model for numeracy development is put forward.
The introduction of the model is supported by examples from classroom based
action research.

What is numeracy?

Seeking a definition

The theme for this conference is ‘making mathematics vital’. Considering what this paper
purports, it is worth examining the Macquarie Dictionary’s definition of the word ‘vital’: 

of or pertaining to life; having remarkable energy, enthusiasm, vivacity; necessary to
life; necessary to the existence, continuance, or well-being of something; indispensa-
ble; essential, and, of critical importance.
(Macquarie Dictionary, 1990)

The stance taken here is that the development of numeracy ranks equally in importance
with the development of literacy, and that the above definition of ‘vital’ encompasses the
significance of numeracy development in our schools. During the last thirty years, the
term ‘numeracy’ has come to mean many different things to different people. The
Australian Association of Mathematics Teachers (AAMT), in its report of the 1997
Numeracy Education Strategy Development Conference, put forward the following defi-
nition of numeracy:

To be numerate is to use mathematics effectively to meet the general demands of life
at home, in paid work, and for participation in community and civic life. 
In school education, numeracy is a fundamental component of learning, perform-
ance, discourse and critique across all areas of the curriculum. It involves the
disposition to use, in context, a combination of:
• underpinning mathematical concepts and skills from across the discipline

(numerical, spatial, graphical, statistical and algebraic);
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• mathematical thinking and strategies;
• general thinking skills; and
• grounded appreciation of context. (p. 15)

This view contrasts with the ‘traditional’ view of numeracy, which equates it with efficien-
cy in computation. Fuson (2003), Devlin (2000) and Steen (2001) also took issue with the
traditional and comparatively narrow view, noting that numeracy, or ‘quantitative litera-
cy’, is concerned with promoting greater understanding and application of mathematical
ideas. Steen further clarified the distinction between mathematics and numeracy; the
former being abstract, organised in categories mostly inherited from the past, and mostly
applicable to academia; the latter being practical, concrete and contextual, focusing on
the way knowledge is used. ‘Whereas mathematics asks students to rise above context,
quantitative literacy is anchored in the messy contexts of real life. Truly, today’s students
need both mathematics and numeracy’ (Steen, 2001, p. 1).

Some models of numeracy development

The particular model of numeracy teaching that underpins the exploration of issues in
this paper draws heavily on models put forward by Watson, Willis and Van den Heuvel
Panhuizen. Watson’s views on ‘statistical literacy’ have been well documented (Watson,
1995, 1997, 2004) and underline the importance of maintaining a strong focus on
problem solving as part of numeracy development. Watson (2004) noted recent attention
being given to the term ‘quantitative literacy’ and compared Steen’s (2001) definition of
quantitative literacy to the definition of numeracy generated by the Australian
Association of Mathematics Teachers (1997) which adopted many of the ideas put
forward by Willis (1992), who stated:

Being numerate, at the very least, is having the competence and disposition to use
mathematics to meet the general demands of life at home, in paid work, and for par-
ticipation in civic life. 

Steen’s (2001) defines of quantitative literacy as: ‘An aggregate of skills, knowledge,
beliefs, dispositions, habits of mind, communication capabilities, and problem-solving
skills that people need in order to engage effectively in quantitative situations arising in
life and work’ (p. 7) and notes that it is very ‘contextual’ in nature. This aligns well with
the final point of the AAMT (1997, p. 15) definition that numeracy involves ‘grounded
appreciation of context’. Watson inferred that there was great similarity between the two
definitions and hence quantitative literacy and numeracy could be considered one and
the same.

It is useful to compare the ‘numeracy framework’ of Hogan and Willis (Hogan, 2000)
with Watson’s (1997, 2004) three-tiered hierarchy for the related field of statistical litera-
cy. Tier 1 involves understanding the terminology involved; this relates well to the
‘mathematical knowledge’ and ‘being a fluent operator’ in Hogan and Willis’ framework.
Tier 2 involves understanding the terminology within the context in which it is used; this
relates well to the ‘contextual knowledge’ and ‘being a mathematical learner’ in Hogan
and Willis’ framework. Tier 3 involves a critical awareness to question contextual claims
made without proper justification; this relates well to the ‘strategic knowledge’ and ‘being
a critical user of mathematics’ in Hogan and Willis’ framework.

Van den Heuvel-Panhuizen’s (2001) description of ‘Realistic Mathematics Education’
(RME) in The Netherlands provides a similar perspective on numeracy. Though the term,
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‘numeracy’ is not mentioned, many aspects of what is described as being standard prac-
tice come into the realm of numeracy, quantitative literacy, or statistical literacy, as
illuminated by a variety of other sources. For example, ‘mathematics must be connected
to reality, stay close to children and be relevant to society’ with the underlying ideal of
‘mathematics as a human activity’ where students are given ‘the guided opportunity to
‘reinvent’ mathematics by doing it within a process of progressive mathematization’
(2001, p. 50). Each of these points sits well with the aforementioned views of numeracy.

Van den Heuvel-Panhuizen (2001) pointed out that the term ‘realistic’ could be mis-
understood. Essentially, in the context of RME, it denotes any situation or context that is
real in the mind of the student. This can be a ‘real-world’ problem, or it can be from the
fantasy world of fairy tales, as long as it is real for the students involved. The difference
between ‘real world’ and ‘real life’ situations is highlighted in the hierarchical model for
numeracy teaching that is developed later in this paper. 

RME is based on six principles (Van den Heuvel-Panhuizen, 2001), which can be sum-
marised as follows:

• activity principle — mathematics is best learned when students are active partici-
pants in the process;

• reality principle — mathematics is best learned within rich contexts, rather than in
isolated situations divorced from reality;

• level principle — the condition for arriving at the next level of understanding is to
reflect on activities and tasks conducted;

• intertwinement principle — components of mathematics cannot be separated;
• interaction principle — mathematical learning is best achieved through social

interaction in a whole-class setting;
• guidance principle — students need the opportunity to construct and ‘reinvent’

mathematical tools and insights. 

Numeracy and ‘real’ contexts

Despite the best efforts of teachers to make mathematical learning as ‘real’ as possible,
Kemp and Hogan (2000, p. 13) made the point that, ‘many of these “real world problems”
appeared contrived rather than real’ and, ‘left out factors relevant to the real situation’.
The main reason for this, according to Kemp and Hogan, seemed to be that the central
purpose was to teach the mathematics associated with the problem, rather than for devel-
oping student numeracy. What needed to occur, and probably still needs to occur, is a
genuine attempt to give students the opportunity to regularly experience using mathe-
matics to solve problems, rather than using the problem to teach classroom mathematics.

At the very heart of the numeracy debate are the associated notions of transferability
of mathematical learning, and numeracy across the curriculum. Boaler (1993, p. 12)
noted that traditional approaches to developing student numeracy were based on the
assumption that ‘mathematics can be learned in school, embedded within any particular
learning structures, and then lifted out of school to be applied to any situation in the real
world’. However, as Kemp and Hogan (2000, p. 13) pointed out, ‘evidence suggests that
students do not automatically use their mathematical knowledge in other areas’. Indeed,
if learning was freely transferred from the mathematics classroom to any of a number of
outside situations, it is unlikely that the numeracy debate would have begun, or at least,
reached the proportions it has. It is this suggestion of a gap between the learning of math-
ematical concepts and the application of them to wider contexts that has prompted the
development of the following model.



MAKING MATHEMATICS VITAL: PROCEEDINGS OF THE TWENTIETH BIENNIAL CONFERENCE OF THE AUSTRALIAN ASSOCIATION OF MATHEMATICS TEACHERS

[ HURST ]
319

MATHEMATICAL CONTENT

Concepts

Facts

Skills

NUMERACY IN THE MATHS CURRICULUM

Working Mathematically = the processes

Investigations

Classifying

Ordering

Comparing

Estimating

Predicting

Hypothesising

Generalising

Representing

Proving

Communicating

Refleecting

MATHEMATICAL SEARCHES

Actively seek the mathematical content and related issues,

describing what it tells (or doesn’t tell) in a textual, audio and visual

context.

THE CHILD’S LIVING

WORLD

The “real life” aspect

THE OUTSIDE WORLD

The broader, outside world:

the “real world”

THE LEARNED WORLD

The “academic world”

NUMERACY ACROSS THE CURRICULUM

• Pre-planned intervention

• Spontaneous addressing of issues

• Deferred dealing with issues

Figure 1. The hierarchical model for numeracy teaching.

A model for numeracy teaching

The hierarchical model for numeracy teaching.

The ‘hierarchical model for numeracy teaching’ (Figure 1) is based on the belief that
there has been a missing link in the development of student numeracy. In the tradition-
al mathematics classroom, there was a focus on the teaching of mathematical content,
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and, during the past ten years or so, ideas generally described as ‘Working
Mathematically’ in most Australian mathematics curricula, have been more or less
adopted. Currently, there is a significant call to develop ‘numeracy across the curricu-
lum’. However, it is suggested here that there needs to be a more conscious effort to link
the mathematical content and the mathematical processes learned in the maths class-
room with other learning areas, and with situations that reflect ‘real life’ and ‘real world’
issues. 

This assertion is supported by Peter-Koop (2004, p. 454), who noted the following with
respect to children’s ability to solve simple real-world related problems.

Due to difficulties with the comprehension of the text and the identification of the
‘mathematical core’ of the problem, primary school children frequently engage in a
rather arbitrary and random operational combination of the numbers given in the
text. In doing so, they fail to acknowledge the relationship between the given data
and the real-world context.

With this in mind, it is further suggested that the ‘missing link’ referred to above could
be the notion of mathematical searches. 

The mathematical search

The purpose of a mathematical search is to encourage students to actively seek mathemat-
ical concepts and facts embodied in a contextual situation. The context can be any one
of a variety of situations: students could be given some text to read, pictorial information
to observe, or an audio-visual or oral presentation to regard. The basic task given to them
is embodied in a proforma titled ‘Looking for mathematics’ which asks the following
questions:

• What mathematical ideas are there in the text you have been using?
• How did you recognise that there were mathematical ideas?
• Describe what the mathematical ideas tell you about what is in the text. Show

working out if this helps you.
• What did you know about these mathematical ideas before you read the text?

It is significant that this involves several levels of understanding, from recognition of
mathematical ideas and facts, to interpretation and inferring, and involves many of the
key ideas contained in the second part of the model (see Figure 1). 

Action research

Classroom tasks

In order to gain an appreciation of the effectiveness of mathematical searches, and also
of the usefulness of intervention to teach concepts prior to a search, a simple qualitative
study was conducted. It was intended that this would be a guide as to whether or not a
more detailed study should be conducted in the future. Several activities were presented
to a group of seventeen Year 6 students. In the first instance, the students, who had done
a brief study of endangered species, were given several pages of text about the numbat,
an endangered Western Australian marsupial. The questions contained in the ‘Looking
for mathematics’ proforma were posed. No prior teaching of any concepts contained in
the text was carried out. A debriefing session to discuss their findings was conducted. 
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A week later, a second mathematical search was presented, based on a selection of text
excerpts on the theme of ‘Australia’s Gold Rushes’, a topic which students had also
studied briefly. Once again, the proforma was used. In this instance, specific teaching
about bar and column graphs and line graphs was undertaken, prior to the mathematics
search. These two tasks could be described as meeting the criteria in the model as a part
of the ‘outside world’ (the numbat task) and the ‘learned world’ (the gold rushes task). 

Approximately six weeks later, a third task was completed by the students. This was dif-
ferent in that no set text was provided. The students were given the brief to bring some
information sources of any type that gave specific information about something in which
they were vitally interested. They were then asked to apply the proforma questions to their
own choice of information. Issues and concerns related to specific aspects of mathemati-
cal content that surfaced during this task were deferred for future teaching. The third
task is best described as being applicable to the ‘child’s living world’, or a ‘real-life’ task. 

Analysis of the student work samples

Question 1 and 2: Recognising mathematical ideas
The work produced by the students was extremely varied, especially for Task 1, in which
some students recognised many mathematical ideas while others recognised only one or
two. Responses for Task 2 were more evenly spread across the group with more students
providing multiple examples of mathematical ideas in context. Task 3 responses were
similar in number to those in Task 2, but were significantly more varied in nature. In Task
3, students recognised a greater variety of aspects of mathematics pertinent to the topic
they had chosen. 

Question 3: What the mathematics is telling us
There was a significant increase in the number of responses from Task 2 compared to
Task 1. Also, more students contributed ideas in Task 2 than for Task 1. In Task 3, the level
of synthesis of the mathematics was much greater than for either Task 1 or 2. Every
student contributed at least two examples of what the mathematics told them and con-
nected the mathematics to other aspects of their chosen topic. 

Question 4: Prior knowledge of mathematical ideas before reading the text
The responses for Tasks 2 and 3 were far greater (three times as many) than for Task 1. 

Other tasks to develop numeracy

In conjunction with the mathematical searches, a variety of other activities were complet-
ed by the students, in an effort to use the three sources of rich tasks: the child’s ‘living
world’, the ‘learned world’, and the ‘outside world’. For example:

Bruce’s Café
Students were asked to plan a floor and seating plan for a new restaurant, given an area
of fifteen metres by fifteen metres. Students needed to consider measurement issues such
as chair and table sizes and groupings of tables, as well as other logistical issues.

Car park activity
Students were asked the question, ‘How many cars can we fit on the school oval to accom-
modate parking for the school speech night?’. Similar logistical issues to the above task
needed to be considered.
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Student interest survey
Students selected an area of their own interest and constructed a survey to administer to
other students/classes in the school. Topics such as favourite fast foods, electronic games
and sporting teams were chosen. Results were documented using Microsoft Excel.

Traffic counts
Following class discussions about popularity of car makes and types, a traffic survey was
conducted outside the school. Associated issues such as difficulty of counting on a major
road, location of road and suburb, and time of day were considered. A second survey was
conducted in a railway station car park and similar issues were raised, such as the effect
that counting in a particular suburb might have on vehicle makes and types.

Capturing the ‘numeracy moment’

If cross-curricular numeracy is to be successfully developed, it is important that teachers
take advantage of ‘numeracy moments’ that arise in the context of class activities.
(Morony, Hogan & Thornton, 2004, p. 7). A numeracy moment could be described as the
use of a mathematical idea in context, and could be seen as a demand on which under-
standing depends, or an opportunity to enrich a learning experience. Whether or not
such opportunities are pre-planned, dealt with at the time of encounter, or deferred, is a
matter for the teacher’s professional judgement. This is outlined in the final section of
the model in Figure 1.

Conclusion

In comparing the responses from Tasks 1, 2 and 3, it is clear that there was a much greater
level of engagement with Tasks 2 and 3, than with Task 1. The number of responses from
every student was greater for Tasks 2 and 3 than for Task 1. This may be due to a greater
degree of familiarity with the task type, or because of the intervention lessons that were
conducted prior to Task 2. In Task 3, responses to Question 3, indicated a greater level of
synthesis of the mathematics than for either Task 1 or 2. This seems to indicate that, if
working on a topic of interest to them (real-life context), students will display a greater
level of understanding of how the mathematics actually ‘works’.
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Exploring space and measurement 
with the ClassPad 300*

Barry Kissane
Murdoch University

Hand-held technologies have offered less support for learning about space and
measurement than they have for other strands of mathematics. This paper
describes a recent development which seems promising in this respect, Casio’s
ClassPad 300. The mechanisms of providing interactive opportunities for students
are described and illustrated, and some possible ways in which this sort of device
might be used productively in mathematics learning are offered. A range of math-
ematical ideas are used, including geometric properties and relationships,
coordinate geometry, transformations in the plane, mensuration and conics.

Introduction

More than a decade ago, A National Statement on Mathematics for Australian Schools
(Australian Education Council, 1990) identified five content strands for school mathe-
matics, which continue to be used in curriculum frameworks around Australia. At around
the same time, personal technologies in the form of graphics calculators began to be used
in many schools. Since that time, the major uses of hand-held technologies in secondary
schools have centred on the Number, Algebra and Chance & Data strands with many
fewer opportunities concerned with the other two strands of Space and Measurement.
Although there have been exceptions to this generalisation (such as the development by
Texas Instruments of a version of Cabri Geometry for the TI-92 graphics calculator), the
constraints of screen size have generally discouraged the development of suitable technol-
ogy for dealing with spatial objects satisfactorily. This paper offers a brief description of
the way in which the Casio ClassPad 300 supports mathematics in these two strands, and
considers some implications of this sort of device for school mathematics.

ClassPad 300

The ClassPad 300 is a relatively new example of personal technology, about the same size
as a modern graphics calculator, but with a larger graphics display screen and a smaller
keyboard. The photograph in Figure 1 illustrates these two characteristics and also shows
the main menu, from which various applications can be accessed.

* This paper has been accepted by peer review.
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Figure 1. Photograph and opening menu of the ClassPad 300.

As well as the keyboard shown in the photograph, the device has a touch-sensitive
screen, which can be operated by a stylus, and a variety of soft keyboards. A PC-based emu-
lator, called ClassPad Manager, is also available. This paper focusses upon the geometric
resources provided by such an environment, the two main features of which are the per-
sonal nature of the technology (more portable and hence more accessible than, say, a
conventional computer) and the use of a stylus for interaction between machine and
person. Readers interested in details of the various other ClassPad 300 capabilities can
access them from the manufacturers (e.g., Casio Computer Corporation, 2004), and may
well find similar kinds of issues arising for other aspects of mathematics.

Interactive geometry

A major feature of the ClassPad 300 concerns interactions between the user and the
machine, made possible by the stylus. In the case of geometric work, the use of the stylus
gives the experience a feel not unlike the use of physical manipulative materials or draw-
ings, since there is a direct link between the screen elements involved (such as geometric
objects) and the person using the stylus. Interactive experience of this kind is potentially
very fruitful for learning, as argued in more detail in Kissane (2004a). Similarly, Mason
(1995, p. 10) observed that, ‘Screen-objects present a new form of apparatus or manipu-
lable.’

Constraint-based geometry

Geometric objects are available on the ClassPad 300 through the use of the Geometry
application, visible as one of the icons in Figure 1. While so-called ‘dynamic geometry’
software such as Cabri Geometry and Geometer’s SketchPad has been used for some time in
secondary schools, the ClassPad 300 uses ‘constraint-based geometry’, described briefly by
the software company responsible for it, Saltire Software (2004a). An earlier version of
this sort of software seems also to have been used on a hand-held device by Hewlett
Packard (Saltire Software, 2004b).

To illustrate the nature of ‘constraint’ in this context, the first screen in Figure 2 shows
a parallelogram ABCD drawn on the graphics screen, using one of the pull-down icons on
the Geometry toolbar. The vertices and sides of the parallelogram can be moved using the
stylus, some possible results of which are shown in the second and third screens. Despite
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these movements, the figure ABCD remains constrained to be a parallelogram by the soft-
ware. The defining constraints for a parallelogram used by the software ensure that
opposite sides of ABCD remain parallel and congruent, regardless of how the vertices are
moved or the dimensions and shape changed through the use of the stylus. 

Figure 2. ABCD is constrained to be a parallelogram.

Interacting with such a figure seems likely to help students get a good feel for the
nature of a parallelogram and some of its essential properties, such as relationships
between opposite sides, opposite angles, adjacent angles and so on.

Making measurements

In addition to the manipulation of screen objects, a second important feature of the
Geometry application concerns the making of measurements of geometric objects, which
might help students get a more quantitative sense of the properties of objects. In
Euclidean geometry, we are interested in a range of measurements, such as those of
length, angle, area, direction and so on. On the ClassPad 300, measurements are made
via a ‘measurement box’, illustrated directly under the menu items in Figure 3. The first
screen shows that the length of the selected segment AB is about 8.05 units. The second
screen identifies the angle at vertex B by highlighting the adjacent sides AB and BC, and
the measurement box shows the angle size of 103.0418°. Other possible measurements
might be chosen from a pair of adjacent sides, as shown in the third screen; the measure-
ment box indicates ‘No’ to the ‘congruence checker’, since the two highlighted line
segments are not congruent.

Figure 3. Some measurements of ABCD.
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In a similar way, different selections of parts of an object offer different opportunities
for measurement and the resulting explorations. The first screen in Figure 4 shows that
selecting all four vertices of parallelogram ABCD allows for either the area or the perime-
ter to be measured. The measurement box shows that the area is 41.03547 square units.
The selection of only three vertices (which define a triangle, of course) allows for the
areas of triangles DAB and ABC to be determined, as shown in the final two screens of
Figure 4. In this case, these measurements help to see that each triangle has half the area
of the parallelogram, or 20.51774 square units (within a rounding error), allowing stu-
dents to verify that the diagonals of the parallelogram divide it into two parts of equal
area.

Figure 4. Measuring areas associated with parallelogram ABCD.

Coordinate geometry

The measurements made in Figures 3 and 4 are relative to a particular scale of course,
and the ClassPad 300 allows for the rich connections between algebra and geometry to be
explored by students, through the medium of coordinate axes. The first screen in Figure
5 shows the same parallelogram ABCD as in Figure 4, but with the coordinate axes
revealed, as well as a grid marked to assist with locating objects in two-dimensional space.
Although the measurement box is not showing, the first screen indicates that the coordi-
nates of point C are (3.6,2.4), relative to the axes shown.

Figure 5. Revealing the coordinate system and making measurements.

In keeping with Rene Descartes’ wonderful invention, students now have access to
algebraic ways of describing various geometric objects, as shown in the rest of Figure 5.
The middle screen shows that one of the measurements of side AB is the slope of the cor-
responding line through A and B, which in this case is 2.147059. The drop down tools
indicate that students might have just as easily chosen to measure the length of AB, the
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angle of inclination of AB with the horizontal axis or the equation determined by AB. The
latter is illustrated by the final screen in Figure 5, with a clear link between the gradient
of AB and the equation for AB.

There are many opportunities for students with these tools at their disposal to explore
the properties of objects and to make the links between geometry and algebra that char-
acterize coordinate geometry.

Geometric constructions

A common activity for students with dynamic geometry software involves making geomet-
ric constructions and then exploring them to look for patterns, such as invariant
properties. Many others have indicated the possibilities here for students to make discov-
eries for themselves, and to be thus encouraged to look for ways of proving that their
observations are universally true (rather than relying on observations alone). Such activ-
ity is supported on ClassPad 300, since, as Saltire Software (2004a) indicate,
construction-based geometries are a subset of constraint-based geometries. 

To illustrate this kind of learning opportunity, Figure 6 shows the use of a perpendicu-
lar bisector construction tool to show the three perpendicular bisectors of the sides of
triangle ABC. Once the construction has been completed, the stylus can be used to move
the vertices of the triangle to different locations, while the software ensures that the con-
structed perpendicular bisectors are moved accordingly. The middle screen suggests that
these three are concurrent, while the third screen verifies that this seems to be the case,
even when the three lines meet outside the triangle itself. 

Figure 6. The perpendicular bisectors of the sides of a triangle are concurrent.

Armed with such a tool, students can be given opportunities to notice and to explore
spatial relationships in ways that have not been available prior to the development of
dynamic geometry software. In this regard, Mason (1989, p.46) conjectured that ‘what is
important about geometry is being aware of the fact that there are facts, rather than
mastery of some particular few facts’. While such activity does not provide the mathemat-
ical reassurance required for a proof, it hopefully provides a stimulus to look for reasons
for observed regularities and to thus provide a need for proof.
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Spatial connections

A distinctive feature of the ClassPad 300 environment is that different applications can be
connected together in educationally powerful ways. In this section, some promising
examples of this facility are briefly described and illustrated.

Exploring functions

A powerful and popular use of graphics calculators has been to represent graphs of func-
tions and to quickly explore relationships between changes in the parameters of functions
and their graphs; indeed this idea is probably the first one used by mathematics teachers
and continues to be a reason for describing the devices as ‘graphing’ calculators. Since it
includes all of the functionality of a graphics calculator, a ClassPad 300 can be used in the
same way. To date, it has not been possible to do the reverse on graphics calculators: to
see how changes in graphs are related to changes in the parameters of the functions con-
cerned. 

Figure 7. Dragging and dropping between algebra and geometry windows.

Figure 7 shows a sequence of three dual screens with algebraic expressions in the top
and a geometry screen at the bottom. In the first screen, the stylus has been used to phys-
ically drag the expression for quadratic function to the geometry screen, thus producing
the expected graph. (An alternative involves cutting and pasting via the Edit menu, in
much the same way as a word processor operates.) The second screen shows that the
stylus has again been used to drag the parabola to a new position, three units to the right
and two units down. Finally, the third screen shows the effect of dragging the (re-located)
parabola back to the algebra screen, which results in the algebraic representation of the
associated function. (Of course, it is a great deal easier to physically do these things than
it is to describe them on paper.)

This sort of facility seems to offer much promise for students making sense of func-
tions and their graphical and symbolic representations, as it complements the graphics
calculator capability of moving from symbols to graphs very nicely. Armed with such a
tool, students can experience at first hand the lovely relationships involved, and can see
that they apply to various families of functions, not only quadratic functions. A limitation
is that it is restricted to dragging, so that only translations (both horizontal and vertical,
as illustrated in Figure 7) are involved; stretches and the corresponding scale changes do
not seem to be able to be produced in this way, so that more conventional methods of
exploring these remain important.
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Exploring transformations

A second example of connections between geometric and algebraic ways of representing
things concerns transformations in the plane. The ClassPad 300, like recent versions of
geometry software, includes a facility for the isometries of reflection, translation and rota-
tion, allowing these to be constructed and studied. The series of three screens in Figure 8
shows an example of a reflection about a line. 

Figure 8. Exploring reflections about a line geometrically and algebraically.

A reflection of the triangle ABC about the line DE has been constructed in the geom-
etry window at the bottom of the first screen. The middle screen shows the results of
selecting a point (B) and its image (B') and then dragging these together to the top
window: the general linear transformation involved is then shown algebraically, using a
matrix representation. The third screen includes the axes (which of course are needed to
make sense of the matrix formulation) and also shows how the matrix representation can
be used to find images of a particular point. In this case, the image of (-2,-1) after reflec-
tion in line DE is (8/5,-11/5). Again, it seems reasonable to expect that providing
students with the facility to move smoothly in these ways between geometric and algebra-
ic representations will offer learning opportunities that were previously unavailable.

Mensuration

Interactions between geometric measurements and the main screen allow for verification
of mensuration formulas, as illustrated in Figure 9. In this case, the area of triangle ABC
has been determined in four different ways, once directly in the measurement box and
the other three using half the product of the lengths of a pair of sides and the sine of their
included angle. 

Figure 9. Finding the area of a triangle using two sides and the included angle.
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All necessary lengths and angles have been copied and pasted from the measurement
box in the geometry window into the calculation window.(Measurements are of course
rounded, resulting in slight inaccuracies in final decimal places.) What the ClassPad 300
provides here is an opportunity to verify that the formula produces equivalent results,
even when different pairs of sides are chosen.

Dynamic linking

As a final example, complementary to the mechanism of dragging and dropping or
cutting and pasting described above in the context of exploring functions, the
ClassPad 300 offers a means of dynamically linking algebraic and geometric objects, so
that a change in a geometric object gives rise to a corresponding change in its algebraic
representation and vice versa. This idea occurs in the context of ‘eActivities’, which are
small user-created applications that are designed for students to experience various
aspects of mathematics; an extensive discussion of these is provided in Kissane (2004b)
and there are many examples illustrated on the Internet (e.g., at Saltire Software
(2004c)).

Figure 10 shows an example of an eActivity. Each of the three screens shows a circle in
the bottom geometry window and an associated equation in the top window. The first
screen shows the initial situation. In the second screen, the equation parameters have
been changed, resulting in the circle ‘moving’ and ‘shrinking’ accordingly. Similarly, the
third screen shows that the circle itself has been dragged with the stylus to a new position,
which has resulted in an updated version of the equation. In this particular case, as the
centre of the circle has moved off the horizontal axis, the equation includes a linear y
term, not previously evident. As for some earlier manipulations, it takes a good deal more
words to describe this than to actually do it; again, it seems reasonable to expect that stu-
dents given the opportunity to manipulate both expressions and geometric objects linked
together dynamically in these sorts of ways will develop a strong sense of the connections
involved.

Figure 10. A dynamic link between circles and their defining equations.

Conclusion

An important role of technology is to provide students with experiences that are not oth-
erwise available to them. (Kissane, 2002). To date, the experiences offered by hand-held
technologies seem most likely to be accessible to a wide group of students, but these have
been relatively scarce in areas related to the Space strand and its connections elsewhere,
such as the Measurement strand. Mason (1989, p. 46) argued that, ‘geometry takes place
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in a world of forms and images, entry to which is gained through the power of mental
imagery, augmented and extended by dynamic images, drawings on paper and discussion
with colleagues’. Technologies of the kind described here seem to offer new opportuni-
ties for enhancing mental images in students, through the design of productive classroom
activities of new kinds, based on personal interaction between mathematical ideas and
their representations. While taking advantage of these new opportunities is unlikely to be
an easy matter, and it is too early to tell whether the educational effects are as promising
as they at first seem, the design of new technologies like this offers important opportuni-
ties to explore these important issues in school classrooms.
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The role of manipulatives in 
developing mathematical thinking*

Linda Marshall
Edith Cowan University

Paul Swan
Edith Cowan University

The use of manipulatives as part of mathematics lessons has long been advocat-
ed as part of a comprehensive mathematics program. Recent developments such
as virtual manipulatives, along with research have caused some to question the
role that manipulatives play in learning mathematics. In this paper the authors re-
examine the use of manipulatives within the constructivist paradigm. Attribute
Blocks are used to illustrate how mathematical thinking may be developed with the
aid of manipulatives.

Introduction

For many years teachers of mathematics, particularly at the primary school level, have
espoused the virtues of ‘hands on’ learning. While children may have appeared engaged
in the task of ‘manipulating blocks’ it is not clear what they were learning. In some cases
rather than construct appropriate knowledge children were in fact mis-learning or mis-
constructing knowledge. 

Ball (1992, p. 17, as cited in Perry & Howard, 1997, p. 26) noted: 

One of the reasons that we as adults may overstate the power of concrete representa-
tions to deliver accurate mathematical messages is that we are ‘seeing’ concepts that
we already understand. That is, we who already have the conventional mathematics
understandings can ‘see’ correct ideas in the material representations. But for chil-
dren who do not have the same mathematical understandings that we have, other
things can reasonably be ‘seen’.

As Clements (1999, p. 2) so eloquently sums up: ‘it cannot be assumed that concepts can
be “read off” manipulatives’. It cannot be assumed that simply using manipulatives means
that children will learn. If children are to construct meaning from the manipulative being
used teachers need to be explicit about the mathematics to be developed from the manip-
ulative. Children need to be given time to gain familiarity with the manipulative so that
rather than focus on the manipulative itself they will be focussed on the mathematics to
be developed. Stein and Bovalino (2001) noted that: ‘If not used with careful thought,
manipulatives can become little more than window dressing, they are nice to look at and
play with but superfluous to overall learning’ (p. 357).

* This paper has been accepted by peer review.
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A brief overview of manipulatives research

The use of manipulatives has been studied over a number of years. The advent of virtual
manipulatives has rekindled interest in the role that manipulatives have to play in the
learning of mathematics. The following is a brief outline key research findings.

• Students who use manipulatives outperform those who do not (Clements, 1999).
Kennedy (1986) noted that: ‘Although no single study validates the claim that chil-
dren should use manipulative materials as they learn mathematics, the collective
message garnered from many studies is that materials are worthwhile’ (p. 7).

• Attitudes toward mathematics improve when concrete materials are used (although
there is a caveat: ‘provided… teachers are knowledgeable about their use’
(Clements, 1999, p. 1).

• Use of manipulatives declines in later years of the primary school (Gilbert & Bush,
1988; Perry & Howard, 1997).

A change in approach

Clements (1999) questioned the whole notion of moving from the ‘concrete to the
abstract’. He revisited this commonly accepted approach, especially in the light of com-
puter or virtual manipulatives. He stated:

…common perspectives on using manipulatives should be reconsidered. Teachers
and students should avoid using manipulatives as an end — without careful thought
— rather than as a means to that end. A manipulative’s physical nature does not carry
the meaning of a mathematical idea. Manipulatives alone are not sufficient — they
must be used in context of educational tasks to actively engage children’s thinking
with teacher guidance. (Clements, p. 9)

The ability to engage children’s thinking should not be taken for granted. In the fol-
lowing section, attribute blocks, a common manipulative, are used to illustrate how children
may be aided to construct knowledge.

Working mathematically with attribute blocks

The key mission of teachers of mathematics at all levels is to promote in their students the
ability to ‘work mathematically’ and this involves being able to think sometimes creative-
ly and sometimes logically (Southwell, 2003, p. 19). Southwell went on to explain two
types of reasoning: inductive and deductive. It is the second type of reasoning that is used
in logic. Attribute blocks, or logic blocks as they are sometimes called, may be used to
help children ‘work mathematically’. A series of activities involving the use of attribute
blocks is presented below. Consider how each activity contributes to the development of
thinking skills.

Attribute block sample activities

A set of attribute blocks (usually) consists of sixty blocks. The different attributes of the
blocks are: shape (circle, rectangle, triangle, hexagon and square); colour (red, blue and
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yellow); thickness (thick and thin); and size (large and small). Each block is unique.
Activities with attribute blocks require a high level of abstraction when we speak of the

‘attributes’ of the blocks. Some children may find this difficult at first. Attributes are not
part of the object. They are concepts that the mind attributes to the objects for the
purpose of classification. Intellectual development consists partly of the ability to invent
relevant attributes or categories and to deal with relationships between those attributes.
Many attributes other than colour, shape, size and thickness could be invented for the
blocks, but are in fact ignored.

When introducing the blocks to children, plenty of time needs to be allowed for them
to explore properties such as size and shape. This may start off in the form of free play,
but the play would soon become more directed, where the teacher directs the children in
such ways as, ‘Can you tell me what different types of blocks are in your set?’. The instruc-
tions and activities should be enjoyable, but challenging. 

The following is a selection of activities of varying degrees of abstraction.
1. Examine the set of blocks. Is your set complete? If not, what pieces are missing? Are

there any extra pieces? How many pieces should there be in a complete set?
2. Group the blocks by colour. Let one person build a tower or make a pattern using

one colour. Try to copy your partner’s arrangement with a different colour. Vary the
game by making the initial grouping by size, shape or thickness.

3. Use only the thick blocks. Choose two colours and two shapes (e.g. blue and red,
square and triangle). How many pieces do you have? Can you describe them fully?
Close your eyes while your partner removes a block. Can you say what has been
removed?

4. Choose a colour and collect all the blocks of this colour. Close your eyes while your
partner removes a block. Can you tell what was removed? Vary the game by choos-
ing all the blocks of a particular shape.

5. Get all the yellow and blue circles and squares. Arrange the 16 pieces in some sys-
tematic way. One of these pieces is NOT yellow, NOT square and NOT small. Which
piece is it?

6. Use all the large blocks. Arrange them systematically in colour and shape rows; i.e.,
in a matrix.

7. Use the small, thin blocks. Put four pieces out as ‘clues’ in a 3 × 5 grid and let your
partner complete the grid.

8. Close your eyes and have your partner put any block in your hands. Keeping your
eyes closed, how well can you describe the block?

9. What distinctive features of the blocks could be used to group them into:
(a) 2 equivalent sets?
(b) 4 equivalent sets?
(c) 6 equivalent sets?
(d) 12 equivalent sets?

10. Build a one-difference train using all the blocks. Each block must have exactly one dif-
ference from the preceding block.

red triangle

yellow circle

yellow square

red triangle
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11. Build a two-difference train. An extension: build a three-difference or one-same-ness train.
12. Use all the blocks. Place a hoop on the floor. Put all the yellow triangles in the hoop.

What blocks will be inside the hoop? What blocks will be outside the hoop? How
many blocks are inside the hoop?

13. Place two hoops on the floor. In one hoop place all the red shapes. In the other
place all the blue shapes. How do you have to place the hoops? Repeat for red
shapes and thick shapes.

14. Place two hoops on the floor so that they cross each other. In the left hoop put all
the blue blocks, in the right hoop put all the rectangular blocks. Describe the set of
blocks found in each of the regions. What blocks are left outside the hoops?

15. Place two overlapping hoops on the floor. 
Let Set A = the triangles and Set B = the red shapes. 
Place the blocks where they belong. 

Describe the blocks that are:
(a) in region a
(b) in region b
(c) in region c
(d) in region d
(e) in regions c and d
(f) in regions a and b
What is the intersection of a and b?

16. This is a game for 2 or 3 players. Use only these set descriptions with a single attrib-
ute: red, yellow, blue, thick, thin, small, large, hexagon, rectangle, square, circle,
triangle.
Place 2 hoops on the floor so that they cross each other. Call one Hoop A and the
other Hoop B. One player secretly names A and B from the set descriptions above.
The other players try to deduce Sets A and B. They do this by selecting a block and
asking the first player to place it for them. To win, sets A and B must be deduced
within 8 moves.
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17. Place six blocks to make a pattern like this.

The blocks joined by arrows must form one-difference trains.
Repeat, but make two-difference trains.

18. Sherlock’s blocks logic problems.
Block 1: 1. It is not red or it is not small

2. It is a circle or a rectangle or a triangle
3. It is not blue
4. It is not large
5. It is yellow or red
6. It is not a circle
7. It is not a triangle
8. It is __________

Block 2: 1. It is blue or large or square
2. It is not yellow
3. It is small or a triangle
4. It is red or blue
5. It is not a circle
6. It is blue or large
7. It is not blue
8. It is __________

Conclusion

Manipulatives per se do not teach in and by themselves. They may be used to help chil-
dren to construct knowledge, but only if there is a clear purpose for the activity in the
teacher’s mind. This is then translated into activities where this purpose is highlighted by
the use of pertinent focus questions which allow children to build on their existing knowl-
edge, not by accident but by design.
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Houdini, Fibonacci and Pythagoras: The link

Mal McLean
James Cook University

In this workshop a series of dissections will be presented in which a part of the
material either disappears or gets bigger. The relationships between these dissec-
tions and the Fibonacci sequence are then explored including some manipulation
of surds. Next, a standard dissection proof of Pythagoras’ theorem is examined to
determine that the sections do fit (unlike the first part of the presentation) to confirm
that proof is an essential part of any mathematics course.

Students enjoy mathematics when they are presented with a situation that appears to be
contradictory. Challenging them to explore possible explanations has the potential to
enrich their experiences in classrooms. The following suggestions help to establish the
importance of proof.

Take a 21 unit × 21 unit square and cut it up as shown in Figure 1.
These pieces can then be rearranged to form a rectangle as in Figure 2.

13 8

13

8

138

21

21

13

21

13

Figure 1

Figure 2

However, when we do this there is a slight problem in that the
area of the square is 441 square units and the area of the rectan-
gle is 442 square units. So how is it that we gained an extra unit?
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Let us try the same thing with a different square, this time a 34 unit × 34 unit square. (not
to scale, but the dimensions are important).

21 13

21

13

34

34

13 21

21

21

34

Figure 3

Figure 4

A similar problem occurs in that 34 × 34 is 1156 and 21 × 55 is 1155. A square unit has
been lost!

If we check the areas of the cut-up trapezia and triangles, we find that the total area is
still that of the original square, which establishes that we have not contravened the Law
of Conservation of Matter (and that a nuclear explosion did not take place — in defer-
ence to Einstein’s equation).

Let us look at the gradient of the diagonal of the rectangles.

For the smaller square (see Figures 1 and 2):
The gradient of the diagonal of the rectangle is

the gradient of the sloping edge of the trapezium is

and the edge of the triangle

If we look at these as decimals, we have:

= 2.615384…       = 2.6       = 2.625 

For the larger square (see Figures 3 and 4):
The gradient of the diagonal of the rectangle is

55
21

21
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13
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34
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the gradient of the sloping edge of the trapezium is

and the edge of the triangle

If we look at these as decimals, we have

= 2.615384…       = 2.619047…       = 2.625 

Not surprisingly, we could not detect the differences in the slopes.
The numbers involved here have a certain familiarity about them.

Notice that 5, 8, 13, 21, 34, 55 are all part of the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13,
21, 34, 55… and if we check, we can see that the square of each term, after the first, is one
more or one less than the product of the terms on each side:

12 = 1 × 2 – 1
22 = 1 × 3 + 1
32 = 2 × 5 – 1 etc.

or Fn2 = Fn–1.Fn+1 – (-1)n for n > 1

We also know that the ratio of consecutive terms of the Fibonacci sequence approaches a
limit

where Φ is the ‘Golden Ratio’ 1.61803398… Table 1 shows the convergence of the ratios
of terms of the Fibonacci sequence.

Table 1

n F(n) F(n)/F(n–1) F(n)/F(n–2)
1 1
2 1 1
3 2 2 2
4 3 1.5 3
5 5 1.666666667 2.5
6 8 1.6 2.666666667
7 13 1.625 2.6
8 21 1.615384615 2.625
9 34 1.619047619 2.615384615

10 55 1.617647059 2.619047619
11 89 1.618181818 2.617647059
12 144 1.617977528 2.618181818
13 233 1.618055556 2.617977528
14 377 1.618025751 2.618055556
15 610 1.618037135 2.618025751
16 987 1.618032787 2.618037135
17 1597 1.618034448 2.618032787
18 2584 1.618033813 2.618034448
19 4181 1.618034056 2.618033813
20 6765 1.618033963 2.618034056
21 10946 1.618033999 2.618033963
22 17711 1.618033985 2.618033999
23 28657 1.61803399 2.618033985

21
8

13
5

34
13

34
13

21
8
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These data are presented graphically in Figures 5 and 6.

Figure 5

The gradients of those lines we looked at before seem to hover around 2.61803… or Φ + 1
but the ratios here are of every second Fibonacci number so that 

Figure 6 shows the convergence of the ratios of every second term of the sequence.

Figure 6

This gives us Φ2 = Φ + 1. This leads to the quadratic Φ2 – Φ –1= 0 which has the solutions
that 

We should note that 
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which simplifies to 

Another fascinating thing about Φ is that  

and it can be readily seen that this yields the same quadratic that we had above. It is inter-
esting to do the calculations on a calculator.

All of this means that we can make the puzzle with the missing square by making the dis-
sections using the numbers in the Fibonacci sequence.

We can now turn our attention to Pythagoras’ Theorem.

One favourite ‘proof’ of the theorem is the so-called ‘Chinese Dissection’. In this
proof, any right-angled triangle is taken and squares drawn on each of the sides. Then,
the centre of the middle-sized square is found. Through this point, lines are drawn paral-
lel to and perpendicular to the hypotenuse of the right-angled triangle (see Figure 7).

Figure 7

These pieces are then cut out and rearranged in the largest square, leaving a square
space in the middle. The square on the smallest side will neatly fit into this space, estab-
lishing the veracity of the famous theorem (see Figure 8). The pieces marked 2 fit into
the spaces marked 2 in the large square and the small square marked 1 fits into the space
marked 1 in the large square.

Figure 8

  2

      2      1           2

       1
           2

           2      2

    2       2



MAKING MATHEMATICS VITAL: PROCEEDINGS OF THE TWENTIETH BIENNIAL CONFERENCE OF THE AUSTRALIAN ASSOCIATION OF MATHEMATICS TEACHERS

[ McLEAN ]
343

I started with a dissection in which pieces disappeared. We now need to ensure that the
‘Chinese Dissection’ is valid. When we look at the line drawn through the centre of the
middle-sized square parallel to the hypotenuse, we can see that it forms a parallelogram
with the hypotenuse and so is the same length as the hypotenuse. The dissection cuts the
lines in half and rearranges the halves around the edges of the large square. Careful
checking of the angles shows that the angles of the centre shape are right angles all that
needs to be shown is that the length of the edge of the square is the same as the small side
of the original triangle.
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From arithmetic to algebra:
Helping to give the ‘letters’ arithmetic meaning 

— A consideration of algebra and algebraic
thinking within the realm of arithmetic

Ken Milton
University of Tasmania

A recognised path to algebra is through the generalisation of arithmetic. A signifi-
cant number of writers and researchers have drawn attention to the situation that
many students fail to see the ‘letters of algebra’ as having ‘arithmetic meaning’ and
the rules which govern the fundamental procedures of algebra as being the gener-
alised counterparts of arithmetic procedures and properties. This failure is
widespread and often deeply entrenched. Little wonder that such students do not
see algebra as having purpose, meaning, pattern and power!
This workshop seeks to make a contribution to alleviating the problem.

Introduction and background

There would be little argument with a claim that mathematics involves a study of pattern,
structure, relationship and generalisation. Central to much of mathematical study is
‘algebra’. This is so in the sense that algebra is a language for communicating, ‘discover-
ing’ and proving many of the mathematical features and properties cited by Milton and
Reeves (2002), on the one hand, and that ‘algebraic thinking’ is at the heart of mathe-
matics generally, on the other.

For many students, algebra is about ‘letters’ and working ‘algebraically’ is concerned
with learning ‘what you do with the letters’! This can be baffling (to put it mildly) since,
in such circumstances, the letters appear to have no meaning and the rules which govern
the ‘movement of the letters’ may seem to come from nowhere. Little wonder that the
mathematics education of such students is somewhat ‘stunted’ at least! If we think that
such a situation is rare, then perusal of the work of Kuchemann (1981) and Booth (1981,
1982a, 1982b, 1984, 1986, 1988), among others, should inform us otherwise.

Most teachers would accept, from experience and study, that learning mathematics is
not ‘a single path activity’; nor is it linear. It is equally clear that the more mathematical
content and ‘relating’ elements that are put in the way of a learner, the more likely it is
that he or she can put enough of the pieces together and forge something of the connect-
ing linkages, to produce at least a satisfactory and cohesive learning outcome.

A fundamental route to algebra is through the generalisation of arithmetic. In taking
this pathway the student needs to realise that the ‘letters of algebra’ are the numbers of
arithmetic, so to speak. The numbers of algebra are subject to the same operational
behaviour ‘rules’ as the numbers of arithmetic. The rules have their genesis in the ‘struc-
tural properties of arithmetic’. If students are unable to grasp the basic ‘structural
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congruences’, as it were, between arithmetic and algebraic forms of the rules, difficulties
arise. This is even before students come to terms with the very difficult and sophisticated
notion of the ‘letters’ representing variables. The complexity of reaching an understand-
ing of variable has been well documented by Quinlan (1992, 1996) who, additionally,
suggests cohesive ways and means of developing such understanding (Quinlan, Low,
Sawyer & White, 1993; Quinlan, Clark & Abrahams, 1997). 

It must be made clear that this workshop considers the arithmetic to algebra link only,
and the ideas seek to complement (not attempt to replace) the usual ways of approach-
ing the teaching of algebra, particularly in the introductory stages. 

The workshop has these primary intentions:
1. to indicate how teachers might help students feel at ease with arithmetic consider-

ations, properties and relationships within which algebra can have a part to play;
2. to indicate something of the ‘pattern and power’ inherent in algebra, particularly

with respect to articulating arithmetic relationships and generalisations.
The issue of developing and implementing an arithmetic background program to

underpin and link to algebra has been considered thoroughly by Milton (2002). Broadly,
the thrust of such an arithmetic program is to have students become familiar with
‘numbers’, number operations and behavioural properties of numbers ‘under number
operations’. This is not the principal focus of this workshop. The concern here is to be of
help to students in coming to grips with pronumerals in contexts where arithmetic gen-
eralisations are made, and where students can be ‘made aware’ of the pattern and power
of appropriate accompanying algebraic expressions or formula. Such a focus is particular-
ly pertinent in the middle school or the early stages of secondary school when students
are usually formally introduced to ‘arithmetic with letters’ although, as Wheeler (1989)
demonstrates convincingly, even ‘mature and seemingly capable’ students need this form
of reminder! Additionally, in the process, students are experiencing and exploring math-
ematically significant and often encountered arithmetic situations and becoming familiar
with basic algebraic notation and conventions in settings where the links with arithmetic
meanings can be made clear. As well, opportunities arise where mathematical proof can
be discussed and considered.

It may be that the ideas presented in the workshop are considered novel: if this is so,
then so much the better. 

A starting consideration

Two aspects of arithmetic are needed to be accepted and ‘internalised’ by students when
taking the arithmetic to algebra route, if a degree of relational and symbolic understand-
ing is to prevail:

First, a recognition that ‘equals’ means ‘names the same number as’. So, when it is
stated that, for example, 2 + 3 = 1 + 4 we know that ‘2 + 3’ and ‘1 + 4’ are alternative names
for the same number. To highlight this meaning, as distinct from the often erroneously
accepted notion that ‘=’ is a ‘do something symbol’, it is helpful to record this as (2 + 3)
= (1 + 4). Without specific exposure to the contrary, the ‘do something’ signal of the ‘=’
sign pervades student thinking well into the high school years (Herscovics & Kieran,
1980). In truth, equality (=) is an equivalence relation.

Second, a willingness to accept ‘lack of closure’, as Collis (1972) puts it; that is, accept-
ing that, say, (2 + 3) is a ‘legitimate’ name for a number in its own right, so to speak. There
is no need to ‘close’ to call it 5. It is an acceptable name for the number that is ‘3 more
than 2’. This acceptance, for example, enables us to understand the arithmetic statements
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of equality:
4 × (2 + 3) = (4 × 2) + (4 × 3) 
(2 + 3) × 4 = (2 × 4) + (3 × 4) 

without a dependence on calculation. 
Through establishing and accepting structural algebraic congruence with the stated

arithmetic equivalences we are able to conclude that, say, 2x + 3x = (2 + 3)x, where x is a
natural number.

Ideas to be considered and activities to be undertaken in the workshop

• Whole numbers, consecutiveness and multiples (working with a hundred number
chart and ‘tables’).

• Experiencing, discovering and expressing some generalisable arithmetic relation-
ships (working with a hundred number chart, and arithmetic calculation).

• Applying algebraic statements (formula) to specific examples of the arithmetic rela-
tionships ‘captured’ by such statements. In this regard various ‘sums’ will be
investigated.

• Throughout the session there will be an opportunity to discuss the ideas and illus-
trative examples presented.

Conclusion

Learning and understanding elementary algebra and algebraic thinking is a complex,
multifaceted business which should begin in middle primary school, or even earlier.
Students can begin to see arithmetic as having structural patterns applicable to‘all
number. It is from this base that algebra can be developed as generalised arithmetic and
can be seen by students to be a continuation of arithmetic. In this regard, the letters of
algebra are the generalised numbers of arithmetic. Buxton (1984) put this nicely when
he declares that there is no mystery in algebra for a learner at ease with arithmetic. This
workshop attempts to assist the attainment of such ease.
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Technology enhanced mathematics education

Karim Noura

Introduction

The use of technology can enhance the teaching and learning of mathematics. This is a
big statement and we should be aware of the effective use of technology in teaching math-
ematics. Contemporary mathematics text books are full of applications using technology
and the Internet is full of mathematical games and activities; some of these applications
are very interesting and reflect practical situations taken from real life while others are
boring and poorly presented. 

In the implementation of the Curriculum and Standard Framework (CSF) for Victorian
schools, most of the mathematics books (for Years 7–10) have provided teachers and stu-
dents with a number of computer and graphics calculator applications to develop
problem-solving skills and to be part of CSF II Performance Assessment Tasks.

Also, as a part of VCE (2000–2003) mathematics, students have to successfully com-
plete the outcome 3 for all units (1 to 4). ‘On the completion of this unit the student
should be able to select and use technology appropriately to develop mathematical ideas,
produce results and carry out analysis in situations requiring problem solving, modeling
or investigative techniques or approaches in the area of study.’

We can notice clearly that technology is fully integrated (in line with VCE 2000 recom-
mendations) into most of the mathematics books in Victoria, which refer to graphics
calculators (which are now a feature of the course), spreadsheets, dynamic geometry soft-
ware and several graphing packages. 

Mathematics teachers should consider carefully before deciding to use any kind of
information and communication technology in the class. It should be an integral part of
the lesson plan and not just a prestigious feature to add on to the end of the class. Any
mathematical application using technology should be well prepared and well designed to
cater for the needs of the students and should be based on what the students already
know in mathematics. Also, teachers must be well trained for the kind of technology that
they are going to use in the class. They have to take into consideration the potential of
the new technology and how we can use it to achieve the stated goals and outcomes of the
class.

Students should be encouraged by teachers to learn more about this technology and
to discover its features. They should be well motivated and encouraged to use the tech-
nology in a productive way and not to consider it as a game or an entertainment tool.
They should be able to use it to solve hard problems and to handle more mathematical
information. Also, they can use it to save and present their work in a very attractive way.
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In this paper, I will look at a number of different strategies to solve a problem using
different kinds of technologies.

I have included with this report a copy of an application task that I have used in the
classroom. This application contains different tasks to cater to the needs of students in
different year levels and to respond to the curriculum assessment tasks that must be
achieved in both middle and senior school levels.

The freeway exit

The problem

Building roads can be very expensive, so civil engineers try to make them as straight as
possible. The line of a new freeway as it passes by Melford and Extown, two small towns,
is to be as straight as a ruler. Only one exit is proposed for local residents, and it is to be
joined to both towns by two straight roads.

Where should the exit be put to minimise the total length of road from Melford, M, to
the exit, E, and back to Extown, C?

Hints
• Let x (km) the distance of the proposed exit to the point opposite to M.
• Let y (km) the length of the road from Melford to Extown; calculate y in terms of

x.
• Set up a table to show the values of y for different values of x.
• Can you find the minimum value of y? Then the value of x?
• Use calculus to solve this problem.
• Use graphics calculator to verify your results.
• Use an Excel spreadsheet to justify your results.
• Use classic geometry for more proof.
• Use Geometers’ Sketchpad software to illustrate your work.
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Working through the problem

We need to establish a single exit (E) on a freeway to serve two towns M and C, which are
located 1 km and 2 km respectively off the freeway. The road MEC should be of minimum
length, in order to minimise the cost of the project. 

The problem is sufficiently concrete, well connected to problems that students have
previously faced in mathematics as well as interesting and solvable. I will also encourage
the students to discover different aspects of the problem and to ask more relevant ques-
tions, taking advantage of the potential of the available and affordable technologies.

I found this problem in a Nelson Mathematics textbook without any instructions. They
leave it to the teacher to discuss the situation with the class and to try together with the
students to find a strategy to solve it. So it is up to the teacher to set up varied tasks accord-
ing to the student’s skills level and abilities. 

In response to the question: ‘Where should the exit be in order to minimise the length
of the road between M and C?’ we may get the following suggestions from students:

• The exit (E) should be in the middle of AB (where A is opposite to M on the
Freewway, B is opposite to C).

• The exit (E) should be closer to A.
• The exit (E) should be closer to B.
• The exit (E) should be on A.
• The exit (E) should be on B.
So, how can we make the correct decision about where this exit it should be estab-

lished and where should we start?
Students should be able to draw some scenarios or plans on the class-board or on their

workbooks with the assistance of the teacher and by using classic drawing equipments.
The have to calculate to find all the necessary measurements, compare their plans and
results, and come up with some suggestions. 

The teacher may ask each student to try different possibilities for the location of the
proposed exit and come up with best solution. This means that they need to do more cal-
culations. A question will present itself here: how can we handle all the calculations and
the numerical results?

A good idea is to advise students to set up a table of values to carry out all these calcu-
lations and numerical results. 
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Table of values

Teachers should be able to instruct students to set up a good table of values representing
all the possible values of x = AE and therefore to carry the numerical values of: a = ME, b =
EC and y = a + b.
Consider x = 0, 1, 2, 3, 4 respectively.
Use Pythagoras’ Theorem to calculate the lengths of the parts a and b of the road.
Calculate the total length of the road (y = a + b) connecting M and C through the exit (E).

By using Pythagoras’ Theorem we find that:

The table of values shows that when x = 1 the road is of the minimum length
(a + b = 5.019).
Are we sure about that? ‘Yes!’ some students said.
Can we be more accurate?

Some students suggested to consider some numbers ‘around 1’ (x = 0.5 and x = 1.5).
So a new table of values is required, which will produce new values of a + b. 
Perhaps we need to consider closer values of x ‘around 1’ to be more precise.
This means that a new table of values (maybe more then one table), more work and more
calculations are needed— and students are usually not happy to do that.

The question arises: can we use technology to ease the problem solving process and to
quickly find the solution? Yes!
What kind of technology is bestsuited to this?
What kind of technology is available and accessible?
Computer programs such as Excel, Cabri Geometry or Geometer’s Sketchpad and graphics cal-
culators are very helpful to solve this problem.

x a b y = a + b
0 1 4.472 5.472
1 1.414 3.605 5.019
2 2.236 2.828 5.064
3 3.162 2.236 5.398
4 4.123 2 6.123
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Spreadsheet

Excel spreadsheets are available on most school computers; most of the students are famil-
iar with it and they should be easily able conduct this problem with the support and the
supervision of their teacher.

The following steps are recommended: 
• Set up a spreadsheet with Excel.
• Use Pythagoras’ Theorem correctly.
• Use the Fill down command.
• Use Insert command to insert rows when they are needed to be more accurate.
• Check the table of values to find the minimum length of the road y = f(x) connect-

ing M and C, and therefore decide on the best position of the exit (E) where AE = x.
• Draw the graph (using the chart wizard) to show the variation in the values of

y = f(x).

Where is the best exit on the freeway?

The result is quick and accurate: x = 1.333 km and y = 5.001 km.

x a b y= a + b
0.2 1.019804 4.294182 5.31398601

0.4 1.077033 4.118252 5.19528502

0.6 1.16619 3.944617 5.11080696

0.8 1.280625 3.773592 5.0542173

1 1.414214 3.605551 5.01976484

1.2 1.56205 3.44093 5.00298004

1.3 1.640122 3.36006 5.00018147

1.31 1.648059 3.352029 5.0000887

1.32 1.656019 3.34401 5.00002889

1.33 1.664 3.336 5.000002
1.34 1.672005 3.328002 5.00000719

1.35 1.68003 3.320015 5.00004482

1.4 1.720465 3.280244 5.00070895

1.6 1.886796 3.1241 5.0108961

1.8 2.059126 2.973214 5.03233978

2 2.236068 2.828427 5.0644951

2.2 2.416609 2.690725 5.107334

2.4 2.6 2.56125 5.16124969

2.6 2.785678 2.441311 5.22698878

2.8 2.973214 2.332381 5.30559451

3 3.162278 2.236068 5.39834564

3.2 3.352611 2.154066 5.50667685

3.4 3.544009 2.088061 5.63207033

3.6 3.736308 2.039608 5.77591614

3.8 3.929377 2.009975 5.93935167

4 4.123106 2 6.12310563
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Dynamic geometry

Another type of technology can be used to conduct the problem. Geometer’s Sketchpad is a
very interesting resource for dynamic geometry and measurements. It is available in most
schools and it will give an extra bit of life to the problem.

The following steps are recommended: 
• Let the students draw the diagram.
• Let them use the construction menu to construct lines, line segments, and circles,

parallel and perpendicular line.
• From the display menu they may use the Hide objects function to hide geometric

objects that you do not want to see in the diagram. 
• Find and show all measurements that they need. 
• Encourage them to use the animation function to check all possible situations.
• Encourage them to use the trace point function to show the variations of the roads’

length.
• Find and show the minimum value of the length of the road.
• Advise students with high skills and students from Year 10 and above to plot the

length of the road y = f(x) versus x = AE, therefore allowing them to find the
minimum length.

In my experience, students enjoy this kind of activities. They were very impressed with
the results that they found as well as the efficiency and the time saved by using this kind
of technology.
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Graphics calculators

Up to this stage of analysing the problem, we are encouraging students with different abil-
ities to take advantage of the available technology and its potential. They are encouraged
to discover more aspects of the problem. So they can be more efficient and they can save
lots of time. 

Again, taking advantage of another available technology such as the graphics calcula-
tor, we ask students some harder questions and we will set up new tasks for them to solve.

Hints: 
• Write the length of the road y = a + b in term of x = AE.
• Use the graphics calculator to justify the work that they have done.
• Show the table of values.
• Draw the graph of y = f(x) in a suitable domain.
• Use the trace function to check different possibilities of y.
• Show the minimum value of y on the graph and display it.
• Use and discover different features of the graphics calculator that you have (TI-83

is recommended).
The outcomes will be just perfect and correct. Calculators can be used any time when-

ever needed. 

Classic geometry

So far, use of technology has been the highlight of this problem; but, I would like to
remind our students about some aspects of classic geometry, which are very helpful and
very important to give more proof to the problem solving exercise and to confirm the
results, which we have found by using various types of technology.

The classical concept of similar triangles can be used to solve the problem of the
Freeway exit.

Students should have full understanding of the similar triangles properties, ratios and
proportions. Also, they should be able to use their knowledge to apply related procedures
to solve routine problems. 

Let the point M' be the symmetric of M on the other side of the Freeway. 

The right triangles M'AE and CBE are similar and .

Therefore 3x = 4 ⇒ x = 1.333 km. That means AE = 1.333 km.
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Therefore the straight line M'C is the shortest line connecting M' and C.
Since EM = EM' (E is on the axis of symmetric of MM'), then ME + EC = M'E + EB
Is the minimum length of the road connecting M and C?
The Freeway exit must be on the point E.

Teachers should take into consideration that this part of geometry could be difficult
for many students especially at Year 9 level. They must prepare the class adequately before
commencing this task.

Calculus

Again we can set up another task and we can ask a harder question.
Use calculus to solve this problem. Only higher-level mathematics classes will be able

to deal with the function:

where y = f (x) represents the length of the road connecting M and C, in terms of x = AE.
This function has a minimum value when the derivative f '(x) equals zero.
This is a very hard calculation:

f '(x) = 0 when x = = 1.333 km.

This result confirms that all the work that we have done above is correct, but it needs
lots of time and needs students with high skills in calculation in order to avoid any errors
when using this method. Remember that the TI-83 graphics calculator is very helpful for
this task. It can be used to justify this result.

Conclusion

The use of technology has changed the way mathematics is taught in the classroom. No
single technology is best to achieve our goals and to solve mathematical problems, but we
should take advantage of the technology that is available and accessible.

The use of scientific and graphics calculators is normal in mathematics classes; every
student is expected to have a calculator in the class. Graphics calculators are handy items,
allowing students to do lots of work and to save the work and come back to it later — but
they cannot print without another kind of technology (computer and graphlink cable).

Students can have access to Excel in virtually any computer around the school or at
home. They can complete lots of work by using Excel, especially numerical operations;
they can deal with large amounts of data and produce graphs, save it and print it as a nice
presentation. 

When thinking of using technology in the teaching and learning of mathematics, it is
important to remember that it should help to make the problem-solving easier and to
make the mathematics class more interesting and more productive — making topics
easier to students to comprehend. Using technology may help to maintain students’ inter-
est despite their pre-existing perceptions of that technology. Therefore, it is important to
give the students the opportunity to experiment with the available technology and discov-
er its potentials. Experimenting in a dynamic environment allows the students to explore
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different aspects such as measurements or comparing and changing figures. Also with the
use of the appropriate technology, students will be able to approach problems of
maximum and minimum in the early school years.

Using a spreadsheet does not change the mathematics learned, but it does add other
dimensions to students’ work, such as speed and ability to do many numerical operations
simultaneously, ability to vary numbers quickly, to compare, record and present lots of
data in different ways.

So as teachers, we have to be up to date with the potential of new technology, and be
able to select and prepare activities where use of technology can enhance mathematical
tasks. We also need to maintain a clear vision of what is desired of the technology, and be
responsive to it but not governed by it.
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The Ethnomathematics website

Kay Owens
Charles Sturt University

The Glen Lean Ethnomathematics Centre in Papua New Guinea has set up a
website through four countries’ collaborating. It brings the diverse mathematics of
this country to the world and assists its own appreciation of their culturally rich
mathematics. This is the story of how the website was set up. It will be viewed
during the presentation or you can look at it yourself in the address given below.

Its origin as a posthumous gift from Glen Lean

In 1994, Glendon Lean died just weeks after being bestowed with his doctorate for his
life’s work on the counting systems of Papua New Guinea (PNG) and Oceania. In 1999,
the hardcopy collection of photocopies and some disks from Glen Lean’s estate were
transported back to Papua New Guinea. Half this material found its way to the University
of Goroka. Glen collected data for twenty-two years and the appendices of his thesis had
twenty-two volumes of data from each of the provinces and the neighbouring Melanesian
countries. This is the story of bringing this wealth of information to the rest of the world. 

The vision of the Ethnomathematics Centre 

The Head of Mathematics and Computing Science, Dr Musawe Sinebare and two staff, Dr
Wilfred Kaleva and Mr. Rex Matang both with degrees in ethnomathematics decided to
set up the Glen Lean Ethnomathematics Centre. They applied and received funds from
the University of Goroka (UOG) to set up the centre. It is housed in an historical build-
ing in the grounds of the University. It is pleasantly and comfortably well-equipped.

Beginning the challenges

In 2000, Chris, my husband, and I spent a month at the centre fascinated by the papers
dating back into the 1800s. The oldest record is from the 1600s. The nationals who
helped later were fascinated that Europeans went bravely from village to village around
1900 recording their experiences of the people and the languages. After a month, we had
started up a database of the counting systems, produced a bibliography of hundreds of
papers, and made a copy of the thesis from the disks. This required a visit to get coloured
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copies of the maps held at the PNG University of Technology (Unitech) in Lae where
Glen did his doctorate. All the staff with whom we had worked in the past assisted us as
much as possible. After finally finding there were no coloured photocopies and locating
the two coloured printers in town (both running out of ink during our visit), we obtained
copies by scanning and printing. In our travels, to scanner was damaged and the adapter
cord (used also for musical instruments) was stolen and not easily replaced. We also made
copies of Geoff Smith’s thesis on the counting systems of Morobe, a province of PNG.

The electronic copy of the thesis and appendix volumes was originally produced on a
mainframe and then several Macintosh computers; subsequent transfers of data to an
IBM-compatible computer meant that the data were not easy to work with. I learned many
tricks to transfer this information into our current database. We also scanned maps and
other pictures that had only been in hard copy. These pieces from the thesis I combined
together to make both an electronic and hard copy of the thesis. 

To make the bibliographies required sorting out who was publisher, editor and author
on German or Dutch documents. This was surprisingly tricky. Chris filed all the docu-
ments alphabetically into the filing cabinets as well as developing the bibliography.

Mid-year, Geoffrey Saxe, who had visited the Oksapmin on several occasions, returned
to open the Centre. He and many others like Alan Bishop and Ubitan D’Ambrosio have
continued to show their interest in the centre and encourage the director Rex Matang
and Wilfred Kaleva. 

Beginning the database

The PNG University of Technology houses the Architectural Heritage Centre and they
had produced a Filemaker Pro database of the carvings and other artefacts of the Sepik and
Ramu river areas based on Mac Ruff’s long term studies. It is beautiful. I thought that it
would be good to produce a similar one of the counting systems. Thanks go to Carol, who
previously maintained the MANSW database, for an initial few hours instruction. 

I began the task of structuring the database. Counting systems of 700 languages have
been recorded. For each language, there are from one to six sources of the counting
systems with slightly varying word lists plus from half a page to five or six pages of infor-
mation that Glen had collated from the original records, field visits and questionnaires
completed by Unitech students and teachers. In a separate part of each volume, Glen had
recorded the analyses of the counting systems. We needed the hard copies held at UOG’s
library to finalise our data entry. The word lists and words are complex and of course
foreign to us, although I gained a good understanding of the structure of the systems and
could often use the patterns of words to straighten up the records. For two short periods,
staff members at the University of Goroka were employed to understand the database and
assist with the data entry. Rex helped too.

The website vision

Out of the blue, I received a call from Nancy Lane, then Communications Director of
Pacific Resources in Education and Learning (PREL).

‘Do you know about ethnomathematics in Papua New Guinea?’ 
‘Yes.’ 
‘Would you like some funds to share this information on our website?’ 
‘Yes, but I have to check if the Centre Director wants to do this. They have a website at
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the University of Goroka.’ 
‘How much would you need?’ 
With approval from the Centre Director and UOG staff, we applied for the funds

through PREL that came from the US National Science Foundation. Some went to UOG
and some for my expenses to UWS. There was, fortunately, twice as much as we expected
since the task proved to require more visits from me than we had first anticipated. 

By email, Rex, Wilfred, and I worked out what we needed to do and approximate costs
for equipment, travel and accommodation. By this time, they had the assistance of Kiyu,
the Japanese JICA volunteer who advised on software and hardware. We had to try to
retrieve the other half of Glen’s hard copy data. We needed to scan in papers. We needed
to set up the website with all the necessary pages. We needed to connect the database into
the website. At this stage we were using Filemaker Pro version 5. Kiyu said we needed to work
with Macromedia’s Flash and Dreamweaver software, as well as using Javascript. He had
been able to read the Japanese manuals of Filemaker and the Macromedia software and
had worked out that we should upgrade Filemaker 6 and also needed one computer dedi-
cated to the database, and another for the website data connected to UOG server. 

Multinational work on the website

In October 2002 I made a six week visit and met Kiyu. Six weeks is a bit too long in the
Lodge without easy phone access but I could enjoy the company of a number of nation-
als (often my ex-students from Unitech), also away from their families for long periods
working on Goroka projects such as the new library and the roads. Martin Imong was a
temporary lecturer and able to help me and Rex with the database entry. He was both a
Mathematics and Computer Science teacher. He could do the difficult work of entering
the data from other languages, but complex lives interfere with time on task in PNG. Kiyu
and I communicated by doing things on the computer. Tok Pisin was the common lan-
guage between us all. We employed a lady to help the secretary with the scanning of
papers. By the end of the six weeks, Kiyu had crafted the basis of the homepage. I had
selected sections of the papers and earlier student projects to be scanned. We finished the
entry of 700 language counting systems. I had a brief one night chance to use the updated
version of Filemaker Pro 6 unlimited before the disk was returned to the post office for a
three month ‘red tape’ delay about customs money, despite the software being for an edu-
cational institution. 

During this visit, Francis Kari went back home to Manus to collect the remaining doc-
uments from Glen. The story goes that the salt water trip and insects had destroyed them.
We proceeded to replace the data from SIL sources, the Goroka library and, on my
return, through UWS database systems, but some original photocopies (probably collect-
ed in the Netherlands, England, Germany, and the US from both libraries and
government archives) and other material were irretrievably lost. 

A couple of three day visits were possible over the next year when I was in PNG for
other projects. This brought Kiyu back on task briefly. Despite good intentions between
visits, Rex and I found little time to continue work on the website. We did however write
several papers over the years.

During one of these visits, we found out that UOG needed to upload all their website
to the Datanet server in Port Moresby because the lines between Moresby and Goroka
were unbelievably slow and often down.
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Time is running out for finishing the task

Another phone call from Nancy: ‘Do you need to go back to PNG to finish off the website?
Time is running out fast. We can find some more money. I’m likely to leave this job by
mid-year.’ 

‘Yes, I do need to go back.’ 
Kiyu had left. The task had proved to be too difficult for him to finish despite his

incredible amount of self-instruction. I had three weeks.
After breaking into his temperamental computer, I taught myself how to use

Dreamweaver to continue the website connections and planning. I was able to organise
further scanning of documents and Wilfred’s wife Roa helped collate the jpeg images of
the scans while I wrote a brief description for approximately one hundred papers. I also
wrote some elementary school activities. 

At the end of the trip, I had some IT help back in Australia. I sent off the improve-
ments for uploading. Howver, before this could be done, the disk and one of our
computers, printer, and UPS were stolen. 

With GLEC agreement, PREL uploaded the website onto their computers but the lack
of Filemaker Pro connection knowledge was still a problem.

By August 2004, the new JICA volunteer, Masa, had settled in and had used the May
version and remade links so the basic website was improved. I sent up a new copy of the
website with a few more papers included but it did not reach Masa’s hands. In August,
Nancy and Rex said, ‘Kay you must go back.’ I hesitated as I did not think I could at all
help with the IT work that now needed to be done. However, my last trip, which lasted a
week, brought huge success. Masa had already read the manuals and with his years of
experience had both improved the UOG website (there was another JICA volunteer
helping with that) but also had made the connection between the database and the main
website. After a day, the two parts of the basic site were live. I had a chance to find out
what was wrong with the database when it was up on the Web and to make corrections to
the controlling scripts. Only the search engine had to be redone on the main website.
One task was to re-enter all the counting system tables. The spacings for columns were all
lost and so the complex number words made the lists unreadable on the Web. With the
help of Roa, I began the tedious task of checking each of the counting system lists. 

It took a week for the files to be uploaded to the Moresby Datanet site. We had more
than 5000 files on the site.

Back in Australia I tested the site at a distance. I was particularly worried that the
scanned papers would not be readable or printable — but they were working.

Masa proved an invaluable member of the team at the last minute. Our four nation col-
laboration and the stretching of our ITC skills has expanded everyone’s knowledge of
Papua New Guinea counting systems enormously. There is still a huge amount of materi-
al that could still be added to the website. 

During March, Rex went to his village area and interviewed a number of children
learning to count in vernacular and Tok Pisin. In April, I went to a couple of elementary
schools in the Highlands to trial some activities similar to those used in NSW’s Count Me
In Too project. We were really pleased with how the use of the vernacular languages was
helping children understand number. The website should assist teachers in elementary
schools if only they had access. However, the languages in PNG are changing so much that
the counting systems are rapidly changing from those recorded in Glen’s work. 
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The future

There is so much that we can investigate and record and reintroduce into the curriculum
in other areas of mathematics besides counting. Each of the 800 cultures have different
measurement and space knowledge. In PNG there are living counting systems that are not
base 10 systems. The NSW Stage 4 syllabus makes particular reference to these systems.

Now you can have a go at exploring the website yourself at www.uog.ac.pg/glec.

Technical details

Counting system databases

The structure of the counting system database involves seven related databases.
1. The menu page is really just an introduction and links to the language database. It

also gives more details about abbreviations and links to the other databases.
2. The languages database. This database has three layouts:

(a) interesting examples gives buttons to connect to 30 common or interesting
examples of different cycle systems (systems are generally not base 10),

(b) the form layout which links every record to the general background of how
Glen collected the data, a page on the province available to every language in
that province, a brief summary called important notes, a map of the province
in the country, and some other details such as the language classification.
Each record is connected through a portal to one or more counting system
pages. 

(c) A search page. 
3. There are two layouts for the counting systems database. 

(a) The form layout lists Glen’s analysis of the counting system in terms of the
frame or counting words from which all other number words are formed, the
patterns of number word combinations by which the larger numbers are
made, and the cycles of the system (like a base). It also contains list of the
counting words as collected from different sources. A large part is devoted to
the details that Glen collected or recorded on the language and counting
systems. In particular some languages have extensive notes on classifier
systems in which different objects are counted by different words. Another
section gives the links to body-parts and to cultural contexts for counting. The
sources of data and updates are recorded. In order to assist the search as
many different variations of the language and dialects are listed. At the
moment this is an incomplete section.

(b) A search page.
4. Each counting system page is linked to one of the maps that gives the regions in

Papua New Guinea where you can find the same cycles. It is notable that many start
off with a 2 cycle although they may also have a 5 and even a 20 cycle system too.
There are 4 and 6 cycles and 5 cycle, 5 and 20 cycle or 5, 10 and 20 cycle as well as
body-part tally systems.

5. Each counting system is also linked to a map indicating where the system is found
in the province. Neighbouring systems are indicated on the same map.

6. If the system is a body-part tally, then there is generally a picture showing which
body parts are used in the tallying.

Before searching, the records need to be refreshed using the appropriate button. 
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The website

Dreamweaver was used to make the basic pages. Kiyu also used extensive Javascript and
Flash. This helps in particular with the long list of counting systems given in an Excel
format. This banner was put at the top of each main page requiring each to have the drop
down menus and links activated. 

Having so many lists of papers and so many papers required careful thought to ensure
there was reasonable links if appropriate to Glen’s work or to the centre’s subsequent col-
lections.

Several theses and key papers can also be found on the website. The GLEC team have
also been captured on videotape counting in their own languages.

Where to from here

We hope that indigenous people from around the world will be encouraged to develop
and preserve their mathematical understandings. We hope that the material will be avail-
able for elementary teachers in remote villages at least if they visit regional centres. We
also hope that Australian and New Zealanders will recognise the rich diversity of their
near neighbour. The struggle for recognition of Melanesian culture to the west in West
Papua, Timor and the other Indonesian islands is a human rights issue for these people. 

The site has links to the ethnomathematics sites in Australia and Hawaii. We hope
other mathematics education sites might make links to it too.

Further research

Rex and the students at UOG are making efforts to continue research. There is much
work needed on other aspects of mathematics. Music, measurement, space, time, sailing
and traditional technologies all have extensive mathematical thinking that is quite differ-
ent to our western mathematical thinking. We need to record these and maintain them
before it is too late.
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Refreshing ideas for 
secondary mathematics lessons

Cyril Quinlan
Australian Catholic University

This sharing of learning/teaching ideas will range across a variety of topics includ-
ing a model for introducing indices, links between mathematics and music,
sparking an interest in trigonometry, practical ideas with squares and circles, a
somewhat novel way to introduce quadratics, how to avoid the trap of trying to intro-
duce algebraic conventions from generalisations about patterns, and some models
for understanding pyramid volume.

Model for indices 

(See Quinlan et al., 1993)

Doubling with cubes

Class groups build a series of models showing the effect of starting with one cube (such
as Cubit Cubes or Multilink Cubes) and doubling it once, twice, three times, … , to six
times. Each group makes a series of ‘tents’ by folding cards (rectangles about 3 cm by 6
cm) in half. On the tents they write, for example, on one side 23, on the other 8, for the
case of one doubled 3 times. A preservice student last year created three-sided ‘tents’ and
added the explicit 1 × 2 × 2 × 2 on the third side. 

The groups will probably surprise the teacher when they are directed to explore rela-
tionships between the results of doubling, and use the ‘tent cards’ to express their
discoveries in two forms of an equation. For instance, they can model 2 × 8 = 16 by con-
sidering two lots of the model they have for 8. When they turn tents around, they see the
equation as 21 × 23 = 24. They quickly settle on the index laws for multiplication and divi-
sion. Also they accept that 20 is what you get when you multiply 1 by 2 zero times, giving
just 1. A graph of y = 2x can be generated and the process can be repeated for, say, multi-
plying 1 by 3 several times, and by 4 several times.

Music and mathematics

It is beneficial to link mathematics lessons to the interests and hobbies of the students.
Music offers links to several mathematics topics, as is now shown.
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Indices
Western musical notation usually is based on notes which are given one of seven letter
names ranging from A to G, with the frequencies increasing accordingly. We will denote
the next higher group of notes as A| to G|, and the next lower group as A| to G|. Some of
these are shown in Figure 1.

Figure 1. A piano keyboard.

The eight notes from C to C| form an octave and the frequency of C| is twice that of C.
The frequency doubles as you go up an octave and is halved when you go down an octave.
We will take 256 hertz (or 256 vibrations per second) as the frequency of the note known
as middle C, since it is the main frequency produced by striking the C key which is found
near the middle of a piano. Students can work out the frequencies of the octaves of
middle C, remembering that 256 ÷ 23 means you double 256 three times, and 256 ÷ 21

means you divide 256 once by 2. They could go on to frequencies of octaves above and
below the note G of frequency 384. 

Note that a frequency standard now commonly used has A| as 440 hertz and frequen-
cies of other notes are calculated by multiplying or dividing by the twelfth root of 2. As
shown in Figure 1, there are twelve intervals (when you include the black keys of a piano)
within any octave.

Ratio
The timing for different types of notes is as follows, where each type of note lasts for one
half of the time for the previous type in the list: semi-breve, minim, crotchet, quaver, semi-
quaver, demi-semi-quaver. Appropriate questions could be:
1. If a trumpeter is playing a tune at a speed which requires that each crotchet is held

for half a second, how long should the following be held: 
(a) a semibreve?
(b) a quaver?
(c) a demi-semi-quaver?
(d) a minim?

2. Study the music sample in Figure 2 and answer the following questions.

Figure 2. Music sample.

(a) Discuss how playing each of these bars requires the same amount of time (if
the same pace is used for all four bars) and write notes about the notes, such
as: ‘In bar P, 1 minim and 2 quavers = 2 + 1

2 + 1
2 = 3 beats’. 

(b) Tapping. Try tapping out the rhythm for bars P to S. First tap a regular 3 beats
to the bar rhythm and, when ready, tap out the timing for the bars.
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Musical harmony
The main frequency (or number of vibrations per second) of a sound wave determines its
pitch — how ‘high’ or ‘low’ it is. Most musical notes are composed of a mixture of frequen-
cies. The lowest frequency of a musical note is called the first harmonic or the fundamental
frequency and the notes with multiples of this frequency are known as its second harmonic
(twice the frequency of the fundamental), third harmonic (three times the fundamental
frequency), and so on. 

Usually many harmonics are produced by each note of musical instruments, in contrast
to just the fundamental being produced by striking a tuning fork, as shown in Figure 3.

Figure 3. Contrasting note produced by a tuning fork and ‘chord’ produced by a string.

Experiments.
1. Try this experiment with a well-tuned piano, if possible. Depress the loud pedal (to

lift dampers from the strings) and strike C|. Listen for any harmonics of C|. Slightly
depressing the key for a chosen harmonic when striking the key for C| helps this
stage of the investigation. Discuss.

2. Experiment with a well-tuned guitar or violin, if possible. The open strings of a lead
guitar when plucked give the fundamental notes E|, A, D, G, B|, E|, while a violin is
tuned to G|, D, A|, E|. Try the following:
(a) Pluck any open string, stop it vibrating, and investigate whether you can

see/feel/hear another string vibrating. Is it vibrating with the fundamental
frequency of that string or of the string first plucked? If not, which harmonic
is it?

(b) Repeat with a finger on the string being plucked (e.g., on the fifth or fourth
fret for a guitar).

(c) Set a string vibrating and lightly touch it at its centre (or some other fraction-
al spot) and identify what you hear.

Exercises such as the following come to mind:
1. (a) List the frequencies for the first 8 harmonics of C||.

(b) Identify which of these harmonics are octaves apart.
(c) With the help of Figure 1, match the following notes to the harmonics: C , C|,

C|, G|, G, B| flat, E.
2. Study the frequency data in Table 1.

NOTE
some only

approximate

C| E| G| C E G C| E| G| B|| C|| D|| E|| G|| B||| D||| G|||

harmonics of
C|

128
1st

256
2nd

384
3rd

512
4th

640
5th

768
6th

1024
8th

1152
9th

1280
10th

1536
12th

1920
15th

2304
18th

harmonics of
E|

160
1st

320
2nd

640
4th

960
6th

1280
8th

1920
12th

harmonics of
G|

192
1st

384
2nd

768
4th

960
5th

1152
6th

1536
8th

1920
10th

2304
12th

3072
16th

harmonics of
C

256
1st

512
2nd

768
3rd

1024
4th

1280
5th

1536
6th

2304
9th

3072
12th

harmonics of
E

320
1st

640
2nd

960
3rd

1280
4th

1920
6th

Table 1. Frequencies of harmonics for C|,E|, G|, C, E.
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(a) Musicians know the interval from C| to G| as a fifth. How many harmonics, of
those shown in the table, do these two notes, C| and G|, have in common (with
the same frequency)? An interval of a fifth appeals to the ear perhaps more
than any other interval and so is found in the music of many cultures that
make music with more than one note being sounded together.

(b) Calculate the highest common factor of the fundamental frequencies of C|

and G|. 
(c) Calculate the ratio of these frequencies (128:192) in simplest form.
(d) Calculate the lowest common multiple of the fundamental frequencies of C|

and G|.
(e) (i) Write how this lowest common multiple is related to your answer to part

(a).
(ii) Write how your answers to parts (c) and (d) are related.

(f) Which other pairs of notes are likely to produce appealing harmonies? Why?

Introducing trigonometry 

(See Quinlan, 2004a)
Surely, the most important objective when starting a class on a previously unknown
branch of mathematics is to ensure that they enjoy and appreciate the significance of this
new aspect of mathematics. A great way to involve the class in group work at the very start
of a unit on trigonometry is to provide each group with a 45-45-90 set-square, a drinking
straw, some Blu-Tack, and a metre rule, and direct them to work out some way to use all
these materials to measure the height of the classroom. Hopefully, some group(s) will
place the viewing instrument (with the drinking straw attached to the hypotenuse of the
set-square) not on the floor but on a horizontal surface such as a desktop and adjust the
position of the desk until a suitable line of sight is established. The most common next
move is to measure the height of the table, and the distance to the wall from the point on
the floor below the bottom end of the viewfinder. Noting that the set-square provides an
isosceles triangle, the height of the room is found by adding these two measurements
(Figure 4). After using this idea for several years, one group a few years ago improved dra-
matically on this first method. After positioning the setsquare for viewing up to the top of
the wall, the group found the point on the floor where the line of sight downwards hit the
floor. Then they needed just one measurement, namely the distance from this latter point
to the wall (Figure 5).

Figure 4. First method. Figure 5. Second method.
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Next, challenge the groups to repeat their measuring of the height of the room by pro-
viding the groups with 30-60-90 setsquares. Examining sets of similar 30-60-90 triangles
should convince them that the ratio they need to use for either 30° or 60° (namely, oppo-
site over adjacent) is constant regardless of the size of the triangles. It is time now for the
introduction of the technical terms opposite, adjacent, and tangent ratio and the defini-
tion of tangent of an angle. If the students meet such terms in this reality context, there
is some chance that they will appreciate the relevance and usefulness. Stay with tan for
some time before introducing problems which require sin or cos. 

Squares

Use a grid page as a time-saving device for this exercise. Have groups draw squares of dif-
ferent side lengths and measure the following two things to the nearest millimetre:
1. the perimeter;
2. a diagonal (the longest straight line to fit in the square).

They calculate the ratio perimeter/diagonal to 3 decimal places using a calculator and
the results are tabulated, giving approximations to the irrational number equal to twice
the square root of 2.

Circles

Circumference

Measuring circular objects and tabulating the ratio of circumference to diameter is a
worthwhile introduction to π and the formula for circumference.

Recommended methods are to roll circular objects (e.g., coins, CDs, plates) along a
scale, and to use a flexible tape measure to record the circumference of larger circular
objects such as rubbish bins. Some of the author’s preservice students last year presented
the brilliant idea of lining up three 20 cent coins, touching and in a straight line, and
then rolling another 20 cent coin along beside them.

Reality applications could include bicycle wheels with gears, and marking out a 400 m
athletics track with two straight sections each of 85 m and two semicircular sections,
knowing that athletes usually run about 300 mm away from the line markings. 

Area

A very helpful exercise when studying the area of a circle is to take a tightly-rolled stream-
er and consider one circular face while the streamer is rolled up, and when it is cut down
along a radius from the top to the centre to give a triangular shape, as shown in Figure 6
(See McSeveney, Conway & Wilkes, 2004, p. 390).

Figure 6. Insight into the area of a circle.
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Angle properties

Set up a cyclic quadrilateral with one side extended using a geometry software package,
as in Figure 7. By dragging points, facts and relationships about angles can be noted.

Figure 7. Cyclic quadrilateral, using Wingeom.

Introducing quadratic equations 

(See Quinlan, 2004b)
1. Graphs based on y = x2, with equal scales on each axis:

(a) On centimetre grid paper, plot y = x2 for -3 ≤ x ≤ 3 (and 0 ≤ y ≤ 9).
(b) Trace this graph onto thin card or another grid and cut out the parabola

shape.
(c) Use the first graph to solve x2 = 0, x2 = 1, x2 = 4, x2 = 9.

(After students have a go, may suggest draw lines y = 1, y = 4, y = 9.)
(d) Using the cut-out on a set of axes with equal scales on each and allowing for

-9 ≤ y ≤ 16 and -3 ≤ x ≤ 4.
Move the shape down (or up) to trace around it and draw graphs of
y = x2, y = x2 – 1, y = x2 – 4, y = x2 – 9, 
and solve the cases for y = 0 for each graph.

(e) On the same set of axes, move the cut-out 1 unit to right, then down by the
same amounts as in (d) to trace the graphs of
(i) y = (x – 1)2 and have students check this (by substitution)
(ii) y = (x – 1)2 – 1
(iii) y = (x – 1)2 – 4
(iv) y = (x – 1)2 – 9, and solve the cases for y = 0 for each graph.

2. Relate the graphical methods to other methods such as taking the square root of
both sides, using factors for a difference of two squares, using the fact that 
x2 – (sum of roots)x + (product of roots) = 0,
completing the square, and, for equations of the form ax2 + bx + c = 0, 
use (px + q)(rx + s) = prx2 + (ps + qr)x + qs to lead to the cross-product method.

3. Include real-life cases involving quadratic equations, such as analysing the equation
s = 20t – 5t2, where s metres is the height an object reaches, t seconds after firing it
vertically.
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Introducing algebraic symbols

The new Mathematics Syllabus Years 7–10 (BOSNSW, 2002) currently stresses that students
need ‘to develop an understanding of the use of letters as algebraic symbols for variable
numbers of objects rather than for the objects themselves’ (p. 82). The use of a model
such as the cups and counters model is recommended. 

Research data show that very few young students succeed with a progression from
pattern generalisations expressed in everyday language to expressing these in symbolic
algebra (cf. Quinlan, 2000, 2001; MacGregor & Stacey, 1993). The clear message is to
ensure that students are conversant with the conventions of writing algebraic expressions
before being asked to translate generalisations from English to algebra. This is now a rec-
ommendation of the new NSW Syllabus: ‘The recommended approach is to spend time
over the conventions for using algebraic symbols for first-degree expressions and to
situate the translation of generalisations form words to symbols as an application of stu-
dents’ knowledge of the symbol system rather than as an introduction to the symbol
system’ (BOSNSW, 2002, p. 82).

These recommendations are incorporated into very few current textbooks, but this
present author has been promoting them for some time (see Quinlan, 2002; Quinlan,
Low, Sawyer & White 1993).

Pyramid volume 

(See Hodges, 1982)
The Hodges article is excellent for guidance regarding suitable cardboard models to lead
students to discover how to calculate the volume of a pyramid. A set of three square-based
pyramids, each with vertex above one corner of the base, can be made to fill a cube with
faces congruent with the bases of the pyramids. The pyramids have the same height as the
cube. Similarly, a set of three pyramids with triangular bases can be shown to fill a corre-
sponding prism. These experiments lead to the conclusion that the volume of a pyramid
equals one-third the area of the base times the height. 
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Let ’em fight it out:
Arguing in my constructivist classroom

Noemi Reynolds
John Curtin College of the Arts, WA

We are becoming more aware of how students learn mathematics and the evidence
that indicates that people construct their own understandings based on the expe-
riences they encounter and their previous knowledge. These understandings are
often full of misconceptions, particularly when students play an apparently passive
role in learning. The more active students are in exploring and sharing knowledge,
the more powerful their constructions and the less likely they are to be based on
incorrect ideas. A learning environment that provides learning experiences which
enable and, indeed, demand that each student takes an active, heuristic role is a
constructivist learning environment. In this paper I will share a strategy I developed
which I have found enables students to construct their mathematical knowledge
and, interestingly, for me to work less hard in my classroom.

Background

I can program my old VCR — to record when I want it to! We just bought a new one the
other day (with a new-fangled DVD-thingy in it) and I figured out how to program that
one too. I also recently taught my seventy-two year-old aunt how to program hers, too,
without having seen that model before. It is amazing what we can learn, and learn well
and quickly, when we are in control of our learning — when we actively construct our own
learning. This concept is fundamental to my teaching and is recognisably a constructivist
approach (the Internet provides more information on constructivism). 

In employing a constructivist approach in my teaching I use and devise strategies that
enable students to, among other things:

• be autonomous and curious;
• use initiative;
• develop and freely use inquiring minds;
• develop deep understandings and to develop these understandings based on their

previous experience and pre-existing knowledge;
• engage in dialogue with other students;
• use peer tutoring to further their own understandings and those of others;
• use co-operative learning;
• use whatever learning style suits them best;
• construct new knowledge and understandings from experiences that make particu-

lar sense to the learner.
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As students construct their understandings they usually develop misconceptions which
can hinder future developments. These misconceptions are best challenged by the use of
cognitive conflicts (an Internet search on cognitive conflict can provide further informa-
tion). If a student is provided with clear and irrefutable evidence that his or her
understanding is incorrect, they have to reconstruct it. For example, a student may
believe that when two numbers are multiplied together, the answer is larger than either
of the starting numbers. When faced with the evidence that the answer to 5 × 1/3 is
smaller than 5 their belief is challenged and they need to rethink it.

One of the precepts of the constructivist approach is the understanding that dialogue
is an essential factor. So, my strategies to best enable constructivism include organising
the desks in my classroom into groups of four, establishing a team ethos within these
groups of four (this includes changing the composition of these groups twice a term),
using collaborative techniques such as those of Barry Bennett, using authentic tasks and
situations, allowing students to drive their curriculum in so far as possible, and basically
allowing my classroom to be as noisy as can be. Having students sit in quiet rows working
from textbooks is the antithesis of these strategies. My students spend no more than
15–20% of their class time doing that (yes, it does have a place, even in a constructivist
classroom) and the rest of the time they are usually talking. If I spend more than 10% of
our class time talking to the class or any one student, then I consider that lesson was prob-
ably less effective than it could have been.

As a part of this I have developed a strategy that caters for most learning styles (includ-
ing those who learn best by ‘just being told what to do’) and that provides cognitive
conflicts in a safe environment. 

In a session given by Thelma Perso some years ago, I was introduced to the idea of cog-
nitive conflicts as a learning tool and the use of peer tutoring to resolve these. I
experimented with my classes which, at this stage, included primary extension classes, sec-
ondary classes, TAFE classes and TEE (Tertiary Entrance Examinations) classes and
adapted her ideas into what I call mathematics debating (and quickly learned never to
shorten the word ‘mathematics’ — especially not in a class of Year 9s). This is an incred-
ibly effecting teaching strategy (for most, but not all, of my classes). I have since presented
workshops on this strategy at many MAWA conferences, two AAMT conferences, the
Transition Numeracy Conference, and on other occasions. I have received feedback from
participants months after these sessions in which they tell me how successful this strategy
has been for them.

The strategy

1. I present a problem or group of problems to the class — preferably in a relevant
context and often prompted by a comment from a class member. Any problem is
suitable. What is helpful is an understanding of they types of misconceptions stu-
dents tend to have and an ability to recognise them. Any problem can reveal these. 

2. Students discuss the problem(s) in their groups (or work on it alone — sometimes
— if that is their preference).

3. Time permitting, students may be invited to check their answers with others in the
class. It is an important step if there is confusion about the problem or if there is an
excessive number of solutions proposed. I judge this by walking around the class
and observing students.

4. I then call for answers. These are written on the board as they are suggested, with
no comment from me.
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5. If only one answer is suggested and the class all seem to agree with it, then it is
accepted without further comment. If I want to know by what process students
arrived at that answer, I give them a similar but more challenging problem.

6. If a number of different solutions are proposed, I call for speakers to defend each
solution.

7. Speakers for each solution go to the board and take turns defending their answer.
Each speaker is permitted to:

• use the board;
• speak for as long as they require;
• speak without being interrupted;
• refute the previous speakers arguments;
• change their case at any time;
• concede their case at any time (students are commended on graceful conces-

sions — the only judgemental comment from me during the whole process).
8. When each speaker has had the opportunity both to present their case in full and

to refute all other speakers, the rest of the class can participate in the discussion:
asking questions of the speakers, presenting their own cases, adding further expla-
nations to speakers’ cases and so on. 

9. When the class comes to a consensus on which is the right answer (if any), then the
problem is considered solved.

10. If no correct solutions are proposed but the class comes to a consensus on an incor-
rect answer, I alert them to the fact that we need to work on it. This means they do
not have the concept the problem was meant to address/consolidate/whatever.
After we have done some more work towards that concept, we revisit the problem;
the students themselves often prompt this.

11. This also applies if no solutions are suggested.
12. If the class cannot come to a consensus on the correct answer, I call a stalemate and

revisit the problem after we have worked further on the concepts required.
13. Students are encouraged to extend the problem with ‘what if…?’-type questions.
14. The process may then repeated if any ‘what if…?’ or other extensions are proposed.
15. Questions can be open so that more than one answer is acceptable. Students have

to decide which answers are acceptable.
This process can take just a few moments or can take a whole lesson, depending on the

students’ requirements. 

What I have to do

There are some important behaviours from me in enabling the success of this strategy.
They include:

• developing a safe learning environment and modelling respect for all students. This
includes valuing mistakes. We have a poster in my classroom that reads, ‘This is a
learning zone. Mitake Mistakes are welcome here.’ It takes time to develop this envi-
ronment; that is, one with no derisive comments or put-downs;

• allowing students control of the process. Once I initiate the process I allow it to run
under student control;

• only providing the ‘correct’ answer if the whole class calls for it;
• not allowing students to look at me while presenting their case; that is, I avoid eye

contact — they have to convince the rest of the class, not me;
• recognising that this does not work well the first few times I try it with a new class.
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They need to be taught the process. For some, the challenge of thinking is a pretty
big task and takes some getting used to;

• determining that my role is that of possible problem-poser (students may also do
this), facilitator of discussions (before the debate), occasional crowd control, time-
keeper for the debate (if the class want to put a time limit on each speaker) and
sometimes adjudicator if no consensus can be reached (that is, I say, ‘We have to
leave this problem as we cannot reach a consensus’);

• ensuring students learn not to ask me for help during either the discussion period
or during the debate;

• not judging or commenting on students’ arguments or comments during this
process;

• noting when students need more work on a concept.

Outcomes

There are a number of outcomes arising from this process. They include:
• Flaws in reasoning and misconceptions are usually recognised and acknowledged

by the student themself. The cognitive conflict arises when students thought they
understood a concept and used it to derive their answer(s) but find that others dis-
agree with them. It is highly confronting when a teacher tells a student they are
incorrect but most students consider this process a part of the game. They seem far
more comfortable being wrong and reconstructing their understandings from it.

• Boys love it: they call it ‘arguing’ and constantly ask for it (‘Miss, can we do arguing
again?’) as they walk in the door. 

• Girls love it as they enjoy talking things through.
• Far more students are engaged in the process, especially as they may perceive it as a

way of avoiding ‘having to work’. In fact, I currently have one class who are convinced
they never do any work but my records show significant progress in their understand-
ings and skills. The bonus is that they are always excited to be coming to Maths.

• New concepts can be investigated and explored; I often use this to help students
recognise when they need to learn something entirely new.

• Students are able to investigate new ideas and construct their understandings based
on what they already know.

• Peer tutoring is employed and is highly effective for those students who ‘need to be
told what to do’. For many students, this is far less threatening than when a teacher
tells them.

• Students at different levels of achievement can work to their own level. Some stu-
dents generate quite sophisticated reasoning; other students can follow it even if
they cannot generate it.

• Students feel that they are generating the knowledge — as, indeed, they are.
• Students feel that they have control over their learning — as, indeed, they do.
• The process helps me identify what concepts the class and individuals need to work

on and what they know well. I keep a record of what outcomes (from Western
Australia’s Outcomes and Standards Framework) students demonstrate during this
process.

• These discussions can prompt subsequent lessons.
• It helps build a ‘community of mathematicians’ feel to the class. Real mathemati-

cians operate somewhat like this (usually via journals and such like). 
• I can work a little less hard in class (and that’s got to be good!).
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This process works with all my classes to some extent and I experiment with each class
to determine how best to use it. Offering jellybeans to debaters always helps; I keep a jelly-
bean jar in my cupboard and all those who defend an answer receive one (not those
students who are just ‘mucking around — you know what I mean).

Conclusion

I will conclude with a story: two years ago I had a middle-level Year 9 class with an incred-
ible range of achievement levels. They used this strategy extensively and thrived on it.
During one lesson I was squatting down at the front of the class, helping two lower-achiev-
ing students (who needed more help than average). All of a sudden, a commotion arose
at the back of the class. I looked up to see what was happening and noticed two students
striding to the front of the class: they immediately began debating a problem. Meanwhile,
I ducked back down, eager not to interrupt the flow. The rest of the class stopped working
and watched their debate and then contributed to it. The students resolved the problem
and returned to their seats. The rest of the class then returned to their own work. I played
no part in the process, apart from sitting very small and still. This was one of the golden
moments of my (so far) twenty-one-year career. These students were in charge of their
learning and clearly thriving on their autonomy.

Finally, a quote attributed to Woodrow Wilson: ‘Use more than the brains you have:
use all the brains you can get.’ This strategy uses all the brains in the classroom to
promote learning.

If you try this strategy I suggest you use it first with your very best classes — those you
trust the most. It is unlikely to work the first few times you try it and letting go of your
teacher instincts (that urge to tell students what they need to know — it is referred to in
the literature as ‘teacher lust’) is difficult. It took a couple of years for me to get it right:
persistence helps. Good luck and let me know how you go; I can be reached at
noemi.reynolds@det.wa.edu.au.

This paper is based on one published in the MAV 2004 conference proceedings.
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Maths on a mat with Matt

Matt Skoss
Alice Springs High School, NT

The Maths Mat is one teaching strategy that allows:
• children to construct their own mathematical concepts
• kinesthetic learning styles to be catered for
• multiple representations of ideas
• cooperative learning in a risk-taking atmosphere.
What is the mat? It is a large piece of shade cloth (7.2 m x 3.6 m) with a 10 x 5 grid
painted on it. The squares are approximately 70 cm x 70 cm. All the activities
involve ‘doing maths’ with your body — kinesthetic learning. These ideas were
inspired by Doug Williams’ paper in the 1993 MAV conference proceedings, ‘Maths
on a plastic mat’. The mat helps students to develop their own understanding of a
concept, rather than just being ‘told’ something. Activities have been devised from
early childhood to Year 12, in the areas of coordinate geometry, measurement,
algebra, transformational geometry and chance and data.

I attended my first Mathematical Association of Victoria conference in 1993. Just as I left
for the airport, a colleague bid me farewell with: ‘I don’t know why you bother going to
conferences. Research shows that if you don’t use an idea after 12 days, you never will.’ 

With that ‘vote of confidence’, I resolved to bring back one ‘big idea’ and develop it
further in professional development settings in the Northern Territory. Since then,
numerous classroom teachers have contributed ideas, and ‘tweaked’ existing ideas
further.

I have found the following two principles to be powerful in guiding the development
of tasks and activities for the maths mat:

• ‘Good mathematics curriculum starts with rich mathematical tasks’ (Doug Williams,
Curriculum Corporation);

• ‘Geometry that can be told is not geometry’ (Dick Tahta, Open University, UK).
One activity (Figure 1) that challenges adults and children alike is: ‘Using the elastic,

make a triangle that has an area of 6 square units.’

Figure 1
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This ‘simple’ task challenges the concepts a learner has constructed for themselves
about area and triangles. Both students and teachers are often ‘not sure if they are right’
when first faced with this challenge. Tweaking the question to ‘make a triangle with an
area of 7.5 square units’ causes students to move outside their previous understanding of
how to calculate area of a triangle. Cooperation is vital, but the deliberate choice of not
specifying how a group is to work together creates some valuable tension in the learning
activity.

When a group of learners share a rich common experience (often a kinesthetic expe-
rience), they retain an image of the experience in their mind for a long time. Their
teacher only has to say, ‘Remember when we…’ and the students conjure up the image,
which allows them to re-enter the experience. Referring to a previous shared experience
supports further learning, creating an active culture of learning.

For student learners, the maths mat contributes to building a richer classroom envi-
ronment. Students construct their own rich images and metaphors, which helps them
engage with the mathematics in different settings. For example, bilateral symmetry can
be represented:

• on the maths mat
• on a geoboard
• using dotty paper
• using Cabri Geometry or Geometer’s Sketchpad
• using concrete manipulatives.

Figure 2

Figure 2 represents a challenge to students on the maths mat. Four students (GHIJ)
are invited to use elastic to create a quadrilateral that they find interesting. (The teacher
is able to draw attention to various features of the quadrilateral ‘on the fly’.) The only
constraint offered to the students is that their quadrilateral should be in one half of the
maths mat. Two more students use elastic to act as the line of reflection (AB). Four more
students are then invited to use elastic to reflect the shape GHIJ about AB, to form the
transformation G'H'I'J'. Experience in trialling this activity in a variety of settings has
drawn the author’s attention to the importance of involving the rest of the class in the
activity. Challenge them to give instructions to the students creating the transformation.
Invariably, at least one student will be in the wrong place. By creating a climate of ‘doing
maths as a community’, students are able to engage in the mathematics.

A teacher can create leverage from this community by inviting students AB to move
one square to the left or right, and then invite the audience to give instructions to stu-
dents G'H'I'J' to move, to ensure that their quadrilateral is a reflection of the original.
Moving the line of reflection AB diagonally offers a challenge that creates some conflict,
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which needs to be resolved. Figure 3 is an example of such a challenge, where students
G'H'I'J' may have to work off the maths mat. They are not sure if they are in the right
place. This dissonance is a useful tool for a teacher to intervene with some strategically
placed questions.

Figure 3 

Each setting offers different opportunities for teachers to intervene in the learning
process. In a physical setting such as ‘on the mat’, reciprocal obligations of teachers and
students as fellow learners is brought to the forefront, with an invitation to learn, partici-
pate, conjecture and verify their mathematical experiences. Students still have to choose
to engage in the mathematical discourse. 

The skill of the teacher is critical, requiring:
• thorough knowledge of suitable open-ended tasks and potential ideas and concepts;
• engaging students in the mathematical challenge;
• strategic intervention coupled with critical questioning;
• a capacity to monitor multiple events, reflect-in-the-moment while maintaining the

pace.
Another role the maths mat can play is as a vehicle to provoke students and teachers

into considering ‘boundary cases’. Challenging students to find functions that allow 

to be true has the potential to provoke a lot of discussion. Initially, obvious solutions will
be offered (e.g., y = x – 1, y = 2x – 1) but with prompting, more sophisticated functions
can be offered. Each function can be represented on the maths mat with some rope,
helping to focus attention not only on examples that are similar, but also extreme cases
or examples that are significantly different (e.g., y = (x – 1)3, y = sin(x – 1)).

From a professional development perspective, the maths mat is a powerful tool.
Teachers cannot help showing their natural creativity by extending and adapting existing
maths mat activities to their setting, and creating new activities. The maths mat captures
the spirit of recognising and recording the ‘collective wisdom’ of teachers.

With the emerging focus on integrating learning technologies into classrooms in all
school settings, activities on a maths mat represent an exciting way of introducing and
reinforcing key mathematical concepts in a way that engages students. With many stu-
dents spending increasing amounts of time working on computers, it is instructive
observing them representing ideas in a kinesthetic domain. Having students represent
mathematical concepts in multiple domains offers an opportunity to ‘walk the talk’ of the
various multiple intelligences learning theories.

More recently I have had professional roles with a focus on supporting teachers to inte-
grate learning technologies into their classrooms. Using activities arising from a maths
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mat has been a useful window for teachers to see how students represent mathematical
ideas in different mediums — multiple representation of ideas in different domains.

One example is for students making squares (or some other quadrilateral) on the
maths mat with the challenge to record the ordered pairs, and enter the data into a
spreadsheet. When using the X-Y scatter option in a spreadsheet, there will be mixed
results, depending upon the order of the ordered pairs being entered. Some teachers
may view this scenario as creating confusion, but in a conjecturing atmosphere, signifi-
cant mathematical discussion can arise. Having a diagram of a ‘bowtie’ instead of a square
(Figure 4), causes a degree of dissonance when success is not immediate. Posing the ques-
tion, ‘What needs to change to make our figure into a square?’ has no one correct answer
or approach.

Figure 4

Similarly, a simple class survey (Figure 5) of how many siblings you have, leads to
opportunities for early childhood students to begin exploring the use of spreadsheets.

Figure 5

A powerful aspect of using the maths mat in professional development settings is that
it evokes a ‘brief, but vivid description’ (Mason, 1994) that allows participants to re-enter
the situation many years later. A prompt such as, ‘Remember when we did…’ can serve as
a compelling stimulus. 

A strategy to provoke these memories for professional development events longer than
half a day or a day, is to have someone taking digital photos constantly during the sessions.
During the lunchtime or overnight break, import a folder of the digital photos into iMovie
(or similar software), and export them as a QuickTime movie. 

While a much shorter time frame than what Mason has in mind, it the experience
helps to regroup and refocus a group of teachers (or students) with a sense of cama-
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raderie. For the inevitable person who has to miss some part of a session, the resource also
helps to include them in what has been missed. It is also a useful record of a profession-
al development event to leave with a school.

Another resource recently developed is a ‘mini-maths mat’, which fits on a typical
student desk. This allows a teacher to revisit an activity that was done outside, and to con-
solidate particular aspects of mathematical concepts with students. If students are to
develop some digital media as evidence of their mathematical understandings, then the
mini-maths mat makes it easy for them to ‘rehearse’ their performance, prior to using the
full sized maths mat.

References
Williams, D. (1993). Maths on a plastic mat. In J. Mousley & M. Rice (Eds), Mathematics: Of Primary

Importance (p. 249). Melbourne: Mathematical Association of Victoria.

Mason, J. H. (1994). Researching From the Inside in Mathematics Education: Locating an I-You Relationship.
Plenary address to PME XVII, Lisbon.
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Benford’s Law

Brett Stephenson
Guilford Young College

Introduction

If a set of non-random and naturally occurring numbers is considered, it would be rea-
sonable to assume that the starting digit would be equally likely to be a 1 or 2 or… or a 9.
Or would it? We could experimentally evaluate this with a vast variety of data ranging from
populations of countries, scientific constants, lengths of rivers, etc. The validation of this
by experimentation is a valuable lesson for non-academic students in establishing facts for
themselves. Academic students will be able to look beyond the data and to establish a
mathematical principle to the data.

Background

Benford’s Law is attributed to Dr Frank Benford who was a physicist at the General Electric
Company in the United States. He noticed that pages in logarithm tables varied in their
‘grubbiness’ with pages with a starting digit of 1 being the most ‘grubby’. (It is believed
that an American astronomer Simon Newcomb discovered the same phenomenon in
1881, but without any explanation or investigation it was basically forgotten). Benford
embarked on an analysis of over 20 000 sets of numbers to examine the ‘starting digit’
data.

Benford’s Law

Benford found that the number 1 occurred in over 30% of cases (unlike the 11% case
where all starting digits are equally likely). The original data table by Benford from 1938
has been reproduced below.

Analysis

Even Frankcomb was able to establish that the formula for the starting digit was 

where d is the digit in the sequence 1, 2… 9.
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However, it was only with the establishment of a large amount of data that Benford
really staked the claim for the law to be known as Benford’s Law.

Table 1. Benford’s original data.

In graphical form that is easy to reproduce with data, it is obvious that the relative fre-
quency of the starting digits decreases with an increase in the starting digit.

Figure 1

In order to try to shed some light on why Benford’s Law holds in a mathematical sense,
it is worth considering two cases

Case 1

Consider the set of numbers from 1 to 9 (starting digits equally spread). If we double each
of these 9 numbers would you expect an even spread again?

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9

Starting digit

% Rivers, Area

First Digit
Col. Title 1 2 3 4 5 6 7 8 9 Samples

A Rivers, Area 31 16.4 10.7 11.3 7.2 8.6 5.5 4.2 5.1 335
B Population 33.9 20.4 14.2 8.1 7.2 6.2 4.1 3.7 2.2 3259
C Constants 41.3 14.4 4.8 8.6 10.6 5.8 1 2.9 10.6 104
D Newspapers 30 18 12 10 8 6 6 5 5 100
E Specific Heat 24 18.4 16.2 14.6 10.6 4.1 3.2 4.8 4.1 1389
F Pressure 29.6 18.3 12.8 9.8 8.3 6.4 5.7 4.4 4.7 703
G H.P. Lost 30 18.4 11.9 10.8 8.1 7 5.1 5.1 3.6 690
H Mol. Wgt. 26.7 25.2 15.4 10.8 6.7 5.1 4.1 2.8 3.2 1800
I Drainage 27.1 23.9 13.8 12.6 8.2 5 5 2.5 1.9 159
J Atomic Wgt. 47.2 18.7 5.5 4.4 6.6 4.4 3.3 4.4 5.5 91
K Square roots 25.7 20.3 9.7 6.8 6.6 6.8 7.2 8 8.9 5000
L Design 26.8 14.8 14.3 7.5 8.3 8.4 7 7.3 5.6 560

M Reader's Digest 33.4 18.5 12.4 7.5 7.1 6.5 5.5 4.9 4.2 308
N Cost Data 32.4 18.8 10.1 10.1 9.8 5.5 4.7 5.5 3.1 741
O X-Ray Volts 27.9 17.5 14.4 9 8.1 7.4 5.1 5.8 4.8 707
P Am. League 32.7 17.6 12.6 9.8 7.4 6.4 4.9 5.6 3 1458
Q Blackbody 31 17.3 14.1 8.7 6.6 7 5.2 4.7 5.4 1165
R Addresses 28.9 19.2 12.6 8.8 8.5 6.4 5.6 5 5 342
S Factorials 25.3 16 12 10 8.5 8.8 6.8 7.1 5.5 900
T Death Rate 27 18.6 15.7 9.4 6.7 6.5 7.2 4.8 4.1 418

Average 30.6 18.5 12.4 9.4 8 6.4 5.1 4.9 4.7 1011
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Table 2

Original starting digit Number ×2 Frequency of digit
1 2(50%), 3(50%) 5
2 4(50%), 5(50%) 0.5
3 6(50%), 7(50%) 0.5
4 8(50%), 9(50%) 0.5
5 1 0.5
6 1 0.5
7 1 0.5
8 1 0.5
9 1 0.5

Clearly the spread is not even and in this simple case the number 1 is 10 times more
likely to occur. This does not present the whole picture, however.

Case2

Consider an investment of $1000 in the All Ordinaries Index on the Australian Stock
Exchange and assume a compounded rate of interest of 10% p.a. We could then calcu-
late how long the index is in each starting digit zone (i.e., 1000–1999 would have a
starting digit of 1). If the index had been recorded daily under these conditions it would
give us an indication of the relative frequencies of the starting digits. Using the com-
pound interest formula to calculate n (the number of years) that the investment will be
in each starting digit zone should also allow us to model this situation. For example, if the
starting value was $2000 and the final value was $3000 we would use 

Table 3 shows this information and illustrates why the relative frequencies of the start-
ing digits tend to decrease.

Table 3. Determining the proportion of starting digits using $1000 investment at 10%pa interest compounded annually.

Starting Starting Finishing %Increase No. of years 
digit value value market is % of years log(k+1)–log(k)

in starting in starting
digit digit

1 $1000.00 $000.00 100.0% 7.27 30.1% 30.1%
2 $2000.00 $3000.00 50.0% 4.25 17.6% 17.6%
3 $3000.00 $4000.00 33.3% 3.02 12.5% 12.5%
4 $4000.00 $5000.00 25.0% 2.34 9.7% 9.7%
5 $5000.00 $6000.00 20.0% 1.91 7.9% 7.9%
6 $6000.00 $7000.00 16.7% 1.62 6.7% 6.7%
7 $7000.00 $8000.00 14.3% 1.40 5.8% 5.8%
8 $8000.00 $9000.00 12.5% 1.24 5.1% 5.1%
9 $9000.00 $10 000.00 11.1% 1.11 4.6% 4.6%

Totals 24.16 100.0%
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Practical applications

A practical financial application has been used for Benford’s Law in the area of tax audit-
ing. Dr Mark Nigrini from the USA tested Benford’s Law on some fraud cases in Brooklyn.
He assumed that tax return data should follow Benford’s Law, and if it did not then it was
the case that a fraud may be likely (or at the least a more comprehensive audit needed to
take place).

Benford’s Law is being used in Belgium to detect irregularities in clinical trials and is
being trialed in a variety of countries in allocating computer disk space for greater effi-
ciency.

Dr Nigrin has been quoted as saying, ‘I foresee lots of uses for this stuff, but for me it’s
just fascinating in itself. For me, Benford is a great hero. His law is not magic but some-
times it seems like it’. Spoken like a true mathematician!

Further reading
New Scientist (10 July 1999) pp. 26–30.

http://www.cut-the-knot.org/do_you_know/zipfLaw.shtml

http://mathworld.wolfram.com/BenfordsLaw.html

http://www.rexswain.com/benford.html
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Decide, select, perform and make sense:
Computation in primary mathematics*

Paul Swan
Edith Cowan University

Len Sparrow
Curtin University of Technology

Research findings will be presented on how children make and execute computa-
tion choices. Suggestions will be made for helping children make better choices,
along with several ideas for assisting children to decide whether the results of a cal-
culation are reasonable or not.

Introduction

In setting the standard for computation in Australia, A National Statement on Mathematics
for Australian Schools (AEC, 1991) included the following comments:

All school leavers should feel confident in their capacity to deal with the computa-
tional situations which they meet daily, and number work should reflect the balance
of number techniques in regular adult use… Students should develop the ability to
judge the level of accuracy needed, learn to estimate and approximate, and use
mental, calculator and paper-and-pencil strategies effectively and appropriately in dif-
ferent situations… This requires that they:
• decide what operations to perform (formulate the calculation);
• select a means of carrying out the operation (choose a method of calculation);
• perform the operation (carry out the calculation);
• make sense of the answer (interpret the results of the calculation).
(p. 108)

Curriculum documents in many Australian states and the USA have highlighted the
need for students to be able to choose from a repertoire of computational tools
(Curriculum Council, 1998; Education Department of Western Australia, 1998; National
Council of Teachers of Mathematics, 2000), but little direction is given as to how to help
children make the choice as to which form of computation to use in any given situation.
The focus of this paper is on finding ways to develop children’s ability to make sensible
computation choices.

* This paper has been accepted by peer review.
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Computation choice by children

Swan (2002, 2004) studied the computation choices students made and why they made
them. Seventy-eight children from Years 5 to 7 (ages 10–12) were interviewed and asked
to state how they would solve a particular computation item. The children were then
invited to solve the item using their nominated method. Children were given eighteen
items, some of which were drawn from previous research (Price, 1995; Reys, Reys & Hope,
1993). In these studies, children were only asked to state how they would complete a par-
ticular calculation but were not required to carry out the calculation. These parallel items
are shown in Table 1 and illustrate the scope of the items.

Table 1. Items used in two studies of computation choice.

36 × 25 1000 × 945
70 × 600 10% of 750
29 × 31 1/2 + 3/4
33 × 88 0.25 × 800

As can be seen in Table 1, a wide range of items was provided for the children to cal-
culate. In all, eighteen items were given and Table 2 outlines the percentage choice made
by the children for various computation methods.

Table 2. Percentage distributions of initial computation for all items (n = 78).

Mental Written Calculator Mixed No Method
36 26 28 6 5

The general trend outlined in Table 2 suggests that students were exercising a choice.
No one particular computation method dominated their response to the exclusion of
other methods. An examination of the raw data indicated students varied their methods.
For example, no evidence was found to indicate that any individual student had used a
single computation method for all eighteen items. The data also indicate less reliance on
written methods than expected given the emphasis placed on such methods in the class-
room.

What was of particular interest to the authors were the reasons students gave for
making particular computation choices. Generally, it was found that students made
choices based on a few rudimentary criteria, such as the size of the numbers, the particu-
lar operation involved, and whether or not they knew their tables. 

Helping children make appropriate computation choices

An overall goal for many teachers is to develop number sense in their children via think-
ing and reflecting about numbers and operations. Children with good number sense are
more able to make better and more appropriate choices in computation. In this paper
several strategies, for example discussing answers and methods, are suggested for helping
children make better computation choices. The strategies are all underpinned with a phi-
losophy of developing children’s number sense. In this case, number sense is defined as:

…a person’s general understanding of numbers and operations along with the ability
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and inclination to use this understanding in flexible ways to make mathematical
judgements and to develop useful and efficient strategies for dealing with numbers
and operations (McIntosh, Reys & Reys, 1997).

Note in particular the reference to ‘mathematical judgements’. These judgements
include choosing an appropriate method of computation for a particular calculation in
context. A better understanding of numbers and operations will help children ‘see’ alter-
native approaches to performing a calculation. For example, a child who possibly lacks
flexibility and deeper understanding of numbers, relationships and operations may
choose to complete the following calculation using a standard written method:

36 × 25

A child with a measure of number sense may realise that 36 is also 4 × 9 and if the child
also recognises that the order in which a calculation is performed does not matter, that
is, multiplication is commutative, they may rearrange the calculation to make it more
manageable as a mental calculation. The question then transforms from 36 × 25 to
4 × 9 × 25 and finally to 4 × 25 × 9. A child who understands the associative property may
then complete the calculation in the following order (4 × 25) × 9. The calculation then
becomes relatively simple (100 × 9) to complete using a mental method.

Ways of ‘smashing up’ the numbers may vary between children. Some children may be
more comfortable with using ‘fives’ and wish to ‘smash’ the numbers into 6 × 6 × 5 × 5
before they are rearranged to 5 × 6 × 5 × 6, that is, 30 × 30. As children become more
familiar, confident and skilled in ‘smashing up’ numbers they will have a genuine choice
in computation method.

The above example has been used in several research studies (Price, 1995; Reys, Reys
& Hope,1993; Swan, 2002). The majority of students in each study chose to use written
methods, which for the most part consisted of using a standard written method. In the
most recent study, carried out in Australia, 51% of children aged between 10 and 12, used
a standard paper-and-pencil to solve this item. Thirty-one percent of students made use
of the calculator to find an answer. Older students were more definite in their choice,
recording a 65% preference for standard written methods. Questions of this type abound
in student texts and are commonly given as exercises to be completed using a written
algorithm. Students may as a result gain the impression that written computation is always
the best approach for solving a two-digit multiplication problem both from its preponder-
ance and emphasis in texts, classrooms and from their lack of mental computation
strategies.

A typical description of the written method used to solve this item as given by one
student in the study is reproduced below. Note in particular the use of terms such as
‘carry’ and ‘put down the’ which are typical phrases used by teachers when teaching chil-
dren a written procedure.

S: Thirty-six times twenty-five and then you’d go six times five is thirty. Three times
fifteen, put the zero down. Two sixes are twelve, put down the two, carry the one.
Two threes are six, that’s seven.

The emphasis in the teaching of a standard procedure is placed on manipulating digits
as illustrated in the commentary by the student, for example twenty is seen as 2 and thirty
is seen as the digit 3. Children here are using digits rather than quantities or amounts.
The written procedure is not expected to make sense.
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Discuss choice in computation

Many children do not realise that they can or are expected to make a choice about which
computation method to use. It is important that such discussions of appropriate choice
take place. Discussions of choice should not only be about which method to use but also
which strategy within that method is most appropriate for the context and the child.

The ‘How did you do it?’ activity involves presenting a calculation to be performed
mentally and then asking the children to explain how they completed it (McIntosh,
De Nardi & Swan, 1994; Sparrow, 2004). A variation on the ‘How did you do it?’ theme is
used in the following activity:

How would you do it? 16 × 25
In your head?
On paper? 
With a calculator?

This question is presented and children decide the method they would use to solve it.
They are then asked to explain why they chose that particular method. At some point they
may be asked to complete the calculation in the selected method. Another similar
approach asks children to list a calculation they would perform in the head, on paper or
with a calculator and to explain why such a calculation was selected.

There are several formats contained in McIntosh, De Nardi and Swan (1994), such as
‘Today’s number is’ that also encourages children to explore and discuss mental strate-
gies and the relationships within numbers. The ‘Today’s number is’ activity asks children
to list all they know about a particular number, for example 48: children present number
sentences such as 47 + 1, or 24 × 2 or the number of months in four years. After children
become familiar with the format of this type of activity, the teacher can encourage chil-
dren along particular paths, for example finding division sentences. This activity develops
a range and variety of patterns and relationships to be connected to a particular number. 

Offer the real possibility of choice

If children are to have a choice in method they will need to have developed such a range
of computation methods. A teaching style that only provides instruction in standard pro-
cedures for written calculations will not provide this choice as children are only familiar
with one method. There is a possibility that an emphasis on standard written methods will
restrict and undermine the chance of children using any other method for calculating. A
reduction in the time spent on teaching standard written methods or leaving such instruc-
tion until later, should allow more time to be spent on mental computation (not just
speed recall of facts), informal written calculation methods, estimation, discussing how
calculations are performed, discussing computation choices and the reasons behind
making them, and learning to make efficient use of a calculator. 

Focus on sensible calculator use

The following guidelines are suggested (Sparrow & Swan, 2001) to help teachers decide
what constitutes sensible calculator use in the classroom. A calculator task should: 

• involve more than children completing a simple, straight forward calculation;
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• provide insight into children’s thinking and understanding;
• involve the development of mental mathematics or mathematical or number sense

ideas;
• involve children in discussion or explanation;
• encourage children to look for more efficient ways to calculate.
The aim should also be to assist children to make better choices as to when calculator

use is appropriate or not. Activities such as ‘Beat the calculator’ (Swan, 1996) may be used
initially to raise children’s awareness of when to use a calculator and when to use a mental
method. The discussion relating to the calculations done in the head or on a calculator
is important. It should provide insight for children as to which calculations are easy for
their head, even though some may initially appear to be too large. The activity can also
place an emphasis on the usefulness of quick access to simple number facts. 

Comparing and connecting calculations

Provide children with a table similar to the one below and ask them in pairs to complete
the table and comment on their findings. Add to the chart other calculations that may be
‘done in the head’ using the information from the first two columns.

This idea is further developed in Starting Points, (Swan & Sparrow, 2001). The key part
of this activity lies in the discussion that ensues as a result of completing the ‘other calcu-
lations’ section. It is here that children are alerted to the extra patterns and relationships
that exist in the initial calculation. The set up of the initial calculation may be altered to
suit the needs of different groups of learners, for example the first two columns could
contain 2 × 2 = 4 and 20 × 2 =. For many children the connections and relationships
between numbers in calculations are not obvious. Part of the strength of teachers who
help children to ‘see’ and connect numbers is that they develop children who start to be
‘in charge of the numbers’.

Focus on estimation

McIntosh, Reys & Reys (1997) define estimation as a method for: 

…producing an approximate answer to a computation, one that is ‘close enough’ to
allow a decision to be made. Estimation often involves the user in mental computa-
tion as a preliminary first step to forming an estimate (p. 322).

Computational estimation may be thought of in several different ways. These include:
• estimation as a computation choice;

Do this 
on your calculator

Do this 
in your head

Check Other calculations
How can you use the findings in
columns 1 & 2 to perform other

calculations. For example:

13 × 29 = 377 130 × 29 = 3770 13 × 290 = 3770, 377 ÷ 29, 
3770 ÷ 130 = 29
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• estimation as a monitoring device for exact forms of calculation; and
• estimation as a method of checking results of exact forms of calculation.
Lobato (1993) recognised the complex nature of forming an estimate when defining

estimation as ‘guessing with a little bit of problem solving’ (p. 347). As with the develop-
ment of problem solving ability, children can be taught some heuristics to assist when
completing calculations, but eventually decisions have to be made by the children in
order to tackle the calculation. Likewise, children can be taught various techniques for
estimating, such as front-end methods or methods that involve rounding, but good esti-
mators will often adjust their estimation approach depending on the numbers and the
context of the calculation. For a detailed discussion of estimation techniques see Booker,
Bond, Sparrow and Swan (2004).

An example of where estimation may be used is when children work with calculations
involving decimals. Rather than teach children a rule for placing decimal points based on
counting decimal places, children should be encouraged to make an estimate and place
the decimal point according to the estimate. Try placing the point in the following exam-
ples by making an estimate first.

15.3 × 17.8 = 27234
0.6 × 9.2 = 552
1.1 × 2.2 = 242

Change emphasis on basic facts

Students need to develop a bank of basic number facts that may be used to support the
making of estimates, but activities that emphasise speed only may discourage students
from looking for patterns or related facts. For example, many students learn basic multi-
plication facts such as 8 × 3, without recognising related facts such as 3 × 8, 24 ÷ 3 and
24 ÷ 8. Once basic fact knowledge is secure then games may be used to increase the speed
of response. 

Rather than focus on the development of specific number facts students should be
encouraged to develop a bank of related facts and a strategy for generating more facts
from a situation. The following routine may be used to develop a set of related facts.

If I know … then I also know…
If I know 10 × 5 is 50 then…
I also know 9 × 5, 11 × 5, 5 × 5, 10 × 50 10 × 0.5 — and so on.

Children need to show and explain how each calculation is related to the other.

Avoid teaching rules

Students are sometimes taught when multiplying by 10 all they need to do is ‘add a zero’.
When dividing by 10 students may ‘take away the last zero’. Students who use this rule
without understanding will often over generalise and make the following mistake:

4.9 × 10 = 4.90 or 40.9 or 40.90
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Consider the following transcript of a child trying to explain how multiply 70 by 600.

I: 70 × 600.
S: 4200.
I: You did that one in your head by the looks. How did you do it?
S: I just took the zeros away and did 7 × 6 and then I added the zeros.
I: Right so you did 7 × 6 and got 42 and how many zeros did you put on?
S: Two.
I: So you put two back on. Okay. You took three off but you put two back on.

Why was that?
S: I don’t know.

Often students fail to comprehend why this ‘shortcut’ works but adopt the strategy
because the teacher has taught it. While this strategy may work with whole numbers it can
lead to misconceptions when dealing with decimal numbers as shown above. 

Rather than teach rules such as ‘add a zero’ when multiplying by multiples of ten
encourage students to observe patterns and then suggest their own mental approaches to
this type of calculation. It is important that students discuss their thoughts as this will help
the teacher determine whether they understand the pattern.

Write down what you notice is happening after you complete each calculation on the
calculator.
34 × 10 =
34 × 100 = 
34 × 1000 = 
34 × 10 000 = 

Where possible it would be better to include some examples involving decimals. This
will allow the opportunity to discuss problems and known misconceptions with the ‘add a
zero’ rule.

3.4 × 10 =
3.4 × 100 =
3.4 × 1000 =
3.4 × 10 000 =

Conclusion

There are many factors that impact on computation choice, such as the time devoted to
various forms of calculation, access to calculators and the use of textbooks. Flexibility with
number, an aspect of number sense, frees children to try different computation
approaches. As a way forward, it is suggested that children be encouraged to take time to
consider the numbers and the operation before making a computation choice. Children
should be asked to consider whether an exact answer is required or whether an estimate
is sufficient. If an exact method is required, then children should be encouraged to try
mental methods first. Having made a computation choice, children should then be pre-
pared to justify their choice should they be challenged by the teacher or someone else.
All of this requires that children do less formal work on standard procedures, which is
somewhat of a paradox, because they should learn more. This will mean children should
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be given fewer calculations to complete in a lesson, but more emphasis should be placed
on how the calculation was performed.
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Making ‘cents’ of spinners

Ed Staples
Erindale College, ACT

The ICT wedge

W. W. Sawyer in his book Prelude to Mathematics alerts us to the fact that, ‘Mental adven-
turesomeness is a characteristic of all mathematicians… The desire to explore, and an
interest in pattern, marks out the mathematician’. Mathematics is surely an aesthetic and
shared exploration of ideas and systems. It has its socially utilitarian value: a study of
models that are eventually put to work in scientific endeavour, and a rationality that
empowers the individual and safeguards our way of life. It is an intellectual pursuit — as
Courant and Robbins (1941) put it, ‘an indispensable part of the intellectual equipment
of every cultured person’. It is the study of system variability leading to deep meta-cogni-
tive understandings. It has a rare universality: we all agree about what it is, of what its
greatest discoveries were, and how its well-defined structures and language should be
communicated. I stand back from 15 000 mathematics lessons offered to countless
numbers of upper secondary students, and ask myself what is was that I contributed to the
lives of these people and to the society they became.

Lately, large slabs of information and communication technology (ICT) have pierced
into the fabric of mathematics teaching as a two-edged sword. We need to decide whether
or not ICT is a phenomenon that threatens our usefulness in the classroom, or liberates
us from content laden and procedurally-focussed endeavours, enabling deeper conceptu-
al treatments of the curriculum. For me, ICT is a tool that can engage concepts like
nothing else before it, but it is also a tool that can be misused by teachers and students.
Just like formula-driven treatments, it can lead to shallow and erroneous interpretations
of mathematical structures and processes, and devalue intellectual richness of solution. It
can lead to an answer driven curriculum, and a precarious faith and dependency on an
electronic screen. The domain of a function, for example, appears to begin and end
where the graphic calculator displays it. The solution to a quadratic equation can reduce
to numbers in an electronic display, and render factorisation and the null factor law irrel-
evant. Curriculums can become driven, and thus in my view reduced, by ICT. For
example, the use of algebra as a device for creativity, exploration and discovery into
unchartered mathematical waters is threatened. Concept rich explorations of techniques
developed by mathematicians down through the ages can become less valued.

However, ICT, if used carefully, can illuminate concept, empower the learner, and
deliver the opportunity to become creative. It can develop deeper understandings in a
fraction of the time it use to take, and allow the odd serendipity to surprise us. I can
remember many classes where hours of time were wasted constructing a few frequency
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histograms and polygons on a black board; times when I wished I had some way of
describing quickly the effect of the coefficients of a quadratic function’s sketch; times
when I wanted to show students Simpson’s approximating parabola laying across the par-
ticular curve I was finding areas under; times when I wanted to illuminate the amplitude
dampening principle on a sound wave; times when I wanted to visually demonstrate the
ratio division of a line segment as the ratio changed; times when I wanted to quickly illus-
trate the concept of a tangent to a curve, as the point of contact rolled along its back. 

Spinners and scroll bars

It was not long ago that I happened upon a simple device that resided on, of all places, a
Microsoft Excel spreadsheet: it was called a spinner. It was located in View > Tools > Forms
as a ‘macro’ and perhaps not designed for the purpose I logically put to it. I had for some
time been looking around for a dynamic inexpensive and readily accessible teaching tool
that could be easily adapted to the mathematics classroom. The spinner is nothing more
than an incrementing device. Its cousin, the scroll bar, sits along side it in the ‘drop down’
box: it also increments but has the added feature of scrolling quickly through a range of
possible values. These two devices can be inserted into the spreadsheet and referred to a
particular cell, say A1. Clicking the mouse over the spinner or scrollbar causes the
‘integer’ incrementation. I say integer because, as a mathematics teacher, that is how I saw
the number. I knew at once that I could create a ‘rational’ incrementation in another cell,
say A2, by inserting in that cell a simple formula that referred to the first cell, say = A1/10.
I also figured out that the contents of the second cell could be graphed, and that upon
fixing the scale of that graph (an Excel feature), I could observe a dynamic process. Out
of this early observation has come a myriad of application programs that now reside on
the Canberra Mathematics Association website (www.canberramaths.org.au). I am careful
not to put too much ‘front end’ (I am told this is the correct computer metaphor!) on
each program, because I do not particularly want to lose that ‘first principles’ flavour to
my work. The spinner can be adapted to just about any concept in mathematics that
involves some kind of variability. The spinner, and not the programs, becomes the creative
tool in the hands of an adventuresome mathematician.

At the time of writing this, I have investigated variability in curve sketching (including
polynomials, trigonometric, exponential and logarithmic functions), Bezier curves,
Bernstein polynomials, discrete probability distributions (binomial, Poisson, geometric)
derivatives (including tangents and normals), standardisation, financial mathematics
(including simple interest, compound interest, depreciation and annuities), Euclidean
geometry, great circles, transformations (including reflections, rotations and transla-
tions), simple coordinate geometry, arithmetic and geometric progressions, and a few
small calculus investigations (parabolic and simple harmonic motion). There are many
more possible. As far as running into interesting results, here are two unexpected ‘tan-
gents’ that were mathematically distracting enough to warrant further investigation. 

1. An inflection at 30 degrees 

A student, whom I had earlier shown the device to, decided spontaneously to investigate
the relationship tan θ = v2/rg describing the angle required to eliminate any sideways fric-
tional force on a banked circular track. He discovered that the graph of θ against v
contained an inflection that remained at 30 degrees irrespective of the radius of curva-
ture. He then proceeded to prove this algebraically. 
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2. Swings and roundabouts

Upon teaching the concept of score standardisation using spinners (see CMA website), I
noticed that the set of scores (100, 1, 1, 1, 1, 1, 1) produced the same Z scores as the set
(n, 1, 1, 1, 1, 1, 1) for all positive values of n not equal to 1. This somewhat counter-intu-
itive notion was later generalised to the fact that, for a set of m+n scores, m of which are
of value a, and n of which (different to m) are of value b, the Z scores are completely inde-
pendent of a and b. I also noticed with spinners that no set of n+1 positive scores can
contain a Z score greater than √n. I posed this as a conjecture in a recent Australian Senior
Mathematics Journal article (see Staples, 2003) but to date I have yet to be advised of a
proof. 

Making cents of spinners

Some of the time we will spend in the workshop will deal with investigations relating to
money. There are two programs dealing directly with saving and borrowing money,
namely Mortgage Wizard and Financial Wizard both available from the Canberra
Mathematics site (www.canberramaths.org.au) under post-primary resources. The first
program looks specifically at mortgages and the interest impact on repayments. The
second program explores simple and compound interest, depreciation and annuities.
The use of spinners allows dynamic changes to the interest rate, the compounding
periods, and the term of the loan. The effect is immediate and understandable.
Participants of the workshop will complete a short exercise relating to the Financial Wizard
program, taken from the CMA website.
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Exact answers, old problems,
and a new elementary function

Seán Stewart
The Petroleum Institute, United Arab Emirates

Exact answers have a certain degree of elegance compared to answers given in
decimal approximation form. In this workshop a problem dating back to my own
frustrations encountered as a secondary pupil in trying to express the solution to a
transcendental equation in exact form, acts as the impetus for a gentle sojourn into
some very modern, yet accessible, mathematics. Along the way we introduce a
recently defined elementary function, now known as the Lambert W function, which
allows one to solve a surprising number of simple ‘classic’ problems in mathemat-
ics related to equations where the unknown appears in the exponent.

Introduction

When I was a secondary school pupil, I was such a pedant when it came to giving exact
answers to numerical problems. While my peers seemed to gain a great deal of satisfac-
tion in being able to express their answers in decimal approximation form, I found this
particularly loathsome. To me, exact answers such as √5, ln 2, π/3 or tan-1(2) were (and
still are) the apotheosis of elegance compared to any decimal approximation. 

Certain problems, however, led to frustration and angst, as it appeared as though their
solutions could not be expressed in exact form, no matter how hard one tried. One par-
ticular problem that has stuck in my mind all these years concerns the equation x + ex = 0.
Set as a challenge question for homework, my Year 12 mathematics teacher at the time
asked the class to find the solution to the only (real) root of this equation in exact form.
It was with bitter disappointment that I learnt the following lesson that no ‘exact’ solution
seemed to exist, the challenge question having surreptitiously served as a lead in to the
topic of approximate solutions to equations. Its final numerical solution in approximate
decimal form obtained using Newton’s Method only added to my despondency.

Questions on exactness, such as the above, tend to fascinate our more sagacious senior
secondary pupils. Do closed-formed expressions exist as solutions to such questions? To
the secondary pupil, most questions like this seem to have a negative answer and are
quietly explained away as having something to do with being a transcendental equation.
The pupil, despite the teacher’s vague ‘transcendental’ response, may however continue
to live in hope of finding a more satisfactory answer at some later stage, once they learn
a little more mathematics.

It does not take one long to realise that the availability of the so-called ‘special’ func-
tions (like the logarithmic, exponential, trigonometric and inverse trigonometric
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functions) permits the solutions to a greater number of problems to be expressed in exact
form. For example, in solving the simple equation ex = 2, the solution x = ln 2 in terms of
the logarithmic function seems to satisfy our need for an ‘answer’. Here it does a rather
good job in capturing the essence of what one usually considers a final answer in the sense
that it is able to be written in ‘closed-form’ and is what is commonly identified as an
‘exact’ answer. 

By introducing a recently defined elementary function which is rapidly emerging as
one of the important elementary functions of mathematics, I wish to show how by its ele-
vation to the status of a standard elementary function it is not only able to provide a
solution to my former mathematics teacher’s question, but finds itself at the centre of
many other celebrated problems of mathematics. All this is contained in a simple, yet
accessible, elementary function which could be purposefully introduced to our senior sec-
ondary pupils. 

Enter the Lambert W function

Given that I now know a little more mathematics compared to when I was a secondary
school pupil, what am I able to say about my past bête noire x + ex = 0 in relation to express-
ing its answer in exact form? A great deal! 

Let us begin our peregrination by trying to find a closed-form solution to the transcen-
dental equation yey = x, in terms of y. In doing so, we are led to the definition for the
Lambert W function, a new elementary function which has only recently been defined
(Corless, Gonnet, Hare, Jeffrey & Knuth, 1996) as the inverse of the function f(x) = xex.
Denoting the Lambert W function by W(x), we see that it is a solution to the equation

W(x)eW(x) = x.

The above equation is called the defining equation for the Lambert W function and is
central to the understanding of this function.

The origins of the Lambert W function date back to the mid-eighteenth century, being
traceable to the initial and subsequent works of Lambert (1758) and Euler (1779) respec-
tively; however, it seems to have been quite unintentionally overlooked until the
mid-1990s when at last it was finally recognised as being sufficiently important to warrant
a name of its own. While being a largely recondite function at present when compared to
the familiar elementary functions one typically encounters at secondary school, it is,
nonetheless, rapidly emerging as one of the important elementary functions of mathe-
matics. Furthermore, it turns out to have a surprisingly rich mathematical structure and
wide applicability, yet it is fundamentally no more difficult than that of the logarithmic
function. It is surprising then to learn that it was overlooked for so long.

Since W is the inverse of the function f(x) = xex, it presents an opportunity to work with
and further explore inverse relations/functions. As an illustrative example of this,
y = W(x) can be readily sketched by reflecting the curve y = xex about the line y = x (see
Figure 1). 

The Lambert W function is not too unlike the inverse trigonometric functions in that
it is a multi-valued function on a given domain, and a principal branch needs to be defined.
When x is real it has two branches. The branch satisfying W(x) ≥ -1 is denoted by W0(x),
and is defined to be the principal branch, while the secondary real branch satisfying
W(x) ≤ -1 is denoted by W-1(x).

Many equations which involve exponentials (or logarithms — that is, equations which
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are exponent in form) are now able to be solved in terms of the Lambert W function,
including my past bête noire. The general strategy to solving such equations introduces
the general method of implicit solution. Here one moves all instances of the unknown to
one side of the equation, make it look like the form of the defining equation, namely
f(x)ef(x), at which point the Lambert W function provides the solution to the equation.

Consider the solution to the equation x + ex = 0. As I learnt many years ago, this rather
innocuous looking equation is not able to be solved in closed-form in terms of any of the
known elementary (or higher) functions with which one is traditionally familiar. In the
past, numerical methods have been required in order to find an approximate solution for
x. If, however, we rewrite this equation as 

x = -ex

and move all instances of the unknown to the left hand side we have
xe-x = -1

Next, writing the left hand side of the above equation in the form of the defining equa-
tion, namely

-xe-x = 1
enables this equation to be readily solved in terms of the Lambert W function as 

-x = W0(1)
or

x = -W0(1) (-0.56714329…)
and is my long sought after exact answer! Substituting the infinitely more vulgar numeri-
cal value for x into the initial equation can be used to confirm the validity of this solution
for any nihilist among us. 

Initially, the legitimacy of a Lambert W function form of the solution will seem to
many, I suspect merely sophistic and not real. The form of this solution is, however, more
than a clever slight of hand designed to assuage any desire for exactness. I will show that
rather than being an efficacious way of getting an answer which is exact in form to a
problem where this was previously not possible, it is instead written in terms of a function
which is now ineluctably part of the familiar elementary function family. Let us not forget
those other seemingly ‘legitimate’ special functions we often make use of without a
second thought: the e2, ln(2), -sin(2), tan-1(2), and so on. 

As an exact answer, -W0(1) seems to satisfy our intuitive need for what we usually regard
as a ‘solution’ in that x is expressible in closed-form; it is explicit. Is -W0(1) any different

Figure 1: Plot of the Lambert W function y = W(x). The solid line shows W0(x) while the dashed line shows W-1(x).
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from, say, ln(2), other than being less familiar than the natural logarithmic function?
Certainly the latter is expressible in terms of a familiar function, and after all, it is famil-
iarity which is important since the solver must regard the function, whether it be W or ln,
as the final answer and not simply as another question. Just as a pupil is unlikely to regard
the exponential function as a solution to the equation ln x = 2 until the moment they for-
mally encounter it, the same could therefore be said for the Lambert W function. 

It is hoped that it will only be a matter of time before we all find familiarity and comfort
in the use of W once its ubiquitous nature and wide ranging applicability is recognised.
In being seen as a bona fide elementary function equal to those of the more familiar ele-
mentary functions, an entry for W is now to be found in Eric Weisstein’s weighty
encyclopedic tome of mathematics (2003, pp. 1684–1685), and it is included as an inbuilt
library function in computer algebra systems such as Mathematica (ProductLog[x]) and
Maple (LambertW[x]). 

Old dogs, new tricks

A function is only as important as it is considered useful. In establishing its usefulness, it
should turn up in many different contexts, particularly those where it is least expected. 

A perennial problem which has been considered since the time of Euler (1748) con-
cerns the solutions to the classic ‘difficult’ equation 

xy = yx for x,y > 0.

In solving this equation we acknowledge the trivial solution y = x. We expect this equation
can also be solved for y in terms of the Lambert W function since it is, after all, an equa-
tion of the exponent form. 

Taking the natural logarithm of both sides of this equation and rearranging gives

Exponentiating both sides yields

or 

Upon solving for y we have

where k = -1,0 denotes the two real branches for the Lambert W function. 
Voila! The problem is solved and may now be laid to rest. It would be a little disap-

pointing, however, if that were the case considering the considerable attention this
problem has attracted since the time of Euler. I am reminded of a quote by Barry Mazur
in his book Imagining Numbers where he reminds his readers:

But if the problem is really good, a solution of it is nothing more than a letter of intro-
duction to a level of interaction with the material that you hadn’t achieved before…
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The problem itself is an invitation, a goad, to extend your imagination. This is true…
of some — perhaps all — of the famous and venerable mathematical problems.
(Mazur, 2003, p. 23)

So what is the ‘letter of introduction’ the solution to this particular problem holds
febrilely before us? It is the trivial solution! Taken together, these two solutions lead to a
not entirely obvious simplification rule for the Lambert W function being found. Here
one obtains

By replacing x with 1/x the negative signs in the above simplification rule are able to
be removed resulting in the more compact result of

The above two simplification rules complement one other simplification rule which
should be immediately obvious once we recall W is just the inverse of the function
f(x) = xex; namely,

Consequently, we are immediately able to write W0(e) = 1, W0(2e2) = 2, W-1(-2e-2) = -2, and
so on.

A second example making use of the Lambert W function, and which is also connect-
ed with another classically celebrated problem since Euler’s time, is the problem of
(infinite) iterated exponentiation. Consider 

which consists of an infinite power tower of xs such that the powers are read from the top
down. Euler, in 1778, was the first to show that this iteration converges on the interval

Consisting of exponents, we suspect the problem of iterated exponentiation can be
solved in terms of W on its domain for which it is convergent. Taking the natural loga-
rithm of both sides of the iterated exponential, we can write

Upon exponentiating both sides of the above equation we have
h(x) = eh(x)lnx

or upon rearranging
h(x)e-h(x)lnx = 1

By writing
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-h(x)lnxe-h(x)lnx = -lnx
so that it is in the form of the defining equation and solving for h(x), gives 

-h(x)lnx = W0(-lnx)
Thus

Incredible, and impressive to say the least, how the Lambert W function provides a
neat, closed-form expression to the problem of iterated exponentiation, and it was on
seeing this result that my interest in the Lambert W function was initially piqued.

Once again we suspect the solution to this problem is but an entrée to a deeper level
of interaction with the material, and once more one will not be disappointed in what
emerges. Having a closed-form expression for the iterated exponential at hand allows for
some otherwise difficult questions to be readily answered. 

Consider, for example, x = √2. Here

where use of the first of the simplification rules given by equation (1) has been made. The
astute reader may object to the method used above, arguing that it is somewhat overkill,
considering it is possible to solve this particular iterated exponential without any prior
knowledge of W whatsoever. Similarly, without any knowledge of W, when x = 1/4 one can
again obtain in a rather perfunctory manner an answer of 

So has the introduction of W unnecessarily complicated the problem of iterated expo-
nentiation? Of course not! Instead, it extends us into a realm where one previously could
not venture so easily. When the final solution to the iterated exponential no longer takes
on a rational form, solving such problems in exact form becomes impossible without the
availability of W. However with W at hand, one is for example able to write down the fol-
lowing exact answers of

and so on, and can consider such problems as solved. And for those constantly complain-
ing decimalists, who consider nothing as solved until they finally ‘see’ a number written
down on the page, please excuse my above reticence and let me write 0.64118574… and
2.47805268… respectively!

Conclusion

Motivated by a long standing desire to find an exact answer to a transcendental equation
first encountered by the author while still at secondary school, has led to what I hope you
found to be an interesting sojourn into a little area of ‘modern’ mathematics. Along the
way we collected a new elementary function now known as the Lambert W function and
saw how it was related to the solution of a few classically celebrated problems dating back
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to the time of Euler. While being accessible, I concede that any attempt to change long
ingrained thinking towards what one normally regards as the standard set of elementary
functions is to be regarded as largely a quixotic endeavour, I hope nevertheless to have
encouraged you to think otherwise. 
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Energising secondary school mathematics
through modelling with the graphics calculator*

Allan White
University of Western Sydney

The computer needs of schools are beyond the finances of some Australian state
governments. Does this inability to provide resources necessarily mean that some
children are deprived of the benefits that technology can produce in enhanced
mathematical understanding? Can graphics calculators provide a low cost alterna-
tive? Our world is caught up in an information revolution. To many, information is
synonymous with knowledge. However, while mastery of information is demonstrat-
ed by its reproduction, mastery of knowledge requires demonstrated novel
applications. Is it possible to develop this mastery of knowledge within secondary
mathematics classrooms? This paper and workshop will answer these questions.

Is the technological age for all students?

In Australia while most state governments are keen to change education, not all are equally
positioned to finance the hardware requirements of information and communication
technologies (ICT) in schools. There are many factors that can limit access to ICT. In some
areas of Australia, neither teachers, nor their students can easily afford to purchase a com-
puter for home use. Educational systems must cope with the cost of computers, the cost of
site licenses for software, the cost of the extra security, constraints upon school timetables,
lack of trained and experienced staff. The ideal world would have every school possessing
an abundance of secure computer laboratories with inspiring teachers. However it is not
an ideal world and thus the question arises: does the inability to provide ideal resources
mean that certain children should be deprived of the benefits that technology can produce
through enhanced mathematical understanding and learning? 

Is ICT to be integrated or diluted?

Research (White, 2003) has produced a framework that identified and described five
broad categories or metaphors of teacher response to the integration of ICT within their
classroom. These metaphors describe how teachers tend to view ICT as either a demon,
a servant, an idol, a partner, or a liberator. 

* This paper has been accepted by peer review.
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ICT as demon

White (2003) claimed that the evidence for this approach is observable in the teachers
who actively opposed and subverted any attempt to integrate ICT into their curriculum.
They are either afraid or unwilling and as a result, conduct an active or passive resistance
campaign by doing the very minimum allowed. This often leads to surface integration
and sometimes to inappropriate use. 

ICT as servant

White (2003) claimed that this stage is observable in teachers who adopt a conservative
position where ICT is being used by the teacher and students yet the pedagogy remains
much the same. ICT thus is a tool for enhancing students’ learning outcomes within the
existing curriculum and using existing learning processes (Russell & Finger, 2003).
Salomon (2000) sees this as a ‘tendency of the educational system to preserve itself and
its practices by the assimilation of new technologies into existing instructional practices.
It fits into the prevailing educational philosophy of cultural transmission, where there is
a body of important knowledge that has to be mastered’ (p. 2). 

ICT as idol

Here White (2003) described a stage that promotes ICT as a tool for use across the cur-
riculum and where the emphasis is upon the development of ICT-related skills,
knowledge, processes and attitudes (Russell & Finger, 2003, p. 3). Teachers are more
focussed upon teaching about computers than with computers, and expect that ICT on its
own will bring about change. They are seduced by the ‘razzle dazzle effect’ of these
‘techno toys’ and fail to consider the teaching and learning implications beyond a very
surface level. Sir John Daniel (2002) calls this stage bias and bull: ‘I urge you to be scep-
tical about assertions of the value of technology coming either from those who want to
sell it to you or from their surrogates’ (p. 13).

ICT as partner

White (2003) claimed that there are teachers who have seriously attempted integrating
ICT into their classroom and tried to ‘change the orientation from teaching about com-
puters to teaching with computers’ (Russell & Finger, 2003). These classrooms are where
students are actively engaged in gathering data, aggregating their data with those gath-
ered by other students, and making meaning of their results. Mathematical modelling
using ICT is an example of this approach and is the focus of the second part of this paper.
Here ICT is integral to the pedagogy that changes not only how students learn, but what
they learn. 

ICT as liberator

White (2003) presented a radical approach whereby integration is a component of the
reforms that seeks to alter the organisation and structure of schooling itself. ‘Among the
diversity of school types will be virtual schools, where students spend part or all of their
time working “off-campus”, for example, from home using an online computer’ (Russell
& Finger, 2003, p. 3). However there are unintended and unwelcome effects of virtual
schools as Salomon (2000) stated: ‘not many students have the self-discipline or the sus-
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tained motivation to be distance, virtual learners’ (p. 4). He regards this approach as
another example of technocentrism that is in danger of yielding virtual results. 

Yet there are alternatives where ‘more sophisticated understandings of the implica-
tions of ICTs for reforms in curriculum, pedagogy and assessment are required’ (Russell
& Finger (2003, p. 9).

With such a diverse range of teacher behaviour to the integration of ICT, is it possible
to move teachers towards the stage of ‘ICT as partner’? The writer has argued elsewhere
(White, in press) that graphics calculators (GCs) not only provide an alternative to com-
puters but they also act as ‘a pedagogical Trojan horse’. He argued that it is important to
introduce technology into the classroom, even if it is merely one GC connected to a
display panel and controlled by the teacher. The teacher will move from a transmission
style to other more student-centred styles as they gain in confidence and experience with
the GC in the calssroom. With this simple low cost teaching aid, the teacher is able to use
the power of technology to illuminate mathematical concepts for the students. For
example, the speed at which a GC can present multiple representations of a function is
one of many advantages that technology has over traditional methods in the teaching of
mathematical concepts. He claimed that as the teacher gained in proficiency of GC use
and became comfortable with the GC supporting the teacher’s usual classroom teaching
strategies, then the teacher became open to accepting a range of other teaching and
learning strategies.

Age of information or of knowledge? 

The world is caught up in an information revolution. For many people information is syn-
onymous with knowledge. Yet Salomon (2000) pointed out, this is far from being true and
the differences have enormous implications. Salomon listed the differences between
information and knowledge as:

• Information is discrete; knowledge is arranged in networks with meaningful con-
nections between the nodes.

• Information can be transmitted as is; knowledge needs to be constructed as a web
of meaningful connections.

• Information need not be contextualised; knowledge is always part of a context.   
• Information requires clarity; the construction of knowledge is facilitated by ambi-

guity, conflict and uncertainty.
• Mastery of information can be demonstrated by its re-production; mastery of

knowledge is demonstrated by its novel applications’ (p. 4).

Now it is clear why Salomon’s distinction is so important. If all we want from our stu-
dents is information, then the old transmission models of teaching are sufficient.
Teacher-centred and teacher-controlled environments where students are expected to be
quiet and absorb what is being presented have been with us a long time. Commercial
interests are encouraged to set up ‘cram schools’ where the students can go after school
and spend hours memorising and rehearsing. Examinations are designed to test mainly
students’ ability to recall facts and procedures. Teachers are only too aware of the tyranny
of the examination, which effectively drives the classroom curriculum. There is a wealth
of material documenting the weaknesses and implications of such an approach, such as

a recognition that rather than training pupils in the whole mathematical process,
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schools have focussed almost exclusively upon mathematical manipulations (i.e. from
maths model to maths solution). This over-emphasis upon skills is seen as one of the
causes of many pupils failing to see and appreciate the applicability and the potential
of the mathematics they have learnt (Swetz & Hartzler, 1991, p. 8). 

So, if we want our students to demonstrate and use their knowledge and not just repro-
duce information or skills, then we must prepare them to be able to transfer their
learning to unfamiliar and unique situations. Teachers are challenged to create environ-
ments where students are able to create knowledge networks of meaningful connections
between pieces of information or procedures. They need to prepare their students for the
construction of knowledge by exposing them to ambiguity, conflict and uncertainty. A dif-
ferent style of examination is set that is designed to test student ability to apply learning
to a range of challenging and realistic problems and investigations. Is there a mathemat-
ical teaching and learning classroom process that can accommodate all four aspects of
knowledge construction as proposed by Salomon? The answer is, yes.

Turning information into knowledge

A number of different domains of knowledge (such as medicine) have turned to problem-
based learning as an answer to developing within students an ability to construct and
transfer knowledge. 

Problem-based learning places emphasis on what is needed, on the ability to gain
propositional knowledge as required, and to put it to the most valuable use in a given
situation. It does not, therefore, deny the importance of ‘content’ — but it does deny
that content is best acquired in the abstract, in vast quantities, and memorised in a
purely propositional form, to be brought out and ‘applied’ (much) later to problems.
Problem-based learning requires a much greater integration of knowing that with
knowing how’ (Margetson, 1991, p. 44). 

In mathematics, a form of problem-based learning is called mathematical modelling.
Mathematical modelling was strongly showcased in the early 1980s and is receiving
renewed interest due to the current focus upon the process of working mathematically.
The process comes widely acclaimed: ‘Of the several kinds of creative activity being pro-
moted in contemporary developments, arguably the most empowering for students is
mathematical modelling’ (Galbraith, 1995, p. 312). There is also considerable material
available on the teaching of mathematics using modelling, with a particularly good
resource book having recently been released (Goos, 2002). It is from this resource book
that the following activity is taken, in order to provide an example for this discussion. The
modelling cycle is usually pictured as a process cycle and there are many variations: an
example is provided in Figure 1. While the secondary mathematics classroom process is
never as ordered as shown in the diagram, nevertheless I will follow the process of
Figure 1 while briefly investigating a relevant and topical problem in this year of the
Olympics. This investigation will provide a context for students to use their knowledge
and to develop new knowledge by developing further connections and learning new skills
as they are needed.
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Stage 1: Real world problem

World records are broken usually by only a few centimetres. For example, in the thirty-
nine years from 1928 to 1967, the long jump world record rose by only 42 cm. Yet at the
1968 Mexico City Olympic Games, Bob Beamon broke the record by 55 cm. The question
the class will investigate is: how good was Bob Beamon?

Stage 2: Consider assumptions

A class discussion would elicit that to be a fair contest, conditions are the same for all ath-
letes: no wind assistance, no drugs, no altitude effect, etc.; also, that the pattern of
improvement in performance would be similar from year to year. The class would have to
decide that there is an assumption that the contest was fair. This assumption can be revis-
ited if other data comes to hand. The discussion would determine that previous data for
year and distance jumped will be needed. The information is condensed as follows:

Distance (m) [Date of record], 7.61 [August, 1901], 7.69 [July, 1921], 7.76 [July,
1924], 7.89 [June, 1925], 7.90 [July, 1928], 7.93 [September, 1928], 7.98 [October,
1931], 8.13 [May, 1935], 8.21 [August, 1960], 8.24 [May, 1961], 8.28 [July, 1961],
8.31 [June, 1962], 8.31 [August, 1964], 8.34 [September, 1964], 8.35 [May, 1965],
8.35 [October, 1967], 8.90 [October, 1968], 8.95 [August, 1991]. 

A complete and comprehensive table can be found in Goos (2002) and the GC instruc-
tions for a TI83+ are also included although the model of GC is not important. This
problem can be modelled on any brand.

Figure 1. The stages of the mathematical modelling process.

Stage 3: Formulate the mathematics problem and construct a model.

As we have the data in table form, it is easy to enter it into the GC with years in list 1 and
heights in list 2. We then ask the students to decide the model that they want to use with
this data. A statistics plot seems to be the best option and is easily achieved with a GC. The
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trace function can then be used to interrogate the points. A discussion would result in a
straight line being used to best represent the data. This would be done using their knowl-
edge of how to find the equation of the line joining two points.

Stage 4: Solve the mathematics problem using the model

Using the points (1901, 7.61) and (1967, 8.35), the gradient of the line joining them can
be calculated. Substituting this value and the coordinates of one of the points into
y = mx + c gives an estimated equation of y = 0.0112x – 13.68. This equation can then be
plotted over the data points; a discussion should follow about why the use of only two data
points is not generally appropriate.

Stage 5: Interpret the solution

Students may wish to fine tune their equation until they are satisfied with the line of best
fit. This provides opportunities for them to explain how gradient and intercept alter-
ations affect the graph. Tracing along the line allows us to find the year in which a jump
of approximately 8.90 metres is predicted at 2016, the year in which previous world
record trends indicate such a jump would be expected. 

Stage 6: Check the model

This is an important stage in the process but one that is often rushed or over-looked. This
is the stage where the class considers the model and solution against the initial problem
and the assumptions. If the model needs modifying then the class must go through the
process again (stage 2). If the class is satisfied then they can move to stage 7. At this stage
the GC is very useful by using the linear regression option available. A good discussion
will elicit that the two outliers (1968 and 1991) should be removed before completing the
regression. We can then enter the new equation y = 0.0116x – 14.5106 to see if it makes
any difference. 

It is important to stress that a model is only as good as the assumptions that it is based
upon. Students must make two decisions. First, whether the assumptions have been vio-
lated or if other variables should be included; and second, should they continue
investigating or stop and write a report of their findings. They began with the assumption
that it was a fair contest, yet many studies were published searching for explanations of
Beamon’s record jump. One popular theory attributed his performance to the altitude
and rarefied air of Mexico City (2250 metres above sea level). However, the students may
point out that the other contestants were also jumping at this height and that at Tokyo in
1991 the record was again broken, so this assumption has not been broken. Otherwise
this variable would need to be included and we would develop a method in our model for
compensating for altitude. 

What could really develop into an interesting investigation is rejecting the second
assumption of linearity, but that is the substance for another paper.

Stage 7: Report, explain and predict 

So in our case, as the class are happy with the model, they make the statement that Bob
Beamon was forty-eight years ahead of his time, based on their available evidence. You can
read more about Bob Beamon’s story at the internet site:
www.sptimes.com/News/121699/Sports/Beamon_jumps_into_recs.html.
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Conclusion

This paper has raised a number of questions in attempting to give a sketchy perspective
on the secondary mathematics classroom and some of the forces acting upon it. It has
been deliberately provocative in challenging some common current teacher behaviours.
To those who say that they do not have computers, it answers by saying start small and use
a graphics calculator. To those who say their current teaching methods help students to
master information, it answers by saying teach them to construct knowledge. To those
who say teachers still teach in a transmission way, it answers by saying give them a graph-
ics calculator and panel, as it will help to change the teacher. Finally, to those teachers
who have never experienced the enthusiasm and creative surge within a classroom of stu-
dents immersed in modelling with graphics calculators, it sympathises by saying that they
do not know what they have been missing.
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Mathematical simulations using a spreadsheet

Paul White
ACU National

The random number generator and logic functions on a spreadsheet provide a way
to simulate situations involving chance and to investigate mathematical relation-
ships which model real world phenomena. This paper looks at a number of such
simulations for which spreadsheets can be constructed. Spreadsheets mentioned
are available from the author.

One form of mathematical modelling which allows for investigations of real situations is
simulation. Simulation can take a number of forms according to the mathematics con-
cerned. For example, it is particularly powerful in highlighting common misconceptions
about chance events. Simulation can also be employed to investigate mathematical rela-
tionships in real world phenomena. By simulating the relationship for a simple model,
inferences can be drawn about realistic situations involving living creatures. Some exam-
ples follow.

Chance situations

Events may be simulated using a re-enactment process, which is sometimes effective, but
other times is quite clumsy. A more efficient alternative is to use spreadsheets (with the
random number generator features and certain logic functions). Both types are consid-
ered. Spreadsheets which are mentioned are available from the author. 

Three card risk

The game is played between a dealer and a player using three
cards. One card is black on each side, one card is red on each
side and the third card has one side black and the other side
red. 

The dealer hides the cards in a hat and allows the player to
pick one. The player lays it face down on the table, showing
one side face up without looking at the other side. The dealer
wins when the card has the same colour on both sides (i.e., is
the red-red or black-black card). 

The argument is that this is a fair game. For example, if the
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card laid down has red face up, the card cannot be the black-black card and so is either
the red-red or red-black card. Therefore, there are two outcomes: one where the two faces
have the same colour and one where they are different. 

Hence, there is a 50% chance of beating the dealer. Is this a fair game? Modelling by
acting out here is quite efficient and usually quickly shows that it is not a fair game and
that the dealer has a two thirds chance of winning.

The day you were born

Do you think one seventh of Australians were born on a Monday? Tuesday? It is not pos-
sible to ask all Australians, but it is possible to ask a sample and to calculate the day for
any individual. With a large enough sample, some conclusion can be drawn. How to cal-
culate? Use the formula:

W = day in week; e.g., Sunday = 1, 8, 15… Monday = 2, 9, 16… Saturday = 7, 14, 21…
D = day of month; e.g., D = 30 means the 30th day of the month.
M = number of month (March = 3, April = 4… December = 12, January = 13, February

= 14). Note: 1 and 2 are not used as values for M.
N = year; e.g., N = 2004 means the year 2004. Note: when the month is January or

February, use the previous year for N, e.g., for January and February 2004, use
N = 2003.

[x] means the largest integer not greater than x; 
e.g., [1.5] = 1, [-1.6] = -2, [3] = 3, [-2.4] = -3

Clearly, to calculate this manually will require a great deal of work. The random
number generator on a spreadsheet and the use of logic functions makes it much more
accessible. 

Then using the dates of known people, a reasonable data base can be created.

Show game

A square box is divided into nine equal compartments 1 to 9 for a game called ‘Three in
a row’. The object of the game is to throw three softballs into the box. Three balls in a
line make a winner. For example, 1-4-7, 3-7-5 or 6-4-5 are winning results, but 1-5-8, 2-9-4
and 7-8-1 are not winning results. Any throw which does not land in a compartment is re-
thrown. What are the chances of winning?

1 2 3

4 5 6

7 8 9
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The number of winning combinations can be easily calculated as eight. However, the
total number of possible combinations (9 choose 3) is not easily calculated by most stu-
dents. The situation can be modelled using the random number generator on a
calculator. (Use the three digits to correspond to the outcomes of the three throws. For
example, 735 corresponds to the balls landing in compartments 7, 3 and 5. Any random
number with a zero or repeated digits is ignored.) This last step can make simulation by
hand time consuming, but a spreadsheet can eliminate this obstacle and give a sizable
sample very quickly. The perceptions about chances here (about 11%) can also be erro-
neous.

Birthday problem

A famous one: how many people do you need in a group before the chance of at least two
of them having the same birthday is 50% of better? Usual estimations are 180 or so; the
actual answer is 23 and can be easily demonstrated on a spreadsheet. A simpler version is
to use month instead of year. For example, in a group of four people, what is the chance
that two or more will have their birthday in the same month? This can be simulated man-
ually by using a pack of cards: Ace = January, 2 = February, … 10 = October, Jack =
November, Queen = December. Four cards are dealt. When two or more of the same
numbers appear, these people are considered to have the same birthday month (success).
When all four cards show different numbers, there are no common birthday months
(failure). 

Again, a spreadsheet allows for a large number of trials in a short time. 

Sample size

A town has two hospitals. On average, each day there are thirty babies born in one and
ten babies born in the other. In one year, each hospital records the number of days the
number of girls born was 60% or more of the total number of deliveries. Which hospital
is more likely to record the most 60%+ days for girls?

To simulate the above situation for the larger hospital use the random number gener-
ator thirty times on a calculator with < 0.5 being female and ≥ 0.5 being male (note that
it is possible to have the number .000 appear randomly and this scores as a female.)

To simulate the above situation for the smaller hospital, use the random number gen-
erator ten times on a calculator with < 0.5 being female and ≥ 0.5 being male.

To obtain enough data to show that the smaller hospital is more likely could take a
long time by hand. A spreadsheet provides a quick analysis.

Surface area and volume

Heating up, dehydration and heat loss depend on the relationship 

The larger this comparison, the faster a person will dehydrate or lose heat because there
is a greater area from which moisture or heat can escape compared to the amount of
moisture or heat contained in the body. 

In general, the effect of increasing size of this relationship can be explored in the
simple case of a cube as shown.
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Side length 1 2 3 4 5 6 8 10
Surface area 6 24 54 96 150 216 384 600
Volume 1 8 27 64 125 216 512 1000
Value:1 6 3 2 1.5 1.2 1 0.75 0.6

The general result for the cube is found easily enough by hand, but can be explored
more extensively by spreadsheet. Furthermore, graphs of side length – Value:1 can be
plotted to show the asymptotic nature of the pattern. Consider as well side length com-
pared to successive ratios. 

Side length 1 2 3 4 5 6 8 10
Value:1 6 3 2 1.5 1.2 1 0.75 0.6
Successive ratio * 2 1.5 1.33 1.25 1.2 1.17 1.14

Extending this table on a spreadsheet and plotting the resultant points shows the curve

which can be confirmed by algebra.
One other aspect relating to heat loss is that all warm blooded animals use energy to

keep warm and the energy required is proportional to how easily the animal loses heat.
The following shows the energy used per day by some different animals.

Animal Mass in kg Kilojoules per day
Guinea Pig 0.7 656
Rabbit 2 487
Human 70 9700
Elephant 4000 218 400

The rate 

provides a comparison of mass to food consumption. This relationship is quickly explored
on a spreadsheet. An index for each pair of animals can be established on the basis of
their mass and kilojoule ratios.

Using the information from simulating surface area and volume for a cube allows for
inferences about living creatures. For example: 

• It explains why large animals have short stocky legs, big animals like elephants have
trouble getting rid of body heat and so often like water or may have large ears to
increase their surface area.

• It shows that gravity can be a killer for larger animals. A human would certainly be
killed from a fall of 500 metres. However, a mouse would walk away from such a fall.
On the other hand, surface tension is not a problem for larger animals, but is a
serious danger for smaller animals. An elephant, hippopotamus, etc. are not trou-
bled by the amount of water which sticks to their skins. However, a mouse has to
carry its own weight in water and can easily drown. Insects have no hope. This is why
the surface of swimming pools often has dead insects floating on the top and small
animals which swim have very strong legs.

• The tallest person in medical history was the American Robert Wadlow
(1918–1940). He grew to a height of 272 cm and had a shoe size of 37. How does
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his shoe size to height compare to other people of more normal height? Why might
he have such big feet? As a youth, Robert had enjoyed good health, but his large
feet had troubled him for many years. He had little sensation in his feet and did not
feel any chafing until blisters formed. While making an appearance in July 1940, a
fatal infection set in when such a blister formed.

• If you doubled your height, width and depth, would you feel any different?
• What might the giant in Jack and the Beanstalk look like?
• Do thinner/tall people feel the cold more than heavier set/shorter people?

Conclusion

The use of simulation can provide interesting, meaningful mathematics which require
the adaptation of ‘school mathematics’. Simulation can also be used as a tool to investi-
gate (often) misleading perceptions.
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Mathematics Challenge for Young Australians

Sue Wilson 
Australian Mathematics Trust

The Mathematics Challenge for Young Australians is a program run by the Australian
Mathematics Trust. This program aims to encourage students in a greater interest in
mathematics and a desire to succeed in solving interesting mathematical problems. At the
same time, it also aims to provide teachers with interesting and accessible problems and
solutions, detailed discussion and extension materials, and statistics of students’ achieve-
ments in the Challenge. 

It is directed at the top ten per cent of primary school students in Years 5 and 6, and
secondary students in Years 7 to 10. It may be particularly useful in schools where teach-
ers may be working with talented students spread out over a number of classes.

The Challenge provides materials so that these teachers may help talented students
reach their potential. Teachers in larger schools also find the materials valuable.

There are three stages in the Mathematics Challenge for Young Australians: the
Mathematics Challenge stage, the Mathematics Enrichment stage, and the AMOC
Intermediate Contest. Each is an independent program and this workshop will demon-
strate the first two: the Challenge and Enrichment stages.

Mathematics Challenge Stage

Students from all states of Australia, as well as New Zealand, Hong Kong and Singapore
attempt the Mathematics Challenge stage. In 2004 there were over 14 500 entries from
585 schools.

The Mathematics Challenge stage (held during three consecutive weeks around April)
comprises four problems for students in primary schools and six problems for secondary
school students. There are separate problem sets for primary (Years 5–6), Junior (Years
7–8) and intermediate (Years 9–10) students. In the junior and intermediate levels two
problems can be discussed in pairs before individual submission of solutions while the
other problems are to be attempted individually. 

Participating schools will receive student problem booklets and a teachers’ reference
book containing solutions and marking schemes, with teaching, discussion and extension
notes in problem solving. Within Australian schools, Mathematics Challenge Directors
who wish to pay to have their Mathematics Challenge stage scripts marked, can do so. In
approximately late July, each school will receive comprehensive Australia-wide statistics of
students’ achievements, as well as Certificates of High Distinction, Distinction, Credit or
Participation for their students.
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Mathematics enrichment stage

Students from all states of Australia, as well as New Zealand, Hong Kong and Singapore
attempt the Mathematics Enrichment stage. In 2004 there were over 6600 entries from
414 schools. The most popular series is the Euler series, followed by the Gauss series. The
Newton and Dirichlet series, which were introduced more recently, are growing in popu-
larity. Currently, each has approximately 1000 entries. The Australian Mathematics Trust
has received excellent feedback from primary schools about both series, including a
recent email from a teacher who had students queued at the door to join the program.
The program can be organised at the school by a teacher or an interested parent.

The Mathematics Enrichment stage is a six-month enrichment program. It consists of
six different, parallel series of comprehensive student and teacher support notes.
Students in this stage of the Mathematics Challenge for Young Australians work through
their chosen series notes during a flexible sixteen-week period between April and
September. Each student receives student notes, including topics relevant to the series
they are participating in, and a student problem booklet containing up to sixteen prob-
lems. The school will receive a teacher set for each relevant series consisting of a teacher’s
reference book containing solutions and marking schemes, with teaching, discussion and
extension notes, plus the student problem booklet and student notes.

The Mathematics Enrichment stage does not depend on the earlier Challenge stage.
They both provide challenging mathematics problems for students, as well as support
materials for teachers. 

The six series are:
• Newton

This series comprises a number of introductory topics in geometry, counting and
numbers. It introduces polyominoes, fast arithmetic, polyhedra, pre-algebra con-
cepts and divisibility as well as chapters on problem solving. Although it is written
for advanced Years 5 and 6 students, the series is also most appropriate for use with
Years 7 and 8. There are eight questions in the series.

• Dirichlet
This series is designed for students in Years 6 and 7. This series has chapters on
some problem solving techniques, tessellations, base five arithmetic, pattern
seeking, rates and number theory. There are eight questions in the series.

• Euler
This series comprises elementary number theory, geometry, pigeonhole principle,
elementary counting techniques and miscellaneous challenge problems, mainly for
Year 8 and outstanding Year 7 students. There are twelve questions in this series.

• Gauss
This series comprises elementary geometry, similarity, Pythagoras’ Theorem, ele-
mentary number theory, counting techniques and miscellaneous challenge
problems, mainly for Year 9 and 10 students and those who have already done the
Euler series. This series consists of material independent of the Euler series and
develops problem solving techniques such as counting and the use of spreadsheets.
There are twelve questions in this series.

• Noether
This series is designed for students in the top five to ten per cent of Year 9 who have
taken the Gauss series in another year, and are not yet ready for the Polya series.
This series consists of material on problem solving, algebra, geometry and number
theory. There are sixteen questions in this series.
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• Polya
This series consists of notes on deductive reasoning (Euclidean geometry) and
algebra. It was designed specifically for the top five per cent of Year 10 students and
outstanding students in lower years. Schools have found that this series gives a
sound base for students who wish to specialise in Years 11 and 12 mathematics.
There are sixteen questions in this series.

The workshop will include a display of the materials from the two stages. Participants
will have the opportunity to attempt some of the problems and to examine the teacher
support materials, and to trial the procedure for marking student answers.
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